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Supervisory Control of Deterministic Petri Nets with

Regular Specification Languages ∗†

Ratnesh Kumar Lawrence E. Holloway

Department of Electrical Engineering

University of Kentucky
Lexington, KY 40506-0046

Abstract

Algorithms for computing a minimally restrictive control in the context of
supervisory control of discrete event systems have been well developed when both the
plant and the desired behavior are given as regular languages. In this paper we extend
such prior results by presenting an algorithm for computing a minimally restrictive
control when the plant behavior is a deterministic Petri net language and the de-
sired behavior is a regular language. As part of the development of the algorithm, we
establish the following results that are of independent interest: (i) The problem of de-
termining whether a given deterministic Petri net language is controllable with respect
to another deterministic Petri net language is reducible to a reachability problem of
Petri nets. (ii) The problem of synthesizing the minimally restrictive supervisor so that
the controlled system generates the supremal controllable sublanguage is reducible to a
forbidden marking problem. In particular, we can directly identify the set of forbidden
markings without having to construct any reachability tree.

Keywords: discrete event systems, Petri nets, supervisory control

1 Introduction

Supervisory control theory of discrete event systems (DESs) was initiated by Ramadge
and Wonham [21] to study control of qualitative behavior of systems whose behavior evolve
according to the occurrences of events; examples of which include manufacturing systems,
communication networks, database management systems, etc. It is well known that given an

∗An earlier version of this paper appeared in [14].
†This research was supported in part by the Center for Robotics and Manufacturing at the University of

Kentucky, NSF grants NSF-ECS-9308737 and NSF-ECS-9409712, NASA grant NGT-40049, and Rockwell
International.
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uncontrolled plant with behavior L and a desired behavior K ⊆ L, there exists a supervisor,
which restricts the plant behavior to the desired behavior by dynamically disallowing some of
the controllable events while never preventing any of the uncontrollable events from occurring,
if and only if K is controllable with respect to L. Moreover, when K is not controllable, a
minimally restrictive supervisor is designed which restricts the plant behavior to the supremal

controllable sublanguage of K, denoted K↑.
Algorithms for testing controllability of K with respect to L and those for computing K ↑

have been developed when both K and L are regular languages so that they are representable
as finite state machine models [25, 1, 12, 10]. Recently Petri net (PN) models have received
attention as an alternative model for investigating discrete event control theory (refer to [9]
for a survey). PNs have a more descriptive power than finite state machines in the sense
that the set of PN languages is a superset of regular languages and they allow a more concise
model description.

In this paper we examine the controllability issues in the setting of deterministic PN
languages [19]. Several interesting results already exist in literature. For example, it has been
shown in [24] that the controllability of languages generated by PNs is in general undecidable;
however, it is decidable in a restricted setting when the specification language is generated
by a deterministic Petri net [5]. (This result extends the earlier results reported in [23] for
the case of free-labeled nets, and in [22] for the case of deterministic nets.) Furthermore,
it has been shown in [4] that the supremal controllable sublanguage of a PN language with
respect to another PN language need not be a PN language.

In this paper we present an algorithm for computation of a minimally restrictive super-
visor when the plant behavior is a deterministic PN language and the desired behavior is
a regular language. This extends the prior results which apply to the case when plant and
desired behavior are both regular languages. The algorithm due to Giua and DiCesare [3]
which applies to the plant and the desired behaviors given as conservative PNs also belongs
to this latter case since languages of conservative nets are regular. Our algorithm is based
on a few results, also of independent interest, which we establish first. Specifically, we show
that the problem of determining the controllability of a deterministic PN language K with
respect to another deterministic PN language L is equivalent to determining the reachability
of certain set of “bad” markings in a synchronized Petri net exhibiting the language K ∩ L.
A similar result is reported without proof in [6] (refer to Remark 2). K is controllable with
respect to L if and only if these markings are unreachable in the synchronized net.

The set of bad markings is determined without having to construct any reachability tree
of the synchronized net. Thus if K is not controllable with respect to L, then a forbidden

marking control that avoids reaching the bad markings can be used to achieve the supremal
controllable sublanguage K↑ as the controlled plant behavior. Forbidden state avoidance
control has been considered for several classes of Petri nets including marked graphs [7, 8]
and nets without uncontrolled cycles [16, 17]. Thus these prior techniques can be applied
for minimally restrictive control under the appropriate restrictions imposed in those works.

The topic of converting a language control problem into a state control problem has
already been addressed some in the literature. Giua and DiCesare consider language control
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through state avoidance of the synchronous composition of nets representing plant language
L and desired language K [3]. They show that such a state control is possible when the
synchronous composition is a conservative net. They do not provide a direct method for
determining the set of markings to avoid, but rather suggest constructing a reachability
tree to identify the set. As mentioned above, our work extends the above work. In [16]
Li and Wonham associate a predicate of a suitably “refined” plant with the given language
specification and show that the controller achieving the weakest controllable predicate [13] also
achieves the supremal controllable language. They show that such a minimally restrictive
control can be effectively computed by solving a linear integer programming problem when
the plant is modeled as a vector discrete event system (or equivalently, a Petri net) satisfying
the condition of loop-freedom and the desired predicate possesses a linear form [17]. Thus
our work presented here, and also the work of Li and Wonham, extends the computation of
a minimally restrictive controller from the setting of regular languages to more general but
different settings.

2 Notation and Preliminaries

We use Petri nets to model a discrete event system. Letting GΛ denote a Petri net, it
is defined to be the 5-tuple:

GΛ := (PΛ, TΛ, EΛ,m

Λ
, αΛ);

where PΛ denotes the finite set of places of GΛ; TΛ is the finite set of transitions of GΛ;
EΛ ⊆ {PΛ × TΛ} ∪ {TΛ × PΛ} denotes the finite set of directed arcs connecting places and
transitions of GΛ; m0

Λ
∈ N PΛ (where N is the set of natural numbers) denotes the initial

marking1 of GΛ; and αΛ ∈ ΣTΛ is the labeling function that associates with each transition
t ∈ TΛ an event αΛ(t) belonging to the finite event set Σ. Given a pair of markings m,m′ ∈
NPΛ , we say that m covers m′ (equivalently, m′ is covered by m) if m′(p) ≤ m(p) for each
p ∈ PΛ. Given a finite set A, we use the notation A∗ to denote the set of all finite sequences
of elements in A including the zero length sequence ε. The labeling function αΛ is extended
to αΛ : T ∗

Λ
→ Σ∗ in a natural way.

For each t ∈ TΛ we use the notation t
(P)

and
(P)

t to denote the set of “output” and
“input” places of t respectively, i.e.,

t
(P)

:= {p ∈ PΛ | (t, p) ∈ EΛ};
(P)

t := {p ∈ PΛ | (p, t) ∈ EΛ}.

Similarly, for each p ∈ P, we use p
(T )

,
(T )

p to denote the sets of transitions for which p is an
“input”, “output” place respectively, i.e.,

p
(T )

:= {t ∈ TΛ | (p, t) ∈ EΛ};
(T )

p := {t ∈ TΛ | (t, p) ∈ EΛ}.

1The set NPΛ = {m | m : PΛ → N} denotes the collection of all markings of GΛ.
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A transition t ∈ TΛ is said to be enabled if for all p ∈
(P)

t,m(p) ≥ 1. An enabled transition
t may fire resulting in a new marking m′ ∈ N PΛ given by the firing rule:

m′(p) := m(p) − |p
(T )

∩ {t}| + |
(T )

p ∩ {t}|.

Given m ∈ N PΛ and τ ∈ T ∗
Λ

we use the notation m[τ> to denote the marking reached by
firing the transition sequence τ starting at the marking m provided τ is fireable in m, else it
is undefined.

Letting L(GΛ) denote the language generated by GΛ, it is defined to be:

L(GΛ) := {s ∈ Σ∗ | ∃τ ∈ T ∗
Λ

s.t. αΛ(τ) = s and m0

Λ
[τ> is defined}.

GΛ is called a deterministic PN, and its generated language L(GΛ) is called a deterministic
PN language if for each s ∈ L(GΛ), |α−1

Λ (s)| = 1. It is clear that L(GΛ) is prefix closed [21].
In [20], the language generated is referred to as a P-type language. For the definition of other
types of languages of Petri nets refer to [20], and for relations among various languages of
Petri nets refer to [15] and references therein.

Next we define synchronous composition of two Petri nets GP and GS, which is useful in
our analysis.

Definition 1 The synchronous composition of Petri nets GP := (PP , TP , EP ,m
P
, αP) and

GS := (PS, TS, ES,m
S
, αS) is another Petri net GP‖GS := G := (P, T , E ,m, α), where

• P := PP ∪ PS,
• T := {(tP , tS) ∈ TP ×TS | αP (tP ) = αS(tS)}; α((tP , tS)) := αP (tP ) = αS(tS),

• E := {(p, (tP , tS)) ∈ P × T | (p, tP ) ∈ EP or (p, tS) ∈ ES}
∪{((tP , tS), p) ∈ T × P | (tP , p) ∈ EP or (tS, p) ∈ ES},

• m0(p) :=

{

m0
P
(p) if p ∈ PP

m0
S
(p) if p ∈ PS

The set of places in the synchronized net equals the union of those in the individual
nets. The synchronized net replaces a pair of transitions with the same label but in separate
nets with a single transition in the new net. This single transition has the “input” places
and “output” places as respective union of those from the previous transition pair. Note
that there may exist several transitions in each net with the same label, in which case,
there exists one transition in the synchronized net for each transition pair combination. It
is straightforward to show that the language of the synchronized net G satisfies L(G) =
L(GP ) ∩ L(GS) [20]. Also, G is deterministic whenever GP and GS are deterministic.

For supervisory control the event set Σ is partitioned into Σ = Σu ∪ (Σ−Σu), the sets of
uncontrollable and controllable events. Given a discrete event plant with generated behavior
L ⊆ Σ∗, and a prefix closed language K ⊆ L representing the desired behavior, the supervi-
sory control problem is to synthesize a controller, also called a supervisor, which dynamically
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disables some of the controllable events while never preventing any uncontrollable event from
occurring, so that the controlled plant behavior equals K. Since a supervisor cannot prevent
an uncontrollable event, such a control task is feasible if and only if K is controllable with
respect to L, i.e., if and only if the following invariance relation holds:

KΣu ∩ L ⊆ K.

We say that a string s ∈ K is an uncontrollable string if there exists an uncontrollable event
σu ∈ Σu such that sσu ∈ (L−K). It is clear that K is controllable if and only if it contains
no uncontrollable strings.

3 Language Control via Forbidden Marking

In this section we prove that if the specification of the plant behavior and that of the
desired behavior are both given as Petri net languages, then the problem of determining
controllability of the desired behavior with respect to the plant behavior is equivalent to
that of determining the reachability of a certain set of markings from the initial marking in
the synchronized net. We also show that the problem of minimally restrictive supervision is
reducible to that of a forbidden marking problem in the synchronized net. These results are
used in the following section to obtain an algorithm for computing a minimally restrictive
control.

As before, let L ⊆ Σ∗ be a deterministic PN language representing the generated behavior
of a discrete event plant, and K ⊆ L be another prefix closed deterministic PN language
representing the desired behavior of the controlled plant. Let GL := (PL, TL, EL,m

L
, αL)

and GK := (PK , TK , EK ,m
K

, αK) be two deterministic Petri nets such that L(GL) = L and
L(GK) = K, respectively. We assume without loss of generality that the domain of αL equals
the domain of αK . Note that this can be accomplished even when the events in language K

are a strict subset of the events in language L, since GK can contain transitions which will
never be enabled.

Consider the Petri net GL‖GK := G := (P, T , E ,m, α) obtained by synchronous com-
position of GL and GK . Then by construction of G, we obtain L(G) = L(GL) ∩ L(GK) =
L ∩ K = K, where the last equality follows from the fact that K ⊆ L. We partition the
transition set T = Tu ∪ (T − Tu) into the sets of uncontrollable transitions and the set of
controllable transitions, where Tu := {t ∈ T | α(t) ∈ Σu}.

Define the following set of “bad” markings of the synchronized net G:

Mb := {m ∈ N P | ∃t = (tL, tK) ∈ Tu s.t. m[t> is undefined and (m|PL
)[tL> is defined},

where m|PL
denotes the projection of the marking m of G to the marking of GL. Thus

m ∈ Mb if and only if there exists an uncontrollable event that is not enabled in marking
m of G, whereas it is enabled in the corresponding marking m|PL

of GL. Thus Mb denotes
those markings of G in which an uncontrollable event is allowed in the plant behavior and
disallowed in the desired behavior.
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Remark 1 Note that if a marking m1 = (mL
1
,mK

1
) ∈ N PL × NPK is such that m1 ∈ Mb,

then any marking m2 = (mL
2
,mK

2
) ∈ N PL × NPK such that mL

2
covers mL

1
and mK

2
is

covered by mK
1

is also in Mb. We exploit this property of the set of bad markings to develop
an algorithm for computation of a minimally restrictive control in Section 4.

Theorem 1 Let K ⊆ L ⊆ Σ∗ be prefix closed deterministic Petri net languages, and let Mb

be as defined above. Then K is controllable with respect to L if and only if no marking in
Mb is reachable from the initial marking m0 of the synchronized net G = GL‖GK .

Proof: We prove the contrapositive of Theorem 1, i.e., we prove that K is not controllable
with respect to L if and only if a marking in Mb is reachable from m0.

First assume that there exists a marking m ∈ Mb such that m is reachable from m0, i.e.,
there exists a transition sequence τ ∈ T ∗ such that m0[τ> ∈ Mb. Then we need to show that
K is not controllable with respect to L, i.e., we need to show that there exists a string s ∈ K

and an uncontrollable event σu ∈ Σu such that sσu ∈ (L−K). We claim that α(τ) is such a
string. Since m0[τ> is defined, it is clear that α(τ) ∈ L(G) = K. Also, since m0[τ> ∈ Mb,
there exists a transition t = (tL, tK) ∈ Tu ⊆ TL × TK such that (m0[τ> )[t> = m0[τt> is
not defined and (m0[τ > )|PL

[t> is defined. Since the nets are deterministic, this implies
that α(τt) 6∈ K and α(τt) ∈ L. Thus α(τ) is an uncontrollable string.

Next we prove that if K is not controllable with respect to L, then there exists a transition
sequence τ ∈ T ∗ such that m0[τ> ∈ Mb. Since K is not controllable with respect to L, there
exists a string s ∈ K and an uncontrollable event σu ∈ Σu such that sσu ∈ (L − K).
Since s ∈ K = L(G), α−1(s) is defined. We claim that m0[α−1(s)> ∈ Mb. Suppose for
contradiction that m0[α−1(s)> 6∈ Mb. Then from the definition of Mb, for the string s ∈ K,
there exists no t ∈ Tu such that sα(tu) ∈ (L − K). This contradicts the earlier statement
that the string s is an uncontrollable string.

Remark 2 A result similar to that of Theorem 1 is stated without proof in [6], where the
set of bad markings is defined slightly differently:

{m ∈ N P | ∃t = (tL, tK) ∈ Tu s.t. (m|PL
)[tL> is defined and (m|PK

)[tK> is undefined}.

However, the result is only partially correct because the assumption of determinism is not
imposed, which is needed for the necessity part of the result to hold. It is clear that this set of
markings is identical to Mb. The set of bad markings Mb can be easily identified by inspecting
the input places of each uncontrollable transition t ∈ Tu in the synchronized net G. However,
it is not clear whether their reachability is decidable since in general Mb is an infinite set,
and the reachability of only a finite set of markings is known to be decidable [18]. But using
the result of Sreenivas that controllability is decidable in the setting of deterministic PN
languages (or its extension reported in [5]) we can conclude that the reachability of Mb is

decidable. Finally, since K is controllable if and only if its prefix closure is controllable,
Theorem 1 can be easily extended to the case when K is non-prefix closed, but its prefix
closure is a deterministic PN language.
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Next we show that the problem of minimally restrictive supervision can be reduced to
a forbidden marking problem. Since K,L are both assumed to be prefix closed, it follows
from [12, Corollary 3.3] that K is controllable with respect to L if and only if KΣ∗

u
∩L ⊆ K.

Using this result and Theorem 1 we obtain the result of the next theorem. We first define
the following set of markings of G:

M∗
b

:= {m ∈ N P | ∃τ ∈ T ∗
u

s.t. m[τ> ∈ Mb}.

M∗
b

is the set of markings from which the system can uncontrollably reach the bad marking
set Mb. The result of the following lemma is straightforward:

Lemma 1 Let K ⊆ L ⊆ Σ∗ be prefix closed deterministic Petri net languages and GL and
GK be as defined above. Then K is controllable with respect to L if and only if no marking
in the set M ∗

b
is reachable from m0, the initial marking of G.

The following corollary is immediate from Lemma 1:

Corollary 1 Let K ⊆ L ⊆ Σ∗ be prefix closed deterministic Petri net languages and GL

and GK be as defined above. Then s ∈ K is uncontrollable if and only if m0[α−1(s)> ∈ M ∗
b
.

Corollary 1 characterizes the set of uncontrollable strings of K. We prove in the next
theorem that if all those strings in K, for which execution of any prefix leads to a marking
in M∗

b
, are deleted from K, then the remaining language equals K↑.

Theorem 2 Let K ⊆ L ⊆ Σ∗ be prefix closed deterministic PN languages and let M ∗
b

be
as defined above. Then

K↑ = K − BΣ∗, where B := {s ∈ K | m0[α−1(s)> ∈ M ∗
b
}.

Proof: For notational simplicity, define K − BΣ∗ := H. Then we need to prove that
K↑ = H. Note that K − BΣ∗ is prefix closed since K is prefix closed.

We first prove that H ⊆ K↑. Since K↑ is the supremal controllable sublanguage of K,
it suffices to show that H is controllable, i.e., HΣu ∩ L ⊆ H (as H,L are prefix closed).
Pick any string s ∈ H, then we need to show that there does not exist a σu ∈ Σu such that
sσu ∈ (L − H). Suppose for contradiction that there exists a σu such that sσu ∈ (L − H).
Since H ⊆ K ⊆ L, L−H = (L−K)∪(K−H). Thus either sσu ∈ (L−K) or sσu ∈ (K−H).
If sσu ∈ K − H, then by definition of H and Corollary 1, there exists u ∈ Σ∗

u
such that

sσuu ∈ L−K. Thus in either case there exists a sequence of uncontrollable events which when
appended to s results in a string of L−K. This shows that in either case m0[α−1(s)> ∈ M ∗

b
,

which contradicts that s ∈ H.
Next we prove that K↑ ⊆ H. Since both K↑, H ⊆ K, it suffices to show that (K −H) ⊆

(K −K↑). Pick s ∈ (K −H), then there exists a prefix s′ of s such that m0[α−1(s′)> ∈ M ∗
b
.

It then follows from Corollary 1 that s is uncontrollable. Hence s′ ∈ (K−K↑), which implies
that s ∈ (K − K↑).
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Remark 3 If we let Mb denote the set of forbidden markings, then M ∗
b

is the set of weakly

forbidden markings as defined in [7]. From discussions in [7], it follows that a minimally
restrictive control that avoids the markings in the set Mb also avoids the markings in the set
M∗

b
. This together with Theorem 2 implies that such a control achieves the supremal con-

trollable sublanguage K↑. Thus we have reduced the problem of constructing the generator
for K↑ to a forbidden marking problem, the markings of which can be easily identified. Con-
sequently known forbidden marking algorithms such as those discussed in the introduction
can be applied under the appropriate restrictions of those algorithms.

4 Algorithm for Minimally Restrictive Control

In this section we provide an algorithm for computing a minimally restrictive control
under the additional condition that K can be generated by a safe Petri net, i.e., when it is
regular. Recall that a Petri net is said to be safe if the number of tokens in any place of any
of its reachable marking does not exceed one. Consequently, the set of reachable markings
for a safe net is a finite set. Without loss of any generality this net can be chosen to be a
deterministic net.

Note that each marking in Mb is of the form mb = (mL
b
,mK

b
) ∈ N PL ×NPK , where mL

b
is

the marking of places in PL, and mK
b

is the marking of the places in PK . Due to the safeness
of GK , mK

b
can only take a finitely many values. On the other hand, mL

b
can take infinitely

many values, but it suffices to consider the “minimal” elements of this set. Define the set
(ML

b
)min as follows:

(ML

b
)min := {mL

b
| ∃t ∈ Tu s.t. mL

b
(p) = 1 ,∀p ∈ PL ∩

(P)

t; and mL

b
(p) = 0, otherwise}.

In other words, mL
b
∈ (ML

b
)min if there exists an uncontrollable transition which is enabled

under the marking of mL
b
, and it is a minimal such marking (any other marking under which

the corresponding uncontrollable transition is enabled covers this marking). It then follows
from the definition of Mb that the set (ML

b
)min is the set of minimal elements of the set of

markings of GL that correspond to bad markings of Mb. It also follows that the cardinality
of (ML

b
)min is less than or equal to the number of uncontrolled transitions, Tu, so (ML

b
)min

is finite. Using these observations, we next show that by augmenting the synchronized net
G with certain “complementary” places, it is possible to determine the reachability of a
marking in Mb by determining the coverability of a certain finite set of markings in the
augmented net.

In the following definition the notation p̄ is used to denote a complementary place for a
place p of the synchronized net G. As the name suggests, these complementary places are
marked if and only if the corresponding places are unmarked. A complementary place is
added for each place in PK . A complementary place p̄ is made an output place (respectively,
an input place) of a transition t ∈ T whenever the associated place p ∈ PK is an input place
(respectively, an output place) of the transition t. Formally,
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Definition 2 The augmented net GA, for the the synchronized net G := (P, T , E ,m, α), is
defined to be: GA := (P ∪ P̄K , T , E ∪ Ē , (mA)0, α), where

• P̄K := {p̄ 6∈ P | p ∈ PK},

• Ē := {(t, p̄) ∈ T × P̄K | p ∈
(P)

t − t
(P)

} ∪ {(p̄, t) ∈ P̄K × T | p ∈ t
(P)

−
(P)

t},
• (mA)0(p) := m0(p),∀p ∈ P; (mA)0(p̄) := ¬m0(p),∀p̄ ∈ P̄K .

The result of the following lemma can be obtained using induction on the length of firing
sequences in a straightforward manner:

Lemma 2 Consider G := GL‖GK , where GK is a safe PN, and GA as defined above. Then
for any τ ∈ T ⋆:

1. m0[τ> is defined in G if and only if (mA)0[τ> is defined in GA, and

2. If m = m0[τ > and mA = (mA)0[τ > , then mA(p) = m(p) for p ∈ P and mA(p̄) =
¬m(p) for p̄ ∈ P̄K .

Using the result of Lemma 2 we give an algorithmic test for controllability in the next
theorem, which is then used to compute a minimally restrictive control. We first define a
certain set of markings of the augmented net GA. Note that a marking of the augmented
net is of the type m = (mL,mK , m̄K), where mL is the marking of places in PL, mK is the
marking of places in PK , and m̄K is the marking of the complementary places P̄K . Define
the following set of markings of the augmented net:

MA

b
:= {(mL

b
,mK

b
, m̄K

b
) | (mL

b
,mK

b
) ∈ Mb and mL

b
∈ (ML

b
)min}.

Thus MA
b

consists of markings of the augmented net which correspond to those markings in
Mb that are minimal for the places in PL. Note that MA

b
is finite since GK is a safe PN and

since (ML
b
)min is finite.

Theorem 3 Consider G := GL‖GK and GA as defined above, where GK is safe. Then a
marking in Mb is reachable in G if and only if a marking in MA

b
is coverable in GA.

Proof: First suppose mb = (mL
b
,mK

b
) ∈ Mb is reachable in G. Then it follows from Lemma

2 that mA
b

= (mL
b
,mK

b
, m̄K

b
) is reachable in GA. Since mb ∈ Mb, it follows that mL

b
covers

some minimal marking in (ML
b
)min. So clearly mA

b
covers a marking belonging to MA

b
.

Conversely, suppose a marking in MA
b

is coverable in GA. This implies that there exists a
marking mA

b
= (mL

b
,mK

b
, m̄K

b
) that covers a certain marking (m

′L
b

,m
′K
b

, m̄
′K
b

) ∈ MA
b

and it is
reachable in GA. Then it follows from Lemma 2 that mb = (mL

b
,mK

b
) is reachable in G. We

need to show that mb ∈ Mb. Due to the complementary nature of mK
b

and m̄K
b

, (mK
b

, m̄K
b

)
can only cover itself. Hence mK

b
= m

′K
b

and m̄K
b

= m̄
′K
b

. Since (m
′L
b

,m
′K
b

, m̄
′K
b

) ∈ MA
b

,
by definition we have (m

′L
b

,m
′K
b

) ∈ Mb. Since m
′K
b

= mK
b

, this implies (m
′L
b

,mK
b

) ∈ Mb.
Finally, since mL

b
covers m

′L
b

, it follows from discussions of Remark 1 that (mL
b
,mK

b
) ∈ Mb,

as desired.
The following on-line scheme can be used for minimally restrictive supervision: Enable

a controllable transition if and only if the resulting marking is such that a marking in M A
b

is not uncontrollably coverable from it.

9



Algorithm 1 Consider prefix closed K and L, where K is regular and L is a deterministic
PN language, and the augmented net GA.

1. Initialization step:

Set the current marking m to be (mA)0.

2. Control step:

For each t ∈ T −Tu such that m[t> is defined in GA, disable t if and only if a marking
in MA

b
is coverable in GA by a sequence of uncontrollable transitions from the marking

m[t> . Update the current marking m upon observing the occurrence of an event (that
is not disabled), and repeat the control step.

It follows from Theorem 3 that control of Algorithm 1 prevents the reachability of mark-
ings M ∗

b
in the synchronized net G. Hence it follows from Theorem 2 that the controlled

plant behavior equals K↑.

Remark 4 The computation of minimally restrictive supervisor is on-line in nature and
requires the testing of coverability of the finite set of markings in MA

b
, the computational

complexity of which is in general exponential in the number of places of the associated
net [2]. However, note that the number of states in the plant Petri net can be infinite, in
which case an automata theoretic approach for the computation of the supervisor is not
possible. In the special case when the number of states in the plant Petri net is finite,
it can be exponential in the number of places, and an automata theoretic approach will
have a comparable computational complexity. Finally, using a recent result of Kumar-Garg
[11] that a minimally restrictive control for avoidance of a right-closed set of markings is
effectively computable, it can be concluded that an off-line computation of the minimally
restrictive supervisor in the present setting is also possible, although the exact computational
complexity of this off-line computation remains to be determined.

5 Conclusion

In this paper we have obtained an algorithm for computing a minimally restrictive
control when the plant behavior is a deterministic PN language and the desired behavior is
regular language extending the earlier results of supervisory control theory. Our algorithm
requires prevention of coverability of a finite set of markings MA

b
which can easily be identified

by inspecting the net obtained by the synchronous composition of the plant and the desired
behavior nets. The set MA

b
of markings to avoid includes only binary markings, so any

control policy to prevent them from being covered is equivalent to enforcing a “forbidden
condition” [9]. Such forbidden condition control has been proposed for a variety of net classes
under various conditions [9], and in some cases these can be exploited directly to prevent
the coverability of markings in MA

b
.
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