
1

Supervised nonlinear spectral unmixing using

a post-nonlinear mixing model for hyperspectral imagery

Yoann Altmann, Abderrahim Halimi, Nicolas Dobigeon and Jean-Yves Tourneret

E-mail : {Yoann.Altmann, Abderrahim.halimi, Nicolas.Dobigeon, Jean-Yves.Tourneret}@enseeiht.fr

TECHNICAL REPORT – 2011, November

University of Toulouse, IRIT/INP-ENSEEIHT

2 rue Camichel, BP 7122, 31071 Toulouse cedex 7, France

Abstract

This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed

model assumes that the pixel reflectances are nonlinear functions of pure spectral components contami-

nated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial

functions leading to a polynomial post-nonlinear mixing model. A Bayesian algorithm and optimization

methods are proposed to estimate the parameters involved in the model. The performance of the unmixing

strategies is evaluated thanks to simulations conducted on synthetic and real data.

Index Terms

Hyperspectral imagery, spectral unmixing, post-nonlinear model.

I. INTRODUCTION

Spectral unmixing (SU) is one of the major issues when analyzing hyperspectral images.

SU consists of identifying the macroscopic materials present in an hyperspectral image and

quantifying the proportions of these materials in all the image pixels. Most SU strategies assume

that pixel reflectances are linear combinations of pure component spectra [1]–[5]. The resulting

linear mixing model (LMM) has been widely used in the literature and has provided interesting

results. However, as explained in [6], the LMM can be inappropriate for some hyperspectral
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images, such as those containing sand, trees or vegetation areas. Nonlinear mixing models provide

an interesting alternative for overcoming the inherent limitations of the LMM. They have been

proposed in the hyperspectral image literature for specific kinds of nonlinearity. More precisely,

the bidirectional reflectance-based model proposed in [7] has been introduced for hyperspectral

images including intimate mixtures. Conversely, the bilinear models recently studied in [8]–[11]

address the problem of scattering effects, mainly observed in vegetation areas. Other more flexible

unmixing techniques have been also proposed to handle wider class of nonlinearity, including

radial basis function networks [12], [13] and kernel-based models [14], [15]. This paper considers

a class of nonlinear mixing models referred to as post-nonlinear mixing models (PNMMs).

PNMMs are flexible generalizations of the standard LMMs that have been introduced in [16],

[17] for source separation problems. The main advantage of PNMMs is that they can accurately

model many different nonlinearities (as will be shown in this paper). This paper addresses the

problem of supervised SU of hyperspectral images using PNMMs. Note that “supervised” means

that the endmembers contained in the image have been estimated by an endmember extraction

algorithm (EEA). As a consequence, the only parameters to be estimated are the abundances and

the nonlinearity coefficients for all pixels of the image. In the last decades, many EEAs have

been developed to identify the pure spectral components contained in a hyperspectral image (the

reader is invited to consult [18] for a recent review of these methods). Most EEAs implicitly rely

on the LMM and might be inappropriate for nonlinear models such as PNMMs. However, as

noticed in [6], geometric EEAs are still adapted to identify endmembers and can be reasonably

employed when the mixing model involves nonlinearities. Therefore, this paper proposes to

extract the endmembers contained in the hyperspectral image using a geometric EEA, known

as vertex component analysis (VCA) [19] and the recent nonlinear EEA proposed in [20]. Once

the endmembers have been extracted from the image, we propose to estimate the abundances

and the nonlinearity parameters involved in the PNMM using estimation algorithms based on

Bayesian and least-squares (LS) methods.

In the Bayesian framework, appropriate prior distributions are chosen for the unknown PNMM

parameters. The joint posterior distribution of these parameters is then derived. However, the

classical Bayesian estimators cannot be easily computed from this joint posterior. To alleviate

this problem, a Markov chain Monte Carlo (MCMC) method is used to generate samples

according to the posterior of interest. As in any Bayesian algorithm, the joint posterior distribution
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can also be used to compute confidence intervals for the parameter estimates. However, the

resulting computational complexity can be too heavy for practical applications. In order to reduce

this computational complexity, we propose to study LS methods that have already received

considerable attention in the hyperspectral imagery [2], [10], [14]. A first method based on

Taylor series expansions is proposed to iteratively solve the LS criterion associated with the

PNMM observation model. The Taylor approximations allow quadratic optimization problems

to be solve at each iteration. A second approach is based on a classical gradient method dedicated

to constrained problems.

The paper is organized as follows. Section II introduces the PNMM for hyperspectral image

analysis. Section III presents a Bayesian unmixing algorithm associated with the proposed

PNMM. Section IV studies the two alternative unmixing algorithms based on least squares

methods. Some simulation results conducted on synthetic and real data are shown and discussed

in Section V. Conclusions are finally reported in Section VI.

II. POLYNOMIAL POST-NONLINEAR MIXING MODEL

This section defines the nonlinear mixing model used for hyperspectral image SU. More pre-

cisely, the L-spectrum y = [y1, . . . , yL]
T of a mixed pixel is defined as a nonlinear transformation

g of a linear mixture of R spectra mr contaminated by additive noise

y = g

(

R
∑

r=1

armr

)

+ n = g (Ma) + n (1)

where mr = [mr,1, . . . ,mr,L]
T is the spectrum of the rth material present in the scene, ar is its

corresponding proportion, R is the number of endmembers contained in the image and g is an

appropriate nonlinear function. Moreover, L is the number of spectral bands and n is an additive

independent and identically distributed (i.i.d) zero-mean Gaussian noise sequence with variance

σ2, denoted as n ∼ N (0L, σ
2IL), where IL is the L × L identity matrix. Note that the usual

matrix and vector notations M = [m1, . . . ,mR] and a = [a1, . . . , aR]
T have been used in the

right hand side of (1).

The choice of the nonlinearity g deserves a specific attention. Polynomials, sigmoidal functions

and combinations of polynomial and sigmoidal nonlinearities have shown interesting properties

for source separation [17]. This study focuses on second order polynomial nonlinearities gb
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defined by

gb : [0, 1]L → R
L

s 7→
[

s1 + bs21, . . . , sL + bs2L
]T

(2)

with s = [s1, . . . , sL]
T . An interesting property of the resulting nonlinear model referred to as

polynomial post nonlinear mixing model (PPNMM) is that it reduces to the classical LMM for

b = 0. Thus, we can expect unmixing results at least as good as those presented in [21] and [2]

where Bayesian and LS methods were investigated. Another motivation for using the PPNMM

is the Weierstrass approximation theorem which states that any continuous function defined on

a bounded interval can be uniformly approximated by a polynomial with any desired precision

[22, p. 15]. As explained in [9], it is reasonable to consider polynomials with first and second

order terms (since higher order terms can generally be neglected) which leads to (2). Higher

order terms could be considered in the presence of more than two reflections. However, the

resulting interaction spectra are in practice of low amplitude and are hardly distinguishable from

the noise. Straightforward computations allow the PPNMM observation vector (for a given pixel

of the image) to be expressed as follows

y = gb (Ma) + n = Ma + b(Ma)⊙ (Ma) + n (3)

where ⊙ denotes the Hadamard (term-by-term) product. Note that the resulting PPNMM includes

bilinear terms such as those considered in [8]–[11]. However, the nonlinear terms are charac-

terized by a single amplitude parameter b, leading to a less complex model when compared

with the models introduced in [8], [9] and[11]. Note that the endmember mr (contained in the

matrix M) can be obtained from (3) in the noise free case (n = 0L) by setting b = 0 and

a = [0r−1, 1,0R−r]
T in (3).

Due to physical considerations, the abundance vector a satisfy the following positivity and

sum-to-one constraints
R
∑

r=1

ar = 1, ar ≥ 0, ∀r ∈ {1, . . . , R} . (4)

It is straightforward to show that the function s 7→ gb(s) is non-injective for a fixed b. However,

the unmixing problem is identifiable since the application

g : R
R × R → R

L

(a, b) 7→ Ma + b(Ma)⊙ (Ma)
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is injective under specific conditions related to the pure component spectra (see Appendix A for

details).

III. BAYESIAN ESTIMATION

This section generalizes the hierarchical Bayesian model introduced in [21] to the PPNMM.

The unknown parameter vector associated with the PPNMM contains the pixel abundances a

(satisfying the constraints (4)), the nonlinearity parameter b and the additive noise variance σ2.

This section summarizes the likelihood and the parameters priors associated with the proposed

hierarchical Bayesian PPNMM.

A. Likelihood

Equation (3) shows that y|a, b, σ2 is distributed according to a Gaussian distribution with

mean gb (Ma) and covariance matrix σ2IL (denoted as y|a, b, σ2 ∼ N (gb (Ma)), σ2IL). As a

consequence, the likelihood function of y can be expressed as

f(y|a, b, σ2) =

(

1

2πσ2

)
L

2

exp

(

−‖y −Ma − b(Ma)⊙ (Ma)‖2
2σ2

)

(5)

where ‖x‖ =
√

xTx is the standard ℓ2 norm.

B. Parameter priors

In order to satisfy the sum-to-one constraint, the abundance vector can be rewritten1 a =

[a\R, aR]
T with a\R = [a1, . . . , aR−1]

T and aR = 1−∑R−1
r=1 ar . The positivity constraints in (4)

impose that a\R belongs to the following simplex S

S =

{

a\R

∣

∣

∣

∣

∣

ar ≥ 0, ∀r 6= R,

R−1
∑

r=1

ar ≤ 1

}

. (6)

A uniform prior distribution on S is chosen for a\R to reflect the absence of prior knowledge

about the abundance vector.

A Jeffreys’ prior is chosen for σ2

f(σ2) ∝ 1

σ2
IR+(σ2) (7)

1Note that the proposed parametrization is chosen for notation simplicity. However, the component to be discarded can be

randomly chosen.
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which also reflects the absence of knowledge for this parameter (see [23] for details). A conjugate

Gaussian prior is finally chosen for the nonlinearity parameter b

b
∣

∣σ2
b ∼ N

(

0, σ2
b

)

. (8)

The Gaussian prior is zero-mean since the value of b can be equally likely positive or negative.

Moreover, it favors small values of b and is a conjuguate prior for the parameter b which will

simplify the computations.

C. Hyperparameter prior

The hyperparameter σ2
b is also included within the Bayesian model. A conjugate inverse-

Gamma prior is assigned to σ2
b

σ2
b ∼ IG (γ, ν) (9)

where (γ, ν) are real parameters fixed to obtain a flat prior, reflecting the absence of knowledge

about the variance σ2
b ((γ, ν) will be set to (1, 10−2) in the simulation section). The resulting

directed acyclic graph (DAG) is depicted in Fig. 1.

D. Posterior distribution of θ

The joint posterior distribution of θ =
{

a\R, b, σ
2
}

and σ2
b can be computed using the following

hierarchical structure

f(θ, σ2
b |y) ∝ f(y|θ)f(θ|σ2

b )f(σ
2
b ) (10)

where ∝ means “proportional to” and f(y|θ) is defined in (5). By assuming the parameters σ2,

b and a\R are a priori independent, the joint prior distribution of the unknown parameter vector

can be expressed as

f(θ|σ2
b ) = f(a\R)f(b|σ2

b )f(σ
2). (11)

The joint posterior distribution f(θ, σ2
b |y) can then be computed up to a multiplicative constant

f(θ, σ2
b |y) ∝

1

σ2

(

1

σ2
b

)
3

2
+γ

f(y|a\R, σ
2, b) exp

(

−b2 + 2ν

2σ2
b

)

1S(a\R). (12)

Unfortunately, it is difficult to obtain closed form expressions of the standard Bayesian estimators

(including the maximum a posteriori (MAP) and the minimum mean square error (MMSE)
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estimators) associated with (12). The last part of this section studies a Markov chain Monte Carlo

(MCMC) method which can be used to generate samples asymptotically distributed according

to (12). These generated samples are then used to compute the MAP or MMSE estimators of

the unknown parameters θ and σ2
b .

E. Metropolis-within-Gibbs sampler

The principle of the Gibbs sampler is to sample according to the conditional distributions of

the posterior of interest [24, Chap. 10]. The conditional distributions associated with the posterior

(12) are studied below.

1) f(ar|y, a\R,rb, σ
2, σ2

b ): Straightforward computations lead to

f(ar|y, b, a\R,r, σ
2, σ2

b ) ∝ exp

(

−‖y −Ma − b(Ma)⊙ (Ma))‖2
2σ2

)

1S(a\R) (13)

where r = 1, . . . , R−1 and a\R,r = [a1, . . . , ar−1, ar+1, . . . , aR−1]
T . Since it is not easy to sample

according to (13) (mainly because of the indicator function 1S(a\R)), we propose to update the

abundance ar thanks to a Metropolis-Hasting move. More precisely, a new abundance coefficient

is proposed following a Gaussian random walk (RW) procedure (the variance of the proposal

distribution has been adjusted to obtain an acceptance rate close to 0.5, as recommended in [25,

p. 8]). The generated sampler is accepted or rejected with an appropriate probability provided

in Algo. 1.

2) f(b|y, a\R, σ
2, σ2

b ): Using (5), it can be easily shown that b is distributed according to the

following Gaussian distribution

b|y, a\R, σ
2 ∼ N

(

mb, s
2
b

)

(14)

where

mb =
σ2
b (y −Ma)T h(a)

σ2
bh(a)

Th(a) + σ2
, s2b =

σ2
bσ

2

σ2
bh(a)

Th(a) + σ2

and h(a) = (Ma)⊙ (Ma). As a consequence, sampling according to (14) is straightforward.

3) f(σ2|y, a\R, b, σ
2
b ): By considering the posterior distribution (12), it can be shown that

σ2|y, a−k, b, σ
2
b is distributed according to the following inverse-gamma distribution

σ2|y, a\R, b, σ
2
b ∼ IG

(

L

2
,
‖y − gb(Ma)‖2

2

)

(15)

from which it is easy to sample.
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4) f(σ2
b |y, a\R, b, σ

2): Finally, by looking at the posterior distribution (12), it can be seen

that σ2
b |y, a\R, b, σ

2 is distributed according to the following inverse-gamma distribution

σ2
b |y, a\R, b, σ

2 ∼ IG
(

1

2
+ γ,

b2

2
+ ν

)

. (16)

The resulting Metropolis-within-Gibbs sampler used to sample according to the posterior (12)

is summarized in Algo. 1.

After generating samples using the procedures detailed above, the MMSE estimator of the

unknown parameters can be approximated by computing the empirical averages of these samples,

after an appropriate burn-in period2. Even if the sampling strategy has been observed to converge

very fast, its computational complexity can be heavy for practical applications. The next section

studies LS estimators which allow this computational complexity to be significantly reduced.

IV. LEAST SQUARES METHODS

LS methods have been used successfully for linear unmixing [2]. The LS method associated

with the observation equation (3) consists of minimizing the following criterion

J(a, b) =
1

2
‖y − gb(Ma)‖2 = 1

2
‖y −Ma − b(Ma)⊙ (Ma)‖2 (17)

under the positivity and sum-to-one constraints (4). This optimization problem is not easy to

handle mainly because of the constraints (4). However, the cost function J(a, b) is quadratic

with respect to the parameter b. As a consequence, by differentiating J(a, b) with respect to b,

the following closed-form expression for b can be obtained

b =
(y −Ma)Th(a)

h(a)Th(a)
= β(a). (18)

After replacing (18) in J(a, b), the following criterion can be obtained3

J(a) = J(a, β (a)) =
1

2
‖y − φ(a)‖2 (19)

where

φ(a) = Ma + β(a)(Ma)⊙ (Ma). (20)

2The length of the burn-in period has been determined using appropriate convergence diagnoses [25].

3For brevity, the same notation J is chosen for the criteria depending on a and (a, b).
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We introduce below two strategies to compute the optimal abundance vector

â = argmin
a

J(a)

under the constraints (4). Note that once â has been computed, the nonlinearity parameter b can

be estimated as follows

b̂ = β (â) . (21)

A. Taylor approximation

Motivated by the method introduced in [10], we propose to approximate the function φ(·)
defined in (20) using a Taylor series expansion where only first-order terms are considered.

Let a(t) denotes the estimated abundance vector estimate at the tth step of the proposed iter-

ative algorithm, and its corresponding estimated spectrum φ(a(t)) following (20). The Taylor

approximation of φ(·) at a(t) can be written

φ(a) ≈ φ
(

a(t)
)

+∇φ
(

a(t)
) (

a − a(t)
)

(22)

where ∇φ(a(t)) is the gradient matrix of φ(a(t)) of size L×R and a is the unknown parameter

vector to be estimated. The rth column of the gradient matrix ∇φ(a(t)) can be derived from (3)

∂φ(a)

∂ar
= mr +

∂β(a)

∂ar
h(a) + β(a)

∂h(a)

∂ar
(23)

where r = 1, . . . , R and the partial derivatives of β(·) and h(·) are available in Appendix B.

Approximating φ(·) in (19) using (22), the vector a(t+1) can then be estimated by solving the

following constrained LS problem

a(t+1) = argmin
a

∥

∥

∥
z(t) − M̃(t)a

∥

∥

∥

2

, (24)

under the constraints (4), where

z(t) = y − φ
(

a(t)
)

+∇φ
(

a(t)
)

a(t) (25)

and M̃(t) = ∇φ
(

a(t)
)

is the L× R gradient matrix. Problem (24) can finally be solved by the

FCLS algorithm [2]. More precisely, the sum-to-one constraint of the abundances is considered

by penalizing (24), leading to

a(t+1) = argmin
a

[

∥

∥

∥
z(t) − M̃(t)a

∥

∥

∥

2

+ δ(1− 1T
Ra)2

]

(26)
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subject to the non-negativity constraints for the parameter vector a, where δ ∈ R
+ controls

the impact of the sum-to-one constraint. The procedure (26) is repeated until convergence and

is summarized in Algo. 2. The convergence of this iterative procedure to the global minimum

of the objective function (21) is difficult to prove because of the constraints (4) in (24). The

next section introduces an alternative subgradient based algorithm whose convergence (to a local

minimum of the associated objective function) is ensured.

B. Subgradient-based optimization

A gradient approach could be used to solve the cost function defined in (19) in absence of

constraints. However, the problem is more complicated when the constraints (4) have to be

considered. The estimation method studied in this section is based on a subgradient optimiza-

tion (SO) algorithm [26, p. 339] that is appropriate for constrained problems. More precisely,

subgradient-based optimization allows each abundance a1, . . . , ar to be updated independently.

Thanks to the sum-to-one constraint of the abundance vector, the cost function (19) can be

expressed as a function of a\R by setting aR = 1−∑R−1
r=1 ar. In that case, the cost function (19)

can be rewritten

J(a\R) =
1

2

∥

∥y − φ(a\R)
∥

∥

2
(27)

where

J(a\R) = J

(

a1, . . . , aR−1, 1−
R−1
∑

r=1

ar

)

(28)

φ(a\R) = φ

(

a1, . . . , aR−1, 1−
R−1
∑

r=1

ar

)

. (29)

At a given point a\R, the SO algorithm performs sequential line searches along the directions

dr defined by the partial derivatives with respect to ar (for r = 1, . . . , R− 1), i.e.,

dr = −∂J(a\R)

∂ar
=
[

y − φ(a\R)
]T ∂φ(a\R)

∂ar

where the partial derivatives of φ(a\R) are provided in Appendix B. Finally, the line search

procedure solves the following problem

λ̂r = argmin
λr

J(a\R − λrur). (30)
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where ur = [0, . . . , sign(dr), 0, . . . , 0]
T is a direction vector of size (R− 1)× 1, 0 ≤ λr ≤ λr,M

and λr,M ∈ R
+ (for r = 1, . . . , R − 1) are upper bounds for the line search parameters. More

precisely, upper bounding λr according to the following rule

λr,M =



















0, if dr = 0

ar, if dr > 0

ar −
∑R−1

i=1,i 6=r ai, if dr < 0

ensures the constraints (4) are satisfied. The problem (30) can be solved using the golden section

method [26, p. 270]. The abundances are then updated component by component. The final

algorithm is summarized in Algo. 2. Here again, the procedure is repeated until convergence.

The next section presents the performance of the proposed algorithms on synthetic and real

hyperspectral images.

V. SIMULATIONS

A. Synthetic data

The performance of the proposed nonlinear SU algorithms is first evaluated by unmixing 4

synthetic images of size 50× 50 pixels. The R = 3 endmembers contained in these images have

been extracted from the spectral libraries provided with the ENVI software [27] (i.e., green grass,

olive green paint and galvanized steel metal). The first synthetic image I1 has been generated

using the standard linear mixing model (LMM). A second image I2 has been generated according

to the bilinear mixing model introduced in [10], referred to as “Fan model” (FM). A third image

I3 has been generated according to the generalized bilinear mixing model (GBM) presented in

[11], whereas a fourth image I4 has been generated according to the PNMM. For each image, the

abundance vectors ap, p = 1, . . . , 2500 have been randomly generated according to a uniform

distribution over the admissible set defined by the positivity and sum-to-one constraints. All

images have been corrupted by an additive white Gaussian noise of variance σ2 = 2.8 × 10−3,

corresponding to a signal-to-noise ratio SNR = L−1σ−2 ‖gb (a)‖2 ≃ 15dB. The nonlinearity

coefficients are uniformly drawn in the set (0, 1) for the GBM and the parameter b has been

generated uniformly in the set (−0.3, 0.3) for the PPNMM. Different estimation procedures have

been considered for the four mixing models. More precisely,

• for the LMM, we have considered the standard FCLS algorithm [2] and the Bayesian

algorithm of [21],
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• the FM has been unmixed using the LS method introduced in [10] and a Bayesian algorithm

similar to the one derived in [11] but assuming all the nonlinearity coefficients are equal to

1,

• the unmixing strategies used for the GBM are the three algorithms presented in [28], i.e.,

a Bayesian algorithm and two LS methods,

• the Bayesian and LS algorithms presented in Sections III and IV have been used for

unmixing the proposed PPNMM. Note that all results presented in this paper have been

obtained using the Bayesian MMSE estimator.

The quality of the unmixing procedures can be measured by comparing the estimated and

actual abundance vector using the root mean square error (RMSE) defined by

RMSE =

√

√

√

√

1

P

P
∑

p=1

‖âp − ap‖2 (31)

where ap and âp are the actual and estimated abundance vectors for the pth pixel of the image

and P is the number of image pixels. Table I shows the RMSEs associated with the images

I1, . . . , I4 for the different estimation procedures. Note that the best results (in term of RMSE)

for each image have been represented in underlined bold whereas the second best results have

been depicted in bold. Table I shows that the abundances estimated by the Bayesian algorithm

and the LS methods are similar for the PPNMM. Moreover, for these 4 images, the PPNMM

seems to be more robust than the other mixing models to deviations from the actual model.

The unmixing quality can also be evaluated by the reconstruction error (RE) defined as

RE =

√

√

√

√

1

PL

P
∑

p=1

‖ŷp − yp‖2 (32)

where yp is the pth observation vector and ŷp its estimate. Table II compares the REs obtained

for the different synthetic images. These results show that the REs are close for the different

unmixing algorithms even if the estimated abundances can vary more significantly. Again, the

proposed PPNMM seems to be more robust than the other mixing models to deviations from

the actual model in term of RE.

Fig. 2. shows the estimated distributions of b for the images I1, . . . , I4 using the three pre-

sented algorithms (i.e., Bayesian, linearization and subgradient). This figure shows that the two

algorithms perform similarly for the estimation of the nonlinearity parameter b.
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Table III shows the execution times of MATLAB implementations on a 1.66GHz Dual-Core

of the proposed algorithms for unmixing the proposed images (2500 pixels for each image).

The linearization-based algorithm has the lowest computational cost and also provides accurate

estimations. Note that the computational cost of the Bayesian algorithm (which allows prior

knowledge to be included in the unmixing procedure) can be prohibitive for larger images and a

high number of endmembers. However, the computational cost of the two proposed optimization

methods (linearization and gradient-based) is very reasonable which make them very useful for

practical applications.

The next set of simulations analyzes the performance of the proposed nonlinear SU algorithms

for different numbers of endmembers (R ∈ {3, 6, 9, 12}) by unmixing 4 synthetic images of

500 pixels. The endmembers contained in these images have been randomly selected from the

fourteen endmembers extracted by VCA from the full Cuprite scene described in [29]. For each

image, the abundance vectors ap, (p = 1, . . . , 500) have been randomly generated according to a

uniform distribution over the admissible set defined by the positivity and sum-to-one constraints.

All images have been corrupted by an additive white Gaussian noise corresponding to a signal-

to-noise ratio SNR = 20dB. The nonlinearity coefficients b are uniformly drawn in the set

(−0.3, 0.3). Tables IV and V compare the performance of the three proposed methods in term

of abundance estimation and reconstruction error. These results show that the three methods

perform similarly in term of reconstruction error. The Bayesian estimators tend to provide more

accurate abundance estimations (i.e., smaller RMSEs) for large values of R. Indeed, the Taylor

and gradient algorithms may be trapped in local minima of the LS criterion (17) for large values

of R.

B. Real data

The first real image considered in this section is composed of L = 189 spectral bands and was

acquired in 1997 by the airborne visible infrared imaging spectrometer (AVIRIS) over the Cuprite

mining site in Nevada. A sub-image of size 50 × 50 pixels has been chosen here to evaluate

the proposed unmixing procedures. The scene is mainly composed of muscovite, alunite and

kaolinite, as explained in [30]. The endmembers extracted by VCA [19] and the nonlinear EEA

proposed in [20] (referred to as “Heylen”), with R = 3 are depicted in Fig. 3. The endmembers

obtained by the two methods have similar shapes. This result confirms the fact that the geometric
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EEAs (such as VCA) can be used as a first approximation for endmember estimation [6]. The

estimation algorithms presented in Sections III and IV have been applied independently to each

pixel of the scene using the endmembers extracted by the two EEAs. Examples of abundance

maps obtained by the Heylen’s method are presented in Fig. 4. They are similar to the abundance

maps obtained with the VCA algorithm and presented in Fig. 5. However, the advantage of the

PPNMM is that it allows the nonlinearities between the observations and the abundance vectors

to be analyzed. For instance, Fig. 6 shows the estimated maps of b for the Cuprite image. These

results show that the observations are nonlinearly related to the endmembers (since b 6= 0).

However, the nonlinearity is weak since the estimated values of b are close to 0.

The second real image considered in this section is composed of L = 189 spectral bands and

was acquired in 1997 by the satellite AVIRIS over the Moffett Field, CA. A sub-image of size

50 × 50 pixels has also been chosen here to evaluate the proposed unmixing procedures. The

scene is mainly composed of water, vegetation and soil. The endmembers extracted by VCA

and Heylen’s method with R = 3 are depicted in Fig. 7. Again, the endmembers obtained by the

two methods are similar. Examples of abundance maps estimated by the Heylen’s method are

presented in Fig. 8. They are similar to the abundance maps obtained with estimation algorithms

associated with the LMM and available in [21]. Fig. 9 shows the estimated maps of b for the

Moffett image. In the water area, the observations are nonlinearly related to the endmembers

(since b 6= 0). These nonlinearities can be due to the low amplitude of the water spectrum and

nonlinear bathymetric effects.

The quality of unmixing is finally evaluated using the REs for both real images. These REs

are compared in Table VI with those obtained by assuming other mixing models. The proposed

PPNMM provides smaller REs when compared to other models which is a very encouraging

result.

The performance of the gradient-based algorithm has been evaluated on the full Cuprite

hyperspectral image composed of L = 189 spectral bands. The geologic characteristics of

the complete data have been described in [29]. The area of interest of size 190 × 250 has

been previously studied in [19] to test the VCA algorithm with R = 14 endmembers. The

subgradient-based estimator has been used to estimate the parameters of the PPNMM related

to the analyzed scene. Fig. 10 shows the abundance maps estimated by the subgradient-based

algorithm corresponding to the R = 14 components identified by VCA. These maps are in good
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agreement with the maps obtained using FCLS that are shown in Fig. 11. The associated average

reconstruction errors are compared in Table VII. As can be seen, the proposed algorithm shows

good performance for this example obtained with the full Cuprite image.

VI. CONCLUSIONS AND FUTURE WORKS

A Bayesian and two least squares algorithms were presented for nonlinear spectral unmixing of

hyperspectral images. These algorithms assumed that the hyperspectral image pixels are related

to the endmembers by a polynomial post-nonlinear mixing model. In the Bayesian framework,

the constraints related to the unknown parameters were ensured by using appropriate prior

distributions. The posterior distribution of the unknown parameter vector was then derived. The

corresponding minimum mean square error estimator was approximated from samples generated

using Markov chain Monte Carlo methods. Least squares methods were also investigated for

unmixing the polynomial post-nonlinear model. These methods provided results similar to the

Bayesian algorithm with a reduced computational cost, making them very attractive for hyper-

spectral image unmixing. Results obtained on synthetic and real images illustrated the accuracy

of the polynomial post-nonlinear model and the performance of the corresponding estimation

algorithms. Future works include the study of nonlinear EEAs appropriate for the proposed

parametric PPNMM . Deriving nonlinearity detectors based on the proposed parametric PPNMM

is also under investigation.
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APPENDIX A

INJECTIVITY OF THE NONLINEAR FUNCTIONS

A. Non-injectivity of s 7→ gb(s)

The application

gb : [0, 1]L → R
L

s 7→
[

s1 + bs21, . . . , sL + bs2L
]T

with s = [s1, . . . , sL]
T is not injective. Indeed, if gb(s1) = gb(s2) then

∀l = 1, . . . , L s2,i ∈
{

s1,i,−
1

b
− s1,i

}

which leads to 2L solutions for the problem gb(s1) = gb(s2)

B. Injectivity of (a, b) 7→ g(a, b) = Ma + b(Ma)⊙ (Ma)

Let a and a∗ be two abundance vectors satisfying the positivity and sum-to-one constraints,

M the matrix containing the endmembers and (b, b∗) ∈ R
2. Consider the nonlinear functional

g(a, b) defined as follows

g(a, b) = Ma + b(Ma)⊙ (Ma)

=
R
∑

r=1

armr + b

R
∑

r=1

a2rmr ⊙mr + 2b
R=1
∑

r=1

R
∑

j=r+1

arajmr ⊙mj

where ⊙ denotes the term by term product operation. If gb(Ma) = gb∗(Ma∗), then

M(a − a∗
2) + b(Ma)⊙ (Ma)− b∗(Ma∗)⊙ (Ma∗) = 0

and

R
∑

r=1

(ar − a∗r)mr +
R
∑

r=1

(ba2r − b∗a∗2r )mr ⊙mr + 2
R=1
∑

r=1

R
∑

j=r+1

(baraj − b∗a∗ra
∗
j)mr ⊙mj = 0.

If the columns of the L× R(R+3)
2

matrix

M̌ = {m1, . . . ,mR,m1 ⊙m1, . . . ,mR ⊙mR,m1 ⊙m2, . . . ,mR−1 ⊙mR}

are linearly independent, then

a = a∗, and b = b∗. (33)
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Consequently, the identifiability of the unmixing problem assuming the proposed PPNMM is

ensured when rank(M̌) = R(R+3)
2

, which is usually satisfied when using real pure spectral

components. Note that the identifiability of the unmixing problem associated with the LMM

requires a similar condition, i.e., rank(M) = R, where M = [m1, . . . ,mR]
T .

APPENDIX B

PARTIAL DERIVATIVES

A. Partial derivatives of β(·) and h(·)

The partial derivative of h(·) with respect to ar, (r = 1, . . . , R) is given by

∂h(a)

∂ar
= 2 (Ma)⊙mr.

Using the following partial derivatives

∂(y −Ma)

∂ar
= −mr

∂(y −Ma)Th(a)

∂ar
= −mT

r h(a) + 2(y −Ma)T ((Ma)⊙mr)

∂h(a)Th(a)

∂ar
= 2h(a)T

∂h(a)

∂ar

and the usual differentiation rules, we obtain

∂β(a)

∂ar
=

1

‖h(a)‖4
[

∂(y −Ma)Th(a)

∂ar
h(a)Th(a)− (y −Ma)Th(a)

∂h(a)Th(a)

∂ar

]

.

B. Partial derivatives of φ(·)

Thanks to the sum-to-one constraint of the abundance vector, the cost function (19) can be

expressed as a function of a\R = [a1, . . . , aR−1]
T by setting aR = 1−∑R−1

r=1 ar. Straightforward

computations lead to

Ma = Ma\R +mR

where M , [m1 −mR, . . . ,mR−1 −mR] , [m1, . . . ,mR−1] is a matrix of size L × (R − 1).

The estimated spectrum φ(a\R) can then be expressed as

φ(a\R) = Ma\R +mR + β(a\R)h(a\R)
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where

β(a\R) = β

(

a1, . . . , aR−1, 1−
R−1
∑

r=1

ar

)

and

h(a\R) = (Ma\R +mR)⊙ (Ma\R +mR).

Using the following partial derivatives with respect to ar

∂h(a\R)

∂ar
= 2mr ⊙

(

Ma\R +mR

)

∂(y −Ma\R −mR)

∂ar
= −mr

∂(y −Ma\R −mR)
Th(a\R)

∂ar
= −mT

r h(a\R) + 2(y −Ma)T
(

mr ⊙
(

Ma\R +mR

))

∂h(a\R)
Th(a\R)

∂ar
= 2h(a\R)

T ∂h(a\R)

∂ar

and the usual differentiation rules, we obtain

∂β(a\R)

∂ar
=

1
∥

∥h(a\R)
∥

∥

4

{

∂(y −Ma\R −mR)
Th(a\R)

∂ar

[

h(a\R)
Th(a\R)

]

− (y −Ma\R −mR)
Th(a\R)

∂h(a\R)
Th(a\R)

∂ar

}

.

Finally, the partial derivative of the estimated spectrum φ(a\R) with respect to ar is

∂φ(a\R)

∂ar
= mr +

∂β(a\R)

∂ar
h(a\R) + β(a\R)

∂h(a\R)

∂ar
.
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ALGORITHM 1

Gibbs Sampling Algorithm

1: Initialization (t = 0)

• a(0), b(0), σ2(0), σ
2(0)
b .

2: Iterations (t ≥ 1)

3: Set c = [c1, . . . , cR−1]
T = a

(t−1)
\R

4: for r = 1 : R− 1 do

5: • Sample a candidate ζr using a Gaussian proposal distribution N
(

a
(t−1)
r , σ2

r

)

.

• Compute ρ = min

{

f(ζr|y, b, c\r, σ2, σ2
b )

f(cr|y, b, c\r, σ2, σ2
b )
, 1

}

• Set cr =







ζr with probability ρ

cr with probability 1− ρ

6: end for

7: Set a
(t)
\R = [c1, . . . , cR−1]

T

8: Set a
(t)
R = 1−∑R−1

r=1 a
(t)
r

9: Sample b(t) from the pdf in (14)

10: Sample σ2(t) from the pdf in (15)

11: Sample σ
2(t)
b from the pdf in (16)

12: Set t = t+ 1.

ALGORITHM 2

Taylor Approximation Algorithm

1: Initialization (t = 0)
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• Set a(0)

2: Iterations (t ≥ 0)

3: Compute the gradient matrix of φ at a(t) using (23)

4: Compute a(t) using (24)

5: Compute b(t) using (21)

6: Set t = t+ 1.



22

ALGORITHM 3

Constrained Subgradient Algorithm

1: Initialization (t = 0)

• Set a(0)

2: Iterations (t ≥ 1)

3: Set c = [c1, . . . , cr−1]
T = a

(t−1)
\R

4: for r = 1 : R− 1 do

5: • Compute dr = −∂J(c)
∂cr

• Compute λr,M from (31)

• Compute λ̂r from (30)

• Set cr = cr − λ̂rdr

6: end for

7: Set a
(t)
\R = c

8: Set a
(t)
R = 1−∑R−1

r=1 a
(t)
r

9: Compute b(t) using (21)

10: Set t = t+ 1.

TABLE I

ABUNDANCE RMSES (×10−2): SYNTHETIC IMAGES .

I1 I2 I3 I4

(LMM) (FM) (GBM) (PPNMM)

LMM
Bayesian [21] 1.58 27.54 15.16 18.88

FCLS [2] 1.58 24.72 9.49 16.87

FM
Bayesian 22.67 1.51 13.63 16.84

Taylor [10] 22.67 1.49 12.61 26.33

GBM

Bayesian [28] 3.24 17.49 9.09 16.18

Taylor [28] 6.32 14.67 7.07 15.61

Gradient [28] 4.28 4.26 3.01 15.05

PPNMM

Bayesian 2.75 3.43 3.22 2.93

Taylor 2.70 3.83 3.26 3.33

Gradient 2.93 3.43 3.43 2.93



23

TABLE II

RES (×10−2): SYNTHETIC IMAGES .

I1 (LMM) I2 (FM) I3 (GBM) I4 (PPNMM)

LMM
Bayesian [21] 5.28 6.54 5.65 5.89

FCLS [2] 5.28 5.74 5.42 5.48

FM
Bayesian 5.61 5.29 5.38 5.76

Taylor [10] 5.61 5.28 5.38 5.75

GBM

Bayesian [28] 5.29 5.49 5.33 5.44

Taylor [28] 5.31 5.40 5.30 5.42

Gradient [28] 5.29 5.30 5.28 5.41

PPNMM

Bayesian 5.28 5.29 5.28 5.28

Taylor 5.29 5.29 5.28 5.28

Gradient 5.29 5.29 5.28 5.28

TABLE III

COMPUTATIONAL TIMES OF THE UNMIXING ALGORITHMS FOR 2500 PIXELS (IN SECOND).

I1 I2 I3 I4

Bayesian 5960 6200 6600 5970

Taylor 5 10 8 7

Subgradient 84 102 96 101

TABLE IV

AVERAGE RMSES(×10−2): SYNTHETIC IMAGES .

Bayesian
Taylor Gradient

MMSE MAP

R=3 12.99 18.06 16.34 16.31

R=6 18.46 27.86 30.99 29.79

R=9 17.07 28.68 35.69 34.24

R=12 16.38 27.98 38.66 36.66
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TABLE V

AVERAGE RES(×10−2): SYNTHETIC IMAGES .

Bayesian
Taylor Gradient

MMSE MAP

R=3 4.18 4.22 4.17 4.17

R=6 4.22 4.24 4.20 4.20

R=9 4.27 4.29 4.24 4.24

R=12 4.18 4.19 4.13 4.13

TABLE VI

RES (×10−2): CUPRITE AND MOFFETT IMAGES

VCA Heylen

Cuprite Moffett Cuprite Moffett

LMM
Bayesian [21] 2.14 2.70 2.35 2.02

FCLS [2] 2.11 2.62 2.10 2.00

FM
Bayesian 7.36 2.31 2.30 1.92

Taylor [10] 3.05 2.29 2.29 1.92

GBM

Bayesian [28] 2.24 2.57 2.11 1.99

Taylor [28] 2.34 2.41 2.03 2.01

Gradient [28] 2.02 2.30 2.04 1.93

PPNMM

Bayesian 1.19 1.59 1.91 1.85

Taylor 1.19 1.54 1.90 1.84

Gradient 1.19 1.55 1.90 1.87

TABLE VII

AVERAGE RES(×10−2) FOR THE FULL CUPRITE SCENE.

FCLS Taylor FM [10] Gradient GBM [28] Gradient

0.49 0.53 0.48 0.44
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Fig. 1. DAG for the parameter priors and hyperpriors (the fixed parameters appear in dashed boxes).

Fig. 2. Histograms of the estimated nonlinearity parameter b̂ for the four synthetic images estimated by the Bayesian (black),

linearization-based (red) and subgradient-based (blue) algorithms.
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Fig. 3. The R = 3 endmembers estimated by VCA (blue lines) and Heylen (red lines) for the Cuprite scene.

Fig. 4. Abundance maps estimated by the Bayesian, linearization and subgradient methods for the Cuprite scene using Heylen’s

method.
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Fig. 5. Abundance maps estimated by the Bayesian, linearization and subgradient methods for the Cuprite scene using the

VCA algorithm.

Fig. 6. Maps of the nonlinearity parameter b estimated by the Bayesian, linearization and subgradient methods for the Cuprite

scene.
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Fig. 7. The R = 3 endmembers estimated by VCA (blue lines) and Heylen (red lines) for the Moffett scene.

Fig. 8. Abundance maps estimated by the Bayesian, linearization and subgradient methods for the Moffett scene.
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Fig. 9. Maps of the nonlinearity parameter b estimated by the Bayesian, linearization and subgradient methods for the Moffett

scene.

Fig. 10. Fourteen abundance maps estimated with the gradient-based algorithm for the Cuprite scene.
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Fig. 11. Fourteen abundance maps estimated with the FCLS algorithm for the Cuprite scene.


