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Abstract

The supervision based on place invariants (SBPI) is an efficient technique for the supervisory control

of Petri nets. This paper reveals the significance of the SBPI based on a literature survey, applications,

and an analysis of problems and supervisory settings that can be addressed using SBPI. Much of the

application and analysis parts of the paper consist of new results. Special attention is given to the various

settings within which the problem can be formulated. Such settings can be distinguished based on the

concurrency type, the type of controllability and observability, and the centralized or decentralized type

of supervision. As we show, it is possible to approach the most general settings in a purely structural way,

without resorting to reachability analysis. We begin by describing the SBPI problem and the literature

methods that address this problem or are related to it. Then, we proceed to show classes of problems

that can be reduced to the SBPI problem. In the SBPI, the specification is described as a system

of inequalities that the Petri net marking must satisfy at any time. However, as we show, problems

involving more general specifications can be approached in the SBPI setting, sometimes under additional

assumptions, by performing net and/or specification transformations. Four of the specifications we will

consider are logic constraints, language specifications, disjunctions of linear constraints, and liveness.

We conclude with a presentation of possible applications of the SBPI approach to programming with

semaphores, fault tolerance, and synchronic-distance based designs.

1 Introduction

Petri nets (PNs) are an important class of discrete event systems, allowing a compact representation of

concurrent systems. The literature on the supervision of PNs contains numerous references to the enforcement

of specifications consisting of linear inequalities on the PN marking. Such constraints have the form

Lµ ≤ b (1)
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where µ is the marking, L ∈ Z
nc×m, b ∈ Z

nc , Z is the set of integers, m is the number of places of the PN,

and nc the number of constraints. The constraints (1) are sometimes called generalized mutual exclusion

constraints [18], since a simpler form of (1) correspond to mutual exclusion specifications.

Originally arising in the context of a constrained optimal control problem of chemical processes [67],

the use of the constraints (1) has been proposed also for various other applications: the coordination of

AGVs [42], manufacturing constraints [51], and mutual exclusion in batch processing [63]. Moreover, by

considering also classes of constraints that can be reduced to (1) on transformed PNs, specifically the

generalized linear constraints of [39], other applications can be mentioned here as well: supervisory control

of railway networks [19] and fairness enforcement, such as bounding the difference between the number of

occurrences of two events, in protocols [13] and manufacturing [48].

Other interesting qualities of the constraints (1) are as follows. They can describe any forbidden marking

specification on safe Petri nets [68, 18], where a Petri net is safe if all reachable markings are binary

vectors (i.e. consisting of 0 and 1 elements). This property is very interesting for supervision problems

on certain subclasses of Petri nets, and notably on marked graphs. Further, as we show in this paper,

more general specifications can be reduced to specifications (1) on transformed PNs. Such specifications

include language specifications on labeled PNs and disjunctions of constraints (1), under certain boundedness

assumptions. Note that a labeled PN is a PN in which the transitions are labeled with (not necessarily

distinct) events, just as in the automata setting. Further, a disjunction of constraints (1) is described by

L1µ ≤ b1 ∨ L2µ ≤ b2 ∨ . . . Lpµ ≤ bp, requiring the marking µ to satisfy at least one of Liµ ≤ bi, i = 1 . . . p.

Note also that the constraints (1) are also interesting in the representation of deadlock prevention and liveness

specifications [37, 38].

From a historical perspective, the supervisory control of discrete event systems has been related to the

problem of Church [9], in Computer Science. In Computer Science, this line of thought was continued with

work on program synthesis for open systems (e.g. [54]), with focus on automata models and specifications

on infinite sequences of events (temporal logic, ω-languages). In Control Systems, the supervisory control

was proposed by Ramadge and Wonham [57], with focus on automata and specifications on finite sequences

of events. The results of Ramadge and Wonham prompted also research work on the supervisory control of

PNs. However, note that the supervision of PNs can also be traced back to earlier work, such as the use of

monitors for liveness enforcement in [44]. The initial work on the supervision of PNs considered forbidden

state problems [41] and specifications requiring a PN to reach a target state with additional constraints

on the firing sequence [31, 30]. In the subsequent developments on the supervision of PNs, several major

approaches can be identified, as follows. First, the supervision of PNs for forbidden state specifications has

been approached with path-based methods, as in [27, 42, 69], and also with monitor-based solutions, as in

the supervision based on place invariants [18, 68, 52]. Then, there is also an extension of the Ramadge and
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Wonham supervisory control [57] to Petri nets [48, 49, 50] as well as work on the enforcement of languages on

labeled PNs, e.g. [16, 17, 43]. An excellent survey on the methods proposed for the supervision of Petri nets

can be found in [26] and also in [25]. While [26] focuses on the path-based approach, here we survey work

that is most relevant to the SBPI and present new results that emphasize the significance of this approach.

Note also that much of the work surveyed here was not available at the time of [26].

The contribution and the organization of the paper is as follows. First, the supervision based on place

invariants (SBPI) is introduced in section 3. The notation of the paper and several important definitions

are also included in this section. To simplify the introduction of the SBPI, section 3 considers the simpler

case of full controllability and observability. Then, section 4 presents the various ways partial controllability

and partial observability is modeled in the literature. These include individually controllable/observable

transitions, controlled PNs (CtlPNs), labeled PNs, and marking observation. In section 4 we also introduce

a new concept, which we call double-labeled PNs. Double-labeled PNs are shown to be able to represent the

systems described by any of the previous modeling techniques (CtlPNs, labeled PNs, PNs with individually

controllable/observable transitions). Further, as shown in the following section 5, the admissibility based

methods for the SBPI (e.g. in [51]) can be adapted for double-labeled PNs. This is another new result

presented in this paper.

After outlining the principle of the admissibility-based methods and presenting structural admissibility

tests in section 5, the literature approaches that can deal with specifications (1) are overviewed in section 6.

The literature survey of section 6 is classified according to the type of the methods, such as methods based on

structural conditions for admissibility, or on a path analysis, or on the computation of the maximal controlled-

invariant set, or for decentralized control. Section 7 deals with the expressiveness of the constraints (1). This

section overviews several results showing how various supervision problems can be reduced to the enforcement

of constraints (1). Some of the results overviewed here are known (logic constraints, representing liveness

constraints by (1), reducing the generalized constraints of [39] to (1) by PN transformations). However,

there are also two new results presented in section 7: reducing language specifications and disjunctions of

constraints to (1), by PN transformations. We emphasize the significance of these results, as they expand

the area of applicability of the supervision methods for constraints (1).

In section 8 we show three applications of the constraints (1). First, we examine the relation between

the SBPI and programming with semaphores, discussing also the implications to automated code generation

in software engineering. Then, we show that constraints (1) and one of their extensions can be used to

represent redundant embeddings for fault tolerant applications. Finally we show that one of the extensions

of (1) can represent a class of specifications arising in the context of the Theory of Synchrony.
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2 Notation

A Petri net (PN) will be denoted by the structure N = (P, T, D−, D+), where P is the set of places, T the

set of transitions, D−, D+ ∈ N
|P |×|T | are the input and output matrices, and N is the set of nonnegative

integers. Further, we denote by D = D+ −D− the incidence matrix and by µ the marking. A Petri net with

initial marking µ0 will be denoted by (N , µ0).

In this survey we will distinguish between the firing vector q, the Parikh vector v and the firing count

vector σ. The firing vector q describes the transition(s) that fire at a firing instance. The Parikh vector is a

state variable, indicating how often each transition has fired since the initialization of the system. Finally,

the firing count vector σ is defined with respect to a finite firing sequence σ, indicating how many times each

transition t occurs in σ. In particular, if σ is the sequence fired since the initialization of the system, v = σ.

The set of reachable markings of (N , µ0) will be denoted by R(N , µ0). Recall, a Petri net (N , µ0) in

which all reachable markings are binary vectors, i.e. R(N , µ0) ⊆ {0, 1}|P | is said to be safe.

We call (1) a set of constraints, because it consists of the constraints L(i, ·)µ ≤ b(i), for i = 1 . . . k, and k

the number of rows of L. Further, we also say that (1) is a conjunction of constraints, since all L(i, ·)µ ≤ b(i),

i = 1 . . . k, must be satisfied when (1) is satisfied. In contrast, a disjunction of constraints liµ ≤ ci, i = 1 . . . k,

describes the requirement that at all times there is i such that µ satisfies liµ ≤ ci. We denote the disjunction

of constraints by
∨

i liµ ≤ ci.

3 The Supervision Based on Place Invariants

This section introduces the supervision based on place invariants (SBPI). The presentation of this section

focuses on the simplest case: no concurrency and full controllability and observability. At the end of the

section we will present also various concurrency settings, together with the simple extension of the SBPI for

concurrency. The SBPI under partial controllability and observability is more involved, and will be presented

in subsequent sections.

In the SBPI, the system to be controlled is called plant, and is assumed to be given in the form of a PN

N = (P, T, D−, D+). The SBPI provides a supervisor enforcing (1) in the form of a PN Ns = (Ps, T, D−
s , D+

s )

with

Ds = −LD (2)

µ0,s = b − Lµ0 (3)

where Ds is the incidence matrix of the supervisor, µ0,s the initial marking of the supervisor, and µ0 is the

initial marking of N . The places of the supervisor are called monitors1. The supervised system, that is the

1In much of the literature, the monitors are called control places. In this paper we do not call them control places, to avoid
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closed-loop system, is a PN Nc of incidence matrix:

Dc =





D

−LD



 (4)

The relation to place invariants is as follows. Recall, a place invariant of N is an integer vector x ∈ Z
1×|P |

such that xD = 0. Recall also that for a place invariant x, xµ = xµ0 for all reachable markings µ. Note that

all rows of [L, I] are place invariants of Nc. Then, from (3) it follows that at all reachable markings of the

closed loop:

µs = b − Lµ (5)

Since µs, the marking of the monitors, is nonnegative, (1) is enforced. Furthermore, we can say that (1)

is enforced by creating the invariants [L, I] in the closed-loop. This why the approach is “based on place

invariants.”

Example 3.1 The PN of Figure 1(a) adapts a PN model of [51] of an unreliable machine [12, 51]. Let’s

denote µ(pi) by µi. Assume we desire to enforce

µ1 + µ2 + µ5 ≤ 1 (6)

µ3 + µ7 ≤ 1 (7)

By (2–3), we obtain the supervisor shown in Figure 1(b), consisting of the monitors p7 and p8. Thus, (5) is

described by

µ7 = 1 − µ1 − µ2 − µ5 (8)

µ8 = 1 − µ3 − µ7 (9)

confusion with the quite different concept of control places of the CtlPN approach to the supervision of PNs [41, 27, 42].
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where (8) and (9) correspond to the two place invariants created by p7 and p8. 2

The supervisors constructed as above are optimal [18, 51, 68]. Following [51], the optimality can be

stated as follows:

Theorem 3.1 [51] If Lµ0 ≤ b then the PN supervisor with incidence matrix Ds = −LD and initial marking

µ0,s = b − Lµ0 enforces the constraint Lµ ≤ b when included in the closed-loop system Dc = [DT , DT
s ]T .

Furthermore, the supervision is least restrictive.

Much of the PN literature is written under the assumption that only one transition may fire at a time.

This is known as the no concurrency assumption. This will also be the usual assumption in this sur-

vey. However, since many results are not limited to this setting, we will consider also other concurrency

assumptions. A very good presentation of the various concurrency settings can be found in [60].

Let q denote the firing vector. Under the no concurrency assumption, q ∈ {0, 1}|T |,
∑

t∈T q(t) = 1, and

the entry with q(t) = 1 indicates the transition that is to fire. Another concurrency setting is under the

concurrency assumption. Under this assumption, groups of transitions may fire at the same time. In this

case, q ∈ {0, 1}|T | and {t : q(t) = 1} identifies the transitions t that are to be fired at the same time. Still

another setting corresponds to the transition-bag assumption. Under this assumption, the transitions

in a group may be fired each several times, at the same firing instance. Thus, q ∈ N
|T | and for each t, q(t)

indicates how many times t is fired. Following [60], we can incorporate these concurrency assumptions in a

general setting in which we require q ∈ ∆, for a given ∆ ⊆ N
|T |.

Under any concurrency setting, a firing vector q is enabled by the plant at the marking µ when

µ ≥ D−q (10)

While under the no concurrency assumption it is convenient to consider that a supervisor enables transitions,

for the general case we consider that a supervisor enables firing vectors. Following [60], we restrict our

attention to the supervisors with the property that if they enable q, then they enable every q′ ≤ q.

Note that the SBPI design remains optimal under concurrency, as Theorem 3.1 still applies. This has

been formally proven in [60].

In the literature, the study of the SBPI began with the work of Giua et al [18]. The reference [18]

considers the enforcement of constraints (1) when all elements of L and b are nonnegative. The paper deals

with the redundancy, equivalence and modeling power of the specifications (1), and the enforcement of (1)

for fully controllable and observable PNs. The authors show how to construct the supervisor based on L, D

and µ0, and prove a result equivalent to Theorem 3.1. While the results of [18] assume that L and b in (1)

have nonnegative elements, most results there apply also in the general case.
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The benefits of the SBPI were further detailed in [68], which considers also a more general set of linear

constraints that involve both the marking µ and the firing vector. A simple approach for the conversion of

boolean expressions to (1) for safe PNs appears also in [68]. Further, a very accessible presentation of the

SBPI appears in [51, 52], together with extensions for PNs with uncontrollable and unobservable transitions.

For the most part, our notation follows that of [51, 52]. Moreover, as we will see later, some of the new results

included in this paper extend results of [51, 52] on the design of supervisors for PNs with uncontrollable and

unobservable transitions.

As seen in this section, the SBPI design is both simple and optimal in the case of fully controllable and

observable PNs. Thus, in the literature, the focus has been on the development of design methods for PNs

with partial controllability and partial observability. Before surveying this part of the literature, we present

the various concepts of controllability and observability that have been used.

4 Uncontrollability and Unobservability

Our developments in the previous section rely on the assumptions that (a) all transitions of the PN can be

disabled at will, that is, are controllable; (b) the firings of any transition can be detected; (c) each transition

firing produces a distinct event. By relaxing (a), (b), and (c) we obtain PNs with partial controllability,

partial observability, and with a labeling, respectively.

In the literature, we can distinguish two main types of uncontrollability and unobservability. In the first

one, events can be controlled and observed, as in the Ramadge and Wonham setting [57]. Thus, when the

transitions have distinct event labels, individual transitions can be controlled/observed. Another view of

partial controllability has been introduced by Krogh [41], who proposed the controlled PNs. In the controlled

PN setting, sets of transitions (as opposed to individual transitions) may be disabled. Further, a different

kind of partial observability results when the supervisor is assumed to rely on the state (marking) rather

than transition firings. In this section we describe and compare the various controllability and observability

settings. In particular, we will introduce a class of PNs, called double-labeled PNs, and show that it

encompasses all types of uncontrollability while modeling also event unobservability. This result is significant,

as we will show in the next section that double-labeled PNs can be approached by structural methods of

supervisor design.

4.1 Individually Controllable and Observable Transitions

In this setting, the set of transitions T is partitioned in T = Tc ∪ Tuc and T = To ∪ Tuo, where Tc (To) is the

set of controllable (observable) transitions and Tuc (Tuo) is the set of observable (unobservable) transitions.

Thus, a supervisor has the ability to control only the transitions t ∈ Tc and to observe only the firings of
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t ∈ To.

As an illustration, consider the PN of Figure 2(c), modeling a part of a manufacturing system. In the

manufacturing system, AGVs going in opposite directions can enter a common loading area. In the model,

firing t1 (t2) corresponds to AGVs entering (exiting) in one direction, and firing t3 (t4) corresponds to AGVs

entering (exiting) from the other direction. Thus, t1 ∈ To corresponds to the case in which we can detect

when an AGV enters the loading area from one of the directions. Further, t1, t3 ∈ Tc corresponds to the case

when we can prevent AGVs from entering the loading area from either direction.

A possible way to generalize this setting appears in [3], which proposes replacing Tuc and Tuo with

control and observation costs. Other ways to generalize this setting are discussed in the remaining part of

this section.

4.2 Controlled PNs (CtlPNs)

This setting introduces a different kind of uncontrollability. Following [26], a controlled PN (CtlPN) is a

triple N c = (N , C,B), where N = (P, T, F ) is an ordinary PN, C is a finite set of control places, C ∩P = ∅,

and B ⊆ C × T is a set of directed arcs. As expected, given a marking µ of N , a transition t is enabled by

the plant, or state enabled, when for all places p ∈ P , (p, t) ∈ F ⇒ µ(p) ≥ 1. A control for a CtlPN is a

function u : C → {0, 1}. Given a control u, a transition t is control enabled when for all control places c,

(c, t) ∈ B ⇒ u(c) = 1. Of course, a transition can be fired only when it is both control and state enabled.

In a concurrency setting, the control allows all control-enabled transitions to be fired simultaneously.

Note that firing a transition has no effect on the control (there are no tokens flowing out of the control

places). This distinguishes the control places of CtlPNs from the monitors in the context of the SBPI, which

behave completely like the normal places of a Petri net.

As an example, consider Figure 2(a). The control places in the CtlPN shown there are c1 . . . c4. The
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firings of t2 and t5 cannot be controlled, as no control places are connected to t2 and t5. On the other hand,

c1 . . . c4 control the firings of the other transitions. For instance, t7 may be fired only if u(c1) = 1 and

t6 only if both u(c3) = 1 and u(c4) = 1. In a CtlPN, it may not be possible to disable individually each

“controllable” transition. For instance, if u(c1) = 0, both t7 and t4 are disabled, and if u(c1) = 1, both t7

and t4 are control-enabled. This makes the controllability concept of CtlPNs more general than the one of

section 4.1.

A modeling example illustrating this kind of controllability is as follows. Consider a train-gate controller,

at the crossing of a railway with a two-way road. There are two gates, one for each direction of the traffic.

This system is modeled in Figure 2(b): firing t1 corresponds to a vehicle entering the crossing from one

direction, and firing t3 corresponds to a vehicle entering from the other direction. The controller is only

given the ability to either lower both gates or raise both gates. Thus, the controller cannot have one gate

lowered and the other raised. This is modeled by controlling t1 and t3 with the same control place c1.

4.3 State Observation

In the structural setting, transition firings are observed. However, we could observe instead markings (the

state). In this case, limited observability corresponds to limited information on the marking of the system.

As shown in [26], this can be modeled by a function O : M → {o1, o2, . . . on}, mapping the set of markings

M onto a set of observability classes o1, o2, . . . on.

As an illustration, consider again the manufacturing model of Figure 2(c). Recall, AGVs going in opposite

directions can enter a common loading area; firing t1 (t2) corresponds to AGVs entering (exiting) in one

direction, while firing t3 (t4) corresponds to AGVs entering (exiting) from the other direction. Assume only

one AGV can be in the loading area at any time. Assume also that we can only detect the presence of an

AGV in the loading area, but not its direction. Then, we cannot distinguish between the markings µ = [1, 0]T

and µ = [0, 1]T . So we can associate an observation class o1 for the markings [1, 0]T and [0, 1]T , and a class

o2 for the marking [0, 0]T .

4.4 Labeled Petri Nets

The controllability and observability concepts of section 4.1 can be extended to labeled PNs. A labeled

PN is a PN enhanced with a labeling function ρ : T → 2Σ ∪ {λ}, where Σ is the set of events, ρ the

labeling function, and λ the null event. Following the Ramadge-Wonham setting, Σ can be partitioned into

controllable and uncontrollable events, Σ = Σc ∪Σuc and observable and unobservable events Σ = Σo ∪Σuo.

In this setting, when a transition t fires, an event e ∈ ρ(t) is generated. If e ∈ Σc (e ∈ Σo), the supervisor is

able to disable (observe) this event. Note that t is disabled by the supervisor only when all events e ∈ ρ(t)
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are disabled. Compared to section 4.1, one difference is that two transitions t1 and t2 may produce the same

event when fired. Here, a supervisor controls/observes transitions indirectly, by disabling/observing events.

The Ramadge-Wonham setting is usually associated with the no concurrency assumption. However, in the

context of labeled PNs we can use also the other concurrency settings, allowing control-enabled transitions

to fire at the same time, including multiple firings of individual transitions.

As an illustration, recall the train-gate controller example of section 4.2, modeled in Figure 2(b). We can

model the same example with the structure of Figure 2(c) and a labeling ρ such that ρ(t1) = ρ(t3). However,

note that this model assumes not only that t1 and t3 cannot be individually controlled, but also that they

cannot be individually observed (firing t1 or t3 produces the same event). This motivates introducing double-

labeled PNs next.

4.5 Double-Labeled PNs

Double-labeled PNs combine the concepts of transition controllability and observability of CtlPNs and labeled

PNs, respectively. A double-labeled PN is a PN enhanced with two labeling functions: ρ : T → 2Σ ∪ {λ}

and o : T → Ω∪{λ}, where ρ labels transitions with subsets of control events e ∈ Σ, and o labels transitions

with observation events o ∈ Ω. Thus, Σ (Ω) is the set of control (observation) events. The meaning of the

two labellings is as follows: a transition t ∈ T is control-enabled when there is an event e ∈ ρ(t) that is

enabled. Further, when t fires, the event o(t) is generated. Note that when the underlying PN is safe and

has a state machine structure, a double-labeled PN corresponds to a Mealy type automaton. In fact, the

reachability graph of any double-labeled PN is a Mealy automaton.

By using the two labeling functions in the train-gate example (Figure 2(c)), we can model the situation in

which vehicles entering from different directions produce different observation symbols (o(t1) 6= o(t3)), while

the flow from one direction cannot be interrupted apart from the flow of the other direction (ρ(t1) = ρ(t3)).

4.6 Comparison

Clearly, the controllability concept of CtlPNs is more general than that of section 4.1, as in section 4.1 we

assume each controllable transition can be individually disabled. Further, the setting of labeled PNs does

not capture the ability to control only certain groups of transitions either. Indeed, it is known [26] that

enabling groups of transitions as opposed to individual transitions, corresponds to a more unusual setting in

the Ramadge-Wonham framework, in which not all combinations of controllable events can be disabled [22].

However, double-labeled PNs can model the type of uncontrollability of CtlPNs, as we show next. This is an

important observation, for as we show in section 5.3, structural methods can deal with double-labeled PNs.

As an example, Figure 3(b) shows a double-labeled PN. The observation events are shown in Greek
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letters. For instance, o(t1) = α and o(t4) = γ. The control events are the events ei, i = 1 . . . 4. For

instance, ρ(t2) = {e1, e2} and ρ(t1) = {e1}. Note that the PN of Figure 3(b) implements the behavior of

the CtlPN of Figure 3(a). In fact, it can be seen that any CtlPN can be converted to a double-labeled PN.

Indeed, given a CtlPN N c = (N , C,B), let U be the set of controls. The observation labeling o of N is

assumed to be given, as we know from the beginning the observation events generated by transitions. It

remains to construct the control labeling ρ. For each transition t, let ut ∈ U denote the minimal control

enabling t: ut(c) = 1 when (c, t) ∈ B and ut(c) = 0 otherwise. Let Umin be the set of minimal controls:

Umin = {u ∈ U : u minimal for some t ∈ T }. The set of control events Σ is constructed as follows: for each

uk ∈ Umin \ {0} associate a distinct event ek ∈ Σ. Let’s denote by u[ek] the control associated to an event

ek. Note that given a control uj, a transition t of N c is control-enabled when its minimal control ut satisfies

ut ≤ uj . So we define ρ(t) = {ej ∈ Σ : ut ≤ u[ej]}. Thus, applying a control u to the CtlPN corresponds to

enabling all events ej with u[ej ] ≤ u, resulting in the same transitions being control-enabled in the CtlPN

and the double-labeled PN.

The converse is also true: a double-labeled PN can be converted to a CtlPN enhanced with an observation

labeling o. That is, it is possible to replace the control labeling with control places.

From a supervision viewpoint, the definition of CtlPNs limits CtlPNs to the concurrency assumption.

Indeed, under more general concurrency settings (which allow also multiple firings of the same transition

at one time), the controls become very liberal, as they allow an unlimited number of firings for all enabled

transitions. However, there is no such limitation for double-labeled PNs. For instance, in Figure 1(b), the

number of simultaneous firings of t1 can be limited by the marking of the monitor p7.

Comparing the two observability settings, state observation and event observation, note that no setting is

more general than the other, in the sense that a problem formulated in one setting may not be approachable

in the other.

An example of problem that can be dealt with in the event observation setting, but not in the state

observation setting, is as follows. Figure 4 shows a PN in which only t1 is observable and only t6 is

controllable. Assume the initial marking is known and corresponds to the marking shown in Figure 4(a).

The specification requires t6 be disabled until t1 fires, and then enabled. This problem is trivial in the event

observation setting: the supervisor disables t6 until it observes a firing of t1. In the state observation setting,
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note the following. There are three reachable markings: µ1, µ2, and µ3, each corresponding to one token

being in p1, p2, and p3, respectively. Since t2 and t3 are unobservable, we must define the observation map

O such that O(µ1) = O(µ3). Similarly, we need O(µ2) = O(µ3). It follows that all reachable markings must

belong to the same observation class! Therefore, we have no information regarding whether t6 should be

enabled or not. In this particular example, it is still possible to solve the problem by changing the structure

of the PN: let p4 be a sink place added to t1 (i.e. •p4 = t1 and p4• = ∅). Since t1 is observable, we can

define two classes of markings: o1 for markings with µ4 = 0, and o2 for markings with µ4 ≥ 1. Then, we

disable (enable) t6 whenever the marking is in o1 (o2).

On the other hand, a problem that cannot be treated in the event observation framework is as follows.

In the PN of Figure 4(b), assume we have three observation classes: o1 for markings with µ2 = 0, o2 for

1 ≤ µ2 ≤ 2 and o3 for µ2 ≥ 3. The specification is that t4 may fire only if µ2 ≥ 3, where t4 is controllable.

Regardless of the observation labels we choose for t2, t3, and t4, there is no

Finally, note that from events we can estimate the state by means of observers. Work on PN observers

appears in [20]. There, the initial marking is unknown, and the marking of the plant is estimated by observing

the transitions. Supervising the PN for specifications (1) based on the estimated marking is also considered

in [20]. However, as shown in [21], deadlock may arise in the enforcement of (1) due to estimation errors.

Thus, a deadlock recovery solution is proposed in [20], based on integer programming and timing information

on the firing delays of enabled transitions.

5 A Structural Approach to Supervision

When dealing with fully observable and controllable systems, we have seen that the SBPI provides a very

simple and optimal solution for the design of supervisors. The result is summarized in Theorem 3.1. However,

when uncontrollability and unobservability is present, the supervisor designed as in Theorem 3.1 may not be

admissible. For instance, the supervisor may include monitors that are supposed to prevent plant-enabled

uncontrollable transitions from firing, and may contain monitors with marking varied by firings of closed-loop
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enabled unobservable transitions. Such a supervisor is clearly not implementable. A supervisor is admissible,

when it respects the uncontrollability and unobservability constraints of the plant. The constraints Lµ ≤ b

are admissible if the supervisor defined by (2–3) is admissible. When inadmissible, the constraints Lµ ≤ b

are transformed (if possible) to an admissible form Laµ ≤ ba such that

Laµ ≤ ba ⇒ Lµ ≤ b (11)

Then, the supervisor enforcing Laµ ≤ ba is admissible, and enforces Lµ ≤ b as well.

Example 5.1 Assume t2 and t5 uncontrollable in Fig. 1(a). Then µ2+µ5 ≤ 1 is not admissible, as enforcing

it may attempt controlling either of t2 and t5. However, it can be checked that µ1 +µ2 +µ5 ≤ 1 is admissible

and µ1 + µ2 + µ5 ≤ 1 ⇒ µ2 + µ5 ≤ 1. 2

Various conditions on the constraints Lµ ≤ b could be used to guarantee Lµ ≤ b are admissible, such as

the conditions presented later in this section. Given some admissibility conditions, the design approach is

as follows:

Algorithm 5.2

1. Check whether the admissibility conditions are satisfied by the supervisor (2–3). If so, the supervisor

is optimal and admissible.

2. If not, transform the specification Lµ ≤ b to Laµa ≤ ba such that the admissibility conditions and (11)

are satisfied.

3. Design the supervisor enforcing Laµ ≤ ba as in (2–3).

Various design methods result, depending on the admissibility conditions used in the algorithm and the

approach used at the second step. Being known that a minimally restrictive solution may not correspond

to a convex region Laµ ≤ ba [18], one can give up the requirement that the transformed specification is

a conjunction Laµ ≤ ba, and allow disjunctions
∨

i La,iµ ≤ ba,i. In either case, the method is suboptimal

whenever the admissibility conditions used in the algorithm are not necessary. In this section we describe

“structural” admissibility constraints, which are sufficient for admissibility, but not necessary. While they

may result in suboptimal designs, the structural admissibility conditions have the advantage that they have

allowed the development of computationally efficient methods for supervisor design. The rest of this section

presents structural admissibility conditions for three cases:

1. Individually controllable and observable transitions

2. Labeled PNs
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3. Double-labeled PNs

We will see that in the first two cases the conditions have the form LA ≤ 0, and in the third disjunctions
∨n

i=1 LAi ≤ 0. Note that any method that is applied at the second step of the Algorithm 5.2 and that relies

on conditions LA ≤ 0, can also be used for admissibility conditions
∨n

i=1 LAi ≤ 0. This is how. First, given

a constraint lµ ≤ c of Lµ ≤ b, find for every i = 1 . . . n a solution laµ ≤ ca satisfying laAi ≤ 0 and (11).

Then, select the “best” solution laµ ≤ ca out of the n cases i = 1, 2, . . . n. Finally, take Laµ ≤ ba as the

conjunction of the constraints laµ ≤ ca that were selected for each constraint lµ ≤ c of Lµ ≤ b.

5.1 Individually controllable and observable transitions

If Tuc denotes the set of uncontrollable transitions, the supervisor (2–3) controls only the controllable tran-

sitions if all elements of LD(·, Tuc) are nonnegative [8, 51, 52], which is written as:

LD(·, Tuc) ≤ 0 (12)

Further, to ensure that the supervisor (2–3) detects only the observable transitions it is sufficient to re-

quire [51, 52]:

LD(·, Tuo) = 0 (13)

where Tuo is the set of unobservable transitions. Given (1) and an initial marking µ0, (12) and (13) are only

sufficient for admissibility. However, if L is fixed and µ0 and b are variables, we have the following optimality

property.

Theorem 5.1 [32] The supervisor of (2–3) is admissible for all µ0 and b ≥ Lµ0 iff L satisfies (12–13).

This result can be exploited for fault-tolerant supervisory control [36].

5.2 Labeled PNs

Without loss of generality, we may assume the labeling to be defined as ρ : T → Σ ∪ {λ} instead of

ρ : T → 2Σ ∪ {λ}, as illustrated in Figure 5. In this way, each transition is labeled with a single event2

2The transitions that originally had no label are labeled with λ, the null event.
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e ∈ Σ ∪ {λ}. Then we can write the following sufficient conditions for admissibility:

∀t1, t2 ∈ T, ρ(t1) = ρ(t2) ⇒ LD(·, t1) = LD(·, t2) (14)

∀t ∈ T, ρ(t) ∈ Σuc ∪ {λ} ⇒ LD(·, t) ≤ 0 (15)

∀t ∈ T, ρ(t) ∈ Σuo ∪ {λ} ⇒ LD(·, t) = 0 (16)

Note that (14–16) can be written compactly as LA ≤ 0, for some matrix A. This means that the same

methods used for finding La and ba subject to (11) and (12) or (11–13) can be applied also here, by replacing

(12) with LA ≤ 0.

5.3 Double-Labeled PNs

Again, without loss of generality, we may assume the control labeling to be defined as ρ : T → Σ ∪ {λ}

instead of ρ : T → 2Σ∪{λ}. Here, it is more convenient to write the conditions in terms of single constraints

lµ ≤ c instead of sets of constraints Lµ ≤ b. We have the following sufficient conditions for the admissibility

of lµ ≤ c (note that Lµ ≤ b is admissible if all its constraints lµ ≤ c are admissible):

∀t1, t2 ∈ T, o(t1) = o(t2) ⇒ lD(·, t1) = lD(·, t2) (17)

∀t ∈ T, o(t) ∈ Σuo ∪ {λ} ⇒ lD(·, t) = 0 (18)

∀t ∈ T, ρ(t) = λ ⇒ lD(·, t) ≤ 0 (19)

∀t1, t2 ∈ T, ∀α ∈ Σuc, ρ(t1) = ρ(t2) = α ⇒

lD(·, t1) = lD(·, t2) ∨ [lD(·, t1) ≤ 0 ∧ lD(·, t1) ≤ 0]
(20)

Due to the constraint (20), the conditions for the admissibility of Lµ ≤ b are no longer linear. Instead, they

have the form
∨n

i=1 LAi ≤ 0.

6 Supervision Methods

6.1 Admissibility Based Methods

Here, we refer to the Algorithm 5.2, and describe methods that can implement the second step of the

algorithm. The methods presented here are based on the admissibility conditions (12) and (13). They

assume free-labeled PNs with individually controllable and observable transitions. However, as noticed in

section 5, such methods can be easily adapted to the more general settings of labeled or double-labeled PNs.

The design of admissible constraints has been approached in [51, 52] using the following parameterization:

La = R1 + R2L (21)

ba = R2(b + 1) − 1 (22)

15



where R1 is an integer matrix with nonnegative elements and R2 is a diagonal matrix with positive integers

on the diagonal. This parameterization is used as a sufficient condition for (11). Thus, at the step 2 of

Algorithm 5.2, the constraints (21–22) replace (11). Now, the problem is to find La and ba subject to (21–22),

(12) and (13). This is a linear integer programming problem for which, sometimes, solutions may be found

using an efficient matrix row operation algorithm [51, 52]. Note that this integer programming formulation of

the problem allows introducing additional requirements of interest. For instance, communication constraints

and a minimum-communication objective were used in a distributed version of this problem [35]. While

the approach of [51, 52] is computationally efficient, it is also suboptimal. That is, a solution may not be

found when solutions exist, and if one is found, it may not be the least restrictive solution. A source of

suboptimality is that the computation is not constrained to ensure that if L′
a and b′a are another solution to

(21–22), (12) and (13), then Laµ ≤ ba 6⇒ L′
aµ ≤ b′a.

The approach of [51, 52] can been improved in several ways. First, it should be noticed that it is difficult

to express by linear inequalities the requirement that Laµ ≤ ba should be as permissive as possible. However,

it is easy to constrain the computation of La and ba to guarantee some weaker properties: (a) that a set of

markings of interest is included in {µ : Laµ ≤ ba} and (b) that a set of firing count vectors x is included

in {x : Dcx ≥ 0}, where Dc is the incidence matrix of the closed-loop. These simple extensions can be

found in [35]. As noticed in [2], the admissible constraints Laµ ≤ ba satisfying (11) may not have a unique

supremal element. Thus, further work has been done by the authors of [1] towards finding the supremal

constraints Laµ ≤ ba subject to (21–22), (12) and (13) by means of a parameterization.

Another way to control the selection of La and ba is by means of observation and control costs. Thus,

in [3], the optimal design of supervisors is considered, where optimality here is with respect to control and

observation costs. Here, instead of having sets of uncontrollable and unobservable transitions Tuc and Tuo,

we have maps zc : T → R
+ and zo : T → R

+, associating control and observation costs to each transition.

The setting of [3] is general, as we can still consider some transitions as uncontrollable/unobservable by

associating with them very large control or observation costs. The design problem of [3] is solved by an

integer programming approach, using (21–22) and admissibility conditions equivalent to (12) and (13).

The optimal design of supervisors with respect to the admissibility constraints (12) and (13) is approached

also in chapter 8 of [60]. The proposed method applies to specifications (1) in which for all rows of L, all

elements on a row have the same sign. Note that the solution is given in the form of a disjunction of

constraints.

Still another approach appears in [7]. The setting of [7] assumes full observability. Essentially, given the

constraint lµ ≤ c with l ∈ N
m and c ∈ N, lµ ≤ c is replaced with the disjunction

∨

li∈SDmin(l)

[liµ ≤ c] (23)
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where SDmin(l) is the set of minimal integer vectors x satisfying x ≥ l and xD(·, Tuc) ≤ 0. In particular,

lµ ≤ c is replaced with the single admissible constraint l1µ ≤ c when SDmin(l) is the singleton {l1}. Under

the conditions of [8, 6], which are discussed later in section 6.2, the resulting supervisor is least restrictive.

It is interesting to notice that some of the assumptions of [7] can be dropped. Indeed, (23) is still a valid

supervisor even if l ∈ Z
m and c ∈ Z (as opposed to l ∈ N

m and c ∈ N). Further, partial observability can be

incorporated by defining SDmin(l) as the set of minimal integer vectors x satisfying x ≥ l, xD(·, Tuc) ≤ 0

and xD(·, Tuo) = 0.

6.2 Path-based approaches

Here we outline other structural approaches from the literature. In the literature, there are several results

dealing with the supervision of marked graphs. We begin by outlining how these results can be used for

enforcing specifications (1), when the plant is a marked graph and various other modeling assumptions are

satisfied. Then, we will present some other results that deal with more general PN models.

Powerful results for the supervision of marked graphs were first obtained in [27, 42]. The setting of [27, 42]

is as follows. The plant is a CtlPN (see section 4.2), in which the underlying PN is a cyclic marked graph

with an initial marking that places exactly one token in every directed cycle. Thus, the PN is safe (i.e.,

all reachable markings are binary vectors). Full observability is implicitly assumed. The supervisory goal

is to avoid a set of forbidden markings MF . While in [27] MF is specified in terms of place, set and class

conditions, [42] specifies MF as the complement of the feasible set a set of constraints (1):

MF =
⋃

(F,k)∈F







µ :
∑

p∈F

µ(p) > k







(24)

Note that both class conditions and (24) can specify any set MF , due to the fact that the PN model is a

safe cyclic marked graph. (In this survey we will show how to obtain inequalities (1), not (24) though, from

any set MF of a safe PN. This is done in section 7.3.) There are some mild assumptions on the set MF

in [27, 42]. As mentioned in [28], these assumptions guarantee the supervisor designed is least restrictive.

The design of supervisors in [27] is approached by analyzing the paths of the marked graph that do not

involve controllable transitions. This solution is simplified in [42]. The solution of [42] involves the following:

identify a number of paths in the marked graph, offline; evaluate certain place and path predicates, online.

Note that in [27, 42] the supervisor is not represented as a Petri net.

In [5], the design of supervisors is studied for a setting similar to that of [27, 42], in which the CtlPN has

a state machine structure. The forbidden set here is described by disjunctions of constraints of the form (1).

The use of disjunctions is necessary in order to describe arbitrary sets of forbidden states, as the PN is not

assumed to be safe. The supervisors obtained in [5] are not represented as Petri nets.
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The results of [27, 42] are generalized in [29], by extending the plant model from marked graphs to

arbitrary ordinary PNs. The type of specifications is similar to that of [27]. However, as the PNs may

not be safe, it cannot capture all possible sets of forbidden markings. Further, compared with (1), the

specifications of [29] are neither a subset nor a superset of the specifications expressed by (1). As in the

previous work [27, 42], in [29] the least restrictive supervisor is found by a path based approach.

6.3 Controlled-invariant approaches

The setting of [27, 42] and also of other subsequent papers can be described as follows. A supervisor can

avoid the states in MF if it avoids a larger set AF ⊇ MF , where AF \MF describe the markings µ that

lead to µ′ ∈ MF by firing only uncontrollable transitions. Let Tuc be the set of uncontrollable transitions

and Nu = (P, Tuc, D
−(·, Tuc), D

+(·, Tuc)) a subnet of the plant N that does not contain the controllable

transitions. Then AF can be expressed as:

AF = {µ : R(Nu, µ) ∩MF = ∅} (25)

This set is known as the maximal controlled-invariant set [42, 56]. The approaches discussed above design

supervisors such that the states leading to AF are avoided. Thus, AF is not explicitly computed. However, a

possible approach to supervision is to compute AF . Once we know AF , the control task is simply to disable

any control actions that lead to a marking in AF . Note that avoiding AF , as opposed to some superset

E ⊇ AF , corresponds to least restrictive supervision. In particular, as noticed in [18], solutions replacing a

specification Lµ ≤ b with an admissible Laµ ≤ ba correspond to supervisors that avoid supersets E ⊇ AF ,

since AF may not be representable as the complement of a set of constraints of the form (1) even when

MF is given as the complement of a set of constraints (1). We discuss briefly below literature methods that

compute AF .

In [6] specifications (1) are considered, where L and b are restricted to have only nonnegative elements.

Given lµ ≤ c as one of the constraints of (1), (so l ∈ N
m and c ∈ N), the influential subnet N l

u is defined,

which is the subnet of Nu containing the places p with l(p) 6= 0 and the directed paths of Nu to these places.

The main result of the paper shows how to express AF as the set of markings satisfying a disjunction of

linear marking inequalities. This result relies on two conditions, as follows. First, N l
u should be a marked

graph. (Note that N l
u, not N , is restricted to a marked graph structure.) Second, for all reachable markings

of (N , µ0), every directed circuit of N l
u should have at least one token. In [6] the supervisor is not represented

as a PN. However, the subsequent work of [7] proposes an extended PN representation of the supervisor,

in which negative markings are allowed. Note that a similar result was obtained in [8] for the case in

which N l
u is a state machine, instead of a marked graph. For this case, it is shown that AF has the form

AF = {µ : laµ ≤ c}, where la can be easily computed. Thus, the monitor enforcing laµ ≤ c is the least
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restrictive supervisor.

The efficient computation of [8] for PNs and specifications for which the subnets N l
u are state machines,

may not be surprising in light of the complexity findings of [55]. The model of [55] is as follows. The plant

consists of p components that do not interact with each other, where the components are represented by

deterministic Büchi automata Gi = (Qi, Σi, δi, q0i, Qmi) over disjoint alphabets Σi. Given the subsets of

states Qi ⊂ Qi, a mutual exclusion specification requires less than k components to have their states qi in Qi

at the same time. Note that the plant of [55] can be represented by a safe labeled PN with a state machine

structure, and the mutual exclusion constraint by a constraint lµ ≤ c in which c = k and all elements of

l are 0 or 1. One of the problems considered in [55] is to find nonblocking coordinators that enforce the

mutual exclusion constraint. Roughly, a nonblocking coordinator is a supervisor that guarantees certain

strong liveness properties. The paper shows that the existence of a solution can be decided in polynomial

time in p and n, where n = maxi |Qi|. Further, it is shown that if a solution exists, the minimally restrictive

solution can be found in polynomial time in p and n. It is interesting to note that in the equivalent PN

representation of the plant, the supervisor found in [55] corresponds to a monitor place enforcing a constraint

laµ ≤ c, provided the PN is free-labeled. Note also that in view of [23], the assumption that the sets Σi are

disjoint seems to be critical for polynomial complexity. In [23] it is shown that when the components of the

plant have a shared event, the solvability of the problem can no longer be decided in polynomial time. A

restriction of the problem for which polynomial complexity is maintained is also proposed.

A method that finds the optimal design for specifications (1) appears in [49]. Several assumptions are

made, as seen from the following outline of the method. Let L(Nu, µ) denote the set of firing sequences σ

of Nu that are enabled at the marking µ. Let σ be the firing count vector with respect to N (not Nu).

Finally, let lµ ≤ c, l ∈ Z
|P | and c ∈ Z, denote a single constraint of (1). The set AF corresponding to

lµ ≤ c is given by AF = {µ : (∀σ ∈ L(Nu, µ)) lµ + lDσ ≤ c}. By assuming Nu (not N ) to be acyclic,

AF = {µ : lµ + lDv∗(µ) ≤ c}, where v∗(µ) is the solution of the linear integer program max lDv subject

to D(·, Tuc)v ≥ −µ and v ≥ 0. As shown in [49], a closed-form expression of AF can be computed under

additional assumptions. First, [49] defines subnets for each t ∈ Tuc, consisting of all paths of Nu ending in

t. Denoting by T̂uc = {t ∈ Tuc : lD(·, t) > 0}, [49] requires all subnets of t ∈ T̂uc be independent (disjoint).

Further, when the subnets have the TS1 structure described in [49], AF can be expressed by a disjunction

of inequalities: AF = {µ :
∨k

i=1 liµ ≤ c} for some k and li ∈ Z
|P |. Moreover, when the subnets have the

TS2 structure described in [49], then AF = {µ : laµ ≤ c} for some la ∈ Z
|P |. Thus, in the TS1 case the

optimal supervisor of lµ ≤ c enforces
∨k

i=1 liµ ≤ c, and in the TS2 case laµ ≤ c. The approach of [49] is

computationally efficient, as AF is calculated independently of µ and without resorting to the traditional

methods for solving integer programs.

Results on the supervision of marked graphs appear in [15]. Compared to [27, 42], the marked graphs
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considered here may not be safe. However, unlike to [27, 42], the results are presented in the no concurrency

setting and the uncontrollability model is simpler: the set of transitions is partitioned into controllable (Tc)

and uncontrollable (Tuc) transitions. The specifications have the form (1). A least restrictive supervision

policy is computed first for several particular cases. This policy is very efficient, as it involves little online

computations. Finally, a supervision policy is proposed for the general case, which involves solving online

linear programs, for every reachable marking. This last result is based on the observation that given a

constraint lµ ≤ c, l ∈ Z
1×m and b ∈ Z, finding max{lµ∗ : µ∗ ∈ R(Nu, µ)} is equivalent to the integer

linear program max{lµ∗ : µ∗ = µ + D(·, Tuc)q, q ∈ N
|Tuc|}, which is equivalent to the linear program

max{lµ∗ : µ∗ = µ + D(·, Tuc)q, q ∈ R
|Tuc|
+ }. These two equivalences result from the fact that the plant is a

live marked graph.

6.4 Methods for partial observability

Partial observability, as long as described by some events being observable and others not, can be easily dealt

with in the setting of the admissibility-based methods. The admissibility-based methods were presented in

section 6.1. However, more substantial extensions are needed in order to incorporate partial observability in

the methods of sections 6.2 and 6.3. This section presents several methods, which are not admissibility-based,

and which can deal with partial observability.

The extension of the path-based approach of Holloway and Krogh [27, 42] to partial observability appears

in [69]. Ordinary PN structures are considered, instead of marked graphs. The set of transitions is partitioned

in controlled and uncontrolled transitions, T = Tc ∪ Tuc, and in observed and unobserved transitions,

T = To ∪ Tuo, with To ⊇ Tc. Note that a transition is controlled if connected to some control place.

Further, each transition is labeled by one event, and a transition is observed if its label is not the null

event. The authors propose a path algebra, described in more detail in [29]. This algebra is used to define

reachability predicates, which are then used to define the least restrictive control policy. (The supervision is

nondeterministic, so least restrictive control policies exist.)

Several important results on the control of live marked graphs appear in [11]. The specification considered

there is more powerful than (1), as it has the form av ≤ c, where v is the Parikh vector, a ∈ Z
1×n and

c ∈ Z. In [11], the set of transitions T is partitioned into the disjoint subsets: T = Tc ∪ Tf ∪ Ti, where Tc

is the set of controllable transitions, and To = Tc ∪ Tf the set of observable transitions. The approach of

the paper is as follows. Suspect vectors are defined as Parikh vectors v such that v|To
= v′|To

for some v′

with the property that after firing v′, a forbidden state v′′ could be reached (i.e. av′′ > c), by firing only

uncontrollable transitions. The paper shows that any deterministic supervisor has to avoid reaching the set

of suspect vectors, and that the projections of these vectors on To form a convex set (that is, the set of

integral points of a polyhedron). The paper shows also how to compute this set. Since the complement

20



of this set may not be convex, it follows that the least restrictive supervisor may not be implementable by

control (monitor) places. Even when monitors can be used, the paper shows that the number of monitors

may be exponential. Another observation of the authors is that the number of linear constraints defining the

set of suspect vectors may depend exponentially on the size of D(·, Tuc). The alternative to the computation

of this set is as follows. Given a state v0, a linear program can be solved in order to decide whether t ∈ Tc

should be enabled. Since linear (not linear integer) programming is used, the computation has polynomial

complexity.

In [14], the supervisory control problem is approached based on the reachability graph. Here, the super-

visor is designed as a set of monitors acting upon the PN plant. First, a subset of the reachability graph is

obtained, such that from any of the markings of the subgraph, forbidden states and blocking states cannot

be reached by firing uncontrollable transitions. This subgraph becomes the desired reachability graph that

is to be achieved by the closed-loop. Then, the authors deal with the design of supervisors that ensure the

closed-loop has the specified reachability graph. Given a set Ω containing the pairs (µ, t) such that t should

be disabled at the marking µ, monitors are designed, such that each monitor deals with at least one of the

pairs (µ, t) of Ω. The connections of a monitor to the plant are determined by finding an integer solution to

a system of inequalities (which corresponds to integer programming, [58]).

6.5 Decentralized Control

The decentralized control of PNs is approached in [34, 35]. The setting is as follows. A PN N =

(P, T, D−, D+) is given, representing the plant. The plant has m subsystems, each having a set of con-

trollable transitions Tc,i ⊆ T and a set of observable transitions To,i ⊆ T , for i = 1 . . .m. In this setting, we

are to design m supervisors Si, each allowed to disable transitions t ∈ Tc,i and observe transitions t ∈ To,i,

such that the joint operation of the supervisors Si ensures the specification (1) is satisfied. In [34] a decen-

tralized admissibility concept is introduced, called d-admissibility. In [34] it is shown that d-admissibility

can be checked by a structural approach similar to that of section 4.1. Several cases have been studied:

1. The specification (1) is d-admissible.

2. The specification (1) is not d-admissible and communication of transition firings is allowed.

3. The specification (1) is not d-admissible and communication is not allowed or is restricted.

Case 1 is solved by a construction similar to that of (2) and (3). Case 2 is reduced to case 1 by allowing event

communication add more elements to the sets Tc,i and To.i. However, case 3 is more involved. Assuming no

communication is allowed, the problem is to decompose the specification (1) into sets of constraints L1µ ≤ b1
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. . . Lrµ ≤ br such that each Liµ ≤ bi is d-admissible and

(L1µ ≤ b1 ∧ L2µ ≤ b2 ∧ . . . Lrµ ≤ br) ⇒ Lµ ≤ b (26)

The d-admissibility requirement can be tested by inequalities similar to (12) and (13). In [35] this problem

is approached using the parameterization (21–22), by replacing (26) with the conservative requirement that

L1 + L2 + . . . Lm = R1 + R2L (27)

b1 + b2 + . . . bm = R2(b + 1) − 1 (28)

where R1 has nonnegative integer elements and R2 is diagonal with positive integer elements on the diagonal.

Integer programming is then used to find Li, bi, R1 and R2. The problem is solved in a similar way when

communication is allowed.

7 Expressiveness of the constraints

This section reports several situations in which problems involving constraints of a different form than (1) can

be reduced to problems involving constraints (1). First, we consider a class of general linear constraints that

correspond to the languages of the free-labeled PNs. Next, we consider constraints expressing general PN

languages. Then, we consider logical constraints for safe PNs. We continue with disjunctions of constraints

(1) under some boundedness assumptions. Finally, results showing (1) can express constraints for liveness

enforcement are presented. The section ends with a discussion concerning the implications of the presented

results.

7.1 Generalized Constraints

An interesting class of linear constraints that can be represented in the form (1) by PN transformations is

given by

Lµ + Hq + Cv ≤ b (29)

where q is the firing vector and v the Parikh vector. To simplify our presentation, we will focus on the no

concurrency assumption. The general case can be found in [32]. Under the no concurrency assumption,

q ∈ {0, 1}n, n = |T |, identifies the transition that is to be fired next: qi = 1 if ti is to be fired next, and

qi = 0 otherwise. Recall, the Parikh vector v ∈ N
n records how many times each transition has fired. For

instance, v1 = 4 indicates t1 has fired four times. q and v are illustrated in Figure 6. Further, H ∈ Z
nc×n

and C ∈ Z
nc×n are matrices, and nc is the number of constraints.

The constraints (29) are interpreted as follows. A supervisor enforcing (29) ensures that: (i) all states

(µ, v) satisfy Lµ + Cv ≤ b; (ii) if q is the firing vector of a transition ti, µ
ti−→ µ′, and v′ = v + q, then

Lµ + Hq + Cv ≤ b and Lµ′ + Cv′ ≤ b.
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Figure 6: Illustration of the q and v parameters.

In [39] it is shown that:

- the class of constraints

Hq + Cv ≤ b (30)

is as general as the class Lµ + Hq + Cv ≤ b. That is, given Lµ + Hq + Cv ≤ b, there is C′ such that

Lµ + Hq + Cv ≤ b and Hq + C′v ≤ b are equivalent.

- any monitor arbitrarily connected to the places of a Petri net can be described as enforcing a constraint

of the form (30), where b corresponds to the initial marking of the monitor.

- in fact, any PN (N , µ0), N = (P, T, D−, D+), can be described by constraints (30), for H = D−,

C = D− − D+ and b = µ0.

- Consequently, the specifications (29) correspond to the P -type languages of the free-labeled PNs!

(Following [53], a labeled PN is freely-labeled when each transition of the net has a unique and distinct

label, different from λ, the null symbol; further, a language L is a P -type PN language if there is a PN

with an initial marking such that L consists of the words associated with the firing sequences enabled

by the initial marking.)

Let L be the language corresponding to all behaviors accepted by a specification (29). It is important to note

that the specification (29) does not require the closed-loop to generate L. Rather, it requires the closed-loop

language to be a sublanguage of L. Further, note that the least restrictive supervisor enforcing (29) can be

easily designed under full controllability and observability assumptions [39, 32].

Another important result that appears in [39, 32] shows that under the partial controllability and ob-

servability setting of section 4.1, the design of supervisors enforcing (29) can be reduced to the design of

supervisors enforcing (1) [39, 32]. Thus, if (29) is to be enforced on a PN N , the problem is transformed into

the design of a supervisor enforcing constraints of the form (1) on a PN NH . The solution to this problem is
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Figure 7:

then used to obtain the solution to the original problem of designing a supervisor enforcing (29) on N . The

uncontrollability and unobservability setting used in [39, 32] is that of section 4.1.

7.2 Language Constraints

As shown above, we can reduce the problem of enforcing certain PN languages to the enforcement of con-

straints (1). The plants considered there are free-labeled PNs and the specifications are P -type PN languages

of free-labeled PNs. This section shows that we can approach in a similar way more general problems, that

do not assume free-labeling for the plant and the specification. As in the previous considerations, the

requirements here are that the closed-loop generates a sublanguage of the specification.

As an example, consider the PN and the specification shown in Figure 7. In this example, the specification

is described by a PN labeled by the events a and b. To simplify the notation, it is assumed that all events of

the plant that do not appear in the specification are always enabled in the specification. The closed-loop in

our example can be computed immediately by a parallel composition of the plant and specification, and is

shown in Figure 8(a). Note that in the closed-loop, the transition t1 of the plant appears in the form of t11

and t21, corresponding to the synchronization of t1 with the transitions t1 and t2 of the supervisor. Similarly,

t32 and t42 correspond to the synchronization of t2 with t3 and t4. A formal description of the algorithm

composing PN plants with PN specifications can be found in [19].

The supervision is interpreted as follows. The plant and the supervisor have each a distinct set of

transitions, Tp and Ts, respectively. The supervisor cannot observe/control the plant transitions directly, but

it can observe/control events generated by the plant. When the plant generates the event a, the supervisor

picks one of its own enabled transitions t ∈ Ts that is labeled by a, and fires it. Note that the supervisor is

free to choose which of its enabled transitions labeled by a fires. For instance, in Figure 7, when the plant

generates a, the supervisor can select either of t1 or t2, since both are enabled and labeled by a. So we can

relabel the closed-loop, to indicate the supervisor can distinguish between its own transitions that have the

same label. Thus, in Figure 8 we have the following new labels: a1 for t11, a2 for t21, b3 for t32 and t34, and b4

for t42 and t44.
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According to our previous section 7.1, each place of the supervisor that appears in the closed-loop

corresponds to a specification in terms of constraints (29). For instance, p9 enforces v2
1 − v1

1 ≤ 1 and p8

enforces v1
1 − v4

2 − v4
4 ≤ 1. This gives us a readily available approach for supervisor design in the case of

partial controllability and partial observability:

- Compose the PN plant and the PN specification (supervisor).

- Relabel the closed-loop, to take in account the supervisor can distinguish between its own transitions.

- Find the constraints (29) corresponding to the constraints enforced by the monitors of the closed-loop.

- Transform the constraints (29) to an admissible form, which is at least as restrictive.

For instance, assume in our example that t1 (the event a) is uncontrollable but the other transitions are

controllable. Assume all other events are observable. Notice that in Figure 8(a) p8 and p9 may attempt

disabling t1. So, the specification is inadmissible. However, the constraints enforced by p8 and p9, namely

v1
1 − v4

2 − v4
4 ≤ 1 and v2

1 − v1
1 ≤ 1, can be transformed to the admissible form v1

1 − v4
2 − v4

4 + µ4 ≤ 1

and v2
1 − v1

1 + µ4 ≤ 1. The resulting closed-loop and supervisor are shown in Figure 8(b) and Figure 9,

respectively. The supervision is admissible, while ensuring the plant generates only words that satisfy the

original specification of Figure 7.

It is known that the supremal controllable sublanguage of a P -type PN language may not be a P -type

PN language [16]. This is an indication that the approach presented here is suboptimal, in the sense that

it may not lead to the least restrictive supervisor. Note that in the literature it has been shown that the

computation of the least restrictive supervisor can be reduced to a forbidden marking problem, provided

both the plant and specification generate deterministic languages [43]. (Given a labeled PN (N , ρ, µ0), the

P -language it generates is deterministic if for any of its strings w, there is a unique transition sequence σ
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enabled by µ0 that generates w: ρ(σ) = w.) In the setting of [43], partial controllability and full observability

are assumed.

7.3 Logical Constraints

This section shows that for safe PNs, the enforcement of logical constraints can be reduced to the enforcement

of constraints (1). Recall, a PN (N , µ0) is safe if all reachable markings are binary vectors. In the literature,

the observation that logic constraints on the marking can be reduced to (1) was made in [18, 67, 68]. The

derivation of inequalities from logic expressions is rather easy, as shown in [67, 68].

Indeed, let the conjunctive normal form of the specification be Φ1 ∧ Φ2 ∧ . . . ∧Φg with Φi ≡ Ψi1 ∨ Ψi2 ∨

. . . ∨ Ψihi
, for i = 1 . . . g. This can be expressed by

hi
∑

k=1

Ψik
≥ 1 for all i = 1 . . . g (31)

Note that negation is algebraically represented as ¬Ψik
= 1 − Ψik

.

This approach can be applied to specifications described by logic constraints in the marking of a safe PN.

The specifications can also include q, provided the concurrency setting ensures q is also a binary variable.

As an example, assume the markings [0, 0, 0]T , [1, 0, 0]T , [1, 1, 0]T and [1, 1, 1]T are to be forbidden. Then,

the specification can be expressed in the conjunctive normal form as (µ1 ∨ µ2 ∨ µ3) ∧ (¬µ1 ∨ µ2 ∨ µ3) ∧

(¬µ1 ∨¬µ2 ∨µ3)∧ (¬µ1 ∨¬µ2 ∨¬µ3), which can be simplified to (µ2 ∨µ3)∧ (¬µ1 ∨¬µ2). So, we obtain the

constraints µ2 + µ3 ≥ 1 and −µ1 − µ2 ≥ −1.

7.4 Disjunctions of Constraints

Here we show that under certain boundedness assumptions, disjunctions of constraints can be expressed

by conjunctions of constraints by adding not only places, but also transitions to the PN. A disjunction of

constraints has the form:
∨

i

Liµ ≤ bi (32)
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where Li ∈ Z
mi×n and bi ∈ Z

m
i . This can be written as

∧

j

∨

i∈Aj

liµ ≤ ci (33)

where li ∈ Z
1×n, ci ∈ Z and Aj is a set of integers. The idea is to include additional binary variables δi for

each constraint liµ ≤ ci such that:

[liµ ≤ ci] ↔ [δi = 1] (34)

Then the disjunction (32) can be replaced by

∑

i∈Aj

δi ≥ 1 (35)

for all indices j. If we know that liµ is between the bounds mi and Mi, (34) becomes:

liµ + (Mi − ci)δi ≤ Mi (36)

liµ + (ci + 1 − mi)δi ≥ ci + 1 (37)

Note that this technique of adding auxiliary variables has been used to solve propositional logic via integer

programming in [65, 66]. This technique has also been applied to Hybrid Systems in [4]. In our Petri

net context, the variables δi will be interpreted as markings of additional “observer” places. This is the

algorithm:

1. Let T +
i = {t : lD(·, t) < 0} and T−

i = {t : lD(·, t) > 0}.

2. Add an additional place di and copies t+ for each transition t ∈ T + and copies t− for each transition

t ∈ T−.

3. Add the arcs (di, t
−) and (t+, di) with the weight 1. Note that (34) is satisfied by enforcing (36–37).

This construction is illustrated on the following example. Assume we desire to enforce

[µ2 ≤ 0] ∨ [µ4 ≤ 0] (38)

on the Petri net of Figure 11(a). Assume also the following bounds are known: µ2 ≤ 2 and µ4 ≤ 3. Note that

(38) cannot be represented by conjunctions of inequalities that use only the variables µ2 and µ4 (Figure 10).

For µ2 ≤ 2, the relations (36–37) become (for ci = 0, mi = 0 and Mi = 2):

µ2 + 2δ1 ≤ 2 (39)

µ2 + δ1 ≥ 1 (40)

Similarly, for µ4 ≤ 3 we have

µ4 + 3δ2 ≤ 3 (41)

µ4 + δ2 ≥ 1 (42)
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The places d1 and d2 are shown in Figure 11(b). Figure 11(c) shows also the monitors a1, e1, a2 and e2,

which correspond to (39–42), in this order. Finally, our disjunction (38) can be implemented by enforcing

d1 + d2 ≥ 1 (Figure 11(d)).

Unlike to the supervision based on place invariants, here not only places but also transitions are added

to the net. However, it can be seen that the additional transitions are only used to represent disjunctions in

the supervisory rule. For instance, in our example in Figure 11, (d) illustrates the closed-loop of a supervisor

with the plant (a). The supervisor itself cannot be represented as a PN, since it involves disjunctions. The

operation of the supervisor in terms of the plant (a) is represented in Figure 12, for the transitions t2 and

t3. Similar operations are performed for t4 and t5. Note also that in the closed-loop Petri net the transitions

t2 and t−2 can be distinguished for supervisory purposes, that is, they don’t need to be labeled by the same

event. Indeed, the supervisor distinguishes between the firings of t2 and t−2 , by checking whether a1 is

nonzero or not.

7.5 Liveness Enforcement

Here we consider an approach that designs liveness enforcing supervisors as supervisors enforcing constraints

(1). This approach has appeared in [32, 38]. While the approach is very general, in that it makes no

assumptions on the PN structure, it does not have guaranteed termination.

Given a PN N of initial marking µ0, a transition t is live if for all reachable markings µ, there is an

enabled firing sequence that includes t. Given T ⊆ T , (N , µ0) is T -live if all t ∈ T are live. Further, (N , µ0)

is live if T -live (i.e., all transitions t are live).

Example 7.1 Note that the PN of Fig. 1(b) is not live, and not even deadlock-free: the sequence t1, t2, t7

leads to deadlock. Here, the supervisor causes deadlock, as the plant in Fig. 1(a) is live. So we consider

enhancing a specification Lµ ≤ b with additional constraints L′µ ≤ b′ such that the resulting supervised

system is live. 2

The procedure proposed in [32, 38] has the following input:
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Figure 11:

1. A PN N and the set T ⊆ T ;

2. The sets of uncontrollable and unobservable transitions, Tuc and Tuo;

3. Optionally, the set of reachable-marking constraints (RMC) Gµ ≤ h.

Note that the RMC describe constraints that the reachable markings are known to satisfy. Formally,

given a set of initial markings of interest MI , the RMC satisfy that ∀µ0 ∈ MI ∀µ ∈ R(N , µ0): Gµ ≤ h,

where R(N , µ0) is the set of reachable markings of (N , µ0). The RMC is an optional argument, and its

implicit value corresponds to N
m (all possible markings). The output of the procedure is the following:

1. Two sets of constraints Cµ ≤ d and C0µ ≤ d0, describing the supervisor.
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enable t2 in plant if a1 ∨ (d1 ∧ h)

if t2 fires in plant then

if a1 /* t2 fires in closed-loop */

a1 → a1 − 1, e1 → e1 + 1

else /* t−2 fires in closed-loop */

a1 → a1 + 1, d1 → d1 − 1, and h → h − 1

end

end

enable t3 in plant if a1 ∨ e1

if t3 fires in plant then

if a1 /* t+3 fires in closed-loop */

a1 → a1 − 1, d1 → d1 + 1, and h → h + 1

else /* t3 fires in closed-loop */

a1 → a1 + 1, e1 → e1 − 1

end

end

Figure 12:

2. A boolean variable LR, where LR = TRUE indicates least-restrictive supervision.3 (LR is set by

checking sufficient conditions for least-restrictive supervision; in principle, the supervision could be

least-restrictive also when LR = FALSE).

3. A boolean variable TERM , where TERM = TRUE indicates successful termination.

The role of the constraints Cµ ≤ d and C0µ ≤ d0 is described in the following theorem from [32, 38].

Theorem 7.1 If the procedure terminates and TERM = TRUE, then Cµ ≤ d is admissible and (N , µ0)

supervised according to Cµ ≤ d is T -live for all initial markings µ0 ∈ MI satisfying C0µ0 ≤ d0 and Cµ0 ≤ d.

Note that MI = N
m when no RMC is given. On the other hand, when an RMC is given, the supervisor

design may rely on it, and so T -liveness enforcement is not guaranteed for µ0 /∈ MI .

As Theorem 7.1 shows, the initial marking is a variable, not a given input, just as in the SBPI. In this

context, this is what “least restrictive supervision” means. The supervisor defined by Cµ ≤ d and C0µ ≤ d0

is least restrictive if for all initial markings µ0

- if Cµ0 6≤ d or C0µ0 6≤ d0, no T -liveness enforcing supervisor of (N0, µ0) exists.

- if Cµ0 ≤ d and C0µ0 ≤ d0, the supervisor enforcing Cµ ≤ d is the least restrictive T -liveness enforcing

supervisor of (N0, µ0).

Note that if the procedure terminates and certain sufficient conditions are satisfied, the supervisor given

by Cµ ≤ d and C0µ ≤ d0 is guaranteed to be least restrictive. In particular, when T = T (full liveness

enforcement), N is fully controllable and observable (Tuc = ∅ and Tuo = ∅) and the procedure terminates,

3For the simplicity of the presentation, LR has not been included in the procedures of [32, 38]; however, it is implemented

in the package [33].
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Figure 13:

the procedure generates the least restrictive liveness enforcement supervisor, if a liveness enforcing supervisor

exists.

Example 7.2 As shown before, enforcing the specification (6–7) on the PN of Fig. 1(a) leads to deadlock.

To add new constraints that ensure liveness, we start with the PN of Fig. 13(a), corresponding to the closed-

loop of Fig. 1(b). Consider applying the T -liveness enforcing procedure with T = T (full liveness desired),

Tuo = ∅ and Tuc = {t2, t5}. Due to (8–9), the RMC are µ1 + µ2 + µ5 + µ9 = 1 and µ3 + µ7 + µ8 = 1. The

procedure terminates with the following constraints Cµ ≤ d:

µ1 + 2µ2 + µ5 + µ7 + µ8 + µ9 ≥ 2 (43)

µ1 + µ2 + µ3 + 2µ5 + µ8 + µ9 ≥ 2 (44)

and the following constraints C0µ ≤ d0

µ3 + µ4 ≥ 1 (45)

µ6 + µ7 ≥ 1 (46)

In view of the RMC, µ8 and µ9 can be substituted, and then (43) and (44) become

µ2 − µ3 ≥ 0 (47)

µ5 − µ7 ≥ 0 (48)

The supervised PN is shown in Fig. 13(b), while Fig. 13(c) shows the original plant supervised with (6–7)

and the additional constraints (47–48) for liveness enforcement. 2
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7.6 Discussion

This section has shown that various types of specifications can be approached by structural methods and

SBPI. Among language specifications, we have only considered specifications requiring the language of the

closed-loop to be a sublanguage of the specification. Specifications requiring the closed-loop to generate a

given PN language are more difficult. The existence of supervisors for this class of specifications is considered

in [16].

Further, we have not considered the languages of labeled PNs with final states. For such PNs, a word

is accepted only if it leads to a marking contained in the set of the final states. For such problems the

supervision is to be nonblocking, that is, words leading to states from which the final states are unreachable

should not be allowed. Thus, if L is the language describing the specification, the approach of section 7.2

can be used to ensure all sequences of plant events are in L. However, the approach of section 7.2 may allow

the plant to deadlock after generating a word w ∈ L \ L. Thus, a final state may never be reached. A topic

of further research is to enhance the approach of section 7.2 to guarantee this situation cannot occur. This

topic is related to [31, 30], dealing with specifications requiring target states to be reached and prespecified

sequences to be fired.

Another type of languages considered in the literature deal with the infinite behavior of a plant. They

express the requirement that there are no deadlocks and for all infinite words, some final state is infinitely

often visited. Automata with this acceptance rule are called Büchi automata. It is known that specifications

expressed in LTL (linear-time temporal logic) can be translated into Büchi automata [10]. This result

is interesting, as it suggests temporal logic can be approached in our PN setting. Thus, given a Büchi

automaton A, we can first apply the approach of section 7.2, to generate a supervisor enforcing the part

of the specification described by the structure of A. Then, deadlock prevention or T -liveness enforcement

methods could be applied to guarantee some final states are infinitely often visited. The application of PN

structural methods to temporal logic is an interesting topic of further research.

The application to temporal logic highlights the importance of a reliable tool for T -liveness enforcement.

As mentioned in section 7.5, the procedure of [32, 38] does not have guaranteed termination. In practice,

the termination issue can be mitigated by using transformations to “EAC-nets” instead of “AC-nets” [32].

However, the total elimination of this issue is a matter of further research.

The procedure of section 7.5 is rather unique in that it offers a structural approach for T -liveness en-

forcement (not just liveness enforcement), it makes no assumptions on the structure of the PN, and supports

partial controllability and partial observability. Other approaches in the literature are on liveness (not T -

liveness) enforcement. Further, they typically make various assumptions on the structure of the PN and

assume full controllability and observability. While valuable for the class of problems they were developed

for, they may not be applicable to the closed-loop PNs resulting by enforcing specifications (1) or the more
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general specifications discussed in this section. There are also some notable exceptions, from the area of

reachability based methods. First, under boundedness assumptions and for a fixed initial marking, the T -

liveness enforcement problem is obviously solvable based on the reachability graph, which is finite in this

case. However, even when these assumptions do not hold true, it is still possible to find a T -liveness enforc-

ing supervisor, as shown in [64]. The approach of [64] can be used for T -liveness enforcement for arbitrary

PNs but under full controllability and observability. The algorithm of [64] searches the marking space to

find a set of minimal markings; based on this set the least restrictive T -liveness enforcing supervisor can be

immediately derived. While this approach has guaranteed termination, it has the following computational

limitation: (a) the coverability graph is to be evaluated for every marking considered during the search; (b)

the number of minimal markings as well as the size of a coverability graph may be large (e.g. exponential in

the size of the net).

8 Applications

The constraints (1) have been proposed for various applications, such as in chemical processes [67], AGV

coordination [42], manufacturing constraints [51], and mutual exclusion in batch processing [63]. Moreover,

the class of constraints Lµ+Hq ≤ b has also been applied for the supervisory control of railway networks [19].

The constraints Cv ≤ b have also been used for fairness enforcement, such as bounding the difference between

the number of occurrences of two events, in protocols [13] and manufacturing [48].

In this section we mention some other areas of application for the constraints (1). We consider here:

- an application to semaphores in Operating Systems.

- an application to fault-tolerance.

- the relation to synchronic distances.

8.1 Semaphores

The application of supervisory control techniques in software engineering has been proposed in [47, 45].

There, the supervisor can be seen as a plug-in to other software modules, ensuring certain specifications

are satisfied. The approach there is to use the unfolding4 of PN models for supervisor design. Obviously,

other approaches could be applied as well for the supervisor design of software modules. In this section we

consider monitor-based supervisors, we show such supervisors can be implemented in software by means of

semaphores, and we discuss some of the potential benefits of the supervisory control approach for automatic

code generation.

4Unfolding is a partial order method that constructs a reduced reachability graph
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Semaphores, monitors and rendez-vous mechanisms have been used in the context of Operating Systems

for synchronization and control of access to shared resources. The PN modeling of these mechanisms has

been considered in the literature [70]. In particular, the relation between PNs and semaphores has been

known for a long time [40]. The observation that monitors correspond to semaphores is also known [26, 46].

Semaphores are nonnegative integer variables that can be accessed by means of two indivisible operations

provided by the operating system: wait and signal. Given a semaphore x, when a process calls wait(x),

the operating system can act in two ways: (a) if x ≥ 1, x → x − 1; (b) if x = 0, the process calling wait(x)

is suspended. The calls signal(x) result in two possible actions: (a) if there are processes suspended on

wait(x), one of them is selected to resume its execution; (b) otherwise, x → x + 1.

Semaphores can easily be modeled by monitors, as illustrated in Figure 14. The figure shows three

processes PR1, PR2, and PR3, that share a memory location. The process PR1 may access the memory

when p2 is marked, PR2 when p5 is marked, and PR3 when p8 is marked. To ensure the memory is not

read and written at the same time by different processes, a semaphore is added, which is represented by the

marking of the place C. Thus, the transitions t ∈ C• correspond to wait calls and the transitions t ∈ •C to

signal calls. For the marking shown in the figure, PR3 is running, while PR1 and PR2 are suspended, as

they cannot execute t2 and t6. However, after PR3 executes t11 (signal), one of PR1 or PR2 may resume

its execution. Note also that the constraint enforced by the semaphore is µ2 + µ5 + µ8 ≤ 1.

This example illustrates also that given a specification, such as a memory location may only be accessed by

one process at a time, the semaphores implementing it may be automatically generated using the supervisory

techniques of this paper. Some issues arise:

• Specifications (1) may result in more complex control structures, with more than one monitor connected

to a single transition. This requires some simple extensions of the semaphore operations.
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• Some other minor extensions to the semaphore operations are needed to implement specifications (29),

which may produce self-loops.

• The extensions are somewhat more involved in the case of specifications represented by disjunctions

(section 7.4).

• The usage of semaphores may lead to deadlocks. However, a liveness enforcing approach (section 7.5)

could be used to automatically enhance the code with calls to additional semaphores such that no

deadlock can occur.

• Semaphores have been typically used in a centralized setting. However, by means of the approach of

section 6.5, a centralized specification can be decomposed for enforcement in a decentralized/distributed

setting.

8.2 Fault Tolerance

Recent research on the robustness of the SBPI based designs to faults in a plant appears in [36]. There

it is shown that the designs based on the SBPI and the related liveness enforcing approach of [38] have

remarkable built-in qualities that simplify the fault accommodation process. In fact, only minor updates

may be required for certain faults and reconfigurations. The kind of faults/reconfigurations considered in [36]

are: faults modeled by token loss/gain, a class of changes in the form of the constraints, and changes in the

controllability/observability of the system.

In what follows, we focus on a different approach to fault tolerance [24, 59, 61], in which additional places

are added to a PN that allow detecting and correcting errors. Namely, we show that these places can be

described by constraints Lµ ≤ b and Lµ + Hq ≤ b.

An embedding of a PN N = (P, T, D−, D+) is a PN NE = (PE , T, D−
E , D+

E) such that P ⊆ PH , and the

input/output matrices are related by:

D−
E =





D−

X−
E



 D+
E =





D+

X+
E





As defined in [24], NE is a separate redundant embedding if for every initial marking µ0 of N and initial

marking µ0,E = Gµ0 of NE , all firing sequences enabled by µ0 in N are also possible from µ0,E in NE . The

matrix G is required to have the form:

G =





In

C





for n = |P |. Note that for a separate redundant embedding, the places of the embedding are implicit, as

their marking always enable a transition t if the marking of P enables t. Given a matrix X , let’s write X ≥ 0
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if all elements of X are nonnegative; given the matrices X and Y , let’s write X ≤ Y if Y − X ≥ 0, and

let’s denote min(X, Y ) the minimum taken element by element, that is, min(X, Y ) denotes the matrix Z

such that Zi,j = min(Xi,j , Yi,j). Let’s define also max(X, Y ) in a similar way. The following result appears

in [24]:

Theorem 8.1 [24] NE is a separate redundant embedding iff C ≥ 0, X−
E = CD− −A and X+

E = CD+ −A,

where 0 ≤ A ≤ min(CD−, CD+).

Here we show that constructing a redundant embedding is equivalent to designing the supervisor enforcing

Lµ + Hq ≤ 0 for L ≤ 0 and H ≤ −LD−. From [39] we know that in the fully controllable and observable

setting, the least restrictive supervisor enforcing Lµ + Hq ≤ 0 corresponds to a PN of input and output

matrices X− = max(0, LD, H) and X+ = max(0,−LD) + max(0, H − max(0, LD)). Thus, the closed-loop

is given by the input and output matrices:

D−
C =





D−

X−



 D+
C =





D+

X+





It turns out that we have the following result:

Theorem 8.2 NE is a separate redundant embedding iff there are Lµ+Hq ≤ 0 with L ≤ 0 and H ≤ −LD−

such that X− = X−
E and X+ = X+

E .

The result can be proven based on Theorem 8.1: if NE is a separate redundant embedding, we can define

L = −C and H = CD− −A, and then prove X− = X−
E and X+ = X+

E . On the other hand, if Lµ + Hq ≤ 0

with L ≤ 0 and H ≤ −LD−, we can define C = −L and A = min(−LD−,−LD+)−max(0, H−max(0, LD)),

and then prove 0 ≤ A ≤ min(CD−, CD+).

In [24], two types of faults are considered. The first one, place failures, results in a change in the

number of tokens. The second one, transitions failures, result in marking errors when the postcondition

or the precondition of a transition t is not executed, that is, when we have either µ′
E = µE − D−

E(·, t)

or µ′
E = µE + D+

E(·, t) instead of µ′
E = µE + D+

E(·, t) − D−
E (·, t). As shown in [24], the detection and

identification failures relies on C for place failures and on A for transition failures. Note that if we limit

ourselves to place failures, we are free to chose any A such that 0 ≤ A ≤ min(CD−, CD+). In particular,

the choice A = min(CD−, CD+) corresponds to an embedding that do not adds self-loops to the Petri net.

This corresponds to constraints with L = −C and H = CD− − A, that is, H = max(0, LD). However,

the constraints Lµ + Hq ≤ b with H = max(0, LD) can be simply expressed (under the no concurrency

assumption) as Lµ ≤ b (see chapter 3 of [32].) This shows that the constraints (1) can also be used in the

context of fault detection and identification.
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8.3 Synchronic Distances

An area of interest in the study of PNs is the Theory of Synchrony. Introductions to the field may be found

in [13, 62]. The main issue here is the dependence between transition firings, such as, for instance, how many

times can one transition t1 be fired without firing another transition t2. An important concept in this theory

is the synchronic distance, defined below. We show here that specifications requiring bounds on synchronic

distances can be implemented by specifications of the form Cv ≤ b. This observation is important because,

as mentioned also in section 7.1, enforcing constraints Cv ≤ b can be reduced to enforcing constraints (1).

Given a finite firing sequence σ of firing count vector σ, let σi = σ(ti). Thus, σi denotes the number of

occurrences of ti in σ. Recall also that the Parikh vector v equals σ when σ is the sequence of firings since

the initialization of the system. Given a PN with an initial marking and given two transitions t1 and t2, the

synchronic distance can be defined by δ(t1, t2) = supσ |σ1 − σ2|, where the supremum is taken over all finite

sequences σ enabled from some reachable marking. For some systems, a transition t1 may fire twice as often

as a transition t2. Then, it would be natural to evaluate the difference supσ |σ1 − 2σ2|. For this reason and

in order to compare sets of transitions instead of just single transitions, the synchronic distance is defined

with respect to weight vectors W1 and W2 as δ(W1, W2) = supσ |W1σ − W2σ|.

As shown on an example in [13], it may be useful to have specifications of the form δ(W1, W2) ≤ d. Note

that |W1v − W2v| ≤ d/2 ⇒ δ(W1, W2) ≤ d. Indeed, given σ enabled by µ, let σ0 be the sequence by which

µ was reached from the initial state, and let σ1 = σ0σ. We have |W1σ − W2σ| ≤ |W1σ
0 − W2σ

0| + |W1σ
1 −

W2σ
1| ≤ d, where we have taken in account that for any firing sequence σ0 from the initial marking, there is

a reachable state v such that v = σ0. Thus, constraints Cv ≤ b can be used to describe synchronic distance

specifications.

9 Conclusions

The problem of enforcing specifications Lµ ≤ b can be approached by numerous methods, as shown in this

survey. We have emphasized a subset of structural methods, showing that they can be extended to very

general plant models, including labeled Petri nets. Enforcing specifications Lµ ≤ b is of interest to numerous

problems, as more general specifications can be reduced to the form Lµ ≤ b by transforming the plant

model. Such general specifications that are treated in this paper include languages and disjunctions of linear

inequalities.

Finally, it should be noted that some of the methods mentioned in this paper have been implemented

in software. In particular, the SPNBOX [33] is a Matlab toolbox available on the web, that implements

supervisor design approaches of [52, 39, 38] for SBPI design and liveness enforcement.
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