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Supervisory Control of Timed Discrete Event
Systems with Logical and Temporal Specifications

Francesco Basile, Roberto Cordone, and Luigi Piroddi

Abstract—A novel framework is introduced for the supervisory
control (SC) of timed discrete event systems, based on Time Petri
nets. The method encompasses both logical (markings to reach
or avoid) and temporal specifications (arrival and departure
times in specific markings). It relies on the construction of a
partial forward reachability graph, of the Modified State Class
Graph type, and the formulation of integer linear programming
problems to establish suitable firing time intervals (FTIs) for
the controllable transitions. The SC algorithm provides for each
enabled controllable transition the largest FTI that guarantees
that the specifications are met, irrespectively of the firing times
of the uncontrollable transitions.

Index Terms—Discrete event systems, Time Petri nets, Super-
visory control, Temporal specifications, Reachability, Safety.

I. INTRODUCTION

The most consolidated framework for the supervisory con-
trol (SC) of timed discrete event systems (TDESs) has been
proposed in [1]. In detail, an event is constrained to occur be-
tween a lower and an upper time bound relative to its enabling
instant, the evolution of time being accounted for by a postu-
lated global digital clock, to which the occurrence of events
is synchronized. The lower bound typically represents a delay,
due, e.g., to communication or control enforcement issues,
while the upper bound (if finite) determines a hard deadline
to the event occurrence, imposed by a legal specification or
physical necessity. Events are classified as either prospective
or remote if the upper bound is finite or infinite, respectively.
An event can be disabled only if it is remote, by indefinitely
preventing it from occurring. Prospective events cannot be
permanently disabled, as this would result in a behavior
incompatible with the uncontrolled system (the controller can
only restrict the behavior of the uncontrolled system). The
control action can also “force” an event (denoted also forcible
event) to fire at a specific time instant, preempting a tick of
the clock, provided that the time elapsed from its enabling
is within the associated firing time interval (FTI), [1]. Notice
that in the timed context the tick must be allowed to occur
unless a forcible event is enabled. In the framework of [1], all
non-prohibitible events (i.e., events that cannot be prevented
from occurrence) are labeled as uncontrollable, associating the
notion of controllability only to events that can be disabled. We
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here use a broader interpretation of controllability, considering
as controllable any event whose firing time can be influenced
by the supervisor.

The described approach for the modeling of TDESs relies
on the elementary framework of regular languages and finite
automata, and represents time by the explicit enumeration of
ticks. Both these features contribute to the state explosion
problem, which makes this approach hardly useful in prac-
tice. Furthermore, due to this inherent complexity, only the
enforcement of logical specifications is typically addressed
(see, e.g., [2]), although the framework can handle temporal
ones as well. Typical objectives in the SC framework are
reachability and safety, i.e. the requirements to reach or avoid
specific states, respectively. These can be formulated in a
purely untimed form, or be associated to time constraints,
to enforce performance-related goals. In the usual practice,
reachability and safety requirements are addressed separately
from performance-related ones, the former at the logical
control level and the other at the task planning level. This
practice typically yields over-conservative control policies and
ultimately leads to under-performing control systems.

It is worth recalling that the supervisor is not in charge of
deciding which enabled transition must fire. Hence, if two or
more enabled transitions are in conflict, another agent in an
upper level of the control architecture –the dispatcher– will
decide which of them must fire. This paper does not address
the problem of designing a dispatching policy, which is more a
scheduling-like problem than a control type one. The interested
reader can refer to [3] for further details on this issue.

The state explosion problem can be alleviated to some extent
by adopting Petri nets (PNs) instead of automata, in view of
their intuitive and compact graphical representation and their
convenient mathematical formulation. Several models based on
PNs have been introduced to describe the behavior of TDESs,
such as timed PNs [4] and Time PNs (TPNs) [5]. In timed
PNs the enabled transitions are associated with a constant time
delay, while in TPNs the enabled transitions may fire within
given FTIs, similarly to the previously introduced framework
of [1] for TDESs. Furthermore, TPNs are widely used in the
literature for real-time system specification and verification
[6], [7]. For these reasons, in this paper we focus solely on
TPNs, and we address the challenge of incorporating temporal
specifications in the control design.

For untimed PNs the SC problem is generally formulated in
terms of states (the net markings), but this is not particularly
convenient for timed models such as TPNs, since the state
concept that follows from the way time is accounted for
involves both markings and clocks and ultimately results in
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an infinite state space. For this reason, several abstractions
have been developed in the literature, such as the State Class
Graph (SCG) [5], with its variants (see, e.g., [8], [9]). The
SCG aggregates infinite states of the net system in a single
node of a graph. While it preserves linear properties, such as
marking reachability and firing sequences, it does not preserve
the full state space representation, which may be a problem for
SC if specifications explicitly involving state and time must be
met. Other abstractions, such as the strong SCG, use clocks to
characterize state classes rather than firing domain constraints.
Because of this, they yield a larger graph than the SCG, that
does not preserve the finiteness property for all bounded TPNs.
By contrast, the Modified SCG (MSCG, [10], [11]) employs a
symbolic characterization of the FTIs of the enabled transitions
in a class. This formulation depends on the time spent in that
class [11], and avoids clocks. The MSCG allows a complete
representation of the evolution of a TPN system and preserves
the finiteness property for bounded TPNs, provided that cyclic
sequences of null duration cannot occur (which is typically a
non-limiting assumption). Furthermore, it allows to explicitly
formulate the duration of a sequence of transitions as the sum
of the times spent in each class along the sequence. This last
unique property of the MSCG is essential when addressing
temporal specifications. For these reasons we here adopt the
MSCG as a reference tool for reachability analysis.

A number of contributions in the literature concerns the
application of logical SC laws to TPNs. For example, a Control
Class Graph (an extension of the SCG) is proposed in [12],
[13], to take into account also a non-negligible delay for
control computation. This graph is equivalent to an untimed
automaton, that accounts only for the ordering of activities
induced by timing bounds, while the timing structure is lost, so
that only logical specifications can be considered in the super-
visor synthesis. An online algorithm is used in [14] to establish
if the logical supervisory control law can be relaxed when
applied to the TPN, thus reducing its over-conservativeness.
This algorithm computes online partial MSCGs, where only
the uncontrollable transitions are considered.

In [15] and [16] logical reachability and safety objectives
are pursued and the SC synthesis is carried out working on
state regions, employing TPNs and Timed Automata (TA),
respectively. The control problem is addressed by computing
the winning states of the model, i.e. states which will not lead,
by the firing of uncontrollable transitions, to an undesired state.
The computation of the winning states is based on the concept
of controllable predecessors of states. Unfortunately, this turns
out to be computationally demanding.

In [17] a forward on-the-fly method is proposed for the
synthesis of maximally permissive controllers for TPNs guar-
anteeing safety. On the basis of the exploration of the SCG,
all sequences containing at least a controllable transition and
leading to undesired states are extracted, and FTIs to be
avoided are determined. The merit of this approach is that it is
the first to compute illegal FTIs for the controllable transitions,
as opposed to winning states. This reduces the computational
effort and emphasizes the advantage of using TPNs over TAs
or finite state automata. However, the method requires that the
complete SCG be computed a priori.

Much fewer works address the design of SC laws that
enforce temporal reachability and safety specifications, and
mostly in the context of TAs. A timed reachability problem
can be studied using an augmented automaton, that includes
an additional clock variable, which is never reset to zero and
hence measures the time elapsed since the beginning of a run
[16], [18]. A standard on-the-fly symbolic algorithm for TAs is
typically employed for the reachability analysis. This involves
the exploration of all paths in the automaton, considering for
each path all the possible choices of times in which a state
transition could occur. Thus, the algorithm has to manipulate a
significant (exponential) number of zones (special polyhedra
in the clock space) [18]. Indeed, the reachability algorithm
was originally conceived for verification, and, consequently, it
is exhaustive (it computes all possible runs of the automaton).
This makes it non particularly convenient to handle temporal
specifications with TAs.

In TPNs, time is implicitly represented by a real variable,
which generally leads to more compact and concise models,
that are more amenable to dealing with temporal specifications.
For example, a basic type of temporal specification, concerning
firing deadlines for the transitions of the TPN, is addressed
in [19] without resorting to state exploration. However, the
resulting controller is not maximally permissive, and the
considered type of temporal specifications is not sufficiently
general to handle complex problems. To the best of the
authors’ knowledge, general temporal specifications have not
yet been considered in the SC synthesis for TPNs.

This paper elaborates on the results presented in [17],
proposing a SC framework that can handle general temporal
specifications. As in [17] (and in a number of other contribu-
tions), the control action operates by restricting the FTI of an
enabled controllable transition. This paper improves the results
presented in [17] from several points of view:
• A SC framework is developed for TPNs to address both

logical and temporal specifications of a general form. The
specifications include target markings to be reached in
succession (reachability), and markings to avoid (safety).
Arrival and departure times in the target markings are
required to be in prescribed time intervals (performance).

• The MSCG is employed as a state space abstraction
since it allows to address temporal requirements in a
straightforward way, thanks to the parametric formulation
of the firing times. The full computation of the MSCG
is avoided. Instead, the firing vectors that may allow the
system to fulfil the reachability and safety requirements
are enumerated, and based on these a partial MSCG is
constructed that encompasses all and only the TTSs that
potentially meet the temporal specifications.

• The legal FTIs for the enabled controllable transitions are
computed by solving a series of simple Integer Linear
Programming (ILP) problems, that can be constructed in
a modular way from the partial MSCG.

II. PRELIMINARIES AND BACKGROUND

A. Petri nets
A PN [20] is a quadruple N = (P, T,Pre, Post), where

P is a set of np places (represented by circles), T is a set
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of nt transitions (represented by bars), Pre,Post ∈ Nnp×nt

are the pre- and post- incidence matrices, N denoting the set of
non-negative integers. The incidence matrix is C = Post −
Pre. A marking (i.e., the net state) is a vector m ∈ Nnp that
assigns to each place p a nonnegative integer number m(p) of
tokens (represented by black dots). We will sometimes use the
multiset formalism

∑np

i=1m(pi)pi to represent marking m. A
PN system 〈N,m0〉 is a net N with an initial marking m0.

A transition t is enabled at m if m ≥ Pre(·, t). The firing
of an enabled transition t at a marking m yields a marking
m′ = m +C(· , t). The enabling (firing) of t in m is often
denoted m[t〉 (m[t〉m′). We denote as Te(m) = {t ∈ T |
m ≥ Pre(·, t)} the set of transitions enabled at m, and as
ne(m) = |Te(m)| and Ie(m) = {j ∈ {1, . . . , nt} | tj ∈
Te(m)} their number and indices, respectively. A transition
sequence (TS) s = ti1 ti2 . . . tik is enabled at a marking
m0 (briefly denoted as m0[s〉) if m0[ti1〉m1, m1[ti2〉m2,
. . ., mk−1[tik〉, and the effect of its firing can be computed
in a single operation using the state equation m′ = m+Cσ,
where σ = σ(s) is the firing count vector (FCV) associated
to s (σj being the number of times that transition tj fires in
s). Accordingly, the firing of s in m0 is denoted m0[s〉mk.
We will characterize an FCV as admissible if admits at least
one admissible TS.

A vector y ≥ 0 such that Cy = 0 is called a T-invariant.
An admissible TS whose FCV coincides with a T-invariant
produces a null net marking variation (m′ = m), thus
taking the PN system back to the initial marking. The set of
transitions ||y|| = {tj ∈ T | yj > 0} is called the support of
the T-invariant. A T-invariant y has minimal support if there
does not exist another T-invariant y′ such that ||y′|| ⊂ ||y||.
A T-invariant y is minimal if there does not exist another
T-invariant y′ such that y′ ≤ y. A minimal-support (MS) T-
invariant has minimal support and is minimal. The set of MS
T-invariants is finite and constitutes a basis: any T-invariant can
be obtained by linear combination of MS T-invariants [21].

A marking m is reachable in 〈N,m0〉 if there exists a
TS s such that m0[s〉m. The set R(N,m0) of all markings
reachable from m0 is the reachability set of 〈N,m0〉. A place
pi ∈ P is bounded iff ∃k > 0 s.t. m(i) ≤ k, ∀m ∈ R(N,m0).
A PN system is bounded iff all its places are bounded.

B. Firing vectors and T-invariants
Given a PN system 〈N,m0〉, where N = (P, T,Pre,

Post) and a target marking mt, one can define a comple-
mented net [22] Nc = (P, T ∪{tc},Prec,Postc), where the
auxiliary transition tnt+1 = tc is connected to the places of
the original PN as specified by the additional last column of
the pre- and post- incidence matrices, Prec = [Pre mt] and
Postc = [Post m0]. As a result, the incidence matrix of
Nc is given by Cc = [C (m0 −mt)], which implies that if
tc is fired in mt the system goes back to the initial marking
m0. Indeed, mt + Ccε

(nt+1) = mt + (m0 −mt) = m0,
where ε(j) is the jth versor of the coordinate space. Then, a
necessary condition for the reachability of mt from m0 in N
is the existence of a T-invariant of Nc with a single firing of tc.
The corresponding FCV for N is trivially obtained removing
the nt + 1 entry from such T-invariant.

T-invariants of Nc of this type are denoted singular com-
plementary T-invariants (SCTs) [22]. The other T-invariants
of Nc have either none or multiple firings of tc, and are
denoted non-complementary T-invariants (NCTs) and non-
singular complementary T-invariants (NSCTs), respectively.
Notice that the NCTs correspond to the T-invariants of N .
Accordingly, we can partition the set Y of T-invariants of Nc
as Y = Y0 ∪ Y1 ∪ Y2, where Y0 = {y ∈ Y | ynt+1 = 0},
Y1 = {y ∈ Y | ynt+1 = 1}, and Y2 = {y ∈ Y | ynt+1 ≥ 2}
are the NCTs, the SCTs, and the NSCTs, respectively. Any
element y ∈ Y1 can be constructed as a linear combination of
the MS T-invariants y(1), . . . ,y(p) ⊆ Y [22]:

y =

p∑
j=1

αjy
(j) (1)

provided the coefficients αj ≥ 0, j = 1, . . . , p, satisfy the
following conditions: i) all elements of y are integers, and ii)
ynt+1 =

∑p
j=1 αjy

(j)
nt+1 = 1. It follows from condition (i)

that the αj coefficients must be rational numbers.
The SCTs of Nc corresponding to admissible FCVs of N

(i.e. such that there exist at least one enabled TS taking the PN
system from m0 to mt) are named admissible SCTs and are
collected in the set Y a1 ⊆ Y1. The details of their computation
are discussed in Section IV.

C. Time Petri Nets

A TPN is a pair Nτ = (N,Q), where N = (P, T,Pre,
Post) is the net structure and Q : T → R+

0 × (R+
0 ∪ {∞})

is the set of static intervals associated with the transitions,
where R+

0 is the set of non-negative real numbers. In detail,
Q(ti) = (li, ui) for each transition ti ∈ T , where 0 ≤ li <∞,
ui ≥ li (ui may also be ∞). Transition ti may (must) fire if
it has remained logically enabled uninterruptedly for at least
li time units (for ui time units).

A pair 〈Nτ ,m0〉, where Nτ is a TPN and m0 is the
marking of Nτ at the initial time instant τ0 = 0, is called
a TPN system. A TPN evolution is defined by a time-TS
(TTS), namely a sequence of pairs (transition, time instant):
sτ = (ti1 , τ1)(ti2 , τ2) . . . (tik , τk) ∈ (T × R+

0 )∗, where τj
indicates the time when tij fires, j = 1, . . . , k, and τ1 ≤ τ2 ≤
· · · ≤ τk. The enabling (firing) of sτ at the initial marking
m0 is briefly denoted m0[sτ 〉 (m0[sτ 〉mk), mk being the
final marking reached. We denote as l(sτ ) = ti1ti2 . . . tik
the logical sequence of transitions associated with sτ , and as
σ = σ(l(sτ )) ∈ Nnt the corresponding FCV.

A marking m is reachable in 〈Nτ ,m0〉 if there exists a
TTS sτ such that m0[sτ 〉m. The set of all markings reachable
from m0 is the timed reachability set Rτ (Nτ ,m0). Note that
Rτ (Nτ ,m0) ⊆ R(N,m0), N being the untimed version of
Nτ [20].

A TPN system 〈Nτ ,m0〉 is bounded if there exists a
positive constant k such that, for all m ∈ Rτ (Nτ ,m0),
m(p) ≤ k. Notice that the boundedness of 〈N,m0〉 is only a
sufficient condition for the boundedness of 〈Nτ ,m0〉.

In the rest of this paper we make the following assumptions.
• (A1) Single server semantics. Regardless of the current

enabling degree, a transition may only fire once at a time.
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Hence, each transition represents an operation that can be
executed by a single operation unit (a single server).

• (A2) Enabling memory policy [23], [24]. A transition
has no memory of any previous enabling, i.e. if it is
re-enabled after being disabled by the firing of other
transitions, the period of time during which it has been
enabled before is not considered.

• (A3) For each T-invariant of the TPN, there must be at
least one transition ti in its support with li > 0. In other
words, the system cannot execute idle loops in 0 time.

The state of a TPN system is identified by the pair Sk =
(mk,γk), where mk ∈ Nnp is a reachable marking, γk ∈
(R+

0 )ne(mk) is a vector associating to each enabled transition
under mk the time elapsed from its enabling. Obviously,
γk,i ≤ ui. Notice that the state depends on the time τ by
way of γk, and, as a result, the set of states is infinite. The
initial state of a TPN system at the initial time instant τ0 is
denoted by S0 = (m0,γ0) where m0 is the initial marking
and γ0,i = 0, ∀i ∈ Ie(m0).

Alternatively, one can represent the state of a TPN system
as Sk = (mk,Φk), where Φk is a set of ne(mk) inequalities
lki ≤ φi ≤ uki , ∀i ∈ Ie(mk). The generic inequality lki ≤ φi ≤
uki means that transition ti may (must) fire at mk only after
lki (before uki ) time units have elapsed, unless another enabled
transition has fired meanwhile, disabling ti. In particular, lki =
max{0, li − γk,i} and uki = ui − γk,i. Obviously, lki ≤ li and
uki ≤ ui, the equalities holding only at the instant when ti is
enabled.

Notice, finally, that not all the enabled transitions may ac-
tually fire in a given state, since a transition ti cannot possibly
fire before tj if lki > ukj . Denoting as Te(Sk) ⊆ Te(mk) the
set of transitions that can be fired in Sk, one has that:

Te(Sk) = {ti ∈ Te(mk) | lki ≤ min
j∈Ie(mk)

(ukj )}. (2)

D. The Modified State Class Graph

The notion of state as introduced in the previous subsection
is not amenable to the construction of state graphs representing
explicitly the dynamics of the system, unless a suitable state
aggregation is carried out. Indeed, when a transition fires a new
state Sk = (mk,Φk) is reached, with a new marking. From
then on, the mere passing of time before a new transition
firing modifies the state, by eroding the time bounds of the
enabled transitions (Φk is changed, whereas mk stays the
same). As a result there are infinite states associated to the
same marking mk, each of which specifies the FTIs for the
enabled transitions relative to the specific time instant in which
it has been reached. The MSCG [10], [11] employs the concept
of class to aggregate the infinite states of the TPN system
associated to the same reachable marking. More in detail,
a class Ck = (mk,Θk) is a pair composed of a reachable
marking mk ∈ Rτ (Nτ ,m0) and a set of inequalities Θk

associated to the transitions enabled at mk. Differently from
Φk, these inequalities define the firing timing constraints
relatively to the arbitrary time instant when the system enters
in the class. For example, lki ≤ θi ≤ uki indicates that ti may
fire only after lki time units elapse from the time instant when

Fig. 1. MSCG example.

the system enters Ck, but must fire not later than uki time units
after that same instant, whatever that instant might be.

The MSCG is a directed graph where the nodes are the
classes and the edges are associated to transitions. An outgoing
edge from class Ck = (mk,Θk) is labeled with a pair
(ti,∆k)1, where ti ∈ T is the transition whose firing causes
the exit from class Ck, and ∆k represents the total time the
system stays in Ck. Notice that ∆k is common to all outgoing
edges from Ck. In an edge labeled (ti,∆k), ∆k must belong
to a specific FTI Iki = [Lki , U

k
i ], where Lki = max(0, lki ),

Uki = minq∈Ie(mk)(u
k
q ). The notation Ck[ti > Cj is used to

denote a class transition from Ck to Cj by firing ti. Occa-
sionally, we will denote as •Ck (Ck•) the set of predecessor
(successor) classes of Ck in the MSCG.

To illustrate the notation and some basic concepts regarding
the MSCG, consider the portion of a MSCG depicted in
Fig. 1 (taken from [10]). Each node represents a class (Ck),
and contains a marking (mk) and one inequality for each
enabled transition (Θk), expressing the allowed FTI. Each edge
accounts for a class transition, as a consequence of the firing of
a transition. For example, if t3 fires in C1 the system enters
a new class, C3. The transition firing occurs at a time ∆1

relative to when the system entered C1. Notice that t3 cannot
fire earlier than 1 (due to its lower bound), but must not fire
later than 2, which is the upper bound for the other enabled
transition t2. In class C3 a new transition (t4) is enabled, while
t2 remains enabled. Because of this, the FTI of the latter
transition is reduced by the time elapsed from its original
enabling (∆1), and is therefore parametric. In general, the
conditions for the firing time variables ∆k can be parametric
and nonlinear (due the presence of the min and max operators).

Thanks to the fact that the MSCG represents explicitly
(through the ∆k variables) the time passed by the system in
each class, one can straightforwardly express the duration of
a sequence as the sum of the ∆k variables associated to the
classes in the corresponding path. Such duration is subject to a
set of constraints on the ∆k variables expressed on the edges
of the same path. This feature of the MSCG is essential in
order to address timed control specifications, which ultimately

1In the original version of the MSCG, as introduced in [10], a label
associated to ti is also employed. This label is omitted here as we are dealing
with unlabeled nets.
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involve the duration of sequences.

III. PROBLEM STATEMENT

A. Control specifications

Temporal control specifications can be formulated in various
ways, e.g. by logical clauses involving markings and timing
conditions. We here adopt a reachability-oriented approach, in
which the specification prescribes that certain markings are to
be visited in a given sequence, according to specific temporal
constraints. This kind of specification is amenable to control
problems that are naturally posed in a reachability-oriented
perspective, as is often the case e.g. with manufacturing
systems, robotic and logistic systems, aerospace systems.

We formalize the control specifications by means of a
Generalized Timed State Sequence (GTSS), defined as an
ordered list of 4-tuples of the form (Li,Fi, I

A
i , I

D
i ), where:

• the target marking set Li ⊆ Rτ (Nτ ,m0) is a non-empty
set of reachable markings of the TPN system;

• the forbidden marking set Fi ⊆ Rτ (Nτ ,m0) is a
(possibly empty) set of reachable markings that must be
avoided in the process of reaching Li;

• the absolute arrival time interval IAi = [lAi , u
A
i ] defines

the absolute time constraints within which Li must be
reached, with lAi ∈ R+

0 , uAi ∈ R+
0 ∪ {∞};

• the absolute departure time interval IDi = [lDi , u
D
i ]

defines the absolute time constraints within which Li

must be left, with lDi ∈ R+
0 ∪ {∞}, uDi ∈ R+

0 ∪ {∞}.
Accordingly, a general form of an n-step GTSS is

g = (L0, ∅, τ0, ID0 )(L1,F1, I
A
1 , I

D
1 ) . . . (Ln,Fn, I

A
n , I

D
n )

(3)
where the initial 4-tuple indicates the initial marking (L0 =
{m0}), the initial time (τ0), and specifies a departure time
interval. For the consistency of the sequence, the timing
constraints must obey the following conditions: lAi ≤ lDi ,
uAi ≤ uDi , i = 1, . . . , n, and lDi−1 ≤ lAi , uDi−1 ≤ uAi ,
i = 1, . . . , n. In the following, we will say that a GTSS
is time-bounded if uAn is finite. It is also possible to ex-
press through a GTSS the purely logical requirement that
a marking mi is reached (at any time instant) by setting2:
g = (m0,∅, τ0, ·)(mi,∅, ·, ·).

A legal trajectory must be coherent with the sequence of
marking sets to be reached (and avoided) according to the
associated temporal constraints. To enforce a GTSS there must
exist at least one TTS that results in a legal trajectory. We will
denote a GTSS as complete if a TTS is executed such that all
temporal and logical requirements of the GTSS are fulfilled.

B. The control action

The control action does not consist merely in the full
disabling of a controllable transition, but may also result in
the disabling of a transition for a fraction of its allowed
FTI. To express this partial disabling action, we introduce a

2With a slight abuse of notation we denote a singleton marking set {m}
simply as m, and a single-point absolute time interval [τ, τ ] as τ . We also
use the notation IAi = · (IDi = ·) in the absence of temporal constraints on
the arrival in (departure from) a marking set, for brevity.

time-varying control function, which is implementable as a
restriction of the firing regions associated to the controllable
transitions enabled in the current marking.

Definition 1: Let Sk = (mk,Φk) be a state of the TPN.
The control action is a time-dependent function of the system
state F(Sk, τk) = Φ̂k, where

Φ̂k = {l̂ki ≤ φ ≤ ûki ,∀i ∈ Ie(Sk)},

with l̂ki ≥ lki and ûki ≤ uki (l̂ki = lki and ûki = uki for the
transitions in Te(Sk) that are not controllable). �

This formulation encompasses both control actions pro-
posed in [1]:
• Prohibitible events: if l̂ki = ûki = ∞ for a transition ti,

then the control action completely disables ti.
• Forcible events: if l̂ki = ûki = δ for a transition ti, then

transition ti must fire exactly at time τk + δ.
The net system obtained by applying the control function
F to 〈Nτ ,m0〉 is denoted by 〈Nτ ,m0,F〉. It is obvious that
Rτ (Nτ ,m0,F) ⊆ Rτ (Nτ ,m0).

C. Control synthesis overview

When the control action is computed in a state Sk, a
worst-case scenario must be assumed, i.e. the FTIs of the
enabled controllable transitions must be defined so that the
GTSS can be satisfied for all possible firings of uncontrollable
transitions. This ensures that the system can be made to follow
a legal trajectory at all times, provided that the controllable
transitions enabled in Sk are fired within the prescribed FTIs,
and that subsequent firings of controllable transitions satisfy
the conditions calculated at τk.

This implies that all possible evolutions of the system
are accounted for in the computation of the control action.
Accordingly, the search for all TTSs moving the system from
one marking to another assigned one plays a key role and must
be performed as efficiently as possible. This information can
be retrieved from the MSCG of the TPN, but the computation
of the full MSCG is often a demanding task (impossible, in
the unbounded case). It is also unnecessary, as the part of the
MSCG that is relevant to the given GTSS is generally much
smaller. For this reason, we build a partial MSCG (denoted
PMCSG in the following), that encompasses all legal TTSs.
This greatly reduces the computational load associated to the
generation and processing of the MSCG. The allowed FTIs of
the controllable transitions are calculated based on this graph.

More in detail, a three-step procedure will be introduced to
calculate the control function in a given state:
• Step 1) Structural analysis is applied (to the untimed net)

to find the set Y ∗i of admissible FCVs corresponding to
TSs leading from mi−1 to mi, for each pair (mi−1,mi)
in Li−1 ×Li, i = 1, . . . , n.

• Step 2) The PMSCG is constructed, describing only
the TTSs compatible with the admissible FCVs found
at the previous step. Paths leading to forbidden states
or incompatible with the temporal specifications of the
GTSS are pruned a posteriori.

• Step 3) The PMSCG is used to determine the necessary
restrictions to the FTIs of the controllable transitions
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enabled in the current state, in order to guarantee the
timed specifications in the worst case. To this aim,
each path of the PMSCG is analyzed individually to
calculate the time constraints it yields on the controllable
transitions to ensure that a) the arrival and departure
time interval specifications for each way point are met,
and b) transitions taking the state of the TPN outside
the designed PMSCG cannot fire. Then, all path-specific
time constraints for a controllable transition are merged
to determine its allowed FTI.

A crucial point concerns the timing of the control algorithm,
i.e. when the outlined procedure should be invoked. Since
the control function cannot affect the firing of uncontrollable
transitions, it is only computed when the system enters a
class where at least one controllable transition is enabled.
While the system remains in the same class, time passes, but
the constraints on the controllable transitions do not change.
Therefore, there is no need to invoke the procedure again
until a transition fires. While in principle it could make sense
to anticipate the computation of the control function before
the actual enabling of a controllable transition, this option is
not pursued here, since it generally yields over-conservative
conditions. Indeed, before an uncontrollable transition fires,
one has to account for the possibility that this event will
occur at any time in the corresponding FTI. However, after
it has fired, the remaining part of its FTI can be disregarded.
In view of this, the constraints considered previously in the
computation of the control action can be relaxed, possibly
resulting in larger FTIs for the controllable transitions that
must yet be fired to fulfil the GTSS, compared to what
computed previously. This justifies the recalculation of the
control action after the firing of any uncontrollable transition
(provided that at least one controllable transition is enabled in
the resulting state).

Algorithm 1 gives the details of the online implementation,
the actual computation of F(Scurr, τcurr) being addressed in
the following sections. The procedure requires a TPN (with
its initial state and time) and a GTSS. If a solution exists, the
algorithm follows the process evolution and recalculates the
time firing constraints on the enabled controllable transitions
at every class change up to the completion of the GTSS. These
constraints are fed back to the controller, that will actually
decide what transition to fire and when.

Remark 1: In the considered timed framework, multiple
events can fire simultaneously at time τobs in a state Sprev =
(mprev,Γprev). Denoting with obs = (Tobs, τobs) the set
of simultaneous event occurrences, where Tobs is the set
of fired transitions, the resulting system state is Scurr =
(mcurr,Γcurr), where mcurr = mprev + Cσobs, σobs =
σobs(Tobs) denoting a firing vector having an entry equal to
1 for each transition in Tobs. As for Γcurr, it is important
to remark that the timer of each transition enabled under the
previous marking mprev and fired at τobs must be reset if the
transition is still enabled under the current marking mcurr,
since it has been immediately re-enabled after zero time. �

Algorithm 1: Online control algorithm
Input: 〈Nτ ,m0〉, S0 = (m0,Γ0), τ0, g

1 Scurr = (mcurr,Γcurr) := S0; τcurr := τ0;
2 forall ti ∈ Te(mcurr) do
3 if ti ∈ Tc then
4 compute Ft(Scurr, τcurr) = [l̂curri , ûcurri ];
5 if a solution does not exist then exit;

6 else l̂curri = lcurri ; ûcurri = ucurri ;

7 Feed back F(Scurr, τcurr) to controller;
8 while g is not completed do
9 if obs = (Tobs, τobs) 6= ∅ then

// new set of events observed
10 Sprev = (mprev,Γprev) := Scurr;
11 τprev := τcurr;
12 σobs := σ(Tobs);
13 mcurr := mprev +Cσobs;
14 τcurr := τobs;
15 forall t ∈ Te(mcurr) do
16 if t ∈ Te(mprev) \ Tobs then
17 Γcurr(t) := Γprev(t) + (τcurr − τprev);

18 else Γcurr(t) := 0;

19 Scurr := (mcurr,Γcurr);
20 forall ti ∈ Te(mcurr) do
21 if ti ∈ Tc then
22 compute Ft(Scurr, τcurr) = [l̂curri , ûcurri ];

23 else l̂curri = lcurri ; ûcurri = ucurri ;

24 Feed back F(Scurr, τcurr) to controller;

IV. STEP 1: COMPUTATION THE FCVS

The first step of the procedure consists in enumerating
the admissible FCVs, associated to sequences leading from
a marking mi−1 ∈ Li−1 to a marking mi ∈ Li, for
i = 1, . . . , n. It is trivial to show that the following property
holds:

Property 1: Let sτ be a legal TTS according to a given
GTSS g. Then, the TS s = l(sτ ) satisfies the untimed version
of the reachability and safety requirements expressed by g. �
This provides a necessary condition for the TTSs of interest,
whereby the analysis of the timed system can be restricted to
sequences following the mentioned FCVs. Conveniently, the
latter can be found by structural analysis of the untimed net,
as outlined in Section II-B.

A. Finiteness of the FCVs

The following results establish the conditions for which the
number of FCVs that must be computed is finite, and provide
an upper bound for the number of transitions firings they
involve.

Theorem 1: Let 〈Nτ ,m0〉 be a TPN system abiding by
assumptions A1-A3. Let also Sτ be the set of TTS leading
from m0 to a target marking mt within a time τmax. Then
the set S = {s | s = l(sτ ),∀sτ ∈ Sτ} is finite. �

Proof: If the set F = {σ | σ = σ(s),∀s ∈ S} of FCVs
corresponding to sequences in S is finite, the thesis holds. Let
N be the untimed version of Nτ . Then, F = {σ | σ(j) =
y(j), j = 1, . . . , nt,∀y ∈ Y1}, where Y1 is the set of SCTs of
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the complemented net Nc. As a consequence, ||F || = ||Y1||.
As explained in Section II-B, any element y ∈ Y1 is obtained
as a non-negative linear combination y = y′ + y′′ of the MS
T-invariants [22], where y′ =

∑p0
j0=1 αj0y

(j0) and

y′′ =

p0+p1∑
j1=p0+1

αj1y
(j1) +

p0+p1+p2∑
j2=p0+p1+1

αj2y
(j2) (4)

where αj ≥ 0, j = 1, . . . , p, with p = p0 + p1 + p2,
Y ms = {y(j), j = 1, . . . , p} is the (finite) set of MS
T-invariants of Nc, and y(j) ∈ Y0, for j = 1, . . . , p0,
y(j) ∈ Y1, for j = p0 + 1, . . . , p0 + p1, y(j) ∈ Y2, for
j = p0 + p1 + 1, . . . , p. The coefficients in (4) must also
satisfy the condition

∑p
j=1 αjy

(j)
nt+1 = 1, which implies that

αj ≤ 1/y
(j)
nt+1, j = p0 + 1, . . . , p. As a consequence y′′ is

bounded. A bound ȳ′′ can be computed as:

ȳ′′t = max
j=p0+1,...,p

y
(j)
t

y
(j)
nt+1

, t = 1, . . . , nt (5)

ȳ′′nt+1 = 1 (6)

On the other hand, the coefficients αj , j = 1, . . . , p0

can exceed 1. This implies that there exist virtually infinite
non-minimal SCTs, since the coefficients αj associated to
NCTs are not bounded. Consider, e.g. the j?th NCT, with
1 ≤ j? ≤ p0, and assume that the marking in the net is
sufficient to enable once the execution of y(j?). Since, by
Assumption A3 the TPN does not admit T-invariants with
all transitions fireable in zero time, each sequence involving
the complete firing of y(j?) requires a minimum time3, say
τ̄j? . Similarly, each sequence involving the complete firing of
h · y(j?), with h ∈ N, will require at least h · τ̄j? time units.
Then, αj? ≤ τmax/τ̄j? . If the net marking allows a k-enabling
of the NCT, the bound is correspondingly increased by a factor
k. Now, since all αj , j = 1, . . . , p0 are bounded, y′ is bounded
as well. A bound on y′ can be calculated as

ȳ′ =

p0∑
j0=1

kj
τmax
τ̄j

y(j0), (7)

where kj is the enabling degree of the jth NCT.
Finally, since y is bounded, there exist only a finite number

of vectors in F , and the thesis follows.
Theorem 2: Let g be a GTSS, and 〈Nτ ,m0〉 a TPN system

abiding by assumptions A1-A3. Let also Sτ be the set of legal
TTS according to the GTSS. Then, if g is time-bounded, the
set S = {s | s = l(sτ ),∀sτ ∈ Sτ} is finite. �

Proof: The boundedness of g implies that uAi is bounded
for i = 1, . . . , n. Then, by the previous Thm. 1, the number
of sequences taking the net from a marking mi−1 ∈ Li−1 to
a marking mi ∈ Li, i = 1, . . . , n, is finite.

In view of Thm. 1, the maximum number of transition
firings required to get from a marking mi−1 ∈ Li−1 to a
marking mi ∈ Li is bounded by K = ||ȳ′||1 + ||ȳ′′||1 − 1,
where ȳ′ is calculated with τmax = uAi . Then, one can apply

3A conservative value for this bound can be obtained by taking the
maximum of the lower bounds associated to the transitions in the support
of the T-invariant. Depending on the structure of the net, less conservative
bounds may be defined.

an efficient enumeration scheme to find all the relevant FCVs,
based on the following two features: i) an ILP formulation
to characterize the admissible FCVs of maximum length K,
and ii) a Branch & Bound (B&B) procedure that partitions the
solution space once a solution is found, introducing suitable
constraints to exclude previously found solutions. Notice that,
differently from the approach of [25], where the existence of
fireable TSs compatible with the calculated FCVs is verified
a posteriori, here the admissibility check is integrated in the
enumeration procedure, to avoid carrying over useless FCVs
to the –more costly– timed analysis.

B. An ILP formulation to characterize admissible FCVs

An admissible FCV σ is necessarily associated to an SCT
of the complemented net y ∈ Y1, by way of the relation y =
[σ 1]T . Now, consider a generic TS (tj1 , . . . , tjK ) of length
K, where j1, . . . , jK ∈ {1, . . . , nt}. The corresponding FCV
can be written as σ =

∑K
k=1 ε

(jk). Expressing σ as a sum
of versors automatically ensures the integrality of vector y.
Furthermore, it can be used to enforce the fireability of the
corresponding sequence by setting the following constraints:

m0 +C

i−1∑
k=1

ε(jk) ≥ Pre ε(ji), i = 1, . . . ,K. (8)

Assembling the previously developed expressions we can
obtain an ILP formulation characterizing the admissible FCVs
involving not more than K transition firings solving the
reachability problem from m0 to mt:

minimize
K∑
k=1

nt∑
j=1

e
(k)
j

subject to
mt = m0 +Cσ

σ =

K∑
k=1

e(k)

[
σ
1

]
=

p∑
j=1

αjy
(j)

m0 +C

i−1∑
k=1

e(k) ≥ Pre e(i) i = 1, . . . ,K

nt∑
j=1

e
(k+1)
j ≤

nt∑
j=1

e
(k)
j ≤ 1 k = 1, . . . ,K − 1

e
(k)
j ∈ {0, 1} j = 1, . . . , nt, k = 1, . . . ,K

αj ≥ 0 j = 1, . . . , p

In the previous formulation, the sequence e(1), . . . , e(K) iden-
tifies the sequence of transition firings (e(k) corresponds to the
kth firing in the sequence). To allow for sequences shorter
than K, some of these vectors can be null (no transition
fired), while those corresponding to actual transition firings
are versors. To avoid having multiple equivalent solutions
(corresponding to the same firing sequence), null vectors are
forced to be at the end of the sequence. The cost function
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ensures that the solution σ will be the admissible FCV with
less transition firings among all the solutions. In the sequel, we
will denote the previous ILP formulation as Π0 = Π(f, C), f
denoting the cost function and C the set of constraints. The set
of vectors y = [σT 1]T satisfying C equals Y ? = Y a1 ∩ {y ∈
Y |

∑nt

j=1 yj ≤ K}.

Fig. 2. PN of Example 1.

Consider e.g. the PN system depicted in Figure 2 [25], for
which we want to solve the reachability problem from m0 =
2p1 tomt = 2p1+p9 with K = 25. The set of MS T-invariants
of the complemented net is given by Y ms = {y1,y2,y3},
where y1 = [0 0 1 1 1 0 1 0 0 0 0]T , y2 = [1 1 0 0 0 1 1 0 0 0 0]T ,
and y3 = [0 0 0 0 0 0 0 1 1 1 1]T . The first two are NCTs
(their last element is 0) and correspond to the T-invariants
of the original PN. The last one is a SCT, corresponding to
a (non-admissible) FCV σ3 = [0 0 0 0 0 0 0 1 1 1]T satisfying
the required marking variation. Solving the resulting Π0 yields
the non-MS SCT y4 = y1 + 2y2 + y3. Indeed, the shortest
TS achieving the wanted result contains 15 transition firings,
e.g. (t3 t1 t2 t7 t1 t2 t4 t9 t5 t8 t10 t7 t7 t6 t6). In other words, to
reach mt one has to follow σ3, but in order to enable the
sequence the necessary tokens must be borrowed through
suitable executions of the T-invariants of the original PN [25].

C. The branching scheme

Using the previous ILP formulation as a cornerstone we can
employ a B&B method to enumerate the elements of Y ?. The
B&B method operates by partitioning the solution space into
smaller regions that exclude all previously found solutions.

Property 2: Assume that Y a1 6= ∅ and let Y
a

1 ⊆ Y a1 be
a generic non-empty subset. Let also y? ∈ Y a1 be such that
there does not exist y ∈ Y a1 \ {y?} such that ||y||1 < ||y?||1.
Then Y

a

1 can be partitioned as:

Y
a

1 = {y?} ∪ Y a,11 ∪ . . . ∪ Y a,nt

1 ∪ Y a,nt+1

1

where
• Y

a,j

1 = {y ∈ Y a1 | (yl ≥ y?l , l = 1, . . . , j − 1) ∧ (yj <
y?j )}, j = 1, . . . , nt.

• Y
a,nt+1

1 = {y ∈ Y
a

1 | (yj ≥ y?j , j = 1, . . . , nt) ∧
(
∑nt

j=1 yj >
∑nt

j=1 y
?
j )}. �

Notice that:
• Y

a,j

1 ∩ Y a,l1 = ∅, j, l = 1, . . . , nt + 1, j 6= l.
• None of the sets Y

a,j

1 , j = 1, . . . , nt + 1 includes y?

(since either one element of y or the sum of its elements
are forced to be different) or a solution with a smaller
sum of elements (by assumption).

• Only Y
a,nt+1

1 can include solutions that are element-wise
greater or equal to y? (non-minimal solutions).

In view of the previous partition, if a solution to the ILP
problem Π0 = Π(f, C) is found, corresponding to a firing
vector σ?, further solutions can be sought for by addressing
the following modified versions of the same problem:
Π1 = Π(f, C ∧ (σ1 < σ?1)),
Π2 = Π(f, C ∧ (σ1 ≥ σ?1) ∧ (σ2 < σ?2)),
. . .
Πnt = Π(f, C ∧ (σj ≥ σ?j , j = 1, . . . , nt − 1)∧ (σnt < σ?nt

)).
Πnt+1 = Π(f, C ∧ (σj ≥ σ?j , j = 1, . . . , nt) ∧ (

∑nt

j=1 σj >∑nt

j=1 σ
?
j )).

To complete the enumeration, the partitioning procedure of
Property 2 is applied again for each of the generated sub-
problems that admit a solution, thereby configuring a tree
of sub-problems stemming from Π0, each one associated
to a specific subset of Y a1 . Notice that all nodes of the
tree that include a constraint of the type σj < σ?j can be
immediately classified as infeasible if σ?j = 0. When all leaves
of the branching tree correspond to infeasible sub-problems,
the enumeration is complete. The enumeration procedure is
summarized in Algorithm 24.

Algorithm 2: Algorithm EAFCV: Enumeration of ad-
missible FCVs from m0 to mt with at most K firings.

Input: N , m0, mt, K
Output: Y ?

1 Define Π0;
2 Λ := (Π0); // Init. list of open problems
3 Y ? := ∅; // Init. solution set
4 while Λ 6= () do
5 Π = (f, C) := pop(Λ);
6 y? = [σ?T 1]T := solve(Π);
7 if y? 6= null then // A solution exists
8 Y ? := Y ? ∪ {y?};
9 for j := 1 to nt do // Branching

10 C′ := C ∧ (σk ≥ σ?k, k = 1, . . . , j − 1)
∧ (σj < σ?j );

11 Λ := (Λ, (f, C′));

12 C′ := C ∧ (σj ≥ σ?j , j = 1, . . . , nt)
∧ (

∑nt
j=1 σj >

∑nt
j=1 σ

?
j );

13 Λ := (Λ, (f, C′));

14 return Y ?;

Algorithm 3 uses the EAFCV procedure to calculate the
admissible firing vectors for a given GTSS.

V. STEP 2: COMPUTATION OF THE PMSCG
The second step of the procedure outlined in Section III-C

consists in the computation of the PMSCG representing only
the legal trajectories of the system according to the GTSS.
Algorithm 4 summarizes the procedure.

The generation phase explores all and only the TTSs com-
patible with the admissible FCVs found in Step 1 for each

4A list Λ is an ordered set of elements Λ = (λ1, λ2, . . . , λk). The pop
function extracts the first element of a list, reducing it to Λ = (λ2, . . . , λk).
Two lists Λ = (λ1, . . . , λk) and M = (µ1, . . . , µj) can be appended
as follows: (Λ,M) = (λ1, . . . , λk, µ1, . . . , µj). Finally, an empty list is
denoted as ().
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Algorithm 3: Algorithm FCVS: Calculation of FCV
sets.

Input: N , m0, K, g
Output: Y ?i , i = 1, . . . , n

1 for i := 1 to n do
2 Y ?i := ∅;
3 forall mini ∈ Li−1 do
4 forall mend ∈ Li do
5 Y ?i,add := EAFCV (N,mini,mend,K);
6 Y ?i := Y ?i ∪ Y ?i,add;

7 if Y ?i = ∅ then exit;
// g not realizable

8 return Y ?i , i = 1, . . . , n;

Algorithm 4: Algorithm PMSCG: Computation of the
PMSCG

Input: 〈Nτ ,m0〉, S0 = (m0,Γ0), g, Y ?i , i = 1, . . . , n
Output: G, Cunsafe

1 Θ0 := {max{0, li − Γ0(ti)} ≤ φi ≤ ui − Γ0(ti),
∀i ∈ Ie(m0)};

2 C0 := (m0,Θ0); // initial class
3 C := {C0}; // classes (nodes of the MSCG)
4 A := ∅; // arcs (edges of the MSCG)
5 ΛF := ∅; // list of forbidden classes
6 C0 := {C0}, i := 0;
// Graph generation

7 while Ci 6= ∅ ∧ i < n do
8 i := i+ 1;
9 Ci := ∅; // terminal classes ith step

10 forall C = (m,Θ) ∈ Ci−1 do
11 forall si = ti1 . . . tiK s.t. σi = σi(si) ∈ Y ?i do
12 if m[si〉 then
13 Cj0 := C;
14 for k := 1 to K do
15 Compute (following the MSCG rules)

the class Cjk = (mjk ,Θjk )
“reachable” by firing tik from Cjk−1 ;

16 C := C ∪ {Cjk};
17 A := A ∪ {(Cjk−1 , Cjk )};
18 if mjk ∈ Fi then
19 ΛF := (ΛF , Cjk ); break;

// full legal sequence
20 Ci := Ci ∪ {CjK};

// Test of temporal conditions
21 forall π = Cj1 · · ·Cjnn+1 ∈ G do
22 if system (11) unfeasible then ΛF := (ΛF , Cjnn+1);

23 G := (C ,A );
24 (G,Cunsafe) = prune(G,ΛF );
25 return G, Cunsafe;

source-target marking pair envisaged by g, and collected in the
sets Y ?i , i = 1, . . . , n. All these TTSs have the structure sτ =
sτ,1 sτ,2 . . . sτ,n, where σi = σi(l(sτ,i)) ∈ Y ?i , i = 1, . . . , n.
This automatically ensures that all included paths will pass
through L1, . . . ,Ln. The expansion of a TTS is stopped if
at the ith step of the sequence a forbidden marking belonging
to Fi is encountered. The corresponding class is marked as
forbidden. Each full path is also tested for the admissibility
of the temporal constraints of the GTSS and its terminal class
marked as forbidden in case of infeasibility. When all possible
paths have been computed, the PMSCG is pruned from all
loose ends (see Algorithm 5), by iteratively removing the
forbidden classes and their exclusive predecessors. Finally, to
facilitate the final step of the procedure, Algorithm 4 tags as
“unsafe” any class in the PMSCG enabling a transition that
moves the system outside the graph.

Remark 2: Notice that each FCV can be associated to many
fireable sequences. However, the computation of a sequence
from a FCV can be efficiently performed (and consequently
Algorithm 4 can be significantly accelerated) starting from a
prefix of length one and adding a new transition at a time or
discarding the whole prefix if one of the following conditions
holds: a) the transition results not (logically or temporally)
enabled, b) a class associated to a forbidden marking is
reached, c) the temporal conditions are violated. �

While most of Algorithm 4 is straightforward, it remains
to explain how to check the existence of an admissible firing
schedule for each path of the MSCG. For this purpose we will
formulate an ILP problem that models all the necessary timing
constraints. A generic MSCG path compatible with a GTSS g
of type (3) is the concatenation of n sub-paths:

π = π1 . . . πn (9)

where πi accounts for the ith step of g. Precisely,

π1 = Cj1 → Cj2 → · · · → Cjn1+1

π2 = Cjn1+1 → Cjn1+2 → · · · → Cjn2+1

. . .

πn = Cjnn−1+1 → · · · → Cjnn+1

(10)

where Cj1 is the unique class in the path associated to m0 ∈
L0, and Cjni+1

is the unique class in the path associated to
mi ∈ Li, with i = 1, . . . , n. The generic arc from Cjk to
Cjk+1

is endowed with the transition firing in the former class

as well as the allowed FTI: Cjk
tik ,∆jk

∈Ijkik−−−−−−−−→ Cjk+1
. Parameter

ni denotes the number of transition firings from Cj1 to the end
of πi: denoting with Ki the number of transition firings of the
ith sub-path, it holds that n1 = K1, n2 = n1 + K2, . . . ,
nn = nn−1 +Kn.

The existence of legal FTIs for each transition in π can be
ascertained by checking the feasibility of the following set of
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constraints for the transition firing times ∆j1 , . . . ,∆jnn
:

lAi ≤
ni∑
k=1

∆jk ≤ uAi , i = 1, . . . , n (ai)

lD0 ≤ ∆j1 ≤ uD0 (b0)

lDi ≤
ni∑
k=1

∆jk + ∆jni+1
≤ uDi , i = 1, . . . , n− 1 (bi)

nn∑
k=1

∆jk + ūnn ≥ lDn (bn,1)

nn∑
k=1

∆jk + l̄nn ≤ uDn (bn,2)

Ljkik ≤ ∆jk ≤ U
jk
ik
, k = 1, . . . , nn (c)

(11)
where ūnn = minq∈Ie(mjnn+1

) u
jnn+1
q and l̄nn

=

minq∈Ie(mjnn+1
) l

jnn+1
q , mjnn+1

being the marking in class
Cjnn+1

. Variables ūnn
and l̄nn

account for the worst case
time limitations for the firing of the enabled transitions in the
terminal class of the path.

Algorithm 5: Algorithm prune: Pruning of the PM-
SCG

Input: G, ΛF
Output: G, Cunsafe

1 (C ,A ) := G;
2 Cunsafe := ∅;
3 while ΛF 6= ∅ do
4 C := pop(ΛF );
5 forall Cpre ∈ •C do
6 if Cpre• ⊆ CF then ΛF := (ΛF , Cpre);
7 else Cunsafe := Cunsafe ∪ {Cpre};

// remove C from PMSCG
8 C := C \ {C};
9 forall a = (C′, C”) ∈ A | (C′ = C) ∨ (C” = C) do

10 A := A \ {a};

11 G := (C ,A );
12 return G, Cunsafe;

Constraints (ai) impose the necessary limitations on the
length of each step of the sequence, to abide by the arrival
time requirements. Indeed,

∑ni

k=1 ∆jk is equal to the time
spent to reach class Cjni+1

. Such time must be inside the
allowed interval IAi = [lAi , u

A
i ].

Constraints (bi) formalize the departure time requirements
of each step of the sequence, including those for the starting
class of the path, Cj1 (constraint (b0)). The last class Cjni+1

of the ith step, with i = 1, . . . , n − 1, must be left within
the allowed time interval IDi = [lDi , u

D
i ]. Notice that ∆jni+1

represents the time spent in Cjni+1
. The last of such constraints

(i.e., (bn)) is slightly different, as the actual transition firing in
Cjnn+1

is not specified by g. Parameters l̄nn
and ūnn

are used
to express the most stringent timing conditions associated to
the firing of the enabled transitions in Cjnn+1 . Indeed, if (bn,1)
is violated, any enabled transition that fires will be forced to
do so before lDn , so that Cjnn+1

will be left too early. Similarly,
if (bn,2) is violated, no enabled transition can fire earlier than

uDn , and the class will be left too late. Finally, constraint (c)
ensures that the variables ∆jk , k = 1, . . . , nn stay inside the
time intervals given in the MSCG.

Notice that constraints (b) and (c) in system (11) are
nonlinear, by way of l̄nn , ūnn , Ljkik and U jkik , which are defined
using the min or max operator. They can be linearized using
the following rules (similar rules apply for the max operator):

Rule 1. min(a1, a2, . . . , aq) ≥ b is equivalent to the set of
q constraints ai ≥ b, i = 1, . . . , q. �

Rule 2. min(a1, a2, . . . , aq) ≤ b is equivalent to the
following system of conditions:

w ≤ b
ai − (1− yi)M ≤ w ≤ ai, i = 1, . . . , q
q∑
i=1

yi ≥ 1

yi ∈ {0, 1}, i = 1, . . . , q

where w is an auxiliary (real) variable, y1, . . . , yq are auxiliary
binary variables, and M is a sufficiently large number. �

VI. STEP 3: COMPUTATION OF THE CONTROL FUNCTION

The PMSCG computed with Algorithm 4 includes all the
paths for which there exists at least a transition firing schedule
that configures a legal TTS, according to the given GTSS g. A
control solution, if any exists, has to follow one of the paths
of this PMSCG. We denote as Π(C) the set of such paths
stemming from the class C corresponding to the current state
S (where one or more controllable transitions are enabled).
Notice that the admissibility of a path with respect to the
timing constraints does not guarantee their actual obtainment,
because uncontrollable transitions cannot be forced to fire at
specific times. In the third step of the procedure we verify if
there exists a feasible restriction of the FTIs of the controllable
transitions that guarantees that the temporal specifications of
the GTSS are obtained in the worst case (i.e., for all possible
firing time schedules of the uncontrollable transitions).

Furthermore, the control function must also ensure that no
firing of a transition is allowed in an unsafe class if it causes
the system to exit from the PMSCG (which accounts for
all paths that can fulfil the GTSS). We will characterize as
“unsafe” such transitions. A controllable unsafe transition can
be delayed from firing by increasing its lower bound up to the
value of its upper bound. If this modification makes the lower
bound of the unsafe transition greater than the upper bound
of the safe transitions in the same class, then the firing of
the undesired transition is prevented. Conversely, if the unsafe
transition is uncontrollable, its firing can be delayed only if its
lower bound is parametrically dependent on the firing times
of any controllable transitions along the path, as occurs if the
transition has been enabled in a previous class.

Notice that, in the absence of controllable transitions along
a path, one can only perform a legitimacy check on the set of
the corresponding TTSs, but can take no corrective action.
Accordingly, in the sequel we will assume that each path
includes at least one controllable transition.

The computation of the control function is based on the
analysis of all the paths in the set Π(C). Any path π ∈ Π(C)
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has the structure (9), where Cj1 equals the current class C.
Each path imposes different restrictions on the FTIs of the con-
trollable transitions, to guarantee that all the specifications are
met in the worst case (i.e. for any possible firing time schedule
of the uncontrollable transitions). All these restrictions must be
taken into account by the control function. Indeed, the control
function provides for each controllable transition the largest
FTI that is compatible with the full set of restrictions.

Consider a generic path π ∈ Π(C) not including unsafe
classes, and assume that it contains one controllable transition,
say ti1 without loss of generality. The calculation of its
allowed FTI Fπti1 (S, τ) = [Li1π , U

i1
π ] with respect to π can be

carried out by solving two ILPs, with the following structure:

Li1π = min ∆j1 [U i1π = max ∆j1 ]

subject to:
C(π)

∆jk = Ljkik [∆jk = U jkik ], ∀ik s.t. tik ∈ Tu

(12)

where C(π) represents the set of constraints (11). No-
tice that in problems (12) the timing variables associated
to uncontrollable transitions are fixed (to the worst case),
while those associated to other controllable transitions besides
ti1 are free. Indeed, in a worst case scenario the minimum
(maximum) firing time for the controllable transition is limited
by the minimum (maximum) firing time of all uncontrollable
transitions.

Assume now that path π includes an unsafe class Cjk
enabling an unsafe transition tif . If tif is uncontrollable, the
following constraint must be added to problem (12) to prevent
its firing in Cjk :

ljkif > ujkik . (13)

Constraint (13) implies that the lower bound of tif is strictly
greater than the upper bound of tik , i.e. the transition that
should fire in Cjk according to the considered path. This
guarantees that tik will fire, and tif will not. Conversely, if
tif is controllable, the constraint takes the form:

ujkif > ujkik , (14)

since the controllability of tif allows us to defer its firing at
most until its upper bound.

Clearly, the control design problem for path π has a solution
only if the resulting FTI is non empty, i.e. if Li1π ≤ U i1π . In
the negative case, there is no feasible FTI of the controllable
transitions that meets g, and π must be further pruned from
the PMSCG using Algorithm 5 and removed from Π(C)
(notice that this also implies that a further constraint of type
(13) or (14) must be introduced to account for the additional
unsafe class). Once all unfeasible paths have been removed,
then the overall control function for t is simply obtained as
Ft(S, τ) =

⋂
π∈Π(C) Fπt (S, τ). Then, either the intersection

of the obtained FTIs is non-empty, in which case the overall
control design problem has a solution and Π(C) contains only
paths satisfying the given GTSS, or the intersection is empty
and there is no solution.

Finally, if more than one controllable transitions are enabled
in the current class, one can calculate the control function for

each of them, and then leave to the controller the decision
regarding which transition to fire and when.

Definition 2: Let F1
t (S, τ) and F2

t (S, τ) be two control
functions for the transition t at current state S. Then, F1

t (S, τ)
is more permissive than F2

t (S, τ), if F1
t (S, τ) ⊇ F2

t (S, τ). �
Theorem 3: Given a TPN system 〈Nτ ,m0〉 and a GTSS

g, let Ft(S, τ) be the non-empty control function for the
transition t at the current state S, computed as Ft(S, τ) =⋂
π∈Π(C) Fπt (S, τ), where C is the class associated to S and
Fπt (S, τ) = [Ltπ, U

t
π], Ltπ and U tπ being obtained from (12).

Then, it holds that
i) 〈Nτ ,m0,Ft〉 satisfies g;

ii) Ft(S, τ) is maximally permissive. �
Proof: i) By construction, each path in the PMSCG is

associated to a fireable sequence passing by each way point
and leading the system to a target marking. It follows that if
Fπt (S, τ) = [Ltπ, U

t
π] and Ltπ and U tπ are obtained from (12),

it is guaranteed that the controlled system satisfies g when
moving along the path π. Now, Ft(S, τ) is obtained as the
intersection of the FTIs Fπt (S, τ), ∀π ∈ Π(C). Consequently,
Ft(S, τ) ⊆ Fπt (S, τ), ∀π ∈ Π(C), which implies that the
permissivity along each path is further restricted, so that the
satisfaction of g is all the more guaranteed.

ii) Assume, ad absurdum, that there exists a control func-
tion F ′t(S, τ) that is more permissive than Ft(S, τ). Then,
the net system 〈Nτ ,m0,F ′t〉 obtained by applying this con-
trol function must admit at least a TTS satisfying g that
cannot be generated by 〈Nτ ,m0,Ft〉. Denote this TTS as
sτ = (ti1 , τ1)(ti2 , τ2) . . . (tik , τk), and let S1 S2 . . . Sk be the
corresponding sequence of states reached by the system at
each transition firing. By construction, Si, i = 1, . . . , k, is
associated to a class of the MSCG of the given net system,
but also to a class Cji , j = 1, . . . , k of the PMSCG, since
sτ follows a path that satisfies g (for some schedule of the
transition firings). Moreover, by firing sτ the PMSCG would
move along the path π = C Cj1 Cj2 . . . Cjk .

Then, it must be possible to move along π for any possible
firing time schedule of the uncontrollable transitions without
violating g, and this would imply that the F ′πt (S, τ) =
[L′tπ , U

′t
π ] ⊇ [Ltπ, U

t
π], which is a contradiction, as Ltπ and

U tπ are obtained from (12).

VII. COMPLEXITY AND FLEXIBILITY OF THE PROPOSED
APPROACH

The proposed approach guarantees the optimality of the
solution (in terms of maximal permissiveness), but at the same
time it is flexible enough to offer the user a whole range of
trade-offs between its computational load and the quality of
the solution, in order to deal with tight-timed problems. The
next two subsections discuss the complexity of the approach
and possible heuristic compromises, respectively.

A. A discussion on complexity

The SC design requires a reachability analysis in a timed
context, that can be restricted, but not avoided. This is the
main source of complexity of the methodology, which can be
partially mitigated if a heuristic trade-off between complexity
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and optimality (i.e. permissiveness) is adopted, as suggested
in the next subsection.

Let us consider Algorithm 1 first, regarding the computation
of the control law. This computation is carried out when a
new class is reached that has at least an enabled controllable
transition (so that a decision has to be made concerning its
firing). The calculation of the control law determines the
allowed FTIs for the controllable transitions. To this aim two
ILP problems are solved (see equation (12)) for each path in
the PMSCG going from the initial class to the target class (or
classes). The number of such paths is an intrinsic feature of
the considered instance. These ILP problems have a worst-
case number of constraints and binary variables in O(nnnt),
that is bilinear with respect to the length of the path (nn) and
the size of the net (nt is the number of transitions). Therefore,
their solution is in general a manageable task.

The construction of the PMSCG with Algorithm 4 corre-
sponds to the actual reachability analysis. As it is inherently
exponential, it can pay huge dividends to limit its extension as
much as possible, avoiding the generation of the full MSCG.
To this purpose, two pre-processing steps restrict the length
of the potential sequences (based on the time limit imposed
by the specifications), and the set of firing vectors consistent
with the potential sequences (based on structural analysis and
on the reachability objective). The former step enumerates the
MS T-invariants of the complemented net, the latter the non-
MS SCTs, and consequently the FCVs: only the sequences
compatible with these FCVs are included in the PMSCG.
While the former step is relatively easy and admits efficient
algorithms, the latter deserves some further remarks. Since the
non-MS SCTs are finite (as explained in Section IV-A), the
second step could be sped up by neglecting the admissibility of
the FCVs and obtaining the non-MS SCTs by simple algebraic
combinations of the MS T-invariants (see equation (1) in
Section II-B and Thm. 1 in Section IV-A).

However, the resulting PMSCG would include spurious
paths, increasing the cost of the timed reachability analysis,
which is much more computationally intensive. We therefore
prefer to apply a B&B process to check that there exists at
least one admissible transition sequence for each FCV used
to build the PMSCG. This corresponds to anticipating part
of the reachability analysis to the second pre-processing step,
increasing its computational load to reduce that of the third
one. The rationale is that a purely logical reachability analysis
is generally faster than the corresponding timed task.

The computational advantage guaranteed by the two lim-
itations (sequence length and structural analysis) is difficult
to quantify precisely, as it is case dependent. It is certainly
significant for control problems with a very large reachability
graph and a short time horizon. Notice that, for unbounded
systems, a full reachability analysis would even be awkward,
if not impossible.

B. Complexity mitigation and heuristics

The control law need not actually be computed multiple
times. Indeed, as its computation adopts a worst-case per-
spective, the specifications are guaranteed for any possible

future firing schedule of the uncontrollable transitions, simply
following the computed path without further changes. The
purpose of recalculating the control when entering new classes
is to enlarge the firing time intervals (FTIs) of the controllable
transitions with respect to the initial solution, taking advantage
of the system evolution after the firing of an uncontrollable
transition.

The computation of the control law itself involves the
solution of a pair of ILPs for each path in the PMSCG. If
computational time is an issue, the solution of an ILP problem
can be prematurely arrested as soon as the solver returns a
feasible solution.

The most impactful heuristic, however, consists in adopting
a value for K smaller than the bound computed in Sec-
tion II-B. This results in a reduced PMSCG, which can be em-
ployed to find a feasible solution more quickly. Of course, as
long as some legal trajectories are neglected the solution found
will not be necessarily maximally permissive. This paves the
way for computation-saving strategies, where the PMSCG is
constructed incrementally (even one path at a time) with the
aim to find gradually improving feasible solutions. Obviously,
if protracted to the point of including all legal trajectories in
the PMSCG, this strategy will eventually provide the same
optimality guarantees of the presented approach.

VIII. CASE STUDY

Consider the TPN system depicted in Figure 3 modelling
a simple material handling system with two AGV systems
(subnets on the left) and a workstation (subnet on the right).

Fig. 3. TPN system of the case study.

The AGVs perform missions along their respective guided
paths. Precisely, p1 and p10 represent their home positions,
and the remaining places of each AGV subnet are associated
to the presence of the vehicle in certain sections of its guided
path. Accordingly, transitions t1 and t9 are associated to the
commands to start the respective missions, and the remaining
transitions in each AGV subnet (with the exception of t5)
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represent the movement of the vehicle from one section to
another. Finally, transition t5 describes the unloading of a part
in the input buffer of the workstation. As for the workstation,
t7 represents the command to start a working cycle and t8 the
processing of a part, while the marking of p7 indicates that
the workstation is waiting for a part, and p8 and p9 represent
the working and the idle state, respectively.

Transitions t1, t7 and t9 are associated to remote and con-
trollable events (the commands can be enabled at any time),
t6 is associated to a prospective and controllable event (the
speed of the movement in the respective section can be tuned
within the static interval shown in Figure 3), while the other
transitions are associated to prospective and uncontrollable
events and their static intervals are shown in Figure 3.

The following GTSS summarizes the logical and temporal
specifications of the control problem:

g = (m0,∅, [0, 0], [ ])(L1,F1, [3, 5.5], [3, 6.5])

(L2,F2, [9, 13.5], [ ]),

where L1 = {m1}, with m1 = p5 + p7 + p10, F1 =
{m| m(p3) + m(p12) > 1}, L2 = {m21,m22}, with
m21 = p1 + p8 + p13, m22 = p6 + p9 + p13, and F2 =
{m|m(p2) = 1 ∨m(p9) = 1}. In practice, g requires that:

a) The system, initially in marking m0 at the initial time
instant τ0 = 0, leaves it to reach the marking m1,
representing that a part is ready to be delivered by AGV1
to the input buffer of the workstation while AGV2 is
(or remains) idle. This must occur not earlier than 3 and
not later than 5.5 time units, and without passing by any
marking such that m(p3) +m(p12) > 1, representing a
shared zone where only one vehicle at a time can stay.

b) The system leaves m1 not earlier than 3 and before
6.5 to reach either of the two markings in L2, thus
bringing back to the home position either AGV1 or the
workstation, while the other two agents remain one step
from their respective home positions. In the process, any
marking with m(p2) = 1 or m(p9) = 1 must be avoided,
indicating that only one agent between AGV1 and the
workstation is allowed to reach its initial state. Finally,
L2 must be reached between 9 and 13.5 time units.

A. Step 1

The TPN has two T-invariants, namely, TI(1) = [1 1 1 1 1
1 1 1 0 0 0 0]T , TI(2) = [0 0 0 0 0 0 0 0 1 1 1 1]T , the first ac-
counting for the operation cycle of AGV1 and the workstation,
and the second for the cycle of AGV2. A simple inspection
of the two loops reveals that there is no way that, starting
from the current marking, they can be completed in less than
τ̄1 = 8.5 and τ̄2 = 8 time units, respectively.

The first step of the GTSS requires to go from m0 to m1.
The corresponding complemented net Nc has only 3 MS T-
invariants, i.e.: y(1,1) = [1 1 1 1 1 1 1 1 0 0 0 0 0]T , y(1,2) =
[0 0 0 0 0 0 0 0 1 1 1 1 0]T , y(1,3) = [1 1 1 1 0 0 1 0 0 0 0 0 1]T ,
the first two being NCTs (they correspond to TI(1) and TI(2))
and the third being an SCT. As there is only one SCT, the
only possible way to obtain other SCTs consists in combining
y(1,3) with integer multiples of the two NCTs. However, the

first mission has to be completed within 5.5 time units, which
is more than what required to complete the corresponding
cycles. Therefore, the only SCT that may satisfy the timing
constraints is precisely y(1,3). Accordingly, Y ∗1 = {y(1,3)}.
This is confirmed by Algorithm 3, with a maximum sequence
length of K = 5, and this guarantees that the SCT is associated
to at least one fireable sequence of the untimed net.

The second step of g requires to go from m1 to m21

or m22. The mission has to be completed in no more than
10.5 time units, which allows for a single execution of the
two system cycles. This results in a bound of 17 for K in
both cases, according to Thm. 1. Regarding the reachability
problem from m1 to m21, the complemented net has 3
T-invariants, i.e. the two previous NCTs (y(2a,1) = y(1,1)

and y(2a,2) = y(1,2)), plus the SCT y(2a,3) = [0 0 0 0 1 1 0
0 1 1 1 0 1]T . The following solution set was found with
Algorithm 2: Y ∗2a = {y2a,3,y(2a,3) + y(2a,2),y(2a,3) +
y(2a,1),y(2a,3)+y(2a,1)+y(2a,2),y(2a,3)+2y(2a,2)}. A similar
reasoning applies for the alternative mission to m22, for which
y(2b,1) = y(1,1), y(2b,2) = y(1,2), and the unique MS SCT is
y(2b,3) = [0 0 0 0 1 0 0 1 1 1 1 0 1]T . The corresponding set of
SCTs is given by Y ∗2b = {y(2b,3),y(2b,3) + y(2b,2),y(2b,3) +
y(2b,1),y(2b,3) + y(2b,1) + y(2b,2)}. In conclusion, Y ∗2 =
Y ∗2a ∪ Y

∗
2b.

B. Step 2

The second step consists in constructing the PMSCG by
expanding all sequences that follow the computed FCVs and
that can be fired in the TPN, and subsequently pruning those
that cannot be possibly executed without violating g.

As discussed in Remark 2, the computation of all fireable
sequences compatible with an FCV does not require to check
all possible permutations of the involved transitions (which
could be an extremely large number), but can be tackled as
a simplified (temporal) reachability problem. To give an idea
of the potential reduction of the computational complexity,
consider e.g. the non-minimal SCT y(3) + y(2) obtained for
the first mission. There are 9! possible sequence permutations
compatible with the associated FCV, but only 302 fireable
sequences from a logical point of view, and only 42 of these
are fireable also from a timed point of view. Finally, none of
them admits a value for the transition firing times that meets
the temporal conditions expressed by g, which is a necessary
condition for the solvability of the control problem.

Repeating this analysis on all the provided FCVs one can
determine merely 19 sequences that are fireable according to
all the requirements of g, each corresponding to a different
path of the PMSCG in Figure 4, obtained by applying Algo-
rithm 4. The set of 19 paths of the PMSCG is denoted Π(C0),
C0 being the class corresponding to the initial state. Recall that
this is not sufficient for the solvability of the control problem,
in that when solving the latter one has to take into account
that uncontrollable transitions cannot be forced to fire at will.

Notice that the firing of any enabled transition, that would
cause the system to exit the PMSCG, must be explicitly
forbidden, by applying condition (13) or (14). For example, t9
cannot be allowed to fire in C0, since there is no admissible
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Fig. 4. PMSCG for the case study example.

sequence that can start with t9. Since t9 is controllable, its
firing can be delayed ad libitum, which is virtually equivalent
to prohibiting it. Similarly, t8 should be prevented from
firing in C9, if g is to be met, but since this transition is
uncontrollable, this results in a more compelling constraint.
Indeed, ∆9 must be smaller than the lower firing bound of t8.

C. Step 3

By solving problem (12) for the 19 paths of the PMSCG,
it follows that only the paths where t9 fires before t5 are
compliant with g, in a worst case scenario (i.e., for all possible
time firing patterns of the uncontrollable transitions). Precisely,
let Π1 = {π2, π3, π6, π7 π10, π11, π14, π15} and Π2 = {π18,
π19}. Then, if the system were to follow any path in the set
Π(C0)\(Π1∪Π2) there would be no way to guarantee that g is
met, by action of the controllable transitions. Conversely, the
specifications can be guaranteed if one of the paths in Π1∪Π2

is chosen. Accordingly, any transition causing the system to
follow a different path must also be prevented from firing by
the supervisor.

Now, considering only the paths in Π1 ∪ Π2, and taking
into account all the necessary constraints required to keep the
system on track, it results that Fπt1(S0, τ0) = [0, 0.5], ∀π ∈ Π1

and Fπt7(S0, τ0) = [0,∞], ∀π ∈ Π1, while Fπt1(S0, τ0) =
[0,∞], ∀π ∈ Π2, Fπt7(S0, τ0) = [0, 0.5], ∀π ∈ Π2. Hence,
by application of the intersection operator, one can conclude
that Ft1(S0, τ0) = [0, 0.5] and Ft7(S0, τ0) = [0, 0.5] hold.
This result implies that, provided that t1 or t7 fires before
0.5 time units, there always exists a firing time pattern of the
controllable transitions that will be enabled afterwards that
guarantees that g is met, notwithstanding any legitimate firing
time pattern of the uncontrollable transitions. We next analyze
a possible state (and class) evolution of the TPN system,
illustrating the control evaluations along the sequence (see also
Table I).

Notice that under a SC approach, both t1 and t7 are enabled
(not forced) to occur at S0. A controller (not the supervisor)
will ultimately decide which of the two controllable transitions
to fire and force its occurrence. Once this control decision
is taken, the system will evolve from the initial state. The
procedure need not be invoked again, as long as the system
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TABLE I
STATE EVOLUTION AND CONTROL FUNCTION EVALUATION OF NET

SYSTEM IN FIGURE 4 FROM THE INITIAL STATE ALONG THE SEQUENCE
(t1, 0.5)(t7, 1.5)(t2, 2.5)(t3, 3.5)(t4, 4.5)(t9, 4.5)(t5, 5.5)(t6, 8.5)

(t, τ) C S m Φ Φ̂
0 ≤ θ1 ≤ ∞ [0,0.5]

(-,0) C0 S0 p1 + p9 + p10 0 ≤ θ7 ≤ ∞ [0,0.5]
0 ≤ θ9 ≤ ∞ ∅
1 ≤ θ2 ≤ 2 [1, 2]

(t1, 0.5) C1 S1 p2 + p9 + p10 0 ≤ θ7 ≤ ∞ [0, 2]
0 ≤ θ9 ≤ ∞ ∅
0 ≤ θ2 ≤ 1.5 [0, 1.5]

(t7, 1.5) C27 S2 p2 + p7 + p10 0 ≤ θ9 ≤ ∞ ∅
1 ≤ θ3 ≤ 2 [1, 2]

(t2, 2.5) C28 S3 p3 + p7 + p10 0 ≤ θ9 ≤ ∞ ∅
1 ≤ θ4 ≤ 1 [1, 1]

(t3, 3.5) C25 S4 p4 + p7 + p10 0 ≤ θ9 ≤ ∞ ∅
1 ≤ θ5 ≤ 1 [1, 1]

(t4, 4.5) C5 S5 p5 + p7 + p10 0 ≤ θ9 ≤ ∞ [0, 1)
1 ≤ θ5 ≤ 1 [1, 1]

(t9, 4.5) C11 S6 p5 + p7 + p11 3 ≤ θ10 ≤ 4 [3, 4]
3 ≤ θ6 ≤ 4 [3, 3]

(t5, 5.5) C12 S7 p6 + p8 + p11 7.5 ≤ θ8 ≤ 8.5 [7.5, 8.5]
2 ≤ θ10 ≤ 3 [2, 3]
0 ≤ θ1 ≤ ∞ ∅

(t6, 8.5) C13 S8 p1 + p8 + p11 0 ≤ θ10 ≤ 0 [0, 0]
3.5 ≤ θ8 ≤ 4.5 [3.5, 4.5]

follows one of the legitimate timed paths (the controllable
transitions fired in the sequence must adhere to the solution
of problem (12) for that path). However, the firing of uncon-
trollable transitions may relax the timing constraints on the
control problem as the system evolves, enlarging the solution
space.

Consider for example the case that the controller decides to
fire t1 at τ = 0.5. Now, if we run again Algorithm 1 for t7 in
the new state S1 we get Ft7(S1, 0.5) = [0, 2], which indicates
that there is now a larger discretion on the time of firing of
t7 with respect to the initial state, where the allowed FTI for
t7 was just [0, 0.5].

Assume now that t7 is fired at τ = 1.5, taking the system
in the state S2, included in the class C27. Here, the only
enabled controllable transition is t9, but its firing must still be
prevented to keep the system in the PMSCG. This is true also
when t2 and t3 fire. Assume that (t2, 2.5)(t3, 3.5) is observed.
However, with the subsequent firing of t4 at time 4.5, the
system enters state S5 which belongs to the class C5, and the
firing of t9 would now keep the evolution inside the PMSCG.
Then, Algorithm 1 returns Ft9(S5, 4.5) = [0, 1). This ensures
that t9 will fire before t5, therefore keeping the system along
the paths belonging to Π1 ∪ Π2. After the firing of t9 and
t5, a state is reached where a controllable transition is again
enabled. Indeed, assume that the sequence (t9, 4.5)(t5, 5.5) is
observed, and the system reaches S7, included in the class C12.
Algorithm 1 returns Ft6(S7, 5.5) = [3, 3] for transition t6,
implying that it must be fired exactly at τ = 8.5 to guarantee
g. If this is indeed what happens, then the system will travel
safely to the target provided that t1 is disabled (to avoid exiting
the MSCG), whatever the firing times of the uncontrollable
transitions t10 and t11, as guaranteed by Algorithm 1. Indeed,
t8 will not fire before reaching the target. On the other hand,
if t10 fires first in C12, say at time τ = 7.5, the system enters

a state S8 included in C16 where t6 is still enabled. Provided
that it is fired within the FTI Ft6(S8, 7.5) = [0, 1] (and t1 is
disabled), the target will be safely reached avoiding the firing
of t8.

IX. CONCLUSIONS AND FUTURE WORK

In this work we outline a framework for the supervisory
control of TDESs, represented in the form of TPNs. This
framework is specifically designed to deal with temporal
reachability-type specifications, where the user prescribes a
certain sequence of markings to be reached (and other mark-
ings to avoid in the process), with timing constraints. Spec-
ifications of this kind are typical e.g. in trajectory planning
problems, but are also common in various other applications.
Notice that the proposed framework can deal with time-
varying specifications and static FTIs as well.

Since the supervisory control approach described in this
work is based on a worst case analysis, it sometimes occurs
that the problem does not admit a solution at the current state
(the firing time window for the enabled controllable transition
that guarantees the achievement of the specifications is empty).
This does not necessarily mean that the specifications cannot
be met, but only that this outcome cannot be guaranteed (it
requires that some of the uncontrollable transitions fire with
a certain specific timing pattern). Repeating the procedure
later on (for another enabled controllable transition in another
reached state), may provide guaranteed solutions. However,
there remains the open problem of deciding what policy to
enact in the current state, where the procedure did not provide
an answer. In this respect, future research activity will focus
on the design of an optimization-based procedure that suggests
the firing time for the enabled controllable transition that is
most likely to yield positive results in the future.
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