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ABSTRACT
Patient similarity assessment is an important task in the context of
patient cohort identification for comparative effectiveness studies
and clinical decision support applications. The goal is to derive
clinically meaningful distance metric to measure the similarity be-
tween patients represented by their key clinical indicators. How
to incorporate physician feedback with regard to the retrieval re-
sults? How to interactively update the underlying similarity mea-
sure based on the feedback? Moreover, often different physicians
have different understandings of patient similarity based on their
patient cohorts. The distance metric learned for each individual
physician often leads to a limited view of the true underlying dis-
tance metric. How to integrate the individual distance metrics from
each physician into a globally consistent unified metric?
We describe a suite of supervised metric learning approaches that
answer the above questions. In particular, we present Locally Su-
pervised Metric Learning (LSML) to learn a generalized Maha-
lanobis distance that is tailored toward physician feedback. Then
we describe the interactive metric learning (iMet) method that can
incrementally update an existing metric based on physician feed-
back in an online fashion. To combine multiple similarity mea-
sures from multiple physicians, we present Composite Distance
Integration (Comdi) method. In this approach we first construct
discriminative neighborhoods from each individual metrics, then
combine them into a single optimal distance metric. Finally, we
present a clinical decision support prototype system powered by
the proposed patient similarity methods, and evaluate the proposed
methods using real EHR data against several baselines.

1. INTRODUCTION
With the tremendous growth of the adoption of Electronic Health
Records (EHR), various sources of information are becoming avail-
able about patients. A key challenge is to identify the appropriate
and effective secondary uses of EHR data for improving patient
outcome without incurring additional effort from physicians. To
achieve the goal of the meaningful reuse of EHR data, patient simi-
larity becomes an important concept. The objective of patient sim-
ilarity is to derive a similarity measure between a pair of patients
based on their EHR data. With the right patient similarity in place,
many applications can be enabled: 1) case-based retrieval of simi-
lar patients for a target patient; 2) treatment comparison among the
cohorts of similar patients to a target patient; 3) cohort comparison
and comparative effectiveness research.
One of the key challenges to deriving meaningful patient similar-
ity measure is how to leverage physician input. In this work, we

present a suit of approaches to encode physician input as super-
vised information to guide the similarity measure to address the
following questions:

• How to adjust the similarity measure according to physician
feedback?

• How to interactively update the existing similarity measure
efficiently based on new feedback?

• How to combine different similarity measures from multiple
physicians?

First, to incorporate physician feedback, we present an approach
of using locally supervised metric learning (LSML) [20] to learn
a generalized Mahalanobis measure to adjust the distance measure
according to the target labels. The main approach is to construct
two sets of neighborhoods for each training patient based on an
initial distance measure. In particular, the homogeneous neighbor-
hood of the index patient is the set of retrieved patients that are
close in distance measure to the index patient and are also consid-
ered similar by the physician; the heterogeneous neighborhood of
the index patient is the set of retrieved patients that are close in dis-
tance measure to the index patient but are considered NOT similar
by the physician. Given these two definitions, both homogeneous
and heterogeneous neighborhoods are constructed for all patients
in the training data. Then we formulate an optimization problem
that tries to maximize the homogeneous neighborhoods while at
the same time minimizing the heterogeneous neighborhoods.
Second, to incorporate additional feedback to the existing similarity
measure, we present the interactive Metric learning (iMet) method
that can incrementally adjust the underlying distance metric based
on latest supervision information [25]. iMet is designed to scale
linearly with the data set size based on the matrix perturbation the-
ory, which allows the derivation of sound theoretical guarantees.
We show empirical results demonstrating that iMet outperforms
the baseline by three orders of magnitude in speed while obtain-
ing comparable accuracy on several benchmark datasets.
Third, to combine multiple similarity measures (one from each
physician), we develop an approach that first constructs discrimina-
tive neighborhoods from each individual metrics, then we combine
them into a single optimal distance metric. We formulate this prob-
lem as a quadratic optimization problem and propose an efficient
alternating strategy to find the optimal solution [24]. Besides learn-
ing a globally consistent metric, this approach provides an elegant
way to share knowledge across multiple experts (physicians) with-
out sharing the underlying data, which enables the privacy preserv-
ing collaboration. Through our experiments on real claim datasets,
we show improvement of classification accuracy as we incorporate
feedback from multiple physicians.
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All three techniques address different aspects of operationalizing
patient similarity in the clinical application: The first technique lo-
cally supervised metric learning can be used to learn the distance
metric in the batch mode where large amount of evidence first need
to be obtained to form the training data. In particular, the train-
ing data should consist of 1) clinical features of patients such as
diagnosis, medication, lab results, demographics and vitals, and 2)
physician feedback about whether pair of patients are similar or
not. For example, one simple type of feedback is binary indicator
about each retrieved patient, where 1 means the retrieved patient
is similar to the index patient and 0 means not similar. Then the
supervised similarity metric can be learned over the training data
using LSML algorithm. Finally, the learned similarity can be used
in various applications for retrieving a cohort of similar patients to
a target patient. The second and third techniques address other re-
lated challenges of using such a supervised metric, namely how to
update the learned similar metric with new evidence efficiently and
how to combine multiple physicians’ opinions.
Obtaining high quality training data is very important but often
challenging, since it typically imposes overhead on users, who are
busy physicians in our case. An important benefit of our approaches
is that the supervision required can come from various sources be-
sides direct physician feedback, and could be implicitly collected
without any additional overhead. For example, for some use case
scenarios the training data could be simply information about pa-
tients such as diagnoses, which physicians routinely provide in ev-
ery encounter.
We have conducted preliminary evaluation of all the proposed meth-
ods using claims data consisting of 200K patients over 3 years from
a healthcare group consisting of primary care practices. A target di-
agnosis code assigned by physicians is considered as the feedback,
while all other information (e.g., other diagnosis codes) are used as
input features. The goal is to learn the similarity that push patients
of the same diagnosis closer, and patient of different diagnosis far
away from each other. Classification performance based on the tar-
get diagnosis is used as the evaluation metric. Our initial results
show significant improvements over many baseline distance met-
rics.
The rest of the paper is organized as the follows: Section 2 de-
scribes the EHR and patient representation; Section 3 presents the
locally supervised metric learning (LSML) method; Section 4 de-
scribes an extension of LSML that enables incremental updates of
an existing similarity metric based on physician feedback; Sec-
tion 5 presents an extension of LSML that can combine multiple su-
pervised similarity metrics learned using LSML; Section 6 presents
the experiments; section 7 presents the related works, and we con-
clude in section 8.

2. DATA AND PATIENT REPRESENTATION
We adopt a feature-based framework that serves as the basis for
implementing different similarity algorithms. In particular, we sys-
tematically construct features from different data sources, recog-
nizing that longitudinal data on even a single variable (e.g., blood
pressure) can be represented in a variety of ways. The objective of
our feature construction effort is to capture sufficient clinical nu-
ances of heterogeneity among patients. A major challenge is in
data reduction and in summarizing the temporal event sequences in
EHR data into features that can differentiate patients.
We construct features from longitudinal sequences of observable
measures based on demographics, diagnoses, medication, lab, vital
signs, and symptoms. For the evaluation results presented in this
paper, only diagnosis information is used. However other types of

features can be generated and used in the similarity measure in a
similar fashion.
Different types of clinical events arise in different frequency and
in different orders. We construct summary statistics for different
types of event sequences based on the feature characteristics: For
static features such as gender and ethnicity, we will use a single
static value to encode the feature. For temporal numeric features
such as lab measures, we will use summary statistics such as point
estimate, variance, and trend statistics to represent the features. For
temporal discrete features such as diagnoses, we will use the event
frequency (e.g., number of occurrences of a ICD9 code). For other
measures such as blood pressure, we construct variance and trend
in value. For other variables, we construct counting statistics such
as number of encounters or number of symptoms at different time
intervals. For complex variables, like medication prescribed, we
model medication use as a time dependent variable and also express
medication usage (i.e., percent of days pills may have been used) at
different time intervals.
Essentially, each patient is represented by a feature vector, which
serves as the input to the similarity measure. Our goal next is to
design a similarity measure that operates on patient feature vectors
and are consistent with physician feedback in terms of whether two
patients are clinically similar or not.

3. SUPERVISED PATIENT SIMILARITY
In this section, we present a supervised metric learning algorithm
that can incorporate physician feedback as supervision information.
We useX = [x1, · · · ,xn] ∈ R

d×n to represent a feature matrix of
a set of patients, andy = [y1, · · · , yn]T ∈ R

n is the corresponding
label vector withyi ∈ {1, 2, · · · , C} denoting the label ofxi, and
C is the number of classes. In particular,xi corresponds to the
feature vector of patienti, and the labelyi captures the supervision
information from a physician. More specifically, if two patients
have the same label information, it means that they are considered
similar.
Our goal is to learn ageneralized Mahalanobis distanceas follows

dΣ(xi,xj) =

√
(xi − xj)

⊤
Σ (xi − xj) (1)

whereΣ ∈ R
d×d is a Symmetric Positive Semi-Definite(SPSD)

matrix. Following [26], we define the Homogeneous Neighbor-
hood and Heterogeneous Neighborhood around each data point as

DEFINITION 3.1. The homogeneous neighborhood ofxi, de-
noted asN o

i , is the|N o
i |-nearest data points ofxi with the same

label.

DEFINITION 3.2. The heterogeneous neighborhood ofxi, de-
noted asN e

i , is the|N e
i |-nearest data points ofxi with different

labels.

In the above two definitions we use| · | to denote set cardinality.
Intuitively, N o

i consists of true similar patients, who are consid-
ered similar by both our algorithm and the physician (because of
the label agreement). Likewise,N e

i consists of falsified similar
patients, who are considered similar by the algorithm but not by
the physician (because of label disagreement). The falsified similar
patients are false positives that should be avoided by adjusting the
underlying distance metric.
In order to learn the right distance metric based on the label infor-
mation, we need to first construct both neighborhoodsN o

i andN e
i .

Then we can define the local compactness and scatterness measures
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around a feature vectorxi as

Ci =
∑

j:xj∈No
i

d
2
Σ(xi,xj) (2)

Si =
∑

k:xk∈Ne
i

d
2
Σ(xi,xk) (3)

Ideally, we want small compactness and large scatterness simulta-
neously. To do so, we can want to minimize the followingdiscrim-
ination criterion:

J =
∑n

i=1
(Ci − Si) (4)

which makes the data in the same class compact while data in dif-
ferent class diverse. AsΣ is SPSD, we can factorize it using in-
complete Cholesky decomposition as

Σ = WW
⊤ (5)

ThenJ can be expanded as1

J = tr
(
W

⊤ (ΣC −ΣS)W
)

(6)

wheretr(·) is the matrix trace, and

ΣC =
∑

i

∑
j:xj∈No

i

(xi − xj)(xi − xj)
⊤ (7)

ΣS =
∑

i

∑
k:xk∈Ne

i

(xi − xk)(xi − xk)
⊤ (8)

are the localCompactnessand Scatternessmatrices. Hence the
distance metric learning problem can be formulated as

min
W:W⊤W=I

tr
(
W

⊤ (ΣC −ΣS)W
)

(9)

Note that the orthogonality constraintW⊤W = I is imposed to
reduce the information redundancy among different dimensions of
W, as well as control the scale ofW to avoid some arbitrary scal-
ing. To further simplify the notations, let us define two symmetric
square matrices

DEFINITION 3.3. (Homogeneous Adjacency Matrix)The ho-
mogeneous adjacency matrixHo is ann×n symmetric matrix with
its (i, j)-th entry

h
o
ij =

{
1, if xj ∈ N o

i or xi ∈ N o
j

0, otherwise

DEFINITION 3.4. (Heterogeneous Adjacency Matrix)The het-
erogeneous adjacency matrixHe is ann×n symmetric matrix with
its (i, j)-th entry

h
e
ij =

{
1, if xj ∈ N e

i or xi ∈ N e
j

0, otherwise

We also definegoii =
∑

j h
o
ij andGo = diag(go11, g

o
22, · · · , gonn)

2.
Likewise, we definegeii =

∑
j
he
ij andGe = diag(ge11, g

e
22, · · · , genn).

Then we refer to

L
o = G

o −H
o (10)

L
e = G

e −H
e (11)

as theHomogeneous LaplacianandHeterogeneous Laplacian, re-
spectively..
1Note that this is atrace differencecriterion which has some ad-
vantages over optimizing thetrace quotientcriterion as adopted in
[26], such as easy to manipulate, convexity, and avoid the singular-
ity problem.
2diag(x) creates a diagonal matrix with the entries inx.

With definition 3.3, we can rewrite Eq.(2) as

C =
∑

i

∑
j:xj∈No

i
or xi∈No

j

‖x̂i − x̂j‖2

=
∑

i

∑
j
‖x̂i − x̂j‖2 ho

ij

= 2
∑

i
g
o
ii‖x̂i‖2 − 2

∑
ij
x̂i

⊤
x̂jh

o
ij

= 2tr
(
W

⊤
XL

o
X

⊤
W
)

(12)

Similarly, by combining definition 3.4 and Eq.(3), we can get

S = 2tr
(
W

⊤
X(Ge −H

e)X⊤
W
)

= 2tr
(
W

⊤
XL

e
X

⊤
W
)

(13)

Then the optimization problem becomes

min
W⊤W=I

tr
(
W

⊤
X(Lo − L

e)X⊤
W
)

(14)

With the followingKy Fantheorem, we know that optimal solution
of the above solution would beW∗ = [w1,w2, · · · ,wd], where
w1 . . . ,wd are the eigenvectors of matrixX(Lo−Le)X⊤, whose
corresponding eigenvalues are negative.

THEOREM 3.1. (Ky Fan)[31]. LetH ∈ R
d×d be a symmetric

matrix with eigenvalues

λ1 > λ2 > · · ·λd

and the corresponding eigenvectorsU = [u1,u2, · · · ,ud]. Then

λ1 + λ2 + · · ·+ λk = max
P⊤P=Ik

tr(P⊤
HP)

Moreover, the optimalP∗ = [u1,u2, · · · ,uk] subject to orthonor-
mal transformation.

The complete algorithm ofLocally Supervised distance Metric Learn-
ing (LSML) is summarized in Algorithm 1.

Algorithm 1 LSML ALGORITHM

Require: Data matrixX, Data label vectory, Homogeneous
neighborhood size|N o

i |, Heterogeneous neighborhood size
|N e

i |, Projected dimensionalityk of matrixW
1: Construct homogeneous LaplacianLo using Eq.(10)
2: Construct heterogeneous LaplacianLe using Eq.(11)
3: Find the number of columnsk of W as the total number of

negative eigenvalues.
4: SetW as thek eigenvectors ofX(Lo − Le)X⊤ with the k

smallest eigenvalues.

There are some optimization tricks that can be applied to make Al-
gorithm 1 more efficient, e.g., (1) whenX(Lo −Le)X⊤ is sparse,
we can resort to Lanczos iteration to accelerate it; (2) according
to Ky Fan theorem, the optimal objective value of problem (14)
is simply the sum of all negative eigenvalues ofX(Lo − Le)X⊤.
Therefore, we can automatically determine the number of columns
of W to be the number of negative eigenvalues ofX(Lo−Le)X⊤.

4. PATIENT SIMILARITY UPDATE
LSML is particularly relevant for patient similarity, since it pro-
vides a natural way to encode the physician feedback. However,
to really make this patient similarity applicable, we have to be
able to efficiently and effectively incorporate new feedback from
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physicians into the existing model. In other words, the learned dis-
tance metric needs to be incrementally updated without expensive
rebuilding. We next present an efficient update algorithm that can
adjust an existing distance metric when additional label informa-
tion becomes available. In particular, we present the update algo-
rithm which links changes to the projection matrixW to changes to
the existing homogeneous and heterogeneous Laplacian matrices.

4.1 Metric Update Algorithm
The updates that we consider here are in the form of label changes
of y, which consequently leads to changes to the homogeneous and
heterogeneous Laplacian matricesLo andLe. The key idea here is
to relate the metric update to eigenvalue and eigenvector updates of
these Laplacian matrices.
Definition and Setup: To facilitate the discussion, we define the
Laplacian matrix as

L = L
o − L

e
.

Next we introduce an efficient technique based on matrix perturba-
tion [19] to adjust the learned distance metric according to changes
of L. Suppose that after adjustment,L becomes

L̃ = L+∆L.

We defineM = XLX⊤, and define(λi,wi) as one eigeivalue-
eigenvector pair of matrixM. Similarly, we havẽM = XL̃X⊤

and define(λ̃i, w̃i) as one eigenvalue-eigenvector pair of̃M.

Then we can rewrite(λ̃i, w̃i) as

λ̃i = λi +∆λi

w̃i = wi +∆wi

Next we can obtain

X(L+∆L)X⊤(wi +∆wi) = (λi +∆λi)(wi +∆wi). (15)

Now the key questions are how to compute changes to the eigen-
value∆λi and eigenvector∆wi, respectively.
Eigenvalue update:Expanding Eq.(15), we obtain

XLX
⊤
wi +X∆Lx

⊤
wi +X∆LX

⊤
wi +X∆LX

⊤∆wi

= λiwi + λi∆wi +∆λiwi +∆λi∆wi

In this paper, we concentrate on first-order approximation, i.e., we
assume all high order perturbation terms (such asX∆LX⊤∆wi

and∆λi∆wi in the above equation) are neglectable. By further
using the fact thatXLX⊤wi = λiwi, we can obtain the following
equation

XLX
⊤∆wi +X∆LX

⊤
wi = λi∆wi +∆λiwi

Now multiplying both sides of Eq.(15) withw⊤
i and because of the

symmetry ofXLX⊤, we get

∆λi = w
⊤
i X∆LX

⊤
wi (16)

Eigenvector update:Since the eigenvectors are orthogonal to each
other, we assume that the change of the eigenvector∆wi is in the
subspace spanned by those original eigenvectors, i.e.,

∆wi ≈
∑d

j=1
αijwj (17)

where{αij} are small constants to be determined. Bringing Eq.(17)
into Eq.(15), we obtain

XLX
⊤

d∑

j=1

αijwj +X∆LX
⊤
wi = λi

d∑

j=1

αijwj +∆λiwi

which is equivalent to

d∑

j=1

λjαijwj +X∆LX
⊤
wi = λi

d∑

j=1

αijwj +∆λiwi

Multiplying w⊤
k (k 6= i) on both side of the above equation, we

get

λkαik +w
⊤
k X∆LX

⊤
wi = λiαik

Therefore,

αik =
w⊤

k X∆LX⊤wi

λi − λk

To getαii, we use the fact that

w̃
⊤
i w̃i = 1

⇐⇒ (wi +∆wi)
⊤(wi +∆wi) = 1

⇐⇒ 1 + 2w⊤
i ∆wi +O(‖∆wi‖2) = 1

Discarding the high order term, and bringing in Eq.(17), we get
αii = − 1

2
. Therefore

∆wi = −1

2
wi +

∑

j 6=i

w⊤
j X∆LX⊤wi

λi − λj

wj (18)

Algorithm 2 METRIC UPDATE

Require: Data matrixX, Initial label vectory, Learned optimal
projection matrixW as well as the eigenvaluesλ, Expert feed-
back

1: Construct∆L based ony and expert feedback
2: for i = 1 to k do
3: Compute∆λi using Eq.(16), and computẽλi = λi +∆λi

4: Compute∆wi using Eq.(18), and computẽwi = wi+∆wi

5: end for

5. INTEGRATE MULTIPLE SOURCES
The above LSML algorithm and its extension on incremental up-
date face a key challenge in distributed secure environments. For
example in healthcare applications, different physicians or prac-
tices may be responsible for different cohorts of patients, and all
the information of these patients (demographic, diagnosis, lab tests,
pharmacy, etc.) should be kept confidential. Typically in a health
network we have a number of physicians or practices. If we want to
learn an objective distance metric to compare pairwise patient sim-
ilarity across all providers in the network, LSML cannot be applied
as it needs to input all the patient features. How to learn a good
distance metric in this distributed environment?
In this section, we present aComposite Distance Integration(Comdi)
algorithm to solve such problem. The goal of Comdi is to learn
an optimal integration of those individual distance metrics on each
group of patients. We follow the same framework as LSML to de-
velop the Comdi algorithm.
Now we present how to integrate neighborhood information from
multiple parties. First, we generalize the optimization objective;
second, we present an alternating optimization scheme; at last, we
provide the theoretical analysis on the quality of the final solution.

5.1 Objective function
We still aim at learning a generalized Mahalanobis distance as in
Eq.(1) but integrating the neighborhood information from all par-
ties. Here theq-th party constructs homogeneous neighborhood
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N o
i (q) and heterogeneous neighborhoodN e

i (q) for the i-th data
point in it. Correspondingly, the compactness matrixΣ

q

C and the
scatterness matrixΣq

S are computed and shared by theq-th party:

Σ
q

C =
∑

i∈Xq

∑
j:xj∈No

i
(q)

(xi − xj)(xi − xj)
⊤

Σ
q

S =
∑

i∈Xq

∑
k:xk∈Ne

i
(q)

(xi − xk)(xi − xk)
⊤

Similar to one party case presented in Eq.(6), we generalize the
optimization objective as

J =
∑m

q=1
αqJ q =

∑m

q=1
αqtr

(
W

⊤ (Σq

C −Σ
q

S)W
)

(19)

where the importance score vectorα = (α1, α2, · · · , αm)⊤ is
constrained to be in a simplex asαq > 0,

∑
q
αq = 1, andm

is the number of parties. Note that by minimizing Eq.(19), Comdi
actually leverages the local neighborhoods of all parties to get a
more powerful discriminative distance metric. Thus Comdi aims at
solving the following optimization problem.

minα,W

∑m

q=1
αqtr

(
W

⊤ (Σq

C −Σ
q

S)W
)
+ λΩ(α)

s.t. α > 0, α⊤
e = 1

W
⊤
W = I (20)

HereΩ(α) is some regularization term used to avoid trivial solu-
tions, andλ > 0 is the tradeoff parameter. In particular, when
λ = 0, i.e., without any regularization, onlyαq = 1 for the best
party, while all the others have zero weight. The bestλ can be
selected through cross-validation.

5.2 Alternating Optimization
It can be observed that there are two groups of variablesα andW.
Although the problem is not jointly convex with respect to both
of them, it is convex with one group of variables with the other
fixed. Therefore we can applyblock coordinate descentto solve
it. Specifically, ifΩ(α) is a convex regularizer with respect toα,
then the objective is convex with respect toα with W fixed, and is
convex with respect toW with α fixed.

SolvingW with α Fixed: Starting fromα = α
0, at stept we can

first solve the following optimization problem to obtainW(t) with
α = α

(t−1)

minW

∑m

q=1
α
(t−1)
q tr

(
W

⊤ (Σq

C −Σ
q

S)W
)
+ λΩ(α)

s.t. W
⊤
W = I (21)

Note that the second term of the objective is irrelevant toW, there-
fore we can discard it. For the first term of the objective, we can
rewrite it as

∑m

q=1
α
(t−1)
q tr

(
W

⊤ (Σq

C −Σ
q

S)W
)

(22)

= tr

(
W

⊤
[

m∑

q=1

α
(t−1)
q (Σq

C −Σ
q

S)

]
W

)

The optimalW is obtained by the Ky Fan theorem. In particular,
we can solve problem (21), and setW(t) = [w

(t)
1 ,w

(t)
2 , · · · ,w(t)

k ]

with w
(t)
i being the eigenvector of

E
(t−1) =

∑m

q=1
α
(t−1)
q (Σq

C −Σ
q

S)

whose eigenvalue is thei-th smallest. The worst computational
complexity can reachO(d3) if E(t−1) is dense.

Solvingα with W Fixed: After W(t) is obtained, we can getα(t)

by solving the following optimization problem.

minα
∑m

q=1
αqtr

(

(

W
(t)

)⊤
(

Σ
q
C −Σ

q
S
)

W
(t)

)

+ λΩ(α)

s.t. α > 0, α⊤
e = 1

Heree is an all one vector. Now we analyze how to solve it with
different choices ofΩ(α). For notational convenience, we denote
r(t) = (r

(t)
1 , r

(t)
2 , · · · , r(t)m )⊤ with

r
(t)
q = tr

((
W

(t)
)⊤

(Σq

C −Σ
q

S)W
(t)

)
(23)

L2 regularization: HereΩ(α) = ‖α‖22 = α
⊤
α, which is a com-

mon choice for regularization as adopted in SVM [17] andRidge
Regression[13] to avoidoverfitting. In this case, the problem be-
comes

minα α
⊤
r
(t) + λ‖α‖22

s.t. α > 0, α⊤
e = 1 (24)

which is a standardQuadratic Programming(QP) problem which
can be solved by many mature softwares (e.g., thequadprog
function in MATLAB). However, solving a QP problem is usu-
ally time consuming. Actually the objective of problem (24) can
be reformulated as

α
⊤
r
(t) + λ‖α‖22

=

∥∥∥∥
√
λα+

1√
2λ

r
(t)

∥∥∥∥
2

2

+
1

2λ

(
r
(t)
)⊤

r
(t)

As the second term1
2λ

(
r(t)
)⊤

r(t) is irrelevant withα, we can

discard it and rewrite problem (24) as

minα

∥∥∥α− r̃
(t)
∥∥∥
2

2

s.t. α > 0, α⊤
e = 1 (25)

Here r̃(t) = 1√
2λ

r(t). Therefore this is just anEuclidean projec-
tion problem under the simplex constraint, several researchers have
proposedlinear timeapproaches to solve this type of problem [7;
16].

6. EVALUATION AND CASE STUDY
We first present a use case demonstration of patient similarity, then
present all the quantitative evaluation of the algorithm.

6.1 Use Case Demostration
In this section we present a prototype system that uses patient sim-
ilarity for clinical decision support. Fig.1 shows two snapshots of
the system, where there are three tabs on the left side. When the
physician inputs the ID of a patient and clicks the “Patient Sum-
mary” tab, the system displays all the information related to the
index patient as shown in Fig.1(a). Once the physician clicks the
“Similar Patient” tab, the system automatically retrieves N similar
patients and visualize them as shown in Fig.1(b) according to some
underlying patient similarity metric. The physician can further see
the details of these retrieved patients by clicking the “Details” and
“Comparison” tabs on the same page.
The underlying patient similarity metric is initially learned with
the supervised metric learning method described in section 3. Af-
ter the physician is presented with the view of N similar patients
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(a) Patient Summary Tab (b) Similar Patientsd Tab

Figure 1: Snapshots of a real world Physician decision support system developed by our team.

as described above, he/she can provide feedback using the “Simi-
larity Evaluation” tab shown in Fig.2. The system then takes the
input and updates the distance metric using the method described
in section 4.
Currently, the system supports the following types of physician
feedback.

• The selected patientxu is highly similar to the query patient
xq. This feedback is interpreted as indicating thatxu should
be in the homogeneous neighborhood, and not in the hetero-
geneous neighborhood ofxq.

• The selected patientxv bears low similarity to the query pa-
tient xq. This feedback is interpreted as indicating thatxv

should be in the heterogeneous neighborhood, and not in the
homogeneous neighborhood ofxq.

• The selected patient has medium similarity to the query pa-
tient, i.e., the physician is unsure whether the selected pa-
tient should be considered similar to the query patient. In
this case, the selected patients is simply considered unlabeled
and the corresponding elements in both homogeneous and
heterogeneous adjacency matrices are set to 0.

Figure 2: The “Similarity Evaluation” tab under “Similar Patients”,
where the physician can input his own feedback on whether a spe-
cific patient is similar to the query patient or not.

6.2 Effective Update Evaluation

In order to evaluate the performance of the update algorithm in a
real world setting, we designed experiments that emulate physi-
cians’ feedback using existing diagnosis labels in a clinical data set
containing records of 5000 patients. First, diagnosis codes were
grouped according to their HCC category ([2], which resulted in a
total of 195 different disease types. We select HCC019 which is
diabetes without complication as the target condition. We use the
presence and absence in patients’ records of HCC019 code as the
label and surrogates for physician feedback. That is, patients who
had the same label were considered to be highly similar, and those
who had different labels were considered to have low similarity.
The experiments were then set up as follows. First, the patient pop-
ulation was clustered into 10 clusters using Kmeans with the 194
dimensional features. An initial distance metric was then learned
using LSML(described in section 3). For each round of simulated
feedback, an index patient was randomly selected and 100 similar
patients were retrieved using the current metric. Then 20 of these
100 similar patients were randomly selected for feedback based on
the target label. These feedbacks were then used to update the dis-
tance metric using algorithm described in section 4.
The quality of the updated distance was then evaluated using the
precision@positionmeasure, which is defined as follows.

DEFINITION 6.1. (Precision@Position). On a retrieved list,
the precision@position value is computed as the percentage of the
patient with the same label as the query patient before some specific
position.

We calculated the precision values at different positions over the
whole patient population. Specifically, after each round of feed-
back, the distance metric was updated. Then for each patient the
100 most similar patients were retrieved with the updated distance
metric. we then computed the retrieval precision at different posi-
tions along this list and then averaged over all the patients.
Fig.3 illustrates the results on different diseases. From the figure
we can see that with increasing number of feedback rounds, the
retrieved precision becomes consistently higher.

6.3 Distance Integration Evaluation
We next evaluate the distance integration method described in sec-
tion 5 through the clinical decision support scenario. We partition
all the patients based on their primary care physicians. Each parti-
tion is called a patient cohort. We pick 30 patient cohorts to perform
our experiments. We report the performance in terms of precision
of different methods trained using all patients (shared version) and
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Figure 3: Precision variation at different positions with respect to
the number of feedback rounds. The x-axis is the number of physi-
cian feedback rounds, which varies from 1 to 25. y-axis is the re-
trieved precision averaged over the whole population.

trained using only one patient cohort (secure version).
Besides our Comdi method described in section 5, we also present
the performance of LSML. We also includePrincipal Component
Analysis(PCA) [14], Linear Discriminant Analysis(LDA ) [8] and
Locality Sensitive Discriminant Analysis(LSDA) [5] as additional
baselines. Moreover, the results using simpleEuclidean distance
(EUC) is also presented as a baseline.
For LSML, LSDA and Comdi, we fix|N o

i | = |N e
i | = 5. For

Comdi, we use Algorithm 1 withm=30, andλ is set by cross val-
idation. We report the classification performance for HCC019 in
Fig.4 in terms of accuracy, recall, precision and F1 score, where
the performance for secure version methods are averaged over 30
patient cohorts and we also show the standard deviation bars. From
the figures we can see that Comdi significantly outperforms other
secure version methods and can achieve almost the same perfor-
mance as the shared version of LSML.
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Figure 4: Classification performance comparison with different
measurements on our data set with HCC019.

Effect of distance integration: In the second part of the experi-
ments, we test how the performance of Comdi is affected by the
choice of individual cohorts. For the evaluation purpose, we also
hold-out one fixed set of 2000 patients for testing. The idea is that
because some cohorts represent well the entire patient distribution,
which often leads to good base metric. On the other hand, some
cohorts do not represent the entire patient distribution, which often
leads to bad base metric. We call the formerrepresentative cohorts
and the latterbiased cohorts. What is the effect of incorporating
other metrics learned from a set of mixed cohorts? In particular,
we want to find out 1) whether the base metric learned from a bi-
ased cohort will improve as incorporating other metrics; 2) whether
the base metric learned from a representative cohort will improve
as incorporating other metrics.
From each HCC code, we select a representative cohort and a bi-

ased cohort to build the base metric using LSML. Then we start
adding other base metrics learned from other cohorts sequentially
and check the accuracy changes during this process. We repeat the
experiments 100 times and report the averaged classification ac-
curacy as well as the standard deviation, which are shown in Fig.5.
From the figure we clearly observe that by leveraging other metrics,
the accuracy increases significantly for biased cohorts, and also still
improves the accuracy for representative cohorts.
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Figure 5: The affect of Combi on specific physicians on HCC019.
The x-axis corresponds to the number of patient cohorts integrated.
The y-axis represents the classification accuracy: the accuracy in-
creases significantly for biased cohorts, and also still improves the
accuracy for representative cohorts.

7. RELATED WORK
Distance Metric Learning(DML) [29] is a fundamental problem
in data mining field. Depending on the availability of supervision
information in the training data set (e.g., labels or constraints) , a
DML algorithm can be classified asunsupervised[6][12][14], or
semi-supervised[23][28] andsupervised[8; 11; 27]. In particular,
Supervised DML(SDML) constructs a proper distance metric that
leads the data from the same class closer to each other, while the
data from different classes far apart from each other.
SDML can further be categorized asglobal and local methods. A
global SDML method attempts to learn a distance metric that keep
all the data points within the same classes close, while separat-
ing all the data points from different classes far apart. Typical
approaches in this category includeLinear Discriminant Analysis
(LDA) [8] and its variants [10][30]. Although global SDML ap-
proaches achieve empirical success in many applications, generally
it is hard for a global SDML to separate data from different classes
well [22], because the data distribution are usually very compli-
cated such that data from different classes are entangled together.
Local SDML methods, on the other hand, usually first construct
some local regions (e.g., neighborhoods around each data points),
and then in each local region, they try to pull the data within the
same class closer, and push the data in different classes apart. Some
representative algorithms includeLarge Margin Nearest Neighbor
(LMNN) classifier [27],Neighborhood Component Analysis(NCA)
[11], Locality Sensitive Discriminant Analysis(LSDA) [5], as well
as the LSML method described in section 3. It is empirically ob-
served that these local methods can generally perform much better
than global methods. Most of the methods are offline methods that
require model building on training data. However, the iMet de-
scribed in section 4 can incrementally update the existing metric
when feedback becomes available.
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Another set of methods that closely related to Comdi isMultiple
Kernel Learning(MKL) [15][3][18], which aims to learn an inte-
gration of kernel function from multiple base kernels. These ap-
proaches usually suppose that there is a initial set of “weak” kernels
defined over the whole data set and the goal is to learn a “strong”
kernel, which is some linear combination of these kernels. In MKL,
all the weak kernels as well as the final strong kernel are required
to defined on the same set of data, which cannot be used in the
distributed environment as Comdi.
Comdi is also related toEnsemble Methods, such asBagging[4]
andBoosting[9]. What ensemble methods do is to obtain a strong
learner via combining a set of weak learners, where each weak
learner is learned from a sampled subset of the entire data set. At
each step, the ensemble methods just sample from the whole data
set according to some probability distribution with replacement and
learn a weak learner on the sampled set. This is also different from
the Comdi setting where the data in different parties are fixed.
Comdi is related to the area of privacy preserving data mining [1].
Different from of data perturbation and encrypted database schemes,
Comdi share only models instead of data. Comdi falls into the gen-
eral category of private distributed mining [21], which focus on
building local mining models first before combining at the global
level.

8. CONCLUSION
In this paper, we present a supervised patient similarity problem.
The aim is to learn a distance metric between patients that are con-
sistent with physician belief. We formulate the problem as a su-
pervised metric learning problem, where physician input is used as
the supervision information. First, we present locally supervised
metric learning (LSML) algorithm that learns a generalized Maha-
lanobis distance with physician feedback as the supervision. The
key there is to compute local neighborhoods to separate the true
similar patients with other patients for an index patient. The prob-
lem is solved via the trace difference optimization. Second, we
extend LSML to handle incremental updates. The goal is to enable
online updates of the existing distance metric. Third, we general-
ize LSML to integrate multiple physician’s similarity metrics into a
consistent patient similarity measure. Finally, we demonstrated the
use cases through a clinical decision support prototype and quan-
titatively compared the proposed methods against baselines, where
significant performance gain is obtained. It is worth noting that the
algorithms should work equally well with other sources of super-
vision besides direct physician input (e.g., labels derived directly
from data).
For future work, we plan to use the patient similarity framework to
address other clinical applications such as comparative effective-
ness research and treatment comparison.
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