
Supervised Rank Aggregation

Yu-Ting Liu1,2*, Tie-Yan Liu1, Tao Qin1,3*, Zhi-Ming Ma4, and Hang Li1

1
Microsoft Research Asia

4F, Sigma Center, No. 49,
Zhichun Road, Haidian District,

Beijing, 100080, China
{tyliu, hangli}@microsoft.com

2
 School of Science,

Beijing Jiaotong University,
Beijing 100044, China
liuyt_njtu@hotmail.com

3
Department of Electronic

Engineering,
Tsinghua University,

Beijing 100084, China
qinshitao99@mails.thu.edu.cn

4
Academy of Math and

Systems Science, Chinese
Academy of Science,
Beijing 100080, China

mazm@amt.ac.cn

ABSTRACT

This paper is concerned with rank aggregation, the task of

combining the ranking results of individual rankers at meta-search.

Previously, rank aggregation was performed mainly by means of

unsupervised learning. To further enhance ranking accuracies, we

propose employing supervised learning to perform the task, using

labeled data. We refer to the approach as ‘Supervised Rank

Aggregation’. We set up a general framework for conducting

Supervised Rank Aggregation, in which learning is formalized an

optimization which minimizes disagreements between ranking

results and the labeled data. As case study, we focus on Markov

Chain based rank aggregation in this paper. The optimization for

Markov Chain based methods is not a convex optimization

problem, however, and thus is hard to solve. We prove that we

can transform the optimization problem into that of Semidefinite

Programming and solve it efficiently. Experimental results on

meta-searches show that Supervised Rank Aggregation can

significantly outperform existing unsupervised methods.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – Retrieval models. H.3.4 [Information Systems

Application]: Systems and Software- performance evaluation

(efficiency and effectiveness).

General Terms

Algorithms, Experimentation, Theory

Keywords

Rank aggregation, supervised learning, Markov Chain,

Semidefinite programming

1. INTRODUCTION
Rank aggregation is to combine ranking results of entities from

multiple ranking functions in order to generate a better one. The

individual ranking functions are referred to as base rankers, or

simply rankers, hereafter.

Rank aggregation can be classified into two categories [2]. In the

first category, the entities in individual ranking lists are assigned

scores and the rank aggregation function is assumed to use the

scores (denoted as score-based aggregation) [11][18][28]. In the

second category, only the orders of the entities in individual

ranking lists are used by the aggregation function (denoted as

order-based aggregation). We focus on order-based aggregation

in this paper. Order-based aggregation is employed at meta-search,

for example, in which only order (rank) information from

individual search engines is available.

Previously order-based aggregation was mainly addressed with

the unsupervised learning approach, in the sense that no training

data is utilized; methods like Borda Count [2][7][27], median rank

aggregation [9], genetic algorithm [4], fuzzy logic based rank

aggregation [1], Markov Chain based rank aggregation [7] and so

on were proposed. One exception is Borda Fuse [2] which also

makes use of training data. However, it is different from the

supervised learning method we propose in this paper.

We argue that in order to improve the accuracy of rank

aggregation, it is better to employ a supervised learning approach

in which we train an order-based aggregation function within an

optimization framework using labeled data. At meta search, for

example, labeled data can be documents and their relevancies to

given queries. The key factors, thus, are (a) to assume that only

order information from individual rankers is available, (b) to use

labeled data, and (c) to train the aggregation function within an

optimization framework. In this paper, we refer to the approach as

‘Supervised Rank Aggregation’.

There are several advantages for taking the supervised learning

approach. First, we can leverage the use of information existing

in labeled training data. Second, we can apply existing

optimization techniques to the problem. Third, it becomes easier

to make domain or user adaptation. Certainly, it also has a

disadvantage, that is, labeled data is needed and creating such data

can be costly. This is, however, a shortcoming for any supervised

learning method and we can leave it as future research topic.

In this paper, we first give a general framework for conducting

Supervised Rank Aggregation. We show that we can define

supervised learning methods corresponding to the existing

unsupervised methods, such as Borda Count and Markov Chain

based methods by exploiting the framework.

Then we mainly investigate the supervised versions of Markov

Chain based methods in this paper, because previous work shows

that their unsupervised counterparts are superior [24]. It turns out,

however, that the optimization problems for the Markov Chain

based methods are hard, because they are not convex optimization

problems. We are able to develop a method for the optimization of

one Markov Chain based method, called Supervised MC2.

Specifically, we prove that we can transform the optimization

problem into that of Semidefinite Programming. As a result, we

can efficiently solve the issue. (We plan to apply the same

technique to the other Markov Chain methods in the future.)

Experimental results on meta-searches show that Supervised Rank

Aggregation (i.e., Supervised MC2) can achieve better

performances than existing methods.

*This work was conducted when the first and the third authors were

interns at Microsoft Research Asia

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). Distribution of these papers is limited to classroom

use, and personal use by others.

WWW 2007, May 8-12, 2007, Banff, Alberta, Canada.

ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Track: Search Session: Search Quality and Precision

481

The rest of this paper is organized as follows. In Section 2, we

introduce related work. In Section 3, we propose a general

framework and specific methods for Supervised Rank

Aggregation. In Section 4, we propose an optimization algorithm

for the method of Supervised MC2. Experimental results are

reported in Section 5. Conclusions and future work are given in

the last section.

2. RELATED WORK
The origin of research on rank aggregation can be traced back to

the eighteenth century, when it was studied in social choice theory

and applied into political elections [5]. In recent years, rank

aggregation gets spotlight again in many new applications, such as

genome database construction [26], document filtering [13],

database middleware construction [10], spam webpage detection

[7], meta-search [2][7][17][24], word association finding [7],

multiple search [11], and similarity search [9].

There are two types of rank aggregation: score-based and order-

based. In the former the aggregation function takes score

information from the individual base rankers as input, while in the

latter it only utilizes order information. Order-based aggregation

fits well with meta-search, as in meta-search only order

information from base rankers is available; this is also the main

focus of the research in this paper.

Existing methods for order-based aggregation includes, for

example, Borda Count [2][7][27], median rank aggregation [9],

genetic algorithm [4], fuzzy logic based rank aggregation method

[1] and Markov Chain based rank aggregation [7]. Borda Count

ranks entities based on their positions in the ranking lists. For

example, the entities are sorted according to the number of entities

that are ranked below them in all the ranking lists. Median rank

aggregation sorts the entities based on the medians of their ranks

in all the ranking lists. Markov Chain based rank aggregation

assumes that there exists a Markov Chain on the entities and the

order relations between entities in the ranking lists represents the

transitions in Markov Chain. The stationary distribution of the

Markov Chain is utilized to rank the entities. Dwork et al [7]

proposed four methods (denoted as MC1, MC2, MC3, and MC4) to

construct the transition probability matrix of the Markov Chain.

The unsupervised methods described above implicitly conduct

majority voting in their final ranking decisions. That is to say,

these methods treat all the ranking lists equally and give high

ranks to those entities ranked high by most of the rankers. This

assumption may not hold in practice, however. For example, in

meta-search, ranking lists are generated by different search

engines with different capacities and accuracies. It is not

reasonable to treat the results of the search engines equally.

To deal with the problem, Aslam et al [2] proposed Borda Fuse,

which can be viewed as weighted Borda Count for meta-search.

Specifically, different rankers are assigned different weights,

while the weights are trained separately by using labeled training

data. For example, the weights can be calculated based on the

MAP (Mean Average Precision) scores of the base rankers.

Experimental results show that Borda Fuse indeed improves upon

Borda Count. The problem with Borda Fuse is that the weights of

the ranking list are calculated independently and by using

heuristics. It is also not clear whether the same idea can be applied

to other methods.

We note that order-based rank aggregation in meta-search is

similar to relevance ranking in document retrieval, but there are

some clear differences. Therefore, the methods proposed for

relevance ranking may not be directly applicable to order-based

rank aggregation. In relevance ranking, a typical approach is to

employ a linear combination model of the features to rank

documents. One can also employ a supervised learning method to

train the model. Each feature can be viewed as a ranker and the

final ranking model can be viewed as an aggregation function.

However, this final ranking model is more close to that of score-

based aggregation, not that of order-based aggregation. How to

apply a score-based method to order-based aggregation is still an

open problem, and is out of the scope of this paper.

3. SUPERVISED RANK AGGREGATION
In this section, we first introduce a general optimization

framework for order-based rank aggregation. We then define

Supervised Rank Aggregation methods within the framework.

We first give some definitions and notations. Given a set of

entities S, let V be a subset of S and assume that there is a total

order among the entities in V. 𝜏 is called a ranking list with

respect to S, if 𝜏 is a list of the entities in V maintaining the same

total order relation, i.e.,𝜏 = 𝑑1 ,⋯ ,𝑑𝑚 , if 𝑑1 > ⋯ > 𝑑𝑚 , 𝑑i ∈
𝑉,𝑖 = 1,⋯ ,𝑚, where > denotes the relation and m denotes the

size of V. If V equals S, τ is called a full list, otherwise, it is called

a partial list. A special case of partial list is a top-t list, for which

the first tth entities are ordered in the list.

3.1 Optimization Framework
The goal of rank aggregation is to assign a real-valued score to

each of the entities by aggregating all the ranking lists given by

the base rankers, and then sort the entities according to their

scores. Without loss of generality, hereafter we assume that it is in

the descending order.

Let 𝜏1 ,⋯ , 𝜏𝑙 denote the ranking lists with respect to 𝑆 and 𝑛

denotes the number of entities in S. We define the aggregation

function as𝛹: 𝜏1 ,⋯ , 𝜏𝑙 ↦ 𝑥 , where 𝑥 denotes the final score

vector of all entities. That is, if 𝑥 = 𝛹 𝜏1 ,⋯ , 𝜏𝑙 , then all the

entities are ranked by the scores in x.

For example in Borda Count, 𝑥 is called Borda score, which is

calculated as,

𝑥 = 𝛹 𝜏1 ,⋯ , 𝜏𝑙 = 𝑥(𝑘)𝑙
𝑘=1 (3.1.1)

where 𝑥(𝑘) ≜ 𝑥𝑖
(𝑘)

𝑇

𝑖=1,⋯,𝑛
 , 𝑥𝑖

(𝑘)
= # 𝑗|𝑖 >𝜏𝑘 𝑗 , and 𝑖 >𝜏𝑘 𝑗

means that entity i is ranked higher than entity j in ranking list 𝜏𝑘 .

We assume that the aggregation function 𝛹 is parameterized by a

parameter vector 𝛼 . In a supervised learning approach to rank

aggregation, we try to learn the optimal values of the parameters

by using labeled training data. Typically training data may include

ground truth indicating pairwise preferences of which entities

should be ranked higher than the others. In the learning, we

actually manage to find the aggregation function that minimizes

the disagreements between the ground truth and the output of the

aggregation function.

We represent the agreement between the output list of an

aggregation function and the ground truth by using an inequality

𝐻𝑥 < 0

where 𝑥 denotes the output of the function and H denotes a matrix

representing the pairwise preference relationship between entities.

For example, suppose that the scores produced by the aggregation

function are 𝑥 = 𝑥1 , 𝑥2, 𝑥3 , 𝑥4
𝑇 , and the ground truth indicates

WWW 2007 / Track: Search Session: Search Quality and Precision

482

that entity 1 should be ranked higher than entity 2, and entity 4

should be ranked higher than entity 3. Then, the inequality

becomes:

𝐻𝑥 < 0, where 𝐻 =
−1 1 0 0
0 0 1 −1

By using such a matrix, we can bring any form of ground truth

into our framework, and do not need assume a total order existing

over all the entities in the training set.

There is no guarantee that there exists a parameter vector 𝛼 that

satisfies all the pairwise constraints in the ground truth. That is,

disagreements may exist. We introduce ‘slack variable’ 𝑡 to

represent the differences (errors),

𝐻𝑥 < 𝑡, 𝑡 ≥ 0

To reduce training errors is equivalent to minimize the norm of t.

Thus we can formalize Supervised Rank Aggregation as the

following optimization problem.

min𝑥 ,𝛼 ,𝑡 𝑡𝑇𝑡

 𝑠. 𝑡. 𝑥 = 𝛹 𝜏1 ,⋯ , 𝜏𝑙 ;𝛼

 𝛼 ∈ 𝐶
 𝐻𝑥 < 𝑡, 𝑡 ≥ 0

 (3.1.2)

where α denotes the parameter vector and C denotes a feasible

region for α. The dimension of matrix H equals the number of

pairs indicating pairwise preferences in the training data. The

objective 𝑡𝑇𝑡 actually denotes the empirical loss in the training

data. When empirical loss is 0, the aggregation function 𝛹
satisfies all the pairwise constraints.

With different ways of instantiating and optimizing the

aggregation function, we come to different methods for rank

aggregation.

3.2 Methods
We show that we can define Supervised Rank Aggregation

methods within the framework. In this paper we only consider the

case in which the aggregation function is defined as a linear

model of base rankers. Even the model is simple; it is powerful

enough for accomplishing the tasks in this paper.

(1) Borda Fuse

Many rank aggregation methods are in fact based on majority

voting. Borda Count [2][7][27] is such a method and the major

assumption within it is that all the base rankers are equally

important. As discussed above, it is more reasonable to give

different weights to different rankers. In other words, we can

consider using Borda Fuse

𝑥 = 𝛹 𝜏1 ,⋯ , 𝜏𝑙 = 𝛼𝑘
𝑙
𝑘=1 𝑥(𝑘)

Note that Borda Fuse contains Borda Count as its special case.

With the optimization framework in (3.1.2), we can define

Supervised Borda Fuse. Specifically we formalize it as the

following optimization problem:

min𝑥 ,𝛼 ,𝑡 𝑡𝑇𝑡

𝑠. 𝑡. 𝑥 = 𝛼𝑘
𝑙
𝑘=1 𝑥(𝑘)

 𝛼𝑘
𝑙
𝑘=1 = 1,𝛼𝑘 ≥ 0,𝑘 = 1,… , 𝑙

𝐻𝑥 < 𝑡, 𝑡 ≥ 0

where 𝑥(𝑘) is the same as that in (3.1.1). Note that the parameter

vector is comprised of weights of ranking lists and is to be

optimized as well.

(2) Markov Chain based methods

Many other rank aggregation methods are based on Markov Chain.

It is advantageous to employ the Markov Chain model in rank

aggregation, particularly when the base rankers only output partial

lists [8]. Experimental results show that the Markov Chain based

methods outperform other methods [24]. That is why we focus on

Markov Chain based approach in this paper.

Dwork et al [7] proposed four Markov Chain based models for

rank aggregation, referred to as MC1, MC2, MC3, and MC4. The

four models correspond to four different heuristic rules for

constructing the transition probability matrix in Markov Chain.

Let us take MC2 as example. The transitions in Markov Chain are

defined as follows. If the current state is i, then we first select a

ranking list 𝜏𝑘uniformly randomly from the ranking lists 𝜏1 ,⋯ , 𝜏𝑙
that contain state i, then select state j uniformly randomly from the

set of states that are ranked not lower than state i in 𝜏𝑘 , and define

j as the next state.

For a full list or top-t list, it is not difficult to verify that the

transition matrix is arithmetic mean of transition probability

matrices produced from individual ranking lists, referred to as

base-transition matrices. Let 𝑃𝑘 ≜ 𝑝𝑖𝑗
(𝑘)

𝑛×𝑛

denote the kth base

transition matrix produced by ranking list 𝜏𝑘 , in which each

element 𝑝𝑖𝑗
 𝑘

corresponds to the conditional probability of state j

given state i in ranking list 𝜏𝑘 . The final transition matrix P is

defined as

𝑃 =
1

𝑙
 𝑃𝑘
𝑙
𝑘=1

𝑝𝑖𝑗
 𝑘

=
1

𝑚
, 𝑗 >𝜏𝑘 𝑖 or 𝑗 = 𝑖

0, otherwise
 (3.2.1)

where 𝑚 = # 𝑗|𝑗 >𝜏𝑘 𝑖 or 𝑗 = 𝑖 .

The score vector x can then be computed by solving 𝑥 = 𝑃𝑇𝑥,

with constraints 𝑥𝑖
𝑛
𝑖=1 = 1,𝑥𝑖 > 0, 𝑖 = 1,⋯ ,𝑛.

In Supervised MC2 we assign weighting coefficients to the base

matrices Pk:

𝑃 = 𝛼𝑘
𝑙
𝑘=1 𝑃𝑘

Formally, Supervised MC2 is defined as follows.

min𝑥 ,𝛼 ,𝑡 𝑡𝑇𝑡

𝑠. 𝑡. 𝑥 = 𝛼𝑘
𝑙
𝑘=1 𝑃𝑘

𝑇
𝑥

 𝑥𝑖

𝑛
𝑖=1 = 1,𝑥𝑖 > 0, 𝑖 = 1,… ,𝑛

 𝛼𝑘
𝑙
𝑘=1 = 1,𝛼𝑘 ≥ 0,𝑘 = 1,… , 𝑙

𝐻𝑥 < 𝑡, 𝑡 ≥ 0

 (3.2.2)

Similarly, we can construct the supervised versions of MC1, MC3,

and MC4. The only differences lie in the structures of the

transition probability matrices.

a) Supervised MC1:

The transition matrix of MC1 can be written as

𝑃 = 𝑑𝑖𝑎𝑔
1

 𝑞1𝑗
𝑛
𝑗=1

,⋯ ,
1

 𝑞𝑛𝑗
𝑛
𝑗=1

 𝑄

where 𝑄 ≜ 𝑞𝑖𝑗 𝑛×𝑛
=

1

𝑙
 𝑄𝑘
𝑙
𝑘=1 , 𝑄𝑘 ≜ 𝑞𝑖𝑗

(𝑘)

𝑛×𝑛

with

𝑞𝑖𝑗
(𝑘)

=
1, 𝑗 >𝜏𝑘 𝑖 or 𝑗 = 𝑖

0, otherwise
 .

We can derive Supervised MC1 by assigning weighting

coefficients to 𝑄, and obtain the following optimization problem.

WWW 2007 / Track: Search Session: Search Quality and Precision

483

min𝑥 ,𝛼 ,𝑡 𝑡𝑇𝑡

𝑠. 𝑡. 𝑥 = 𝛼𝑘
𝑙
𝑘=1 𝑄𝑘

𝑇
𝑑𝑖𝑎𝑔

1

 𝑞1𝑗
𝑛
𝑗=1

,⋯ ,
1

 𝑞𝑛𝑗
𝑛
𝑗=1

 𝑥

 𝑥𝑖
𝑛
𝑖=1 = 1,𝑥𝑖 > 0, 𝑖 = 1,… ,𝑛

 𝛼𝑘
𝑙
𝑘=1 = 1,𝛼𝑘 ≥ 0,𝑘 = 1,… , 𝑙
𝐻𝑥 < 𝑡, 𝑡 ≥ 0

b) Supervised MC3:

The formulation of MC3 is similar to that of MC2, except the

definition of 𝑝𝑖𝑗
 𝑘

:

𝑝𝑖𝑗
 𝑘

=

1

𝑛
 , 𝑗 >𝜏𝑘 𝑖
𝑛−𝑚

𝑛
 , 𝑗 = 𝑖

0, otherwise

 , and 𝑚 = # 𝑗| 𝑗 >𝜏𝑘 𝑖 .

Therefore, we can define Supervised MC3 in a similar way as we

define Supervised MC2.

c) Supervised MC4:

MC4 is similar to MC1, except that the following two facts differ.

(i) The definition of 𝑄: 𝑄 ≜ 𝑞𝑖𝑗 𝑛×𝑛
=

1

𝑙
 𝑄𝑘
𝑙
𝑘=1 ,

with 𝑞𝑖𝑗
(𝑘)

=
1, 𝑗 >𝜏𝑘 𝑖

0, otherwise
 .

(ii) The definition of P: 𝑃 ≜ 𝑝𝑖𝑗 𝑛×𝑛
, with

𝑝𝑖𝑗
 𝑘

=

1

𝑛
 , 𝑞𝑖𝑗 > 1

2

𝑛−𝑚

𝑛
 , 𝑗 = 𝑖

0, otherwise

 , and 𝑚 = # 𝑗|𝑞𝑖𝑗 > 1

2
 .

Therefore, we can obtain Supervised MC4, similar to Supervised

MC1.

In summary, with the use of the optimization framework, we can

introduce new supervised aggregation methods, corresponding to

most of the existing unsupervised rank aggregation methods. The

key factor is that weights are assigned to the ranking lists and they

are also trained within the optimization framework.

The question next is how to conduct the optimizations. For some

forms of function 𝛹 in (3.1.2), the optimization is hard to solve,

such as those in the Markov chain based methods. We know of no

existing optimization techniques which can be straightforwardly

applied, because they are not convex optimization problems. In

our work we are able to find an optimization solution for

Supervised MC2 on the basis of Semidefinite Programming (SDP),

as will be explained below.

4. AN OPTIMIZATION SOLUTION
In this section, we describe our solution to the optimization

problem for Supervised MC2 as in (3.2.2). We think that similar

techniques can also be applied to other Markov Chain based

methods, but leave it as future work.

Our method for Supervised MC2 consists of three steps:

1) We modify the objective and constraints in (3.2.2) to make

the feasible region convex.

2) We further transform the optimization problem into a

quadratic optimization problem by employing the bound

optimization technique.

3) Finally, we transform the quadratic optimization problem

into a Semidefinite Programming problem.

Let us elaborate on the three steps in more details. Theoretical

justifications of the transformations are given in a lemma and a

proposition.

The first constraint in (3.2.2) represents an eigenvector problem.

One can easily verify that the feasible region of the optimization

problem is not convex. In general such a problem is hard to solve.

We reformulate the original optimization problem by putting the

first constraint into the objective function:

min𝑥 ,𝛼 ,𝑡 𝑡𝑇𝑡 + 𝛼𝑘𝑃𝑘
𝑙
𝑘=1

𝑇
𝑥 − 𝑥

1

𝑠. 𝑡. 𝑥𝑖
𝑛
𝑖=1 = 1, 𝑥𝑖 > 0, 𝑖 = 1,… ,𝑛

 𝛼𝑘
𝑙
𝑘=1 = 1,𝛼𝑘 ≥ 0,𝑘 = 1,… , 𝑙
𝐻𝑥 < 𝑡, 𝑡 ≥ 0

 (4.1)

where ∙ 1denote the ℓ1-norm of a vector.

Then, the feasible region becomes convex and the objective

function becomes one consisting of two parts. The first part 𝑡𝑇𝑡
corresponds to training errors, and the second part

 𝛼𝑘𝑃𝑘
𝑙
𝑘=1

𝑇
𝑥 − 𝑥

1
corresponds to an approximation of the

stationary distribution. The second part of the objective function is

not convex. We try to minimize a differentiable and convex upper

bound of it. Lemma 1 gives the upper bound using the properties

of ℓ1-norm.

Lemma 1: Let 𝛯 = 𝜉𝑖
𝑇
𝑖=1,⋯,𝑛

= 𝛼𝑘𝑃𝑘
𝑙
𝑘=1

𝑇
𝑥 − 𝑥, we have

 𝜩 1 ≤ 2 − 2𝛼𝑇𝐴𝑥, where 𝐴 =
𝑝11

(1)
⋯ 𝑝𝑛𝑛

(1)

⋮ ⋱ ⋮

𝑝11
(𝑙)

⋯ 𝑝𝑛𝑛
(𝑙)
 .

Proof: See Appendix.

The optimization problem then becomes

min𝑥 ,𝛼 ,𝑡 𝑡𝑇𝑡 + 2 − 2𝛼𝑇𝐴𝑥

𝑠. 𝑡. 𝑥𝑖
𝑛
𝑖=1 = 1, 𝑥𝑖 > 0, 𝑖 = 1,… ,𝑛

 𝛼𝑘
𝑙
𝑘=1 = 1,𝛼𝑘 ≥ 0, 𝑘 = 1,… , 𝑙
𝐻𝑥 < 𝑡, 𝑡 ≥ 0

 (4.2)

By defining 𝛽 = (𝛼1 ,… ,𝛼𝑙 , 𝑥1,… , 𝑥𝑛 , 𝑡1 ,… , 𝑡𝑚)𝑇, where m is the

number of rows in matrix H, and omitting the constant in the

objective function which is irrelevant to the optimization, problem

(4.2) becomes

 min𝛽 𝛽
𝑇𝐻0𝛽

𝑠. 𝑡. 𝐻1𝛽 ≤ 0
 𝐻2𝛽 = 𝑒2

 𝐻3𝛽 < 0

 (4.3)

with 𝐻0 =
0 −𝐴 0

−𝐴𝑇 0 0
0 0 𝐼

 ∈ 𝑅(𝑙+𝑛+𝑚)×(𝑙+𝑛+𝑚)

 𝐻1 =
−𝐼𝑙 0 0
0 0 −𝐼𝑚

 ∈ 𝑅 𝑙+𝑚 × 𝑙+𝑛+𝑚 (4.4)

𝐻2 =
𝑒𝑙
𝑇 0 0

0 𝑒𝑛
𝑇 0

 ∈ 𝑅2× 𝑙+𝑛+𝑚

 𝐻3 =
0 −𝐼𝑛 0
0 𝐻 −𝐼𝑚

 ∈ 𝑅 𝑛+𝑚 × 𝑙+𝑛+𝑚

where 𝐼𝑖 is identity matrix of size i, and 𝑒𝑖 is vector with size i in

which all the elements are one.

The optimization in (4.3) is an optimization problem with

quadratic objective function and linear constraints. The remaining

issue is that the Hessian matrix H0 is not positive definite and thus

the objective function is not convex. In this situation, if we

employ a method like Gradient Decent, the solution will be

WWW 2007 / Track: Search Session: Search Quality and Precision

484

sensitive to the initial values, and will likely to become locally

optimal. To cope with it, we further transform the optimization

problem into a Semidefinite Programming (SDP), with the

theoretical support from Proposition 2.

Proposition 2: Optimization problem (4.3) is equivalent to the

following Semidefinite Programming problem,

 max𝜆 ,𝛾 𝛾

𝑠. 𝑡. 𝜆 ≥ 0

𝐻0 + 𝜆0𝐷

1

2
𝑈𝑇

1

2
𝑈 −𝛬2

𝑇𝑒2 − 2𝜆0 − 𝛾
 ≽ 0

 (4.5)

Where 𝑈 = 𝛬1
𝑇𝐻1 + 𝛬2

𝑇𝐻2 + 𝛬3
𝑇𝐻3, and 𝜆 = (𝜆0,𝛬1

𝑇 ,𝛬2
𝑇 ,𝛬3

𝑇)𝑇 .

Proof: See Appendix.

Finally we can solve the optimization problem using the

techniques of SDP1, for example, the interior-point method SDPA

[30] proposed in [12].

Our Supervised MC2 algorithm can be summarized as follows.

Supervised MC2:

Input: ranking lists 𝜏1 ,⋯ , 𝜏𝑙

Output: weighting parameter α

Algorithm:

a) Construct base transition matrices 𝑃1,⋯ ,𝑃𝑙 according to

equation (3.2.1).

b) Create matrix 𝐴 as shown in Lemma 1.

c) Create matrices H0, H1, H2, H3 as shown in equation (4.4).

d) Construct matrix U as shown in Proposition 2.

e) Call SDP tool [30] to solve problem (4.5) and get solution λ.

f) Compute β by equation (8.2.3).

g) Output the first l elements of β as parameter α.

5. EXPERIMENTS
In this section, we report the experimental results on meta-search

using our method based on Supervised Rank Aggregation and

existing methods. Our first experiment was conducted with TREC

dataset, and the second was with data from real web search

engines.

5.1 TREC Data
TREC datasets were used in many previous works on rank

aggregation [2][18][19][20][24], in which heuristic models were

used as base rankers. This motivated us to conduct our

experiments with TREC dataset as well. We selected the

OHSUMED dataset used in the filtering track of TREC 2000.

The OHSUMED dataset is a collection of 348,566 documents and

106 queries. The ground truth is provided by the TREC committee

with three levels of relevance judgments: ‘definitely relevant’,

‘possibly relevant’, and ‘not relevant’ to the query. Based on

these judgments, we can construct pairwise constraints for the

training of Supervised MC2.

1 SDP is a hot research field in recent years [29], and many fast iterative

algorithms have been developed [16][21][23][30].

In our experiment, we used 30 ranking models (features) [22] as

base rankers. These include term frequency, inverse document

frequency, document length, BM25 score [25], and their

combinations.

Table 1. Results of different methods for meta-search with

OHSUMED data

Supervised

MC2
MC1 MC2 MC3 MC4

Borda-

Count

Borda

Fuse

P@1 0.483 0.337 0.376 0.357 0.308 0.349 0.349

P@2 0.384 0.324 0.345 0.316 0.294 0.310 0.320

P@3 0.363 0.290 0.325 0.280 0.289 0.310 0.306

P@4 0.352 0.284 0.312 0.285 0.275 0.280 0.295

P@5 0.329 0.266 0.312 0.268 0.280 0.276 0.292

P@6 0.331 0.265 0.298 0.265 0.276 0.265 0.272

P@7 0.324 0.269 0.296 0.263 0.276 0.266 0.264

P@8 0.316 0.269 0.292 0.263 0.274 0.265 0.265

P@9 0.312 0.266 0.287 0.260 0.270 0.264 0.261

P@10 0.302 0.264 0.288 0.255 0.267 0.254 0.258

MAP 0.302 0.275 0.286 0.271 0.269 0.267 0.272

Table 2. Results of different methods for meta-search with

OHSUMED data

Supervised

MC2
MC1 MC2 MC3 MC4

Borda-

Count

Borda

Fuse

N@1 0.651 0.534 0.573 0.553 0.516 0.544 0.544

N@2 0.595 0.530 0.553 0.533 0.513 0.525 0.531

N@3 0.586 0.517 0.546 0.515 0.513 0.526 0.525

N@4 0.581 0.519 0.546 0.518 0.512 0.514 0.523

N@5 0.575 0.514 0.549 0.514 0.517 0.518 0.525

N@6 0.579 0.517 0.548 0.518 0.520 0.515 0.520

N@7 0.583 0.523 0.554 0.521 0.527 0.522 0.522

N@8 0.586 0.530 0.558 0.527 0.533 0.525 0.528

N@9 0.590 0.536 0.562 0.532 0.539 0.530 0.533

N@10 0.589 0.541 0.568 0.534 0.542 0.531 0.537

Next, we conducted rank aggregation using our method. For

comparison, we also implemented and tested other rank

aggregation methods, including MC1, MC2, MC3, MC4, Borda

Count, and Borda Fuse. The experiments were performed through

4-fold cross validation. We randomly split the query set into four

subsets, used the first two of them for training, the third for

validation, and the fourth for testing, and rotated this process four

times to create four data sets. Then we took the average

performance over the four trials as the final result for each method.

We used three measures in our experiments for ranking accuracy

evaluations: Precision [3], Mean Average Precision (MAP) [3]

and Normalized Discount Cumulative Gain (NDCG) [14][15].

When evaluating the performances in terms of precision, we

regarded both ‘definitely relevant’ and ‘possible relevant’ as

positive, and ‘not relevant’ as negative.

Table 1 shows the results in terms of precision at n (P@n) and

MAP, and Table 2 shows the results in terms of DNCG at n (N@n)

for all the methods.

From the results, we can see that Supervised MC2 outperforms all

the other methods, suggesting that it is better to employ

Supervised Rank Aggregation proposed in this paper.

WWW 2007 / Track: Search Session: Search Quality and Precision

485

5.2 Web Search Data
We also tried to apply the rank aggregation methods directly to

meta-search on the web.

5.2.1 Experimental Results
We randomly sampled 500 queries from the query log of a

commercial search engine, as query set. Table 3 shows some

example queries.

Table 3. Sample queries used in meta-search

Queries

Altavista, Astronomy Picture of the day, BBC, cadillac, daily

nation, delta dental, family guy, fox theater, Google, group

health, habitat for humanity, hotmail, Image Entertainment,

imdb, jacksonville news, jetblue, kofax, laredo morning times,

liberty university, michael Jordan, Microsoft, national zoo,

NCAA football, ohio department of education, philips, prime

outlets, southern baptist convention, Superbowl, tacoma news

tribune, texas department of public safety, Tuesday Morning,

ucla, university of Tennessee, venetian, etc.

Table 4. Results of different methods for meta-search with

data from web search engines

Supervised

MC2
MC1 MC2 MC3 MC4

Borda-

Count

Borda

Fuse

P@1 0.864 0.738 0.837 0.734 0.818 0.712 0.709

P@2 0.692 0.606 0.664 0.611 0.668 0.579 0.581

P@3 0.620 0.547 0.575 0.550 0.586 0.505 0.501

P@4 0.560 0.505 0.520 0.502 0.529 0.457 0.544

P@5 0.525 0.466 0.476 0.469 0.484 0.426 0.423

P@6 0.496 0.436 0.446 0.434 0.446 0.394 0.394

P@7 0.471 0.408 0.419 0.409 0.413 0.372 0.370

P@8 0.447 0.387 0.400 0.388 0.385 0.349 0.350

P@9 0.426 0.367 0.383 0.367 0.359 0.332 0.332

P@10 0.407 0.350 0.366 0.352 0.340 0.315 0.313

MAP 0.410 0.333 0.374 0.333 0.340 0.296 0.292

Next, we submitted the queries to six commercial web search

engines, and collected the top-100 ranking lists of the queries

returned by the search engines. We combined the results together

and eliminated the duplicate pages. On average there were 362

unique pages per query. The overlap among the ranking lists of

the search engines was small: there were on average 4 pages per

query occurring in all the ranking lists. Then we asked human

annotators to make relevance judgments on the pages. The

relevance judgments were binary: relevant or irrelevant. Three

annotators made judgments, and majority voting was finally

conducted on the results.

We then conducted meta-search on the data through 4-fold cross

validation (in the same way as in Section 5.1. We applied our

proposed method, and used MC1, MC2, MC3, MC4, Borda Count,

and Borda Fuse as baselines. Table 4 shows the results in terms of

P@n and MAP. From the results, we can see that our proposed

method achieves the best results in terms of both MAP and P@n.

Again this verifies the effectiveness of our proposed method for

rank aggregation.

Table 5 shows the experiment results in terms of NDCG@n.

Table 5. Results of different methods for meta-search with

OHSUMED data

Supervised

MC2
MC1 MC2 MC3 MC4

Borda-

Count

Borda

Fuse

N@1 0.741 0.554 0.722 0.552 0.690 0.533 0.531

N@2 0.631 0.495 0.609 0.485 0.589 0.459 0.460

N@3 0.605 0.484 0.576 0.475 0.561 0.440 0.438

N@4 0.592 0.483 0.562 0.473 0.545 0.435 0.433

N@5 0.585 0.482 0.553 0.476 0.534 0.433 0.431

N@6 0.582 0.480 0.548 0.474 0.525 0.432 0.430

N@7 0.579 0.477 0.543 0.473 0.517 0.430 0.429

N@8 0.575 0.475 0.538 0.471 0.510 0.428 0.428

N@9 0.572 0.472 0.536 0.468 0.503 0.427 0.426

N@10 0.569 0.469 0.533 0.467 0.498 0.425 0.423

5.2.2 Discussions
We investigated why our proposed supervised method

(Supervised MC2) outperforms the baseline methods.

Figure 1 shows MAP and the weight to each search engine

assigned by our method in the first trial of the cross-validation

experiment. (The results from the other trials have the same

tendencies).

Figure 1. MAP and weights of search engines

From Figure 1, we have the following observations.

(a) The weights of search engines are different from each other.

This validates the correctness of our assumption that rankers

should have different weights.

(b) The weights of search engines do not necessarily correlate

with their MAP values.

Although the fourth search engine achieves the best MAP and

obtains the largest weight at the same time, for the other engines,

MAP and weight do not correlate. For example, the first search

engine has a higher MAP than the second, but it has much smaller

weight than the second. Our explanation to this is as follows. The

weights of search engines not only depend on their performances,

but also depend on the correlations among search engines. If a

search engine highly correlates to the others, its weight (influence)

will be reduced within the general optimization framework.

To verify the correctness of this explanation, we calculate the

correlation coefficient between each pair of the six engines using

the following formula, and present the results in Table 6. (Note

that the correlation is symmetric.)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SE1 SE2 SE3 SE4 SE5 SE6

MAP Weight

WWW 2007 / Track: Search Session: Search Quality and Precision

486

 cor SE𝑖, SE𝑗 =

1

query

𝑢 ,𝑣 𝑢>SE 𝑖𝑣 and 𝑢>SE 𝑗𝑣 or (𝑢<SE 𝑖𝑣 and 𝑢<SE 𝑗𝑣)

𝑢 ,𝑣 𝑢 ,𝑣∈SE 𝑖 and (𝑢 ,𝑣∈SE 𝑗) query

where SEi denotes the i-th search engine, 𝑢 >SE 𝑖 𝑣 means that

document u is ranked higher than v by SEi for a given query, and

𝑢, 𝑣 ∈ SE𝑖 means that documents u and v are returned by search

engine SEi.

Table 6. Correlation among search engines

 SE1 SE2 SE3 SE4 SE5 SE6

SE1 1 0.502 0.524 0.681 0.615 0.675

SE2 1 0.335 0.437 0.433 0.502

SE3 1 0.661 0.530 0.597

SE4 1 0.617 0.696

SE5 1 0.613

SE6 1

From Table 6, we can see that the first search engine highly

correlates to the forth and the sixth search engines, and therefore

its weight is suppressed by the large weights of the two engines.

In contrast, the second search engine only weakly correlates to the

other engines, and thus it retains a large weight.

The observation can also give explanation to other results in the

experiments. From Table 5, one may see an interesting

phenomenon. Borda Fuse, as a supervised method, performs even

worse than the unsupervised methods. As explained, Borda Fuse

assumes that the weight of each base ranker only depends on its

accuracy, and it neglects the correlation among base rankers. It

seems that this is not appropriate anyway. Therefore, it appears

better to perform rank aggregation using an optimization

framework as we do.

6. CONCLUSIONS

In this paper, we have proposed a new approach to rank

aggregation: Supervised Rank Aggregation. Our method is

mainly designed for meta-search and is unique in that (a) takes

order information from base rankers, (b) it makes use of labeled

training data, and (c) it trains the final ranking function within a

single optimization framework. We have set up a general

framework for employing the approach. Specifically, we have

formalized the learning problem as that of optimization. We

propose an efficient algorithm to solve the optimization for one of

the typical rank aggregation settings, namely the Markov chain

based method. We have compared the performances of our

proposed method with those of existing methods on meta-search.

The results show that the proposed method can outperform the

existing methods.

The contributions of this paper include

1) proposal on employing the supervised learning approach for

rank aggregation;

2) formulation of the supervised learning approach as an

optimization problem;

3) development of an optimization algorithm form the Markov

Chain based learning method; and

4) empirical verification of the effectiveness of the proposed

approach.

As future work, we plan to apply the techniques used in this paper

to other supervised learning methods, and to apply the methods to

other applications such as similarity search and genome

informatics.

ACKNOWLEDGEMENTS

The authors would like to thank Wei-Ying Ma at MSRA for his

suggestions and comments on this work. They are also grateful to

Shisheng Li at USTC for his helps in the experiments. The authors

would also like to thank the anonymous reviewers for their

valuable comments on the paper.

REFERENCES
[1] Ahmad N. and Beg M. M. S. Fuzzy Logic Based Rank

Aggregation Methods for the World Wide Web, In

Proceedings of the International Conference on Artificial

Intelligence in Engineering and Technology, Malaysia, 2002,

363-368.

[2] Aslam, J. A. and Montague, M. Models for Metasearch. In

Proceedings of the 24th Annual International ACM SIGIR

Conference on Research and Development in Information

Retrieval. ACM Press, New York, 2001, 276-284.

[3] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information

Retrieval. Addison Wesley, 1999.

[4] Beg, M. M. S. Parallel Rank Aggregation for the World

Wide Web. World Wide Web. Kluwer Academic Publishers,

vol 6, issue 1, 5-22. March 2004.

[5] Borda, J. C. Mémoire sur les élections au scrutin. Histoire de

l’Acad´emie Royale des Sciences, 1781

[6] Boyd, S. and Vendenberghe, L. Convex Optimization.

Cambridge, U. K. Cambridge Univ. Press 2003.

[7] Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. Rank

Aggregation Methods for the Web. In Proceedings of the

10th International World Wide Web Conference. 2001, 613-

622.

[8] Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. Rank

Aggregation revisited. 2001. Manuscript.

[9] Fagin, R., Kumar, R., and Sivakumar, D. Efficient Similarity

Search and Classification via Rank Aggregation. In

Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data. San Diego, 2003, 301-

312.

[10] Fagin, R., Lotem, A., and Naor, M. Optimal Aggregation

Algorithm for Middleware. In Proceedings of the Twentieth

ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems. Santa Barbara, California, United

States, 2001, 102-113.

[11] Fox, E. A. and Shaw, J. A. Combination of Multiple

Searches. In Proceedings of the Second Text Retrieval

Conference, 1994.

[12] Fujisawa, K., Fukuda, M., Kojima, M., and Nakata, K.

Numerical Evaluation of the SDPA (SemiDefinite

Programming Algorithm). High Performance Optimization,

Kluwer Academic Press, 267-301, 2000.

[13] Hull, D. A., Pedersen, J. O., and Schütze, H. Method

Combination for Document Filtering. In Proceedings of the

19th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval. ACM

Press, 1996, 279-287.

WWW 2007 / Track: Search Session: Search Quality and Precision

487

[14] Jarvelin, K.and Kekalainen, J. IR Evaluation Methods for

Retrieving Highly Relevant Documents. In Proceedings of

the 23rd Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval. ACM

Press, 2000, 41-48.

[15] Jarvelin, K.. and Kekalainen, J. Cumulated Gain-Based

Evaluation of IR Techniques. ACM Transactions on

Information Systems, 2002.

[16] Klerk, E. Aspects of Semidefinite Programming: Interior

Point Algorithms and Selected Applications. Applied

Optimization Series, Volume 65. Kluwer Academic

Publishers, March 2002, 300 pp.

[17] Lam, K. W. and Leung, C. H. Rank Aggregation for Meta-

search Engines. In Proceedings of the 13th International

World Wide Web Conference. 2004.

[18] Manmatha, R.., Rath, T., and Feng, F. Modeling Score

Distributions for Combining the Outputs of Search Engines.

In Proceedings of the 24th Annual International ACM SIGIR

Conference on Research and Development in Information

Retrieval. ACM Press, 2001, New York.

[19] Manmatha, R. and Sever, H. A Formal Approach to Score

Normalization for Meta-search. In Proceedings of HLT’02,

2002, 88-93.

[20] Montague, M. and Aslam, J. A. Relevance Score

Normalization for Meta-search. In Proceedings of the 10th

Conference on Information and Knowledge Management.

Atlanta, GA, 2001, 427-433.

[21] Monteiro, R. D. C. First- and Second-Order Methods for

Semidefinite Programming. Georgia Tech, January 2003.

[22] Nallapati, R. Discriminative Models for Information

Retrieval. In Proceedings of the 27th Annual International

ACM SIGIR Conference on Research and Development in

Information retrieval. ACM Press, 2004, 64-71.

[23] Pardalos, P.M. and Wolkowicz, H. Topics in Semidefinite

and Interior Point Methods. Fields Institute Communications

18, AMS, Providence, Rhode Island, 1998.

[24] Randa, M. E. and Straccia, U. Web metasearch: Rank vs.

Score based Rank Aggregation Methods. In Proceedings of

the 2003 ACM Symposium on Applied Computing, March 09-

12, 2003, Melbourne, Florida.

[25] Robertson, S. E. Overview of the Okapi Projects. Journal of

Documentation, Vol. 53, No. 1, 1997, pp. 3-7.

[26] Sese, J. and Morishita, S. Rank Aggregation Method for

Biological Databases. Genome Informatics, 12: 506-507,

2001.

[27] Van Erp M. and Schomaker, L. Variants of the Borda Count

Method for Combining Ranked Classifier Hypotheses. In

Proceedings of the 7th International Workshop on Frontiers

in Handwriting Recognition. Amsterdam, 2000, 443-452.

[28] Vogt, C. and Cottrel, G. W. Fusion via a Linear

Combination of Scores. Information Retrieval, v.1 n.3,

p.151-173, October 1999.

[29] Semidefinite Programming. http://www-user.tu-chemnitz.de

/~helmberg/semidef.html.

[30] SDPA Online for Your Future. http://grid.r.dendai.ac.jp/sdpa/.

.

APPENDIX

Proof of Lemma 1

Lemma 1: Let 𝛯 = 𝜉𝑖
𝑇
𝑖=1,⋯,𝑛

= 𝛼𝑘𝑃𝑘
𝑙
𝑘=1

𝑇
𝑥 − 𝑥, we have

 𝜩 1 ≤ 2 − 2𝛼𝑇𝐴𝑥, where 𝐴 =
𝑝11

(1)
⋯ 𝑝𝑛𝑛

(1)

⋮ ⋱ ⋮

𝑝11
(𝑙)

⋯ 𝑝𝑛𝑛
(𝑙)
 .

Proof:

Define 𝑃 = 𝛼𝑘𝑃𝑘
𝑙
𝑘=1 and 𝐹 = 𝑓𝑖𝑗 𝑛×𝑛

= 𝑃𝑇 . It is clear that

𝑓𝑖𝑗 = 𝛼𝑘𝑝𝑗𝑖
(𝑘)𝑙

𝑘=1 . Using fi to denote the ith row of F, we can

rewrite Ξ as

 𝛯 = 𝜉𝑖
𝑇
𝑖=1,⋯,𝑛

= 𝐹𝑥 − 𝑥

or,

𝜉𝑖 = 𝑓𝑖𝑥 − 𝑥𝑖 = 𝑓𝑖𝑖 − 1 𝑥𝑖 + 𝑓𝑖𝑗 𝑥𝑗
𝑛
𝑗=1,𝑗≠𝑖

 (8.1.1)

Because the transition probability matrix has identical rows, for

the right-hand side of equation (8.1.1), 𝑓𝑖𝑖 − 1 𝑥𝑖 is non-positive

and the others are non-negative. Therefore, we can get an upper

bound of |𝜉𝑖| as follows by using the properties of ℓ1-norm

|𝜉𝑖| ≤ 1 − 𝑓𝑖𝑖 𝑥𝑖 + 𝑓𝑖𝑗 𝑥𝑗
𝑛
𝑗=1,𝑗≠𝑖 = 1 − 2𝑓𝑖𝑖 𝑥𝑖 + 𝑓𝑖𝑗 𝑥𝑗

𝑛
𝑗=1

Applying the result to each element in Ξ yields

 𝜩 1 ≤ 1 − 2𝑓𝑖𝑖 𝑥𝑖
𝑛
𝑖=1 + 𝑓𝑖𝑗 𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1

Considering that 𝑥𝑖
𝑛
𝑖=1 = 1 and 𝑓𝑖𝑗

𝑛
𝑖=1 = 1, we obtain

 𝑓𝑖𝑗 𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1 = 𝑥𝑗 𝑓𝑖𝑗

𝑛
𝑖=1 𝑛

𝑗=1 = 𝑥𝑗
𝑛
𝑗=1 = 1

and

 1 − 2𝑓𝑖𝑖 𝑥𝑖
𝑛
𝑖=1 = 𝑥𝑖

𝑛
𝑖=1 − 2 𝑓𝑖𝑖𝑥𝑖

𝑛
𝑖=1 = 1 − 2 𝑓𝑖𝑖𝑥𝑖

𝑛
𝑖=1

If further considering 𝑓𝑖𝑖 = 𝛼𝑘𝑝𝑖𝑖
(𝑘)𝑙

𝑘=1 , we obtain

 𝜩 1 ≤ 2 − 2 𝑓𝑖𝑖𝑥𝑖
𝑛
𝑖=1 = 2 − 2 𝛼𝑘𝑝𝑖𝑖

(𝑘)𝑙
𝑘=1 𝑥𝑖

𝑛
𝑖=1

By using matrix form to represent this inequality, we eventually

have

 𝜩 1 ≤ 2 − 2𝛼𝑇
𝑝11

(1)
⋯ 𝑝𝑛𝑛

(1)

⋮ ⋱ ⋮

𝑝11
(𝑙)

⋯ 𝑝𝑛𝑛
(𝑙)
 𝑥 = 2 − 2𝛼𝑇𝐴𝑥.

Proof of Proposition 2

Proposition 2: The optimization problem in (4.3) is equivalent

to the following Semidefinite Programming problem,

max𝜆 ,γ γ

𝑠. 𝑡. 𝜆 ≥ 0

𝐻0 + 𝜆0𝐷

1

2
𝑈𝑇

1

2
𝑈 −𝛬2

𝑇𝑒2 − 2𝜆0 − 𝛾
 ≽ 0

 (8.2.1)

where 𝑈 = 𝛬1
𝑇𝐻1 + 𝛬2

𝑇𝐻2 + 𝛬3
𝑇𝐻3, and 𝜆 = (𝜆0,𝛬1

𝑇 ,𝛬2
𝑇 ,𝛬3

𝑇)𝑇 .

Proof:

Considering that 𝛽 = (𝛼1 ,… ,𝛼𝑙 ,𝑥1 ,… , 𝑥𝑛 , 𝑡1 ,… , 𝑡𝑚)𝑇 , we always

have

𝛽𝑇𝐷𝛽 = 𝛼𝑇𝛼 + 𝑥𝑇𝑥 ≤ 𝛼𝑘
𝑙
𝑘=1

2
+ 𝑥𝑖

𝑛
𝑖=1 2 = 2

where 𝐷 = 𝑑𝑖𝑎𝑔(𝑒𝑙+𝑛
𝑇 , 0𝑚

𝑇).

WWW 2007 / Track: Search Session: Search Quality and Precision

488

http://www-user.tu-chemnitz.de/

It is clear that if we add this redundant constraint to the

optimization problem (4.3), its optimal solution will not change

because the feasible region has not changed. In this way, we can

transform the optimization problem (4.3) into the following

quadratically constrained quadratic optimization (QCQP) problem.

min𝛽 𝛽
𝑇𝐻0𝛽

𝑠. 𝑡. 𝛽𝑇𝐷𝛽 ≤ 2
 𝐻1𝛽 ≤ 0

 𝐻2𝛽 = 𝑒2

 𝐻3𝛽 < 0

 (8.2.2)

The Lagrangian of (8.2.2) is

𝐿 𝜆,𝛽

= 𝛽𝑇𝐻0𝛽 + 𝜆0 𝛽
𝑇𝐷𝛽 − 2 + 𝛬1

𝑇𝐻1𝛽 + 𝛬2
𝑇(𝐻2𝛽 − 𝑒2) + 𝛬3

𝑇𝐻3𝛽

= 𝛽𝑇(𝐻0 + 𝜆0𝐷)𝛽 + 𝑈𝛽 − 𝛬2
𝑇𝑒2 − 2𝜆0

where 𝛬1 = 𝜆1 , 𝜆2,… , 𝜆𝑙+𝑚
𝑇 , 𝛬2 = 𝜆𝑙+𝑚+1, 𝜆𝑙+𝑚+2

𝑇 ,

𝛬3 = 𝜆𝑙+𝑚+3 , 𝜆𝑙+𝑚+4,… , 𝜆𝑙+𝑛+2𝑚+2
𝑇 , 𝜆 = (𝜆0,𝛬1

𝑇 ,𝛬2
𝑇 ,𝛬3

𝑇)𝑇 ,

and 𝑈 = 𝛬1
𝑇𝐻1 + 𝛬2

𝑇𝐻2 + 𝛬3
𝑇𝐻3.

According to the optimization theory [6], if the infimum of

𝐿 𝜆,𝛽 with respect to β exists, one can transform the

minimization of the objective function in the primal problem

(8.2.2) to the maximization of the dual function 𝑔 𝜆 =
inf𝛽 𝐿 𝜆,𝛽 . The condition for this transformation is existence of

the infimum of 𝐿 𝜆,𝛽 . We will discuss this condition in the

following three cases.

1) If (𝐻0 + 𝜆0𝐷) is positive-definite, then function 𝐿 𝜆,𝛽 is a

convex quadratic function of β. Therefore, we can find the

infimum from the optimality condition:

∇𝛽𝐿 𝜆,𝛽 = 2(𝐻0 + 𝜆0𝐷)𝛽 + 𝑈𝑇 = 0

which yields

𝛽 = −
1

2
(𝐻0 + 𝜆0𝐷)−1𝑈𝑇 (8.2.3)

Accordingly, we get the dual function

𝑔 𝜆 = −𝛬2
𝑇𝑒2 − 2𝜆0 −

1

4
𝑈(𝐻0 + 𝜆0𝐷)−1𝑈𝑇

which is a concave quadratic function of .

If (𝐻0 + 𝜆0𝐷) is strict positive semidefinite, using the

pseudo-inverse in [6], we can get a relaxation on the above

condition. That is if 𝑈 ∈ 𝑟𝑎𝑛(𝐻0 + 𝜆0𝐷), we can get the

dual function as follows2,

𝑔 𝜆 = −𝛬2
𝑇𝑒2 − 2𝜆0 −

1

4
𝑈(𝐻0 + 𝜆0𝐷)†𝑈𝑇

2) Otherwise function 𝐿 𝜆,𝛽 has no lower bound, thus the

problem (8.2.2) has no solution.

With the above discussions, we conclude if and only if (𝐻0 +
𝜆0𝐷) ≽ 0 , 𝐿 𝜆,𝛽 has an infimum and the corresponding

optimization problem (8.2.2) can be transformed to its dual

problem3. As a result, we can solve the dual problem in (8.2.4)

and get the solution for (8.2.2).

max𝜆 𝑔(𝜆)
𝑠. 𝑡. 𝜆 ≥ 0

(𝐻0 + 𝜆0𝐷) ≽ 0
 (8.2.4)

One can also find that 𝑔 𝜆 is the Schur complement [6] of

(𝐻0 + 𝜆0𝐷) in the matrix
𝐻0 + 𝜆0𝐷

1

2
𝑈𝑇

1

2
𝑈 −𝛬2

𝑇𝑒2 − 2𝜆0

 . In this

situation, (8.2.4) can be further formulated as a Semidefinite

Programming (SDP) problem with respect to variables 𝛾 and 𝜆.

max𝜆 ,γ 𝛾

𝑠. 𝑡. 𝜆 ≥ 0

𝐻0 + 𝜆0𝐷

1

2
𝑈𝑇

1

2
𝑈 −𝛬2

𝑇𝑒2 − 2𝜆0 − 𝛾
 ≽ 0

 (8.2.5)

For problem (8.2.2), there exists a β that makes the following two

inequalities true: 𝛽𝑇𝐷𝛽 < 2 , 𝐻1𝛽 < 0 , and 𝐻3𝛽 < 0 . That is,

problem (8.2.2) is strictly feasible, and thus the optimal values of

(8.2.2) and its Lagrange dual problem (8.2.4) are equivalent [6].

Recall that optimization problem (4.3) and (8.2.2) are equivalent;

according to the strong duality theorem [6], problem (4.3) is

equivalent to the SDP problem (8.2.5).

2 𝑀† is the pseudo-inverse of matrix M [6].

3 𝑀 ≽ 0 means that matrix M is semi-positive definite [6].

WWW 2007 / Track: Search Session: Search Quality and Precision

489

