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Abstract—In this paper, the texture classification problem is

In most of the image processing situations, the use of rule-

projected as a constraint satisfaction problem. The focus is on pased approach is difficult because of the following problems.

the use of a probabilistic neural network (PNN) for representing
the distribution of feature vectors of each texture class in order to
generate a feature-label interaction constraint. This distribution
of features for each class is assumed as a Gaussian mixture
model. The feature-label interactions and a set of label-label
interactions are represented on a constraint satisfaction neural
network. A stochastic relaxation strategy is used to obtain an
optimal classification of textures in an image. The advantage
of this approach is that all classes in an image are determined
simultaneously, similar to human perception of textures in an
image.

Index Terms—Constraint satisfaction, feedback neural net-
work, Gabor filters, Gaussian mixture model, probabilistic neural
network, self-organizing map, texture classification.

1) Most rule-based systems are designed to deal with
symbolic logic and reasoning, whereas image features
are numerical and fuzzy in nature. It is difficult to
translate these numerical features into a set of crisp rules.

2) It is difficult to describe symbolically the knowledge
used by a human interpreter in analyzing a given image.

3) Constraints modeled in rule-based system are generally
hard constraints (whichmust besatisfied), whereas many
real-world constraints are weak constraints [1] which
ought to besatisfied to attain an acceptable solution.

4) Rule-based systems are rigid and deterministic which
do not allow pattern variability in terms of exceptions

and randomness. Generally, domain-specific constraints
are ambiguous, and some times conflicting, but useful

. . . . enough to decide the outcome of the processing.
I N the domain of image analysis, texture-based segmentatlonl_

and classification of natural scenes are much Complicateds:a?nhiﬁTr?:sée;fsgtligasptr)%iziss(;Soilrjpbergionr Ltjcs)ez ;uf(;rt:]asuig
compared to the approaches based on pixel intensities P

A texture classification problem can be viewed as eith nal architecture with several neurons working in parallel,
feature-specific or domain-specific. A feature-specific textu us representing a large number of loosely bound constraints.

classifier assigns a class label to each pixel based on also deal well with ambiguity in problems and usually

features corresponding to the pixel, independent of any dom Ve little difficulty in correctly determining the missing

knowledge. Examples of feature-specific texture cIassificatiHHormat'on' In this respect,_ biologically mslpl_r.ed artificial
schemes can be found in [7] and [12]. neural-network models provide greater flexibility than the

On the other hand, a domain-specific classifier uses dJyle-based approach as a constraint satisfaction mechanism
main knowledge in t,he form of additional constraints t&° handle constraints that ought to be satisfied rather than
tisfying all the specified constraints.

achieve classification. The performance of any domain—specﬁﬁ%

approach is expected to be superior to the feature-specificThus it is useful to conceptualize an artificial neural-network

approaches. Like any human decision making, an image ciS¥stem as a constraint satisfaction model where each node

sification problem also can be posed as one which requ“rggresentsahypothesis and connection betyveen two nodes rep-
simultaneous satisfaction of many constraints. One can mo gents the constraint between corresponding hypotheses [16].

domain-specific knowledge as a set of constraints on the imag&® importance and nature of the constraint are decided by the

features and on the possible labels for each pixel. A suital merical quue of thde cot?nectlon _v(\j/.e|ght.. A r?ofde may have
constraint satisfaction model may then be used to attain a Sﬁpeext_erna input and a bias provi Iregpriortin ormangn

such that the constraints are satisfied to a maximum extent. [@rgardlng the trgth value O,f the corre_sspondl_ng hyplot.hesns. The
example of the constraint satisfaction scheme is a rule-bad¥gcess of iteratively seeking a solution which satisfies a large

expert system where the constraints are described as rule8YfPer of weak constraints is calledelaxationstrategy.
its knowledge base [19]. Constraint satisfaction neural-network models were devel-

oped for classification of textured images using Markov ran-
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straint satisfaction neural-network models to achieve superi®r Partition Process

classification performance. _ , B The label of any pixel in an image depends on the la-
The work reported in [13] uses this domain-specific afe|s of the pixels in its neighborhood. The partition process

proach for texture classification. The texture classificatiop, |L,, Vr € NP) describes probability of the label of each
. . . . . - 5 T
was considered as a constraint satisfaction problem consis | s g7iven theslabels of the pixels in a uniforpth order

of image-specific constraints _represented by.fchree ra”d%ghborhoong’ of s [13]

processes, namefgature formation process, partition process

and label competition procesS he feature formation process

was derived using a statistical model for the textural features exp Z B6(Ls — Ly)

extracted from a bank of Gabor filters [2]. The constraints were VreN?

represented on a Hopfield network [6], and a deterministic Z,

relaxation strategy was used to attain an optimal classification

of an image. where 3 is a positive constanty(.) is the Kronecker delta
In this paper, we show that a PNN representation of fefunction andZ, is a normalization constant.

ture vectors produces a better representation of the feature

formation process. Conventional PNN involves defining theé. Label Competition Process

Gaussians at every training pattern for each class. We proposgpe ape| competition process tries to reduce the probability
a modification in the PNN for better representation of thgt jyaying another label when the pixel is already labeled. It is

feature formation process. The main objective of this papgLfined by the conditional probability of assigning a new label
is to show the significance of this modification of PNN on, 5, already labeled pixel, and is expressed as [13]
classification of textured images. ’

Section Il gives a brief description of the constraint satis-
faction neural-network model presented in [13]. The feature exp —azg(k -1
modeling using PNN is described in Section lll. The sec-
tion also presents our proposed modification of PNN. In
Section 1V, we provide a set of experimental results to show 5
the efficacy of the proposed methods. whereL, denotes the set of labels that may be assigned to the
pixel s and Z. is the normalization constant.

P(Ls|L,,¥r € NP) = 2)

lel,

P(L, = k|L,) = ~

(3)

Il. A CONSTRAINT SATISFACTION NEURAL-NETWORK
MODEL FOR TEXTURE CLASSIFICATION D. Neural-Network Representation of Constraints

This section reviews the constraint satisfaction neural- Maximization of the a posteriori probability P(L; =
network model proposed in [13]. Consider a textured intEige k|Gs, L, Vr € NP, Ly) will provide the optimal classifi-
designated by a domaift = {(i, j),0 <i < I,0< j < J} cation of the given image. This probability describes the label
of pixel positions. Let{g, € R Vs € Q) be a set L of the pixel s given the feature measuremeg; of s,
of M-dimensional feature vectors used to characterize tHe labels of the neighborhood pixels and the possible labels
image, where eacly, is an M-dimensional feature vector previously assigned te. Using Bayes theorem, we can write
characterizing the pixes$ in §2. The g, can be considered as ~
the realization of anl/-dimensional random process,. Let P(Ls = k|Gs, L, V7 € N7, Ls) .
L, denote the random variable describing the texture label of  P(Gs|Ls = k)P(Ls = k|L,, Vr € NP)P(Ls = k|Ls)
the pixel s. We assume thak, can take any value from the P(G,)P(Ls; = k)
set of labels{0, 1, ---, K — 1} where K is the number of 4)
texture classes. The corresponding texture classes are denoted
by Cp - -+ Cx_1. Also, let§), a subset of2, be the training Expressing this as the following Gibbs distribution:
site for the clas€”y. The notationcard(€?) is used to denote -
the cardinality of any sef2. Let NP be(a)set of pixels in the P(Ls = k|Gs, L, V7 € N7, ?5)
pth order symmetric neighborhood of the pixel e B(La=kIGs, L, VrENT, L) (5)

Z

and by substituting (1)—(3) in (4), we get the Gibb’s energy as
The feature formation process formulates the probability of

A. Feature Formation Process

feature vector of a pixet given the model parameters of each E(Ls = k|Gs, Ly, Vr € NT, L)
classk, and this is given by =E¢(Gs|L; = k) — Z B6(k — L)
e~ Er(Ge=gs|L.=k) v reN?
P(Gs = gs|L; = k) = Z; 1) + Z ad(k = 1) (6)
leL,

where E; is an energy function defined by the selected
statistical model and’; is a normalization constant considere@nd the normalization constatt = Z;Z,Z.P(G,)P(L, =
independent ofs and k. k). The energy function in (6) summed over all pixels and
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(¢, 7) which minimizes the Gibb’s energy in (7) will yield
themaximum a posteriofiMAP) estimate of the classification

of the image. For the experimental results presented in this
paper, a stochastic relaxation procedure based on simulated
annealing [8] extended to this 3-D neural network [14] is
used to obtain a global (or near-global) minimum energy
state. The relaxation procedure derives this stable state by
simultaneously satisfying to a maximum extent the possible
constraints [defined by energy function in (7)] with respect
to all pixels and all possible labels in the given image. Thus
the neural-network model views the entire image in order to
classify it, and hence brings in the global image knowledge
for making decision at the local level.

(@) (b)
I1l. FEATURE FORMATION PROCESS
N FEATURE MODELING USING PNN

Generally, one can use a standard statistical distribution to
28 define the feature formation process. In [13], we have used
a Gaussian distribution for defining the feature distribution of
C O each class, assuming that the feature vectors of each class form
x a hypersphere in thé/-dimensional feature space. Alterna-
tively, a multivariate Gaussian distribution, which assumes an
M-dimensional ellipsoidal feature distribution for each class,
may be a better feature model [14].
J/ A natural image data does not fit into any of the standard
statistical distributions, and it is difficult to determine the
() underlying distribution. But the success of any analysis lies in
Fig. 1. Structure of the 3-D feedback network: (a) 3-D lattice of sizéur ability to approximate the true distribution. Gaussian and
I x J x K. (b) Connections among nodes in the label column of each pixgfyy|tivariate Gaussian distributions fail to capture the details
Each connection is of strength2a. (c) Connections from a set of neighboring . L .
nodes to each node in a label layer. Each connection has a stizngth of a class havmg number of distinct clusters in the feature
space. Further, dispersion of the feature vectors for a given
) o class may be large and of any arbitrary shape. In such cases,
all possible labels will give the total energg*>*! of the 5 Gaussian mixture model seems to be an appropriate choice.
classification model Determination of the mixture model consists of estimat-
Etotal _ ZE(LS =k|G,, L.,Yr € N, L,). (7 ing the parametgrg aqd the weight qf each componen.t. The
iy expectation-maximization (EM) algorithm has been widely

used to iteratively compute the maximum-likelihood estimates

The energy function in (7) can be represented on a feedbagkne parameters, considering the observed data as incomplete
network with nodes arrange_d in three-dlmen_5|on_al (3-D) lattiggyiq [4]. This general approach is very complex and requires
of sizelx .Jx K, for convenience, as shown in Fig. 1. For any,.ge computation time. Alternatively, methods based on arti-
node(s, j, k), (1, j) = s corresponds to the pixel position andicia| neural networks are useful for the mixture modeling of

k denotes the label index for that pixel. Each nddej, k)  the feature vectors. It is possible to capture this model using
has a biasB; ; x. Also, each nod€i, j, k) is connected to 5 pnN [18].

any other nod€i,, ji, k1) by means of a connection weight
Wi, 5. ksiv, 41, ke - COMparing (7) with the energy function of th
Hopfield network [6], one can determine the bils ; ; and

®A. Feature Modeling: Gaussian Mixture Model Using PNN

the weightW; ; i, j,,x, in @ similar manner to [13] as The PNN model [18] is based on Parzen's results on PDF
estimators [11]. PNN is a three-layer feedforward network
Bi jn = —Ef[Gii, 5y = 96, 5L, 5) = H (8) consisting of input layer, a pattern layer, and a summation

and layer as shown in Fig. 2. The input layer contaiis nodes

to accept amM/-dimensional feature vector. The pattern layer
consists of K pools of pattern nodes. Theth pool in the
pattern layer contains; number of pattern nodes, where
Sy = card({2). Each node in the pattern layer is connected
from every node in the input layer. The summation layer
Here, the weights are symmetric and there is no self-loop. consists of K nodes, one node for each pool in the pattern
Let A; ; » € {0, 1} be the output of nodé;, j, k). Estima- layer. Pattern nodes of eadkth pool in the pattern layer
tion of the network state configuration\; ; .} for all pixels is connected to the correspondiigh summation node in

Wi, j, kiin, g, b
24, if (il, Jl) S N{z,]) andk =k
=4 2, if (i, 51)=(i,j)andk#k, (9
0, otherwise.
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where there are as many components as there are training

patterns for that class. Each componenbf the mixture for
I I I classCy, is represented by thauth training vectorg,, as the
mean and a constanf;, , as the variance.
- K The complexity in the computation aP(G;|L;) in (10)
depends upon the number of classes and the number of
training patterns per class. If there are a large number of
training patterns, the number of nodes in the pattern layer
(= i, Sx) becomes very large. This in turn increases the
time for estimating the probability of all pixels in the image
using (10). Also, the accuracy of the mixture model is decided
by the smoothing parametets,, ;. There are onlyad hoc
methods to estimate,, ; from the given data [17]. In order to
deal with these problems, we propose a modified architecture
for the PNN.

Summation
Layer

Pattern
Layer

B. Feature Modeling: Modified PNN Using
Clustering of Training Data

The proposed modification of PNN consists of grouping the
training patterns in each class. The grouping is done using the
principle of vector quantization. Consider the feature subspace
‘ ‘ for the class”}, consisting ofS;, number of training patterns. A
vector quantizer is used to partition this feature subspace into

Input Layer

Input Features Qi partition regionsi?,, r, 0 < m < @ — 1. The assumption
here is thatQ), < S;. Each partitionR,, ; is associated
. .—1
Fig. 2. Structure of the probabilistic neural network (PNN). with a subset2,, ; of Qi so thatUSf:o Q= O and

Qo kN Qg e = 0 if m # q.

. . . _ . For each clasg’y, we first obtain a feature map using the
the_ summatlon _Iayer. A radial basis function and a Gaussigllhonen's self-organizing map (SOM) learning [9], [15]. We
activation function are used for the.pattern n.odes. Fpr t!ﬂl@e the neighborhood characteristics of the feature map to
summation nodes, a linear basis function and a linear aCt'Vat'BQrform the vector quantization effectively. Consider a SOM
functlcr)]n are usekd. h traini ¢ (for a classCy) with A input nodes and an output layer
h In It € ne_twor ' f(ejac Lralnm_g vectgr, (0 < m < gk) 0 arranged as a two-dimensional (2-D) lattice of nodes.(l. e
the clasC}, Is stored as the We,'ng: » connecting the INPUt o gat of SOM output nodes and let us assume that the number
layer and thenth pattern node in th&th pool of pattern layer. of componentg);. in the mixture for the clasey, is less than

Thg chonnection yveightdfr()fm e;;:‘ pl)atter_n nod.e inl;tlepool or equal tocard(O). Training of SOM is performed so that the
and the summation node for tth class is assigned ag Sy. network reaches an optimal state corresponds to a minimum

Note that the training is a one-pass algorithm, and hence itd?the distance measuiE,, ., 3 .cq, l19s— Win %||?, where
m £l & 2 !

trivial in this case. W1 is the M-dimensional weight vector connecting the
For any input vectorg,, s € £, the output of i, 'nqdes and the node in the output layer of SOM. After

the mth pattern node belonging to théth pool IS aining each noden in the output layer of SOM represents

g =Won ill/ 20, 4/ (2m)Mo?, . where o, iS @ one partition regiorR,, ;. The setY,, ; of training site pixels

smoothing parameter for the Gaussian activation functiéuniquely assigned to the nodeso that every feature vector

of that node. Output of théth summation node gives theof the pixels in{,, , makes the noden to win.

probability of the feature vectoy, of the pixel s, given the For a pixels and labelk, the feature formation process is

label of that pixel isk. Now the feature formation processexpressed as a multivariate Gaussian mixture given by

in (1) is described as

Q-1
1
P(G. =il =P PG =alb =R =g 3 o
Sk llgamWon kI2/20%, m=0 m, k
= i z’t ¢ o I o . 6_(1/2)(g5_/“l’m1k)tz;%k(gs_umqk)
S m=1 (2m)M UrQn,k (11)

Sk e_llgs_w/m,kllz/QUfn,k

=exp{ln Si Z

K om=1 (2m)M O'rQn, k

. (20) wheret is the transpose operation. In thjs,, ; and%,, ; are
the mean and the covariance matrix, respectively, ofritle
component in the mixture for the clag.

This relation shows that the PNN represents the input featureThe model parameteys,, ; andX,, ; for each component
subspace of each clag as a Gaussian mixture distributionyn in each clas¢’;, are estimated from the training site partition
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Ry, i of that class as IV. RESULTS AND DISCUSSION
1 We compare the performance of the proposed method with
Mean: i, i = 5 Z Js (12) a scheme which uses a multivariate Gaussian distribution for
ke the feature formation process, in which case the bias of the
network takes the following form:

Covariance matrix: Bi,j,k - _ % {(gs _ Nk)t E;l (gs _ Nk) +1n[(27r)1\4|2k|]}

Vi1, m, k V12 m, k e VIM, m, k 17

v § = 21, m, k 22, m, k e VoM, m, k (13) ( )

nl’ ¢ ... ... ... ...

VML k VM2.m.k 0 VMM, m.k We also compare the conventional and modified PNN models

on the basis of the accuracy of classification results and
where each element; ., . is the covariance of each compo-+the time taken for bias estimation. For the experiments with

nentg, (i) andg,(j) of g, € O, &. It is estimated as conventional PNN, we have used a constant value,f, for
. all componentsn and for all classe€’.

Vijm k=g Z [95(0) = ptom, 1(D)][95(5) = pom, (5] Gabor wavelets expressed as [10]
T seQ ),

2/20%)(z? 4y*)+jaw(z cos 6+y sin @)

(18)

14) fl@ v, 0w 0,0) =

whereS,, , = card({,, i) is the number of training patterns

belonging to the partitiorR,,, . are used for texture feature extraction. Hérey, ando are the
The partitioning ofQ;, into 2,  is such tha0 < S,, 1 <  orientation, radial frequency, and the bandwidth of the Gabor
Sk. This means that, 1) a node may not be winning for filter. ¢ is the wavelet scale factor chosenas= 27, where
any training vector irf2;; 2) it may win for only a subset of ~ is an integer.
training vectors in the training site of classor 3) it may win  An image shown in Fig. 3(a) containing five Brodatz texture
for every training vector in the training site. K., . = 0, tiles (raffia D18—Ileft upper, brick wall D95—right upper,
we simply omit that node from the parameter estimatiobeans—left bottom, straw—right bottom, and burlap—center)
However, whensS,, ; = 1 for any nodem, the covariance was used for the experiments. The Gabor wavelet bank used
matrix %, . for that component will become meaningless anfdr extracting features from this image consists of eight filters
there is a chance that,, ; becomes singular. In order to avoidderived from a mother wavelet af = 25, w = 0.2 using
this, we take advantage of the feature map characteristics® scales ¢ = 3 and 4, with wavelengths ofl.257 and
determine the node adjacent to this isolated vector. For @25+ pixels/cycle) and four rotationsd (= 0,45,90, and
output nodem such thatS,, » = 1, a noden is selected 135°). This results in an eight-dimensional feature vector for
such that||Wi, = Wi kll < [Wg,k = Win,kllygeo—{my» €ach pixel. The training site per class contains 1000 pixels,
and the feature vectoy,, s € ,,  is reassigned to the and hence the total number of nodes in the pattern layer
node n, updating the partitions af), » < Qs xUQm,»  for the conventional PNN becomes 5000. The classification
and,,, = 0. Then, the mean and covariance matrix of theesult when the multivariate Gaussian was used for feature
componentr is calculated again based on the new partitionformation process is shown in Fig. 3(b). The results with the
If we compare (10) and (11) with the general expression febnventional PNN for feature formation process are shown
feature formation process in (1), the values of biais; » can in Fig. 3(c) and 3(d) foro,, = 0.001 and oy, = 0.01,
be determined for the cases where conventional and modifiedpectively. Fig. 3(e) shows the result when the modified
PNN are used for feature modeling. This is given by theNN was used for the Gaussian mixture modeling of the

following cases. feature vectors. A third-ordemp(= 3) partition process was
Case 1: Feature formation process with conventional PNNsed in these experiments.
model An important observation is the dependency of the smooth-

ing parameters of the conventional PNN on the classification

Bo—wm |l i": e llge =W kll? /207, (15) Bccuracy. This is obvious if we compare the results in Fig. 3(c)
i, g,k = S ‘ (2m)M o2 ’ and 3(d). Another observation is that the Gaussian mixture
m= m, k

distributions implemented using the conventional and modified
NN models [Fig. 3(c) and 3(e)] perform much better than the

Case 2: Feature formation process with modified PN ultivariate Gaussian distribution [Fig. 3(b)]. The multivariate

model Gaussian is not able to capture well the distribution of the
Qr—1 texture features compared to the Gaussian mixture models.
1 1 . - . . . . -
Bijr=In|— Z —— The time requirements for bias estimation using conventional
Qk =0 VM |Em k| and modified PNN’s are given in Table I. This shows that the

- modified PNN model takes significantly less time compared to
e ” /D gempm 1) By (9o —tm, k)] . (16) the conventional PNN for estimating the bias for the constraint
satisfaction network.
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(b) ©

(d) (e)

Fig. 3. Texture classification using the constraint satisfaction network: (a) image with five texture tiles, (b) result with multivariate Gasigbiatiod]
(c) result when PNN withr,,, ,, = 0.001 is used (mixture of Gaussians), (d) result when PNN with , = 0.01 is used (mixture of Gaussians), and
(e) result when modified PNN model is used (mixture of multivariate Gaussians).
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