
SIAM J. CONTROL AND OPTIMIZATION
Voi. 25, No. 1, January 1987

(C) 1987 Society for Industrial and Applied Mathematics
013

SUPERVISORY CONTROL OF A CLASS OF
DISCRETE EVENT PROCESSES*

P. J. RAMADGE’I’:I: AND W. M. WONHAMf

Abstract. The paper studies the control of a class of discrete event processes, i.e., processes that are
discrete, asynchronous and possibly nondeterministic. The controlled process is described as the generator
of a formal language, while the controller, or supervisor, is constructed from a recognizer for a specified
target language that incorporates the desired closed-loop system behavior. The existence problem for a
supervisor is reduced to finding the largest controllable language contained in a given legal language. Two
examples are provided.

Key words, discrete event systems, control, automata

AMS(MOS) subject classifications. 93C10, 93B50, 93C30

1. Introduction. In this paper we study the control of a class of systems broadly
known as discrete event processes. The principal features of such processes are that
they are discrete, asynchronous and (possibly) nondeterministic. Typical instances
include computer networks, flexible manufacturing systems, and the start-up and
shut-down procedures of industrial plants.

While numerous practical examples are described in the literature on simulation
(see especially Fishman [1978] and Zeigler [1984]), there is at the present time
apparently no unifying theory for the control of discrete event processes. Nor is it
entirely clear what such a theory ought to encompass. Numerous approaches to the
modeling of discrete event processes have appeared in the literature. A general sampling
of these could include boolean models (Aveyard [1974]); Petri nets (Peterson [1981]);
formal languages (Beauquier and Nivat [1980], Park [1981]); temporal logic (Pnueli
[1979], Hailpern and Owicki [1983]); and port automata and flow networks (Milne
and Milner 1979], Steenstrup, Arbib and Manes 1981]). All of this work is concerned,
in one way or another, with the problem of how to achieve or verify the orderly flow
of events; and to this end how to bring together ideas from logic, language and
automaton theory. However, while control problems are implicit in much of the work
just cited, control-theoretic ideas as such have found little application there. The variety
of approaches reflects the diversity of areas in which discrete event processes play an
important role. It also indicates that to date no dominant paradigm has emerged upon
which a theory of control might be based.

In this article we investigate a simple abstract model of a controlled discrete event
process, our main objective being to determine qualitative structural features of the
relevant basic control problems. Specifically we take the controlled process to be the
generator of a formal language, and study how the recognizer of a specified (target)
language may be employed as a controller. In this regard we found-suggestive the
work of Shaw [1978] and Shields [1979] on flow expressions and path expressions

* Received by the editors August 17, 1984, and in final revised form March 21, 1985.
f Systems Control Group, Department of Electrical Engineering, University of Toronto, Toronto,

Ontario, Canada M5S 1A4. This research was partially supported by the Natural Sciences and Engineering
Research Council of Canada under grant A-7399.

Present address, Department of Electrical Engineering and Computer Science, Princeton University,
Princeton, New Jersey 08544.

206

CONTROL OF DISCRETE EVENT PROCESSES 207

respectively; while C. A. R. Hoare has recently brought to our attention certain points
of similarity with his linguistic approach to concurrent processes in Hoare [1983,
Chap. 2]. Nevertheless our definition of "controllable language," and our main results.
(Theorems 7.1 and 10.1) on the existence and structure of controllers are believed to
be quite new. Our approach is similar in spirit to some qualitative theories of multivari-
able control synthesis that have emerged over the last decade in the context of standard
dynamic systems (for example, Wonham [1979], Nijmeijer [1983]). The present article
is based on Ramadge [1983], and is summarized in Ramadge and Wonham [1984],
while earlier versions appeared as Ramadge and Wonham [1982a, b].

The paper is organized as follows. In 2 we define the class of controlled processes
and controllers (supervisors) of in.terest; and in 3 we discuss various associated formal
languages. Sections 4 and 5 develop criteria for the existence of a supervisor for which
the corresponding closed-loop controlled system satisfies given linguistic requirements;
the main new idea here is that of a controllable language. Section 6 introduces the
notion of a supervisor that is proper, namely nonblocking and nonrejecting. In 7 we
pose two problems of supervisor synthesis" the Supervisory Marking Problem (SMP)
and the Supervisory Control Problem (SCP). Each of these is then shown to be solvable
in a minimally restrictive, or "optimal," fashion in the class of proper supervisors, the
"optimality" depending on a semilattice property of the relevant classes of languages.
Section 8 defines a projection (or simplification) of supervisors. The latter, combined
with some notions of reduction of languages and recognizers in 9, leads to our second
main result in 10, the Quotient Structure Theorem. According to this, every efficiently
constructed supervisor is structurally equivalent to a quotient (i.e., high-level, or
lumped, model) of a recognizer of the desired closed-loop generated language. We
conclude in 11 and 12 with two simple but practical illustrations.

2. Controlled discrete-event processes.
2.1. Generators. To establish notation we first recall various standard ideas from

automaton and language theory (cf. Hopcroft and Ullman 1979]). We define a generator
to be a 5-tuple

= (Q, E, 3, qo, Q,,)

where Q is the set of states q, , is the alphabet or set of output symbols tr, :E x Q - Qis the transition function, qo Q is the initial state and Qm c Q is a subset of states to
be called marker states. We always assume that E, but not necessarily Q or Qm, is
finite. In general, is only a partial function (pfn), meaning that, for each fixed q Q,
(tr, q) is defined only for some subset E(q)c E that depends on q. Formally 3 is
equivalent to a directed graph with node set Q and an edge q q’ labeled tr for each
triple (tr, q, q’) such that q’= (tr, q). Such an edge, or state transition, will be called
an event.

We interpret 3 as a device that starts in qo and executes state transitions, i.e.,
generates a sequence of events, by following its graph. Events are considered to occur
spontaneously (no auxiliary forcing mechanism is postulated), asynchronously (i.e.,
without reference to a clock) and instantaneously. An event is thought of as signaled
(to an outside observer, say) by its label tr. c may be nondeterministic in the sense
that more than one event may be available for selection at a given node of its graph;
however, distinct events at a given node always carry distinct labels.

The terms generator and marker state are nonstandard, but better suited to our interpretation than,
for example, "automaton" and "final state." Our "generator" is a special case of Harrison’s "transition
system" (Harrison 1965]); it will play the role of "plant" in the sense of control theory.

208 P. J. RAMADGE AND W. M. WONHAM

Let E* denote the set of all finite strings s of elements of E, including the empty
string, 1.2 In standard fashion we construct the extended transition function

according to

and

:E*xQ-Q (pfn)

t(1, q) q, qQ,

(str, q)= t(tr, (s, q))

whenever q’= (s, q) and (tr, q’) are both defined. Any subset of E* is a language
over . The strings of a language are often called words. The language generated by

is

L() {w: w E* and (w, qo) is defined}.

The language marked by is

L() {w: w L() and (w, qo) Qm}.

We interpret L() as the set of all possible finite sequences of events that can occur;
while Lm() L() is a distinguished subset of these sequences that may be "marked,"
or recorded, perhaps representing completed "tasks" (or sequences of tasks) carried
out by the physical process that is intended to model.

To conclude this subsection we remark that it is usually convenient to eliminate
states of that can never be reached (or "accessed") from qo. Namely let

Q {q:w E*, (w, qo) q},

Q..=QOQ,
I(E x Q).

The accessible component of , denoted by Ac(), is then defined to be

Ac() Qac, , ac, qo, Q,).
A generator is accessible if Ac().

We say that is co-accessible if every string in L() can be completed to a string
in L(), i.e.,

(w)w L()(]s)s E* and ws L().

If is both accessible and co-accessible it is said to be trim (Eilenberg [1974]). It is
well known (cf. Eilenberg [1974, 111.5]) that to every language (i.e., subset of E*)
there corresponds a trim generator that is essentially unique.

2.2. Controlled discrete event processes. To a generator (Q, E, 8, qo, Q) we
now adjoin a means of control. That is, will play the role of the "plant" (object to
be controlled) of standard control theory. For this letE c E be a distinguished subset
of the alphabet; we say that an event (g, q, q’) is a controlled event if g e E. Let

r= {0,1}

plays the role of identity of string concatenation, i.e., s s s.
Here there is no implication that generating action halts after the completion ofsome marked sequence;

marked states of need not be "final" states.

CONTROL OF DISCRETE EVENT PROCESSES 209

be the set of all binary assignments to the elements of Zc. Each assignment y F, i.e.,
each function

y Zc-> {0, 1},
is a control pattern. An event (with label) tr is said to be enabled by y if y(tr)= 1, or
disabled by y if y(r)= 0. It is convenient to extend each y F to a map y:X-> {0, 1}
by defining y(r) 1 for each cr X X. If 6 X x Q --> Q is the transition function of
fg, we define an augmented transition function

6,:FxExQ->Q (pfn)

according to

6c(%O.,q)={ (’q)undefined

if 8(r, q) is defined and y(r)= 1,
otherwise.

Formally, the object

c (Q, FxX, a, qo, Qm)

is just another generator, constructed from g by a specification of X,. However, we
interpret gc as a version of d that admits external control, as follows. For brevity call
"an event labeled tr" simply "an event m" For each fixed y F there is a generator
d(y) formed by deleting from the graph of d those events tr with y(o-)= 0, i.e., those
events that the control pattern y disables. Then external control action would consist
simply in switching the control pattern through a sequence of elements % y’, y",...
in F, like switching the pattern of red and green lights in a traffic network. Observe
that such control is "permissive" (cf. Peterson [1981]): while disabled events are
certainly prevented from occurring, enabled events are not necessarily forced to occur.

A structure g as described above will be called a controlled discrete event process
(CDEP).

2.3. Example---a primitive CDEP. A user of a resource may be modeled as a
deterministic CDEP with three states I (IDLE), R (REQUEST) and-U (USE), and
with transitions as shown. Here we take (with some change of notation)

IDLE

USE

Z {a,/3, y} and Z, {/3}. The (two) control patterns correspond to evaluations c 0
or c 1 of the control variable c. A transition R --> U may occur only when c 1.

More interesting examples arise with the concurrent control of several CDEPs;
these may then be combined into a single nondeterministic CDEP. At this stage the
reader may skip ahead to 11 and 12 for a glance at examples of this type.

2.4. Supervisors. Our objective will be to design a controller that switches control
patterns in such a way that a given CDEP, qd,, as described in 2.2, behaves in
obedience to various constraints. Such a controller will be called a supervisor. Formally
a supervisor is a pair

se= (s,).
Here

S (X, -, , Xo, Xm)

210 P. J. RAMADGE AND W. M. WONHAM

is a deterministic automaton with (possibly infinite) state set X, input alphabet E,
transition (partial) function : xX- X, initial state Xo and marker subsetX c X;
while

4 X- F
is a (total) function that maps supervisor states x into control patterns y. Thus for
each x X,

y := b (x) {0,1}%.
(As before we extend b(x) to a map b(x):Z{0,1} with b(x)(r)=l for each
tr .) S will always be assumed to be accessible. We call b the statefeedback map.

In many applications it will be the ease that Xm X, i.e., the supervisor plays no
auxiliary "marking" role; but the extra generality with Xm # X is obtained with little
effort.

We interpret S conventionally, as a device that executes a sequence of state
transitions (according to) in response to an appropriate input string w*. Thus
we may couple 3 to in a feedback loop by allowing the state transitions of S to
be forced by , and requiring to be constrained by the successive control patterns
determined by the states of S. Formally define the partial function

’x 6::xX x Q->X x Q (pfn)

according to

(or, x, q)- (sO(or, x), 6(b(x), or, q)).

Thus (sc 6c)(r, x, q) is defined if[6(r, q) is defined, b(x)(r) 1, and sO(or, x) is defined.
This yields the generator

(X x Q, y,, x, (Xo, qo), Xm X Q,,).
We define the supervised discrete event process (SDEP), denoted by 5e/, to be

the accessible generator4

(2.1) 5e/qg Ac(X x Q, y,, x 6, (Xo, qo), Xm X Qm).

From now on we shall assume that s x 6 has been extended to strings of 5:* in the
way described in 2.1 for /5. Of course, so far there is nothing to guarantee that
(X x Q) is anything more than the singleton {(Xo, qo)}, or that L(Sf/c) is any larger
than the singleton { 1} consisting of the empty string alone.

In analogy to the case of itself, we wish to interpret the language L(Sf/q)
generated by 5v/q as the set of all possible finite sequences of events that can occur
when 5 is coupled to as just described. For this it is necessary to ensure that
transitions of S are actually defined whenever they can occur in c and are enabled
by 4. To formalize this relationship we shall say that is complete with respect to J
provided the following is true: for all s e E*, tre E the three conditions

(i) s L(/),
(ii) sir L(q3) (i.e., B(str, qo) is defined),
(iii) [b (s, Xo)](tr) 1 (i.e., r is enabled at sO(s, Xo)), together imply that
(iv) sir L(/cg) (i.e., s(sr, Xo) is defined).
While the definition (2.1) is logically acceptable as it stands, it will be of real

value only when it is physically interesting, namely when 5e is complete with respect
to .

4 The notation is intended to suggest simply that "cg is under supervision by 5e;" no quotient structure
is implied

CONTROL OF DISCRETE EVENT PROCESSES 211

Before continuing with the general development, the reader might wish to glance
at the opening paragraphs of 11 and 12, where two concrete examples of supervisory
control problems are provided.

3. Languages of
3.1. Definitions. Let Lc E*. The closure of L, denoted by/, is the set of.all strings

that are prefixes of words of L, i.e.,

L {s: s E* and (=lt)t ,*, st L}.

For instance, if L then L and if L then 1 L. A language L is closed if
L L. If d is any generator then L(g) is closed; if in addition is trim then

L() L().

Let fgc be a CDEP constructed from a generator d. For simplicity we shall denote
gc simply by its underlying generator . The notation L(g) will henceforth denote
the language generated by g if disabling control action were absent, i.e., all events
tr eE were permanently enabled. Similarly we refer to Lm(d) as the uncontrolled
(discrete-event) process language. Let 6e be a supervisor for , L(S/g) the language
generated by 6e/ and Lm(/g) the language marked by /. Define the language
controlled by 6f in (g to be

(3.1) L(/) := L(..,cf/ c_g CI Lm (c).

In other words, L(6e/) consists of those (marked) strings of the uncontrolled process
language that "survive" in the presence of supervision.

It is clear from the definitions that

(3.2) Lm(..,cf/) L(/) Lm(c)

and, if g is trim,

(3.3) Lm(Y/fg)c Lc(/fg)c L(Se/cg)[L(/qd)] c L(qd)= Lm(().

3.2. Examples. Let be the generator over E {a, fl, y} displayed below.

’C

Then

Lm(() (c’y*fl)*

We shall consider two different supervisors, each specified by its transition graph, as
follows.

(i)

x0QXlS /,

c=O c=l

,o
Y

-0

Xm {x0}

For the notation of regular expressions used here and below see, for example, Hopcroft and Ullman
[1979].

212 P. J. RAMADGE AND W. M. WONHAM

This gives for S/03 the transition graph

q0---’ 1’(Xo’ ql (x2

It is seen that

L(9/03) (a,8)*(1 + a,*),

L(9/ 03) L(St/ 03) fq L,,(03) ()* L,,(9/ 03).

This gives for 5e/03 the transition graph

(x0,q0".--Xl, ql)(x;qi_.____(x q0)

It is seen that

(se/) () (v*)*.

Again for future reference (6), we note that

Lm oC/ 03 oz[3 * Lc oC/ 03

and

(ii)

Xm% {(XOq0)

L,, (,9/03) Lc (Se/03).
4. Marking and control. A supervisor ,9 performs two essentially independent

tasks" marking (as described by L,,(/03)) and control (as described by Lc(/03),
L(ST/03)). If a given controlled behavior is achievable, then any marking task is
simultaneously achievable that is consistent with the controlled behavior.

Without essential loss of generality we assume that the generator 03 is trim, namely

L(03) L,, (03).

PROPOSITION 4.1. (i) For each sublanguage K c L,,(03) there exists a complete
supervisor S such that, for S/03, we have

L(/ 03) L(03), L,, (5/03) K.

(ii) Let L be a closed sublanguage of L(03). If there exists a complete supervisor 5#

for which L(/ 03) L then for every sublanguage K ofL CI L,, (c) there exists a complete
supervisor 5K such that, correspondingly,

L(K/ 03) L, L,,(K/ q) K.

Before proving Proposition 4.1 we make the (more or less standard) definition:
if Lc *, a recognizer for L is an accessible generator 03 such that L,, (03) L. While

XmXQm {(Xo,q0)}

For future reference (6) we note, however, that

CONTROL OF DISCRETE EVENT PROCESSES 213

a recognizer and an accessible generator are formally no different, we interpret a
recognizerd (Q, X,/$, qo, Qm) as a device which, like a supervisor, is forced externally
by strings in X*; its action is thus to "recognize" precisely the words of L, regarded
as input strings to St.

Proof of Proposition 4.1. (i) Let S (X, E, :, Xo, Xm) be a recognizer for K. By
adjoining a "dump" state to X, if necessary, we can arrange that :(tr, x) is defined for
all (tr, x) E x X. Define

:X->{O, 1}x

according to

(x)(o’) 1, x X, o"

It is clear that S ($, b) has the required properties.
(ii) Let

T= (Y, X, rl, yo, Ym)

be a recognizer for K. By adjoir.ing a "dump" state to Y, if necessary, it can be arranged
that r/(tr, y) is defined for all (or, y) X x Y. Let

= (s, 6), s= (x, x, , xo, X)

be a complete supervisor for which

L(9/ q3) L.

Define the supervisor

s6, (s’, ’), s’=(x’,x,’,x,,x’)

according to

X’=XxY, ’(tr, x, y) ((tr, x), rl(o’, y)),

x;= (Xo, Yo), X’,, X x Y,, th’(x, y) (x).

Since the control action of 6eK is the same as that of 6e, it is clear that L(6fI/)= L,
and obviously L(6fr/) K. Also, :’(cr, x, y) is defined just when :(cr, x) is defined,
so that Sk is complete with respect to dc. lq

In this proof our construction merely installs a recognizer that acts as a marking
device, either alone in part (i), or "in parallel" with the original supervisor 5e in part
(ii). This does nothing to change the control action, but might be thought of as a means
of recording when words in K have been completed.

5. Controllability. In this section we introduce a definition of controllability that
will play a key role in characterizing those languages that can be generated by
closed-loop structures Sf/cg with a given CDEP rg and a suitable choice of complete
supervisor

Let cg (Q, 5, , qo, Q,,) be a fixed CDEP. We assume that rg is trim, i.e., L(d)=
L,, (d). WriteE E-X, i.e., X, is the set of (labels of) events that cannot be disabled.
Let K c E*, Lc E* be arbitrary languages. We say that K is

(i) L-closed if K K fq L,
(ii) (X,, L)-invariant if KX f) Lc K,
(iii) controllable if K c L(J) and K is (X, L(d))-invariant i.e., KE f’l L(J) c K.
Recall that K is the language consisting of K together with all the prefixes

(including the empty word) of words in K. Thus a sublanguage K of L is L-closed
lit any prefix of K that is a word of L is also a word of K.

214 P. J. RAMADGE AND W. M. WONHAM

The language KEu f’) L consists of all stringS s’ =str where s’ L, s K and tr Eu.
If we think of L as representing "physically possible behavior," and K as "legally
admissible behavior," then the string str is a legally admissible string s followed by
an uncontrolled symbol tr such that str is physically possible. K is (E, L)-invariant
precisely when all such strings are legally admissible, i.e., certain instances of
uncontrolled behavior are nonetheless legal.

Finally, thinking of L(3) as the uncontrolled process language, i.e., the physically
possible uncontrolled behavior of our CDEP, we have that K is controllable if every
prefix s K is physically possible, and every physically possible string str, with s K
and tr uncontrolled, is again in K.

The following technical proposition will support our main results (Theorems 6.1,
7.1) on existence of supervisors.

PROPOSITION 5.1. LetK c Lm(c), K2 tin(c) andK L(c) with g . There
exists a complete supervisor t’ such that for the closed-loop system 6t’/,

(5.1) Lm(,./) K,, Lc(/) K2, L(/)= K3,

(i) K K2,
(ii) K2 K3 f’l Lm(3),
(iii) K3 is closed and controllable.
Proof. (Only if). Let the complete supervisor 5e satisfy (5.1). Condition (i) follows

by (3.2) and (ii) by the definition (3.1) of Lc(S/). We have already noted that
L(6e/3)(K3) is closed. To show that K3 is controllable, suppose that str L(3), with
s K3 K3 L(Se/3)) and r ;. If 6e (S, b) with $ (X, , :, Xo, X,,) then, in
the notation of 2.4,

(x, q):= (: x tSc)(s, Xo, qo)

is defined. Since trE we have b(x)(tr)= 1, and as str L() it follows that q’:=
5 (tr, q) is defined. Therefore

tS(6(x), tr, q)=q’;

and because 5e is complete with respect to 3,

x’:= (,, x)

is defined. Therefore

(sex 8)(o’, x, q)= (:(tr, x), tS(b(x), tr, q))= (x’, q’)

is defined, namely

stre L(Se/) K K3,

so K is controllable.
(If). By Proposition 4.1 it is enough to construct a complete supervisor 5e such

that L(6/3) K For this let S (X, E, :, Xo, X) be a trim recognizer for K Since
K is closed and S is trim, the marker set of $ is X itself, as indicated; and we have
that :(s, Xo) is defined itt s K For x X let, {tr" (::lS)S K and :(s, Xo) x and stre L(3) and str K3}

={o’: (ls)s K and (S, Xo)=X and str K3}

CONTROL OF DISCRETE EVENT PROCESSES 215

We claim that Eo fq lx . In essence this follows by the fact that S is a trim
recognizer for K3. indeed suppose that o- 5: fqE with

S
o K3, (s, Xo) x, so- K3,

S (g3, (s l, Xo) x, S10" g
3

Then

(, x)= (, (s, Xo))= (s, Xo)

fails to be defined (since so- K3); whereas

(, x)= (, (s’, Xo))= (s’, Xo)

must be defined (since slo- K3): a contradiction.
By controllability of K3, c c. Let

b X-> {0, 1}x

be any function such that, if $(x)-: % then

3t(X) 0, 3(X) 1, ,(X Xx) 1.

It is clear from the claim just proved that such a function b exists.
Now let ST (S, b). It will be shown that L(S/ca) K3. By the definition of $, it

is clear that L(/f) K3. For the reverse inclusion, we use induction on the length
Is of strings s L(). If Is] 1, i.e., s o- for some o- X, then

o-1 ifo-E K3x0

so o- L(S"/cg) if o- K3 For a language Lc* write

L0) := {s: s L and Isl-j}, j- o, 1, 2,. .,
and note that L (.Jj=o L). Assume for the induction step that

L(’)(Ae/@) K(3’), i=0, 1,... ,j.

Let s L(S/qd) and consider the string so- L(qd). Now x := :(s, Xo) is defined, and
so o- Xx U X x,l" therefore so- K implies

o- X and :(m x) is defined

implies

implies

Therefore

b(x)(o-) 1 and :(o-, x) is defined

s, s L(e/).

LO+I)(/ @) K3+1).
It only remains to show that 6e is complete with respect to @. For this ’let

s e L(S/’/cg) K3 so" L(

and

b (s, Xo)](o") 1.

216 P.J. RAMADGE AND W. M. WONHAM

Now if str K3, then we must have
o

z,(s,xo).

But this implies that

6o (s, Xo)]() 0,

a contradiction. Hence str E K and 5e is complete.

6. Proper supervisors. To specify controlled behavior in a way that is intuitively
satisfying, more stringent conditions must be placed on the three languages

that describe the closed-loop system /d. We shall say that is nonblocking if

L(S/)[L(/) fq Lm()] L(I)

and that is nonrejecting if

By definition we always have Lc(6/d)c L(/q). If 6e blocks, i.e., fails to be
nonblocking, then there exists a string s generated by b/(q (i.e., s L(b/d)) that can
never be completed to a word st Lc(S/d), i.e., s : L(/3). In this sense the CDEP
may be blocked from ever completing a "task." This undesirable situation is illustrated
by supervisor (i) of 3.2. Here, for instance, the string aT L(Sf/cg) Lc(Sf/).

If 5 rejects, i.e., fails to be nonrejecting, then there exists a string s Lc(/cg)
that can be completed to a "task" in Lc(/) but never to a task that is marked, i.e.,
(say) recorded. By contrast, if Lc(/ud)= L,,(St’/q), so that

L,,(/) L(m/) c L,,,(/),

then for every s L(/) there is some such that st L,(Sf/d), and then st
L(/J) as well. In 3.2 the supervisor (ii) rejects: only strings of the form (aft)*
are marked, while Lc(b/)=(ay*fl)* represents the complete set of tasks that may
be performed.

A supervisor 6e will be said to be proper if it is complete, nonblocking and
nonrejecting; namely 6e is complete and

L,,,(/) L(/)= L(/).

THEOREM 6.1. Let K c L,,(), K #.
(i) There exists a proper supervisor Sf such that L,, (Sf/) K iffK is controllable.

In that case,

L(/) Lm() I’l K.

(ii) There exists a proper supervisor such that L(6/ d)= K iffK is controllable
and L)-closed.

Proof (i) K is controllable iff K is closed and controllable, itt the triple

(K1, K2, K3):= (K, K f’l Lm(d), K)

satisfies conditions (i)-(iii) of Proposition 5.1, iff there exists a complete supervisor
such that

(Lm(,./ c), L(Se/ cg), L(/)) (K, K f3 Lm(d), K)

and this condition means that 6e is proper.

CONTROL OF DISCRETE EVENT PROCESSES 217

(ii) K is controllable and Lm(3)-closed if[the triple

(K1,K,K):=(K,K,K)

satisfies the conditions of Proposition 5.1, if[there exists a complete supervisor ST such
that

(L,,(6e/ d), Lc(/ d), L(/ d)) (K, K, K),

and again this means that 5e is proper.

7. Supervisor synthesis problems. Let languages La, Lg c E* be given, with

(# Lac Lg Lm(C).

We interpret Lg as "legal behavior," i.e., each word of Lg is a "legal task;" and L as
"minimal acceptable behavior," i.e., control of the CDEP q3 in such a way that a
language smaller than L is generated is considered inadequate. We now introduce the

Supervisory Marking Problem (SMP). Construct a proper supervisor
such that

L Lm(..,ca/ c) L.
Similarly we define the

Supervisory Control Problem (SCP). Construct a proper supervisor
such that

L Lc(6e/d) L.
If SCP is solvable then by the proof of Theorem 6.1(ii) we can always arrange

that Lm(/) Lc(S/), so that automatically SMP is solvable as well. For a converse
to this statement, consider the special but interesting case where L is L,.(d)-closed,
i.e.,

L L L().

Then L is a sublanguage of Lm() with the property that if a string st Lg and
s e L,.(d) then also s e L. Now if SMP is solvable, the language Lm(S/) satisfies

La L,.(S/ d) c L,,
so that

Also, since 5f is proper,

L L,. (Sf/) Lc (Sf/ c).

L,.(/ q) L(/)

so that

L(/) L(/) L,.(6/) L.
But L(S/) L() by definition, i.e.,

L(/) c L L() L.
Hence

L L(/) L
and so SCP is solvable as well.

218 P. J. RAMADGE AND W. M. WONHAM

When SMP or SCP is solvable, it may be considered desirable that the solution
be minimally restrictive in the sense that Lm(S’/d) or Lc(S/d), considered as a
sublanguage of Lm(), be as large as possible, subject to the constraint that it is a
sublanguage of Lg. The fact that minimally restrictive solutions are possible in principle
is due to a certain semilattice property that we now describe. For this, let Lc L(J)
be an arbitrary sublanguage of L(g). Let

C(L) := {K" K c L and K is controllable},

F(L) := {K" K c L and K K CI Lm()}.

Thus C(L) (respectively, F(L)) are the controllable (respectively, Lm(d)-closed)
sublanguages of L.

PgoPOSITIOY 7.1. C(L) and F(L) are nonempty classes of languages that are
closed under arbitrary unions.

Proof Let be the empty language (i.e., the empty set in E*). Clearly

C(L) and F(L)

so C(L) and F(L) are nonempty classes. If Ks C(L) for a in some index set A,
then

KE. (q L() = K,, aA.

By the definition of closure it follows immediately that

U K,= U K.

Therefore

U [K,nL()]= U K,= U K,,

and so

U K, e C(L)

as claimed. The proof for F(L) is similar. [-]

By Proposition 7.1 each of C(L), F(L) contains a unique supremal element
with respect to inclusion, which we denote by

sup C(L), sup F(L),

respectively. In fact, C(L) and F(L) are complete subsemilattices of the semilattice
of all sublanguages of L, partially ordered by inclusion, and with join operation the
union of languages.

On the basis of Theorem 6.1 and Proposition 7.1 we immediately obtain our first
main result.

THEOREM 7.1. (i) SMP is solvable iff
sup C(Lg) L

(ii) SCP is solvable iff
sup {C(Lg) I"1 F(Lg)} = L.

CONTROL OF DISCRETE EVENT PROCESSES 219

In each case the corresponding supervisor is minimally restrictive. [3

8. Projections of supervisors. Let (S, k) and (,) each be supervisors
for , where as usual

s (x, , 6, Xo, x), $’X-{O, 1}x,
b"X -> {0, 1}x.

We shall say that a (total) function r" X-* is a projection from to , and
write r"-, provided

(i) r"X-X is surjective,
(ii) (Xo)=o and X,, =.r-(,),
(iii)6 (o (ida. x r)(tr, x) r sc(tr, x) for all (or, x) where :(tr, x) is defined,
(iv) d r d.

Under these conditions we shall refer to S as the quotient of S under r. The situation
is displayed in the diagrams7 below.

id

XX X

Projections represent very close relationships between supervisors, as expressed in the
following. We assume that idx x r is extended to a map idx x r" E*xX E*x in
the natural way.

PROPOSITION 8.1. Let be complete with respect to , and let r" be a
projection. Then

r is unique,
(ii) (Lm, Lc, L)(Sf/ J) (L,,, Lc, L)(/),
(iii) is complete with respect to ,
(iv) 5 is nonblocking (respectively, nonrejecting, proper) iff is nonblocking (respec-

tively, nonrejecting, proper).
Proof. As usual we write

se=(s,), S=(X,X, ,Xo, Xm)

and similarly for S. Recall that, by definition, both S and 2 are accessible.
(i) We have 7r(xo) o. If x e X then, since 9 is accessible, there is a string s e Z*

such that x sO(s, Xo), so

r(x) ro (s, Xo)=o (idx x r)(s, Xo)= (s,
and this formula determines 7r(x) uniquely.

(ii) Write

L L(O/), L(S/W).
If s L with Isl 1, i.e., s or, then b(Xo)(cr) 1, and

(:x Bc)(o-, Xo, qo)= (so(tr, Xo), B(b(xo), o’, qo))= (so(o’, Xo), B(tr, qo))

6By definition idxx r’X x XXx,’(tr, x)(cr, r(x)).
The symbol means that the left-hand diagram is only "partially commutative," in the sense of (iii).

220 P.J. RAMADGE AND W. M. WONHAM

is defined; hence b(Xo)(tr)= 1 and

(x 3)(r, :o, qo)= ((r, :o), 3(r, qo))= (ro sC(r, Xo), 3(r, qo))

(zr x ido) (so x 3)(r, Xo, qo)

is defined. This shows that

L(1) (1).

By induction on Is] it is readily seen that

L() /(), j 0, 1,. ",

hence L L.
For the reverse inclusion suppose first that (x 3)(r, o, qo) is defined. Then r /,

and b(Ro)(Cr)- 1. So

6(Xo)(cr) (o "rr(xo))(cr) th(Xo)(O’) 1.

Also

8(0, qo)= 8c(6(Xo), tr, qo)

is defined, so by virtue of completeness sO(or, Xo) is defined. Therefore

(:x c)(cr, Xo, qo)= (so(or, Xo), (cr, qo))

is defined, and so (1)c L(1). Assuming (c L((i=0, 1,...,j), let s e/(j and
consider scre (J+l. Then s e L() so

x := (: x 8c)(S, Xo, qo), := (sc x)(s, Xo, qo)

are defined, and r(x)= . By exactly the same argument asbefore, applied to (x,)
in place of (Xo, o), we conclude that str e L(/1. So L L and L L. It is now immediate
that

L(/) L(/) fq L,.() L(S/) CI Lm() L(S/).
Finally,

and

s L,,,(9/ q)

iff (x t)(s, Xo, qo)XmX Q,,,

if[sO(s, Xo) x,, and s Lc(Se/),
if[(s, Xo) r-(,,) and s L(9/),
if[r (s, Xo) X,. and s

if[sO(s, Xo) X,, and s L(6e/),
if[(x 8)(s, X*o, qo) -,, x Qm,

if[s t aca/ c
(iii) To verify that 6 is complete with respect to 3, let

s L(/3), sr e L(

(((s, ;o))((r) 1.

Then s L(/c) by (ii), and

bo sO(s, Xo)(cr)= (o ro :(s, Xo))(cr)= ((o g(s, ;o))(cr)= 1.

CONTROL OF DISCRETE EVENT PROCESSES 221

Since Sf is complete it follows that :(s, Xo) is defined, hence (because r is a projection)
(so., :o) is defined as well, namely is complete.

(iv) Immediate from (ii) and (iii).

9. Efficient supervisor. In this section we give a simple abstract characterization
of an "efficiently constructed" supervisor for a given nonempty, controllable and
Lm(q3)-closed language K c E*. By Theorem 6.1(ii) we know that a proper supervisor
5e= (S, d) exists such that K Lm(//c)= Lc(ff/(), so that

K L(,9/c).

Furthermore, by the construction used in the proof of Proposition 5.1 ("if" statement),
we can arrange that, for a string s e K, the state x reached by S is such that, for all o. e,

{(9.1) 6(x)(o.)
O, so. e K,_
1, so. K.

On the basis of (9.1) we define an equivalence relation on E* as follows. Strings
s, s’ E* are control-equivalent, written s--- s’, if for all o. go, so-/ itt s’o- /(. Thus
two strings are control-equivalent if the control action (9.1) immediately following
either one is the same for every o- g.

Recall from automaton theory (for example, Harrison 1965]) that an equivalence
relation e on E* is a right-congruence if, whenever s, s’ E* and s--s’ (mode), then
for all g*, st =- s’t (mode). Now let {%" a A} be an arbitrary nonempty family of
equivalence relations on g*. Their lattice-theoretic join, written

(9.2) e sup {e" a A},
is defined as follows (cf. Szfisz [1963])" s-- s’ (mod e) if there exists an integer k_-> 1,
elements ao, , ak A, and strings Sl, , Sk E* such that

s =- s (mod %0)
S S2 (mod %,)

Sk- =- Sk (mod
sg---- s’ (rood e).

It is easy to check that if, in particular, the e are right-congruences, then so is e.
The lattice-theoretic ordering of equivalence relations on* is defined as follows:

e _-<e if, for all s, s’ *, s -= s’ (mod e) implies s -= s’ (mod e); e is said to be finer
than e2 (or e is coarser than e). Then e in (9.2) is the finest equivalence relation on

* that is coarser then each %, a A.
In general, control-equivalence is not a right-congruence. However, if we define

s s’ (mod o) if s s’, then trivially o is a right-congruence and o-<. It follows from
the preceding that the equivalence

:= sup {e’e a right-congruence on * and e-<_--}

exists, and is the coarsest right-congruence on * that is finer than
For s* let Is] be the equivalence class of s mod . In standard fashion we

construct the corresponding automaton, defined on strings in K. Let

s (X, , , o, x).
Here

X {Is]" sK}, o= [1]

222 P.J. RAMADGE AND W. M. WONHAM

(note that 1 K as K is nonempty and closed); finally :(tr, 2)= ’ if =[s], s e K,
str e K and [str] 2’; otherwise : is not defined. Next we define a control law

;. {0,1}

according to

()() =0;

if, there existss with [s]= ands; otherwise ()()= 1. By our
constction of X, and are unambiguously determined. We can now define the
ecient supeisor

y=(s,).

Evidently is "efficient" in the sense that any automaton , that suppos the
defined control action (9.1) on each string s s, must have a state structure (right-
congruence on E*) at least as fine as that of S.

It is easy to see that is complete, since

sK, [s]=, ()()=1, sL(),

implies s and therefore,) is defined. Much as in the proof of Proposition
8.1 it is straightforward to verify that L(/) K L(/). Finally, as Xm X,

since K is Lm()’closed; so that

K L (/) L (/)

and is proper. us performs the same control action on as the supeisor
with which we staed.

Let (mod) denote -equivalence on E*" s s’ (mod) if for all *, st

iff s’t . Clearly (mod) is a right-congruence. Also, if s s’ (mod) then in
paicular for all E, s K iff s’ K. It follows that

(mod K) <

i.e., for all s, s’ E*, s s’ (rood R) implies s s’. In paicular, if s, s’ R and s
s’ (mod K) then

(s, o)= (s’, o).

We shall refer to the latter propey by saying that the automaton S is K-reduced.
By its construction, S is also K-trim, namely every state of S is visited by a word of
; that is, for every there is s such that s, o)= . In the next section it
is shown that any supeisor with these two propeies can be projected from a
supeisor based on a recognizer for K.

10. Quotient structure theorem. We can now prove the second main result of this
paper. It states, roughly, that "every efficiently constructed supeisor is a quotient
(high-level, or lumped, model) of the desired closed-loop behavior."

Let (S,) be a complete supeisor for . Write K1 := Lm(/), K3 := L(/)
and assume that S is K3-reduced and K3-trim. These propeies hold for the "efficient"
supeisor of the previous section. Finally let

go= (xo,, o, x, x)
be a trim recognizer for K3.

CONTROL OF DISCRETE EVENT PROCESSES 223

THEOREM 10.1. Subject to the foregoing hypotheses, there exist a subsetX c X
and a state feedback map b:X {0, 1}: with the following properties:

The supervisor

o :__ (so, o), so :_ (xo, , o, x, x)
is a complete supervisor for d with

Lm(/) K1,

(ii) There is a projection r o
_.

(iii) If is proper then so is o.
Proof. Write

L(/q3) K

s= (x,, , xo, x).

Letx X. Since ;o is trim there exists s K3 such that

o(s, Xo) x

Let :(s, Xo)=:xX and define r:XX according to r(x) x.
To show that r is well-defined, let g3, :o(t, x)--x, and let :(t, Xo)=: y X.

Since o is a recognizer for K3 and :O(s, Xo) :o(t, x), we have s (mod K3). Since
$ is K3-reduced, st(s, Xo) :(t, Xo), i.e., x y.

We claim that r is a projection. First let x X. Since S is K3-trim, there exists
s E g such that :(s, Xo)= x. Let sr(s, x)=: x. Then as already shown, 7r(x) =x, so
r is surjective. To verify that r respects sr, let (tr, x) yO. We have x= :(s, Xo)
for some s K3, and then str g Since K L(/q), :(tr, r(x)) is defined and, as
shown already, coincides with r (tr, x). To establish that r is a projection it only
remains to define X0m r-l(x,) together with b: b r.

It must be shown that L(/)= K3. By the argument used in the proof of
Proposition 5.1 it is enough to show that

(i) (Vtr, x)(:ls)(s, x)= x and str L(q) and str K3::::t(x)(o") --0,
(ii) (Vtr, X)(:lS)(S, Xo)= X and str K3:=>b(x)(tr)= 1.

For (i), let :(s, x) x, str L(q3), str K3. Clearly s K3. If :(s, Xo) x then, as in
the proof of Proposition 5.1, it follows necessarily that b(x)(tr)-0 and therefore

6(xO)() (6 (x))()= 6(x)()=o.

The proof of (ii) is similar.
To show that yo is complete with respect to we note that

sL(/l), so-L(fg) and [bose(S, Xo)](r)=l,
if[

s L(/q3), scr s L(q3) and b (s, Xo)](r) 1.

But since b is complete the latter condition implies that sr
Finally let s K3. Then

sK1
iff (s, Xo) Xm and 8(s, qo)s Qm,

iff r (s, x) X and 8(s, qo) Qm,

itt :O(s, x) Xm and 8(s, qo) Qm,

iff s Lm ,/ c

224 P. J. RAMADGE AND W. M. WONHAM

So L,,(S/d) L,, (6e/fg). In particular if ST is proper, so is S. D

11. Example 1. We consider two users of a single resource, each modeled as in
2.3, giving the state transition graphs dl, d2 of Fig. 11.1. For d we take the "shuffle"

of dl, d2, namely the process determined by the concurrent actions of J and d2 under
the assumption that these actions are asynchronous and independent. This assumption
rules out the simultaneous occurrence of an event in q with an event in d2, but
otherwise places no constraint on their joint behavior. The graph of d is thus as shown
in Fig. 11.2. Here the state (R) is both qo and (as a singleton) Q,, while L,,() consists
of all words over the alphabet

corresponding to paths in the graph that begin and end at @.
The objective of supervisory control is to manipulate the binary controls c, c2 in

order to satisfy the following synchronization requirements.
(i) Mutual exclusion: , cg never simultaneously occupy their respective USE

states.

3’

DLE DLE

REQUESTREQUEST USE
"c "c

USE

FIG. 11.1. Example 1" Independent CDEPs d and (42.

B2" c2

a2
I

Cl
2

Y2 c2

Bl’C

Bl’C

B2"c

FIG. 11.2. Example 1: Shuffle of fx and cg
2.

2

CONTROL OF DISCRETE EVENT PROCESSES 225

(ii) Fair usage: The USE states of d, 2 are ,occupied according to first-come-
first-served discipline, namely the index sequence of events/3i must coincide with the
index sequence of events

In practical terms this standard problem could, of course, be solved by a queue;
but instead we shall approach it via the ideas of previous sections. However, we defer
to a future article the theoretical issue of how conditions like (i) and (ii) may be
formalized, simply taking it for granted that from them the "legal" behavior Lg
can be explicitly determined. In fact the reader may convince himself that Lg is
described by the generator displayed in Fig. 11.3.8

By inspection of Fig. 11.3 it is easy to see that Lg is both controllable and
Lm(d)-closed. That is,

Lg sup {C(Lg) F(Lg)}.

By Theorem 6.1(ii) there exists a proper supervisor St (S, b) such that Lc(st/ud) Lg.
As demonstrated in the proof of Proposition 5.1, the state transition diagram for Lg
(Fig. 11.3) can serve to define S; it just remains to identify the state feedback map b.
For each state x of S, b(x) is a map

flp(X)’{Cl, C2}{O, 1},

i.e., a binary evaluation of each of the controls Cl, c2. So, with reference to Fig. 11.3,
it is enough to define

1 if an edge labeled/31 issues from x,
b(x)(cl)

0 otherwise,

and similarly for (X)(C2). The resulting control patterns are tabulated in Fig. 11.4.
The supervisor St (S, b) then certainly determines

L(St/) L,, L(st) Lg.
We remark that in this example the alternative supervisor

seo= (so, o)
1

2

o

3 5

FIG. 11.3. Example 1" Recognizerfor Lg.

Alternatively the generator of Fig. 11.3 could be taken as providing the definition of Lg.

226 P. J. RAMADGE AND W. M. WONHAM

State x
0

x x x
3

x
4

x
5

x
6

x
7

x
8

O0 O0 I0 O0 I0 Ol O0 Ol O0

qb O0 I0 I0 I0 I0 Ol Ol Ol Ol

x
0

x2 x2

FIG. 11.4. Example 1: Control data for , 6f and ’.

defined by setting S= S, and with b as tabulated in Fig. 11.4, determines exactly the
same language controlled in 3 as 5e does, namely

L(,Se/) L(,Se/) L.
To verify this statement note that, for instance, states x1, x3 of S are entered only on
the occurrence of the event/31; but since/31 can be immediately followed in 1 only
by Yl, the enablement of/31 by b in Xl and x3 can have no effect on the language
controlled in 3.

It may be left to the reader to verify that 5e is complete with respect to d. From
S we construct a new supervisor S’ (S’, b’) and a projection r" 6e ’ as tabulated
in Fig. 11.4; the result is displayed in Fig. 11.5. By Proposition 8.1

(L,,,, L, L)(b’/ fg) (L,,,, L, L)(/

namely control and marking action are preserved. The simplified supervisor 6e’ has
just 5 states and is equivalent, in fact, to a queue (of maximum length 2) that stores
events a in order of occurrence and is popped by the corresponding events y.

12. Example 2. In a manufacturing system we consider two machines M1, M2
connected in tandem and separated by a buffer B (Fig. 12.1). Each machine Mi is
modeled as a CDEP over the alphabet {ai,/3, A,/x} and having binary-valued controls
{u,, v,} (Fig. 12.2). The machine states are IDLE (I), WORKING (W) and DOWN (D).

2

FIG. 11.5. Example 1: Quotient supervisor b’.

CONTROL OF DISCRETE EVENT PROCESSES 227

FIG. 12.1. Example 2: Machines coupled by a buffer.

12

ct ":Ul/ t2
"u

/ Vl:.V

WI X DI W X D2

FIG. 12.2. Example 2: State diagrams of machines.

The control u enables/disables the transition from I to W (u 1 allows M to "accept
a workpiece"); while v enables/disables the transition from D to I (v 1 means, when
M is in state D, thatM is "under repair"). The buffer B has one slot, i.e., is EMPTY (E)
or FULL (F); it is not a CDEP but simply an automaton driven by M1 and M2
(Fig. 12.3). The system operates as follows. Machine M1 takes a workpiece (event Cl),
and either successfully completes processing and passes the workpiece to the buffer
(event/31); or breaks down and discards the workpiece (event A1), but in that case
may later be repaired (event/Zl). Machine M2 operates in the same way, but takes its
workpiece from the buffer B, provided one is there.

The problem is to manipulate the controls in order to satisfy the four requirements
stated informally below.

(i) M1 executes c1 only if B is in E.
(ii) M2 executes a2 only if B is in F (thereby driving B to E).
(iii) M1 cannot execute al while M2 is in D2.
(iv) If M1 is in D1 and M2 is in D2 then Vl =0.

Condition (iv) means that if both machines are down then M2 must be repaired
before

As in Example 1, we shall not formalize these requirements or present the details
of how the legal language Lg is derived from them, but merely display the result. The
language Lg that incorporates requirements (i)-(iv) with the system constraints is
generated as shown in Fig. 12.4. The corresponding recognizer defines a supervisor
such that L(/) Lg; the control pattterns are tabulated in Fig. 12.6. It can be
verified that b admits the quotient 5e displayed in Fig. 12.5; the required projection
is also tabulated in Fig. 12.6. The quotient represents a reduction from 12 states to 6.

[31

E0 F

2
FIG. 12.3. Example 2: State diagram of buffer.

228 P. J. RAMADGE AND W. M. WONHAM

11

0 P2 4

g2

8 7

FIG. 12.4. Example 2: Recognizer for Lg.

c*1+3

)’2

FIG. 12.5. Example 2: Quotient supervisor

13

CONTROL OF DISCRETE EVENT PROCESSES 229

X X U 1)1 U2 1)2

0 0 0
0 1" 0

2 0
3 0 0

4 3 0 0

5 0 1" 0
6 0 1"
7 2 0
8 3 0 0

9 4 0 0 0
10 5 0
11 5 0

FIG. 12.6. Example 2: Control data for 6? and 5e. Assignments (*) are determined by consistencyfor the

quotient; entries (-) may be assigned arbitrarily, consistent with the quotient.

As will be shown in a future article, it can actually be obtained directly from two
modular "subsupervisors," of which one is modeled on the buffer, and the other
incorporates the logic of breakdown and repair.

13. Conclusion. In this article we have introduced a broad class of controlled
discrete event processes together with some general concepts and results relating to
their control or "supervision." Our main conclusion, the Quotient Structure Theorem,
is similar in spirit to the Internal Model Principle of regulator theory; it may be roughly
paraphrased by saying that "supervisors must be modeled on the task to be accom-
plished."

In future articles we shall discuss constructive methods for computing the supremal
controllable (or closed controllable) sublanguage of a given language, as well as
concrete methods for system specification and supervisor synthesis.

REFERENCES

R. AVEYARD [1974], A boolean modelfor a class ofdiscrete event systems, IEEE Trans. Syst. Man and Cyb.,
SMC-4, pp. 249-258.

J. BEAUQUIER AND M. NIVAT [1980], Application offormal language theory to problems of security and
synchronization, in Formal Language Theory--Perspective and Open Problems, R. V. Book, ed.,
Academic Press, New York, pp. 407-454.

S. EILENBERG [1974], Automata, Languages, and Machines, Vol. A, Academic Press, New York.
G. S. FISHMAN 1978], Principles of Discrete Event Simulation, John Wiley, New York.
B. T. HAIL’ERN AND S. S. OWICKI 1983], Modular verification ofcomputer communication protocols, IEEE

Trans. Comm., COM-31, pp. 56-68.
M. A. HARRISON [1965], Introduction to Switching and Automata Theory, McGraw-Hill, New York.
C. A. R. HOARE [1983], Notes on communicating sequential processes, Tech. Monograph PRG-33, Program-

ming Research Group, Oxford Univ. Computing Laboratory, Oxford.
J. E. HOPCROFT AND J. D. ULLMAN 1979], Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, Reading, MA.
G. MILNE AND R. MILNER [1979], Concurrent processes and their syntax, J. Assoc. Comput. Mach., 26,

pp. 302-321.
H. NIJMEIJER 1983], Nonlinear Multivariable Control: A Differential Geometric Approach, thesis, Rijksuniv.

te Groningen, the Netherlands.
D. PARK 1981], Concurrency and automata on infinite sequences, in Theoretical Computer Science, Lecture

Notes in Computer Science 104, Springer-Verlag, New York, pp. 167-183.
J. L. PETERSON [1981], Petri Net Theory and the Modeling ofSystems, Prentice-Hall, Englewood Cliffs, NJ.

230 P. J. RAMADGE AND W. M. WONHAM

A. PNUELI 1979], The temporal semantics ofconcurrent programs, in Semantics of Concurrent Computation,
Lecture Notes in Computer Science 70, Springer-Verlag, New York, pp. 1-20.

P. J. RAMADGE [1983], Control and Supervision of Discrete Event Processes, Ph.D. thesis, Dept. Electrical
Engineering, Univ. Toronto, Toronto, Ontario.

P. J. RAMADGE AND W. M. WONHAM 1982a], Supervisory control of discrete event processes, in Feedback
Control of Linear and Nonlinear Systems, Lecture Notes in Control and Information Sciences 39,
Springer-Verlag, New York, pp. 202-214.

, 1982b],.Supervision ofdiscrete event processes, Proc. 21st IEEE Conference on Decision and Control,
December, pp. 1228-1229.

, 1984], Supervisory control ofa class of discrete event processes, Proc. Sixth International Conference
Analysis and Optimization of Systems, Nice, June 1984, in Analysis and Optimization of Systems,
A. Bensoussan and J. L. Lions, eds., Lecture Notes in Computer and Information Science 63,
Springer-Verlag, New York, 1984, Part 2, pp. 477-498.

A. C. SHAW [1978], Software descriptions with flow expressions, IEEE Trans. Software Engrg., SE-4 (3), pp.
242-254.

M. W. SHIELDS 1979], COSY trainjourneys, Rpt. ASM/67, Computing Laboratory, Univ. Newcastle-upon-
Tyne.

M. STEENSTRUr’, M. A. Aaa AND E. G. MANES [1981], Port automata and the algebra of concurrent
processes, Computer and Information Science Tech. Rpt. 81-25, Univ. Massachusetts, Amherst, MA.

G. Sz,sz 1963], Introduction to Lattice Theory, Academic Press, New York.
W. M. WONHAM [1979], Linear Multivariable Control: A Geometric Approach, sec. ed., Springer-Verlag,

New York.
B. P. ZEGLER 1984], Multifacetted Modelling and Discrete Event Simulation, Academic Press, New York.

