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ABSTRACT 

This paper is concerned with rank aggregation, the task of 

combining the ranking results of individual rankers at meta-search. 

Previously, rank aggregation was performed mainly by means of 

unsupervised learning. To further enhance ranking accuracies, we 

propose employing supervised learning to perform the task, using 

labeled data. We refer to the approach as ‘Supervised Rank 

Aggregation’. We set up a general framework for conducting 

Supervised Rank Aggregation, in which learning is formalized an 

optimization which minimizes disagreements between ranking 

results and the labeled data. As case study, we focus on Markov 

Chain based rank aggregation in this paper. The optimization for 

Markov Chain based methods is not a convex optimization 

problem, however, and thus is hard to solve. We prove that we 

can transform the optimization problem into that of Semidefinite 

Programming and solve it efficiently. Experimental results on 

meta-searches show that Supervised Rank Aggregation can 

significantly outperform existing unsupervised methods. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – Retrieval models. H.3.4 [Information Systems 

Application]: Systems and Software- performance evaluation 

(efficiency and effectiveness). 

General Terms 

Algorithms, Experimentation, Theory 

Keywords 

Rank aggregation, supervised learning, Markov Chain, 

Semidefinite programming 

 

1. INTRODUCTION 
Rank aggregation is to combine ranking results of entities from 

multiple ranking functions in order to generate a better one. The 

individual ranking functions are referred to as base rankers, or 

simply rankers, hereafter. 

Rank aggregation can be classified into two categories [2]. In the 

first category, the entities in individual ranking lists are assigned 

scores and the rank aggregation function is assumed to use the 

scores (denoted as score-based aggregation) [11][18][28]. In the 

second category, only the orders of the entities in individual 

ranking lists are used by the aggregation function (denoted as 

order-based aggregation). We focus on order-based aggregation 

in this paper. Order-based aggregation is employed at meta-search, 

for example, in which only order (rank) information from 

individual search engines is available. 

Previously order-based aggregation was mainly addressed with 

the unsupervised learning approach, in the sense that no training 

data is utilized; methods like Borda Count [2][7][27], median rank 

aggregation [9], genetic algorithm [4], fuzzy logic based rank 

aggregation [1], Markov Chain based rank aggregation [7] and so 

on were proposed. One exception is Borda Fuse [2] which also 

makes use of training data. However, it is different from the 

supervised learning method we propose in this paper. 

We argue that in order to improve the accuracy of rank 

aggregation, it is better to employ a supervised learning approach 

in which we train an order-based aggregation function within an 

optimization framework using labeled data. At meta search, for 

example, labeled data can be documents and their relevancies to 

given queries. The key factors, thus, are (a) to assume that only 

order information from individual rankers is available, (b) to use 

labeled data, and (c) to train the aggregation function within an 

optimization framework. In this paper, we refer to the approach as 

‘Supervised Rank Aggregation’.  

There are several advantages for taking the supervised learning 

approach.  First, we can leverage the use of information existing 

in labeled training data. Second, we can apply existing 

optimization techniques to the problem. Third, it becomes easier 

to make domain or user adaptation. Certainly, it also has a 

disadvantage, that is, labeled data is needed and creating such data 

can be costly. This is, however, a shortcoming for any supervised 

learning method and we can leave it as future research topic. 

In this paper, we first give a general framework for conducting 

Supervised Rank Aggregation. We show that we can define 

supervised learning methods corresponding to the existing 

unsupervised methods, such as Borda Count and Markov Chain 

based methods by exploiting the framework. 

Then we mainly investigate the supervised versions of Markov 

Chain based methods in this paper, because previous work shows 

that their unsupervised counterparts are superior [24]. It turns out, 

however, that the optimization problems for the Markov Chain 

based methods are hard, because they are not convex optimization 

problems. We are able to develop a method for the optimization of 

one Markov Chain based method, called Supervised MC2. 

Specifically, we prove that we can transform the optimization 

problem into that of Semidefinite Programming. As a result, we 

can efficiently solve the issue. (We plan to apply the same 

technique to the other Markov Chain methods in the future.) 

Experimental results on meta-searches show that Supervised Rank 

Aggregation (i.e., Supervised MC2) can achieve better 

performances than existing methods. 

*This work was conducted when the first and the third authors were 
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The rest of this paper is organized as follows. In Section 2, we 

introduce related work. In Section 3, we propose a general 

framework and specific methods for Supervised Rank 

Aggregation. In Section 4, we propose an optimization algorithm 

for the method of Supervised MC2. Experimental results are 

reported in Section 5. Conclusions and future work are given in 

the last section. 

 

2. RELATED WORK  
The origin of research on rank aggregation can be traced back to 

the eighteenth century, when it was studied in social choice theory 

and applied into political elections [5]. In recent years, rank 

aggregation gets spotlight again in many new applications, such as 

genome database construction [26], document filtering [13], 

database middleware construction [10], spam webpage detection 

[7], meta-search [2][7][17][24], word association finding [7], 

multiple search [11], and similarity search [9]. 

There are two types of rank aggregation: score-based and order-

based. In the former the aggregation function takes score 

information from the individual base rankers as input, while in the 

latter it only utilizes order information. Order-based aggregation 

fits well with meta-search, as in meta-search only order 

information from base rankers is available; this is also the main 

focus of the research in this paper.  

Existing methods for order-based aggregation includes, for 

example, Borda Count [2][7][27], median rank aggregation [9], 

genetic algorithm [4], fuzzy logic based rank aggregation method 

[1] and Markov Chain based rank aggregation [7]. Borda Count 

ranks entities based on their positions in the ranking lists. For 

example, the entities are sorted according to the number of entities 

that are ranked below them in all the ranking lists. Median rank 

aggregation sorts the entities based on the medians of their ranks 

in all the ranking lists. Markov Chain based rank aggregation 

assumes that there exists a Markov Chain on the entities and the 

order relations between entities in the ranking lists represents the 

transitions in Markov Chain. The stationary distribution of the 

Markov Chain is utilized to rank the entities. Dwork et al [7] 

proposed four methods (denoted as MC1, MC2, MC3, and MC4) to 

construct the transition probability matrix of the Markov Chain. 

The unsupervised methods described above implicitly conduct 

majority voting in their final ranking decisions. That is to say, 

these methods treat all the ranking lists equally and give high 

ranks to those entities ranked high by most of the rankers. This 

assumption may not hold in practice, however. For example, in 

meta-search, ranking lists are generated by different search 

engines with different capacities and accuracies. It is not 

reasonable to treat the results of the search engines equally. 

To deal with the problem, Aslam et al [2] proposed Borda Fuse, 

which can be viewed as weighted Borda Count for meta-search. 

Specifically, different rankers are assigned different weights, 

while the weights are trained separately by using labeled training 

data. For example, the weights can be calculated based on the 

MAP (Mean Average Precision) scores of the base rankers. 

Experimental results show that Borda Fuse indeed improves upon 

Borda Count. The problem with Borda Fuse is that the weights of 

the ranking list are calculated independently and by using 

heuristics. It is also not clear whether the same idea can be applied 

to other methods. 

We note that order-based rank aggregation in meta-search is 

similar to relevance ranking in document retrieval, but there are 

some clear differences. Therefore, the methods proposed for 

relevance ranking may not be directly applicable to order-based 

rank aggregation. In relevance ranking, a typical approach is to 

employ a linear combination model of the features to rank 

documents. One can also employ a supervised learning method to 

train the model. Each feature can be viewed as a ranker and the 

final ranking model can be viewed as an aggregation function. 

However, this final ranking model is more close to that of score-

based aggregation, not that of order-based aggregation. How to 

apply a score-based method to order-based aggregation is still an 

open problem, and is out of the scope of this paper. 

 

3. SUPERVISED RANK AGGREGATION  
In this section, we first introduce a general optimization 

framework for order-based rank aggregation. We then define 

Supervised Rank Aggregation methods within the framework. 

We first give some definitions and notations. Given a set of 

entities S, let V be a subset of S and assume that there is a total 

order among the entities in V. 𝜏  is called a ranking list with 

respect to S, if 𝜏 is a list of the entities in V maintaining the same 

total order relation, i.e.,𝜏 =  𝑑1 ,⋯ ,𝑑𝑚   , if 𝑑1 > ⋯ > 𝑑𝑚 , 𝑑i ∈
𝑉,𝑖 = 1,⋯ ,𝑚, where > denotes the relation and m denotes the 

size of V. If V equals S, τ is called a full list, otherwise, it is called 

a partial list. A special case of partial list is a top-t list, for which 

the first tth entities are ordered in the list.  
 

3.1 Optimization Framework 
The goal of rank aggregation is to assign a real-valued score to 

each of the entities by aggregating all the ranking lists given by 

the base rankers, and then sort the entities according to their 

scores. Without loss of generality, hereafter we assume that it is in 

the descending order. 

Let 𝜏1 ,⋯ , 𝜏𝑙  denote the ranking lists with respect to 𝑆  and 𝑛  

denotes the number of entities in S. We define the aggregation 

function as𝛹: 𝜏1 ,⋯ , 𝜏𝑙 ↦ 𝑥  , where 𝑥  denotes the final score 

vector of all entities. That is, if 𝑥 = 𝛹 𝜏1 ,⋯ , 𝜏𝑙 , then all the 

entities are ranked by the scores in x.  

For example in Borda Count, 𝑥 is called Borda score, which is 

calculated as, 

𝑥 = 𝛹 𝜏1 ,⋯ , 𝜏𝑙 =  𝑥(𝑘)𝑙
𝑘=1               (3.1.1) 

where  𝑥(𝑘) ≜  𝑥𝑖
(𝑘)
 
𝑇

𝑖=1,⋯,𝑛
 , 𝑥𝑖

(𝑘)
= # 𝑗|𝑖 >𝜏𝑘 𝑗 , and 𝑖 >𝜏𝑘 𝑗 

means that entity i is ranked higher than entity j in ranking list 𝜏𝑘 .  

We assume that the aggregation function 𝛹 is parameterized by a 

parameter vector 𝛼 . In a supervised learning approach to rank 

aggregation, we try to learn the optimal values of the parameters 

by using labeled training data. Typically training data may include 

ground truth indicating pairwise preferences of which entities 

should be ranked higher than the others. In the learning, we 

actually manage to find the aggregation function that minimizes 

the disagreements between the ground truth and the output of the 

aggregation function. 

We represent the agreement between the output list of an 

aggregation function and the ground truth by using an inequality 

𝐻𝑥 < 0 

where 𝑥 denotes the output of the function and H denotes a matrix 

representing the pairwise preference relationship between entities. 

For example, suppose that the scores produced by the aggregation 

function are 𝑥 =  𝑥1 , 𝑥2, 𝑥3 , 𝑥4 
𝑇 , and the ground truth indicates 
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that entity 1 should be ranked higher than entity 2, and entity 4 

should be ranked higher than entity 3. Then, the inequality 

becomes: 

𝐻𝑥 < 0, where 𝐻 =  
−1 1 0 0
0 0 1 −1

  

By using such a matrix, we can bring any form of ground truth 

into our framework, and do not need assume a total order existing 

over all the entities in the training set. 

There is no guarantee that there exists a parameter vector 𝛼 that 

satisfies all the pairwise constraints in the ground truth. That is, 

disagreements may exist. We introduce ‘slack variable’ 𝑡  to 

represent the differences (errors), 

𝐻𝑥 < 𝑡, 𝑡 ≥ 0 

To reduce training errors is equivalent to minimize the norm of t. 

Thus we can formalize Supervised Rank Aggregation as the 

following optimization problem. 

min𝑥 ,𝛼 ,𝑡    𝑡𝑇𝑡               

     𝑠. 𝑡.  𝑥 = 𝛹 𝜏1 ,⋯ , 𝜏𝑙 ;𝛼 

  𝛼 ∈ 𝐶             
  𝐻𝑥 < 𝑡, 𝑡 ≥ 0

 
                        (3.1.2) 

where α denotes the parameter vector and C denotes a feasible 

region for α. The dimension of matrix H equals the number of 

pairs indicating pairwise preferences in the training data. The 

objective  𝑡𝑇𝑡 actually denotes the empirical loss in the training 

data. When empirical loss is 0, the aggregation function 𝛹 
satisfies all the pairwise constraints.  

With different ways of instantiating and optimizing the 

aggregation function, we come to different methods for rank 

aggregation.  
 

3.2 Methods 
We show that we can define Supervised Rank Aggregation 

methods within the framework. In this paper we only consider the 

case in which the aggregation function is defined as a linear 

model of base rankers. Even the model is simple; it is powerful 

enough for accomplishing the tasks in this paper. 

(1) Borda Fuse 

Many rank aggregation methods are in fact based on majority 

voting. Borda Count [2][7][27] is such a method and the major 

assumption within it is that all the base rankers are equally 

important. As discussed above, it is more reasonable to give 

different weights to different rankers. In other words, we can 

consider using Borda Fuse 

𝑥 = 𝛹 𝜏1 ,⋯ , 𝜏𝑙 =  𝛼𝑘
𝑙
𝑘=1 𝑥(𝑘)  

Note that Borda Fuse contains Borda Count as its special case.  

With the optimization framework in (3.1.2), we can define 

Supervised Borda Fuse. Specifically we formalize it as the 

following optimization problem: 

min𝑥 ,𝛼 ,𝑡    𝑡𝑇𝑡                                                 

𝑠. 𝑡.  𝑥 =  𝛼𝑘
𝑙
𝑘=1 𝑥(𝑘)                                

      𝛼𝑘
𝑙
𝑘=1 = 1,𝛼𝑘 ≥ 0,𝑘 = 1,… , 𝑙

𝐻𝑥 < 𝑡, 𝑡 ≥ 0                              

 
    

where  𝑥(𝑘) is the same as that in (3.1.1). Note that the parameter 

vector is comprised of weights of ranking lists and is to be 

optimized as well.  

(2) Markov Chain based methods 

Many other rank aggregation methods are based on Markov Chain. 

It is advantageous to employ the Markov Chain model in rank 

aggregation, particularly when the base rankers only output partial 

lists [8]. Experimental results show that the Markov Chain based 

methods outperform other methods [24].  That is why we focus on 

Markov Chain based approach in this paper. 

Dwork et al [7] proposed four Markov Chain based models for 

rank aggregation, referred to as MC1, MC2, MC3, and MC4. The 

four models correspond to four different heuristic rules for 

constructing the transition probability matrix in Markov Chain.  

Let us take MC2 as example. The transitions in Markov Chain are 

defined as follows. If the current state is i, then we first select a 

ranking list 𝜏𝑘uniformly randomly from the ranking lists 𝜏1 ,⋯ , 𝜏𝑙  
that contain state i, then select state j uniformly randomly from the 

set of states that are ranked not lower than state i in 𝜏𝑘 , and define 

j as the next state. 

For a full list or top-t list, it is not difficult to verify that the 

transition matrix is arithmetic mean of transition probability 

matrices produced from individual ranking lists, referred to as 

base-transition matrices. Let 𝑃𝑘 ≜  𝑝𝑖𝑗
(𝑘)
 
𝑛×𝑛

denote the kth base 

transition matrix produced by ranking list 𝜏𝑘 , in which each 

element 𝑝𝑖𝑗
 𝑘 

corresponds to the conditional probability of state j 

given state i in ranking list 𝜏𝑘 . The final transition matrix P is 

defined as 

𝑃 =
1

𝑙
 𝑃𝑘
𝑙
𝑘=1   

𝑝𝑖𝑗
 𝑘 

=  
1

𝑚
, 𝑗 >𝜏𝑘 𝑖 or 𝑗 = 𝑖 

0,  otherwise        
                 (3.2.1) 

where 𝑚 = # 𝑗|𝑗 >𝜏𝑘 𝑖 or 𝑗 = 𝑖 . 

The score vector x can then be computed by solving  𝑥 = 𝑃𝑇𝑥, 

with constraints  𝑥𝑖
𝑛
𝑖=1 = 1,𝑥𝑖 > 0, 𝑖 = 1,⋯ ,𝑛. 

In Supervised MC2 we assign weighting coefficients to the base 

matrices Pk: 

𝑃 =  𝛼𝑘
𝑙
𝑘=1 𝑃𝑘   

Formally, Supervised MC2 is defined as follows. 

min𝑥 ,𝛼 ,𝑡    𝑡𝑇𝑡                        

𝑠. 𝑡.  𝑥 =   𝛼𝑘
𝑙
𝑘=1 𝑃𝑘 

𝑇
𝑥

 
                              𝑥𝑖

𝑛
𝑖=1 = 1,𝑥𝑖 > 0, 𝑖 = 1,… ,𝑛

                                 𝛼𝑘
𝑙
𝑘=1 = 1,𝛼𝑘 ≥ 0,𝑘 = 1,… , 𝑙

  

𝐻𝑥 < 𝑡, 𝑡 ≥ 0    

 
        (3.2.2) 

Similarly, we can construct the supervised versions of MC1, MC3, 

and MC4. The only differences lie in the structures of the 

transition probability matrices. 

a) Supervised MC1:  

The transition matrix of MC1 can be written as  

𝑃 = 𝑑𝑖𝑎𝑔  
1

 𝑞1𝑗
𝑛
𝑗=1

,⋯ ,
1

 𝑞𝑛𝑗
𝑛
𝑗=1

 𝑄 

where 𝑄 ≜  𝑞𝑖𝑗  𝑛×𝑛
=

1

𝑙
 𝑄𝑘
𝑙
𝑘=1 ,  𝑄𝑘 ≜  𝑞𝑖𝑗

(𝑘)
 
𝑛×𝑛

with  

𝑞𝑖𝑗
(𝑘)

=  
1, 𝑗 >𝜏𝑘 𝑖 or 𝑗 = 𝑖

0, otherwise        
 . 

We can derive Supervised MC1 by assigning weighting 

coefficients to 𝑄, and obtain the following optimization problem. 
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min𝑥 ,𝛼 ,𝑡    𝑡𝑇𝑡                                                                        

𝑠. 𝑡.  𝑥 =   𝛼𝑘
𝑙
𝑘=1 𝑄𝑘 

𝑇
𝑑𝑖𝑎𝑔  

1

 𝑞1𝑗
𝑛
𝑗=1

,⋯ ,
1

 𝑞𝑛𝑗
𝑛
𝑗=1

 𝑥

 𝑥𝑖
𝑛
𝑖=1 = 1,𝑥𝑖 > 0, 𝑖 = 1,… ,𝑛                     

 𝛼𝑘
𝑙
𝑘=1 = 1,𝛼𝑘 ≥ 0,𝑘 = 1,… , 𝑙                 
𝐻𝑥 < 𝑡, 𝑡 ≥ 0                                                   

  

b) Supervised MC3: 

The formulation of MC3 is similar to that of MC2, except the 

definition of  𝑝𝑖𝑗
 𝑘 

: 

𝑝𝑖𝑗
 𝑘 

=  

1

𝑛
 ,     𝑗 >𝜏𝑘 𝑖       
𝑛−𝑚

𝑛
 , 𝑗 = 𝑖          

0,    otherwise 

 ,     and  𝑚 = # 𝑗| 𝑗 >𝜏𝑘 𝑖  . 

Therefore, we can define Supervised MC3 in a similar way as we 

define Supervised MC2.  

c) Supervised MC4: 

MC4 is similar to MC1, except that the following two facts differ. 

(i) The definition of 𝑄:  𝑄 ≜  𝑞𝑖𝑗  𝑛×𝑛
=

1

𝑙
 𝑄𝑘
𝑙
𝑘=1 ,  

with 𝑞𝑖𝑗
(𝑘)

=  
1, 𝑗 >𝜏𝑘 𝑖         

0, otherwise  
 . 

(ii) The definition of P: 𝑃 ≜  𝑝𝑖𝑗  𝑛×𝑛
, with        

𝑝𝑖𝑗
 𝑘 

=  

1

𝑛
 ,     𝑞𝑖𝑗 > 1

2
      

𝑛−𝑚

𝑛
 , 𝑗 = 𝑖          

0,    otherwise 

 , and 𝑚 = # 𝑗|𝑞𝑖𝑗 > 1

2
  . 

Therefore, we can obtain Supervised MC4, similar to Supervised 

MC1. 

In summary, with the use of the optimization framework, we can 

introduce new supervised aggregation methods, corresponding to 

most of the existing unsupervised rank aggregation methods. The 

key factor is that weights are assigned to the ranking lists and they 

are also trained within the optimization framework.   

The question next is how to conduct the optimizations. For some 

forms of function 𝛹 in (3.1.2), the optimization is hard to solve, 

such as those in the Markov chain based methods. We know of no 

existing optimization techniques which can be straightforwardly 

applied, because they are not convex optimization problems. In 

our work we are able to find an optimization solution for 

Supervised MC2 on the basis of Semidefinite Programming (SDP), 

as will be explained below. 

 

4. AN OPTIMIZATION SOLUTION  
In this section, we describe our solution to the optimization 

problem for Supervised MC2 as in (3.2.2). We think that similar 

techniques can also be applied to other Markov Chain based 

methods, but leave it as future work. 

Our method for Supervised MC2 consists of three steps: 

1) We modify the objective and constraints in (3.2.2) to make 

the feasible region convex. 

2) We further transform the optimization problem into a 

quadratic optimization problem by employing the bound 

optimization technique. 

3) Finally, we transform the quadratic optimization problem 

into a Semidefinite Programming problem. 

Let us elaborate on the three steps in more details. Theoretical 

justifications of the transformations are given in a lemma and a 

proposition.  

The first constraint in (3.2.2) represents an eigenvector problem. 

One can easily verify that the feasible region of the optimization 

problem is not convex. In general such a problem is hard to solve. 

We reformulate the original optimization problem by putting the 

first constraint into the objective function: 

min𝑥 ,𝛼 ,𝑡    𝑡𝑇𝑡  +    𝛼𝑘𝑃𝑘
𝑙
𝑘=1  

𝑇
𝑥 − 𝑥 

1

𝑠. 𝑡.   𝑥𝑖
𝑛
𝑖=1 = 1, 𝑥𝑖 > 0, 𝑖 = 1,… ,𝑛

             𝛼𝑘
𝑙
𝑘=1 = 1,𝛼𝑘 ≥ 0,𝑘 = 1,… , 𝑙
𝐻𝑥 < 𝑡, 𝑡 ≥ 0                      

                (4.1) 

where  ∙ 1denote the ℓ1-norm of a vector. 

Then, the feasible region becomes convex and the objective 

function becomes one consisting of two parts. The first part 𝑡𝑇𝑡 
corresponds to training errors, and the second part 

   𝛼𝑘𝑃𝑘
𝑙
𝑘=1  

𝑇
𝑥 − 𝑥 

1
corresponds to an approximation of the 

stationary distribution. The second part of the objective function is 

not convex. We try to minimize a differentiable and convex upper 

bound of it. Lemma 1 gives the upper bound using the properties 

of  ℓ1-norm. 
 

Lemma 1: Let 𝛯 =  𝜉𝑖 
𝑇
𝑖=1,⋯,𝑛

=   𝛼𝑘𝑃𝑘
𝑙
𝑘=1  

𝑇
𝑥 − 𝑥, we have  

  𝜩 1 ≤ 2 − 2𝛼𝑇𝐴𝑥, where 𝐴 =  
𝑝11

(1)
⋯ 𝑝𝑛𝑛

(1)

⋮ ⋱ ⋮

𝑝11
(𝑙)

⋯ 𝑝𝑛𝑛
(𝑙)
 . 

Proof: See Appendix.  

 

The optimization problem then becomes 

min𝑥 ,𝛼 ,𝑡    𝑡𝑇𝑡  + 2 − 2𝛼𝑇𝐴𝑥                

𝑠. 𝑡.   𝑥𝑖
𝑛
𝑖=1 = 1, 𝑥𝑖 > 0, 𝑖 = 1,… ,𝑛

             𝛼𝑘
𝑙
𝑘=1 = 1,𝛼𝑘 ≥ 0, 𝑘 = 1,… , 𝑙
𝐻𝑥 < 𝑡, 𝑡 ≥ 0                      

             (4.2) 

By defining 𝛽 = (𝛼1 ,… ,𝛼𝑙 , 𝑥1,… , 𝑥𝑛 , 𝑡1 ,… , 𝑡𝑚 )𝑇, where m is the 

number of rows in matrix H, and omitting the constant in the 

objective function which is irrelevant to the optimization, problem 

(4.2) becomes 

  min𝛽 𝛽
𝑇𝐻0𝛽      

𝑠. 𝑡.   𝐻1𝛽 ≤ 0
           𝐻2𝛽 = 𝑒2

         𝐻3𝛽 < 0

                                    (4.3) 

with                 𝐻0 =  
0 −𝐴 0

−𝐴𝑇 0 0
0 0 𝐼

 ∈ 𝑅(𝑙+𝑛+𝑚 )×(𝑙+𝑛+𝑚 )
 

                          𝐻1 =  
−𝐼𝑙 0 0
0 0 −𝐼𝑚

 ∈ 𝑅 𝑙+𝑚 × 𝑙+𝑛+𝑚         (4.4) 

𝐻2 =  
𝑒𝑙
𝑇 0 0

0 𝑒𝑛
𝑇 0

 ∈ 𝑅2× 𝑙+𝑛+𝑚  

           𝐻3 =  
0 −𝐼𝑛 0
0 𝐻 −𝐼𝑚

 ∈ 𝑅 𝑛+𝑚 × 𝑙+𝑛+𝑚  

where  𝐼𝑖  is identity matrix of size i, and 𝑒𝑖  is vector with size i in 

which all the elements are one. 

The optimization in (4.3) is an optimization problem with 

quadratic objective function and linear constraints. The remaining 

issue is that the Hessian matrix H0 is not positive definite and thus 

the objective function is not convex. In this situation, if we 

employ a method like Gradient Decent, the solution will be 
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sensitive to the initial values, and will likely to become locally 

optimal. To cope with it, we further transform the optimization 

problem into a Semidefinite Programming (SDP), with the 

theoretical support from Proposition 2. 
 

Proposition 2: Optimization problem (4.3) is equivalent to the 

following Semidefinite Programming problem, 

 max𝜆 ,𝛾      𝛾                                              

𝑠. 𝑡.   𝜆 ≥ 0                                             

                    
𝐻0 + 𝜆0𝐷

1

2
𝑈𝑇

1

2
𝑈 −𝛬2

𝑇𝑒2 − 2𝜆0 − 𝛾
 ≽ 0

         (4.5) 

Where 𝑈 = 𝛬1
𝑇𝐻1 + 𝛬2

𝑇𝐻2 + 𝛬3
𝑇𝐻3, and 𝜆 = (𝜆0,𝛬1

𝑇 ,𝛬2
𝑇 ,𝛬3

𝑇)𝑇 . 

Proof: See Appendix. 

 

Finally we can solve the optimization problem using the 

techniques of SDP1, for example, the interior-point method SDPA 

[30] proposed in [12].  

Our Supervised MC2 algorithm can be summarized as follows. 

Supervised MC2: 

Input: ranking lists 𝜏1 ,⋯ , 𝜏𝑙  

Output: weighting parameter α 

Algorithm: 

a) Construct base transition matrices  𝑃1,⋯ ,𝑃𝑙  according to 

equation (3.2.1). 

b) Create matrix 𝐴 as shown in Lemma 1. 

c) Create matrices H0, H1, H2, H3 as shown in equation (4.4). 

d) Construct matrix U as shown in Proposition 2. 

e) Call SDP tool [30] to solve problem (4.5) and get solution λ. 

f) Compute β by equation (8.2.3). 

g) Output the first l elements of β as parameter α. 

 

5. EXPERIMENTS 
In this section, we report the experimental results on meta-search 

using our method based on Supervised Rank Aggregation and 

existing methods. Our first experiment was conducted with TREC 

dataset, and the second was with data from real web search 

engines.  

 

5.1 TREC Data 
TREC datasets were used in many previous works on rank 

aggregation [2][18][19][20][24], in which heuristic models were 

used as base rankers. This motivated us to conduct our 

experiments with TREC dataset as well. We selected the 

OHSUMED dataset used in the filtering track of TREC 2000. 

The OHSUMED dataset is a collection of 348,566 documents and 

106 queries. The ground truth is provided by the TREC committee 

with three levels of relevance judgments: ‘definitely relevant’, 

‘possibly relevant’, and ‘not relevant’ to the query.  Based on 

these judgments, we can construct pairwise constraints for the 

training of Supervised MC2.  

                                                                 
1 SDP is a hot research field in recent years [29], and many fast iterative 

algorithms have been developed [16][21][23][30]. 

In our experiment, we used 30 ranking models (features) [22] as 

base rankers. These include term frequency, inverse document 

frequency, document length, BM25 score [25], and their 

combinations.  

Table 1. Results of different methods for meta-search with 

OHSUMED data 

 

Supervised 

MC2 
MC1 MC2 MC3 MC4 

Borda-

Count 

Borda 

Fuse 

P@1 0.483 0.337 0.376 0.357 0.308 0.349 0.349 

P@2 0.384 0.324 0.345 0.316 0.294 0.310 0.320 

P@3 0.363 0.290 0.325 0.280 0.289 0.310 0.306 

P@4 0.352 0.284 0.312 0.285 0.275 0.280 0.295 

P@5 0.329 0.266 0.312 0.268 0.280 0.276 0.292 

P@6 0.331 0.265 0.298 0.265 0.276 0.265 0.272 

P@7 0.324 0.269 0.296 0.263 0.276 0.266 0.264 

P@8 0.316 0.269 0.292 0.263 0.274 0.265 0.265 

P@9 0.312 0.266 0.287 0.260 0.270 0.264 0.261 

P@10 0.302 0.264 0.288 0.255 0.267 0.254 0.258 

MAP 0.302 0.275 0.286 0.271 0.269 0.267 0.272 

 

Table 2. Results of different methods for meta-search with 

OHSUMED data 

 

Supervised 

MC2 
MC1 MC2 MC3 MC4 

Borda-

Count 

Borda 

Fuse 

N@1 0.651 0.534 0.573 0.553 0.516 0.544 0.544 

N@2 0.595 0.530 0.553 0.533 0.513 0.525 0.531 

N@3 0.586 0.517 0.546 0.515 0.513 0.526 0.525 

N@4 0.581 0.519 0.546 0.518 0.512 0.514 0.523 

N@5 0.575 0.514 0.549 0.514 0.517 0.518 0.525 

N@6 0.579 0.517 0.548 0.518 0.520 0.515 0.520 

N@7 0.583 0.523 0.554 0.521 0.527 0.522 0.522 

N@8 0.586 0.530 0.558 0.527 0.533 0.525 0.528 

N@9 0.590 0.536 0.562 0.532 0.539 0.530 0.533 

N@10 0.589 0.541 0.568 0.534 0.542 0.531 0.537 

 

Next, we conducted rank aggregation using our method. For 

comparison, we also implemented and tested other rank 

aggregation methods, including MC1, MC2, MC3, MC4, Borda 

Count, and Borda Fuse. The experiments were performed through 

4-fold cross validation. We randomly split the query set into four 

subsets, used the first two of them for training, the third for 

validation, and the fourth for testing, and rotated this process four 

times to create four data sets. Then we took the average 

performance over the four trials as the final result for each method.  

We used three measures in our experiments for ranking accuracy 

evaluations: Precision [3], Mean Average Precision (MAP) [3] 

and Normalized Discount Cumulative Gain (NDCG) [14][15]. 

When evaluating the performances in terms of precision, we 

regarded both ‘definitely relevant’ and ‘possible relevant’ as 

positive, and ‘not relevant’ as negative. 

Table 1 shows the results in terms of precision at n (P@n) and 

MAP, and Table 2 shows the results in terms of DNCG at n (N@n) 

for all the methods. 

From the results, we can see that Supervised MC2 outperforms all 

the other methods, suggesting that it is better to employ 

Supervised Rank Aggregation proposed in this paper. 
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5.2 Web Search Data 
We also tried to apply the rank aggregation methods directly to 

meta-search on the web.  

5.2.1 Experimental Results 
We randomly sampled 500 queries from the query log of a 

commercial search engine, as query set. Table 3 shows some 

example queries. 
 

Table 3. Sample queries used in meta-search  

Queries 

Altavista, Astronomy Picture of the day, BBC, cadillac, daily 

nation, delta dental, family guy, fox theater, Google, group 

health,  habitat for humanity, hotmail, Image Entertainment, 

imdb, jacksonville news, jetblue, kofax, laredo morning times, 

liberty university, michael Jordan, Microsoft, national zoo, 

NCAA football, ohio department of education, philips, prime 

outlets, southern baptist convention, Superbowl, tacoma news 

tribune, texas department of public safety, Tuesday Morning, 

ucla, university of Tennessee, venetian, etc. 

 
 

Table 4. Results of different methods for meta-search with 

data from web search engines 

 

Supervised 

MC2 
MC1 MC2 MC3 MC4 

Borda-

Count 

Borda 

Fuse 

P@1 0.864 0.738 0.837 0.734 0.818 0.712 0.709 

P@2 0.692 0.606 0.664 0.611 0.668 0.579 0.581 

P@3 0.620 0.547 0.575 0.550 0.586 0.505 0.501 

P@4 0.560 0.505 0.520 0.502 0.529 0.457 0.544 

P@5 0.525 0.466 0.476 0.469 0.484 0.426 0.423 

P@6 0.496 0.436 0.446 0.434 0.446 0.394 0.394 

P@7 0.471 0.408 0.419 0.409 0.413 0.372 0.370 

P@8 0.447 0.387 0.400 0.388 0.385 0.349 0.350 

P@9 0.426 0.367 0.383 0.367 0.359 0.332 0.332 

P@10 0.407 0.350 0.366 0.352 0.340 0.315 0.313 

MAP 0.410 0.333 0.374 0.333 0.340 0.296 0.292 

 

Next, we submitted the queries to six commercial web search 

engines, and collected the top-100 ranking lists of the queries 

returned by the search engines. We combined the results together 

and eliminated the duplicate pages. On average there were 362 

unique pages per query. The overlap among the ranking lists of 

the search engines was small: there were on average 4 pages per 

query occurring in all the ranking lists. Then we asked human 

annotators to make relevance judgments on the pages. The 

relevance judgments were binary: relevant or irrelevant. Three 

annotators made judgments, and majority voting was finally 

conducted on the results.  

We then conducted meta-search on the data through 4-fold cross 

validation (in the same way as in Section 5.1. We applied our 

proposed method, and used MC1, MC2, MC3, MC4, Borda Count, 

and Borda Fuse as baselines. Table 4 shows the results in terms of 

P@n and MAP. From the results, we can see that our proposed 

method achieves the best results in terms of both MAP and P@n. 

Again this verifies the effectiveness of our proposed method for 

rank aggregation.  

Table 5 shows the experiment results in terms of NDCG@n. 

Table 5. Results of different methods for meta-search with 

OHSUMED data 

 

Supervised 

MC2 
MC1 MC2 MC3 MC4 

Borda-

Count 

Borda 

Fuse 

N@1 0.741 0.554 0.722 0.552 0.690 0.533 0.531 

N@2 0.631 0.495 0.609 0.485 0.589 0.459 0.460 

N@3 0.605 0.484 0.576 0.475 0.561 0.440 0.438 

N@4 0.592 0.483 0.562 0.473 0.545 0.435 0.433 

N@5 0.585 0.482 0.553 0.476 0.534 0.433 0.431 

N@6 0.582 0.480 0.548 0.474 0.525 0.432 0.430 

N@7 0.579 0.477 0.543 0.473 0.517 0.430 0.429 

N@8 0.575 0.475 0.538 0.471 0.510 0.428 0.428 

N@9 0.572 0.472 0.536 0.468 0.503 0.427 0.426 

N@10 0.569 0.469 0.533 0.467 0.498 0.425 0.423 

 

5.2.2 Discussions 
We investigated why our proposed supervised method 

(Supervised MC2) outperforms the baseline methods.  

Figure 1 shows MAP and the weight to each search engine 

assigned by our method in the first trial of the cross-validation 

experiment. (The results from the other trials have the same 

tendencies). 
 

 

Figure 1. MAP and weights of search engines 
 

From Figure 1, we have the following observations. 

(a) The weights of search engines are different from each other.  

This validates the correctness of our assumption that rankers 

should have different weights.  

(b) The weights of search engines do not necessarily correlate 

with their MAP values.  

Although the fourth search engine achieves the best MAP and 

obtains the largest weight at the same time, for the other engines, 

MAP and weight do not correlate. For example, the first search 

engine has a higher MAP than the second, but it has much smaller 

weight than the second. Our explanation to this is as follows. The 

weights of search engines not only depend on their performances, 

but also depend on the correlations among search engines. If a 

search engine highly correlates to the others, its weight (influence) 

will be reduced within the general optimization framework.  

To verify the correctness of this explanation, we calculate the 

correlation coefficient between each pair of the six engines using 

the following formula, and present the results in Table 6. (Note 

that the correlation is symmetric.) 

0
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 cor SE𝑖, SE𝑗 = 

           
1

# query  
 

#  𝑢 ,𝑣   𝑢>SE 𝑖𝑣 and  𝑢>SE 𝑗𝑣 or  (𝑢<SE 𝑖𝑣 and  𝑢<SE 𝑗𝑣)  

#  𝑢 ,𝑣   𝑢 ,𝑣∈SE 𝑖 and  (𝑢 ,𝑣∈SE 𝑗 )  query   

where SEi denotes the i-th search engine, 𝑢 >SE 𝑖 𝑣  means that 

document u is ranked higher than v by SEi for a given query, and 

𝑢, 𝑣 ∈ SE𝑖 means that documents u and v are returned by search 

engine SEi. 
 

Table 6. Correlation among search engines 

 SE1 SE2 SE3 SE4 SE5 SE6 

SE1 1 0.502 0.524 0.681 0.615 0.675 

SE2  1 0.335 0.437 0.433 0.502 

SE3   1 0.661 0.530 0.597 

SE4    1 0.617 0.696 

SE5     1 0.613 

SE6      1 
 

From Table 6, we can see that the first search engine highly 

correlates to the forth and the sixth search engines, and therefore 

its weight is suppressed by the large weights of the two engines. 

In contrast, the second search engine only weakly correlates to the 

other engines, and thus it retains a large weight.  

The observation can also give explanation to other results in the 

experiments. From Table 5, one may see an interesting 

phenomenon. Borda Fuse, as a supervised method, performs even 

worse than the unsupervised methods. As explained, Borda Fuse 

assumes that the weight of each base ranker only depends on its 

accuracy, and it neglects the correlation among base rankers. It 

seems that this is not appropriate anyway. Therefore, it appears 

better to perform rank aggregation using an optimization 

framework as we do. 

6. CONCLUSIONS 

In this paper, we have proposed a new approach to rank 

aggregation:  Supervised Rank Aggregation. Our method is 

mainly designed for meta-search and is unique in that (a) takes 

order information from base rankers, (b) it makes use of labeled 

training data, and (c) it trains the final ranking function within a 

single optimization framework.  We have set up a general 

framework for employing the approach. Specifically, we have 

formalized the learning problem as that of optimization. We 

propose an efficient algorithm to solve the optimization for one of 

the typical rank aggregation settings, namely the Markov chain 

based method. We have compared the performances of our 

proposed method with those of existing methods on meta-search. 

The results show that the proposed method can outperform the 

existing methods. 

The contributions of this paper include 

1) proposal on employing the supervised learning approach for 

rank aggregation; 

2) formulation of the supervised learning approach as an 

optimization problem;  

3) development of an optimization algorithm form the Markov 

Chain based learning method; and 

4) empirical verification of the effectiveness of the proposed 

approach. 

As future work, we plan to apply the techniques used in this paper 

to other supervised learning methods, and to apply the methods to 

other applications such as similarity search and genome 

informatics. 
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APPENDIX 
 

Proof of Lemma 1 
 

Lemma 1: Let 𝛯 =  𝜉𝑖 
𝑇
𝑖=1,⋯,𝑛

=   𝛼𝑘𝑃𝑘
𝑙
𝑘=1  

𝑇
𝑥 − 𝑥, we have  

  𝜩 1 ≤ 2 − 2𝛼𝑇𝐴𝑥, where 𝐴 =  
𝑝11

(1)
⋯ 𝑝𝑛𝑛

(1)

⋮ ⋱ ⋮

𝑝11
(𝑙)

⋯ 𝑝𝑛𝑛
(𝑙)
 . 

Proof: 

Define 𝑃 =  𝛼𝑘𝑃𝑘
𝑙
𝑘=1  and 𝐹 =  𝑓𝑖𝑗  𝑛×𝑛

= 𝑃𝑇 .  It is clear that 

𝑓𝑖𝑗 =  𝛼𝑘𝑝𝑗𝑖
(𝑘)𝑙

𝑘=1 . Using fi to denote the ith row of F, we can 

rewrite Ξ as 

 𝛯 =  𝜉𝑖 
𝑇
𝑖=1,⋯,𝑛

= 𝐹𝑥 − 𝑥 

or, 

𝜉𝑖 = 𝑓𝑖𝑥 − 𝑥𝑖 =  𝑓𝑖𝑖 − 1 𝑥𝑖 +  𝑓𝑖𝑗 𝑥𝑗
𝑛
𝑗=1,𝑗≠𝑖

 
       (8.1.1) 

Because the transition probability matrix has identical rows, for 

the right-hand side of equation (8.1.1),  𝑓𝑖𝑖 − 1 𝑥𝑖  is non-positive 

and the others are non-negative. Therefore, we can get an upper 

bound of |𝜉𝑖| as follows by using the properties of ℓ1-norm 

|𝜉𝑖| ≤  1 − 𝑓𝑖𝑖 𝑥𝑖 +  𝑓𝑖𝑗 𝑥𝑗
𝑛
𝑗=1,𝑗≠𝑖 =  1 − 2𝑓𝑖𝑖 𝑥𝑖 +  𝑓𝑖𝑗 𝑥𝑗

𝑛
𝑗=1               

Applying the result to each element in Ξ yields 

 𝜩 1 ≤   1 − 2𝑓𝑖𝑖 𝑥𝑖
𝑛
𝑖=1 +   𝑓𝑖𝑗 𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1   

Considering that  𝑥𝑖
𝑛
𝑖=1 = 1 and   𝑓𝑖𝑗

𝑛
𝑖=1 = 1, we obtain 

  𝑓𝑖𝑗 𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1 =  𝑥𝑗   𝑓𝑖𝑗

𝑛
𝑖=1  𝑛

𝑗=1 =  𝑥𝑗
𝑛
𝑗=1 = 1  

and 

  1 − 2𝑓𝑖𝑖 𝑥𝑖
𝑛
𝑖=1 =  𝑥𝑖

𝑛
𝑖=1 − 2 𝑓𝑖𝑖𝑥𝑖

𝑛
𝑖=1 = 1 − 2 𝑓𝑖𝑖𝑥𝑖

𝑛
𝑖=1   

If further considering 𝑓𝑖𝑖 =  𝛼𝑘𝑝𝑖𝑖
(𝑘)𝑙

𝑘=1 , we obtain 

 𝜩 1 ≤ 2 − 2 𝑓𝑖𝑖𝑥𝑖
𝑛
𝑖=1 = 2 − 2   𝛼𝑘𝑝𝑖𝑖

(𝑘)𝑙
𝑘=1  𝑥𝑖

𝑛
𝑖=1   

By using matrix form to represent this inequality, we eventually 

have 

 𝜩 1 ≤ 2 − 2𝛼𝑇  
𝑝11

(1)
⋯ 𝑝𝑛𝑛

(1)

⋮ ⋱ ⋮

𝑝11
(𝑙)

⋯ 𝑝𝑛𝑛
(𝑙)
 𝑥 = 2 − 2𝛼𝑇𝐴𝑥. 

 

Proof of Proposition 2 
 

Proposition 2: The optimization problem in (4.3) is equivalent 

to the following Semidefinite Programming problem, 

max𝜆 ,γ        γ                                                                     

𝑠. 𝑡.   𝜆 ≥ 0                                                                      

 
𝐻0 + 𝜆0𝐷

1

2
𝑈𝑇

1

2
𝑈 −𝛬2

𝑇𝑒2 − 2𝜆0 − 𝛾
 ≽ 0

 (8.2.1) 

where 𝑈 = 𝛬1
𝑇𝐻1 + 𝛬2

𝑇𝐻2 + 𝛬3
𝑇𝐻3, and 𝜆 = (𝜆0,𝛬1

𝑇 ,𝛬2
𝑇 ,𝛬3

𝑇)𝑇 . 

Proof:  

Considering that 𝛽 = (𝛼1 ,… ,𝛼𝑙 ,𝑥1 ,… , 𝑥𝑛 , 𝑡1 ,… , 𝑡𝑚 )𝑇 , we always 

have  

𝛽𝑇𝐷𝛽 = 𝛼𝑇𝛼 + 𝑥𝑇𝑥 ≤   𝛼𝑘
𝑙
𝑘=1  

2
+   𝑥𝑖

𝑛
𝑖=1  2 = 2  

where 𝐷 = 𝑑𝑖𝑎𝑔(𝑒𝑙+𝑛
𝑇 , 0𝑚

𝑇 ). 
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It is clear that if we add this redundant constraint to the 

optimization problem (4.3), its optimal solution will not change 

because the feasible region has not changed. In this way, we can 

transform the optimization problem (4.3) into the following 

quadratically constrained quadratic optimization (QCQP) problem.  

min𝛽 𝛽
𝑇𝐻0𝛽         

𝑠. 𝑡.   𝛽𝑇𝐷𝛽 ≤ 2
     𝐻1𝛽 ≤ 0

       𝐻2𝛽 = 𝑒2

     𝐻3𝛽 < 0

                            (8.2.2) 

The Lagrangian of (8.2.2) is 

𝐿 𝜆,𝛽  

= 𝛽𝑇𝐻0𝛽 + 𝜆0 𝛽
𝑇𝐷𝛽 − 2 + 𝛬1

𝑇𝐻1𝛽 + 𝛬2
𝑇(𝐻2𝛽 − 𝑒2) + 𝛬3

𝑇𝐻3𝛽 

= 𝛽𝑇(𝐻0 + 𝜆0𝐷)𝛽 + 𝑈𝛽 − 𝛬2
𝑇𝑒2 − 2𝜆0 

where 𝛬1 =  𝜆1 , 𝜆2,… , 𝜆𝑙+𝑚  
𝑇 , 𝛬2 =  𝜆𝑙+𝑚+1, 𝜆𝑙+𝑚+2 

𝑇 , 

𝛬3 =  𝜆𝑙+𝑚+3 , 𝜆𝑙+𝑚+4,… , 𝜆𝑙+𝑛+2𝑚+2 
𝑇 , 𝜆 = (𝜆0,𝛬1

𝑇 ,𝛬2
𝑇 ,𝛬3

𝑇)𝑇 , 

and 𝑈 = 𝛬1
𝑇𝐻1 + 𝛬2

𝑇𝐻2 + 𝛬3
𝑇𝐻3. 

According to the optimization theory [6], if the infimum of 

𝐿 𝜆,𝛽  with respect to β exists, one can transform the 

minimization of the objective function in the primal problem 

(8.2.2) to the maximization of the dual function 𝑔 𝜆 =
inf𝛽 𝐿 𝜆,𝛽 . The condition for this transformation is existence of 

the infimum of 𝐿 𝜆,𝛽 . We will discuss this condition in the 

following three cases. 

1) If (𝐻0 + 𝜆0𝐷) is positive-definite, then function 𝐿 𝜆,𝛽 is a 

convex quadratic function of β. Therefore, we can find the 

infimum from the optimality condition: 

∇𝛽𝐿 𝜆,𝛽 = 2(𝐻0 + 𝜆0𝐷)𝛽 + 𝑈𝑇 = 0 

which yields 

𝛽 = −
1

2
(𝐻0 + 𝜆0𝐷)−1𝑈𝑇                    (8.2.3) 

Accordingly, we get the dual function 

𝑔 𝜆 = −𝛬2
𝑇𝑒2 − 2𝜆0 −

1

4
𝑈(𝐻0 + 𝜆0𝐷)−1𝑈𝑇  

which is a concave quadratic function of  .

If (𝐻0 + 𝜆0𝐷) is strict positive semidefinite, using the 

pseudo-inverse in [6], we can get a relaxation on the above 

condition. That is if 𝑈 ∈ 𝑟𝑎𝑛(𝐻0 + 𝜆0𝐷), we can get the 

dual function as follows2, 

𝑔 𝜆 = −𝛬2
𝑇𝑒2 − 2𝜆0 −

1

4
𝑈(𝐻0 + 𝜆0𝐷)†𝑈𝑇

 

2) Otherwise function 𝐿 𝜆,𝛽  has no lower bound, thus the 

problem (8.2.2) has no solution.  

With the above discussions, we conclude if and only if (𝐻0 +
𝜆0𝐷) ≽ 0 , 𝐿 𝜆,𝛽 has an infimum and the corresponding 

optimization problem (8.2.2) can be transformed to its dual 

problem3. As a result, we can solve the dual problem in (8.2.4) 

and get the solution for (8.2.2).  

max𝜆  𝑔(𝜆)                              
𝑠. 𝑡.   𝜆 ≥ 0                             

(𝐻0 + 𝜆0𝐷) ≽ 0
            (8.2.4)  

One can also find that 𝑔 𝜆  is the Schur complement [6] of 

(𝐻0 + 𝜆0𝐷) in the matrix  
𝐻0 + 𝜆0𝐷

1

2
𝑈𝑇

1

2
𝑈 −𝛬2

𝑇𝑒2 − 2𝜆0

  . In this 

situation, (8.2.4) can be further formulated as a Semidefinite 

Programming (SDP) problem with respect to variables 𝛾 and 𝜆. 

max𝜆 ,γ        𝛾                                                                   

𝑠. 𝑡.     𝜆 ≥ 0                                                                    

 
𝐻0 + 𝜆0𝐷

1

2
𝑈𝑇

1

2
𝑈 −𝛬2

𝑇𝑒2 − 2𝜆0 − 𝛾
 ≽ 0

    (8.2.5) 

For problem (8.2.2), there exists a β that makes the following two 

inequalities true: 𝛽𝑇𝐷𝛽 < 2 , 𝐻1𝛽 < 0 , and 𝐻3𝛽 < 0 . That is, 

problem (8.2.2) is strictly feasible, and thus the optimal values of 

(8.2.2) and its Lagrange dual problem (8.2.4) are equivalent [6].    

Recall that optimization problem (4.3) and (8.2.2) are equivalent; 

according to the strong duality theorem [6], problem (4.3) is 

equivalent to the SDP problem (8.2.5). 

 

                                                                 
2 𝑀†  is the pseudo-inverse of matrix M [6]. 

3 𝑀 ≽ 0 means that matrix M is semi-positive definite [6]. 
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