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SUMMARY

It is well known that the performance of the (industry standard) "eld-oriented control (FOC) for
induction motors is highly sensitive to uncertainties in the rotor resistance. In this paper we describe
how to use supervisory control to obtain an adaptive implementation of FOC for current-fed machines.
The unknown rotor resistance is assumed to belong to a discrete set, while the uncertain load torque
ranges in a given compact set. Even though no restrictions are a priori imposed on the size of these sets,
their de"nitions re#ect the prior knowledge of the designer, which is e!ectively incorporated in
the supervisory control algorithm. The supervisor selects from these sets values for the parameters to be
applied to the FOC, a choice that is made by continuously comparing suitably de"ned performance
signals. We prove that the proposed supervisor achieves global stabilization of the system when the
load torque is known to belong to a given "nite set of values. Apparently, this is the "rst globally
convergent adaptive algorithm for current-fed machines which simply adds adaptation to the widely
popular FOC and is not a radically new complicated controller, hence it is more likely to be adopted
by practitioners. Some simulation results illustrate the properties of the algorithm. Copyright � 2001
John Wiley & Sons, Ltd.
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1. INTRODUCTION AND PROBLEM FORMULATION

In most practical applications, induction motors are operated in the so-called current-fed mode.
The behaviour of the machine in this operation mode is described by a third-order model which
expresses the rotor #ux �3�� and the stator currents u3�� in a reference frame rotating at the



rotor angular speed � as

P: �
�Q "!R�#Ru

�� "�!�
�

�"u�J�

�"���

(1)

Here �3� is the generated torque; R3� is the rotor resistance taking values in an interval
[R

�
,R

�
], with R

�
'0; �

�
3� is the load torque taking values in another interval [�

��
, �

��
]; and

JO�
0 !1

1 0 �
The outputs to be regulated are � and the rotor #ux norm �. These should be driven to constant
values �

H
and �

H
'0, respectively, while � is the only measurable signal.

Without loss of generality (see e.g., References [1, 2]), we set all parameters to one exceptR and
�
�
, which we assume constant but unknown.We assume known, however, setsRL[R

�
,R

�
] and

TL[�
��
, �

��
] in which they range, respectively. See Reference [2] for a detailed derivation of

this model from the textbook standard.
Field-oriented control (FOC) is the de-facto industry standard for high-performance applica-

tion induction motors. In its indirect formulation FOC is a non-linear dynamic output feedback
controller with a cascaded structure where the inner loop control consists of a rotation and the
outer loop is typically de"ned via a PI regulator around the velocity error. The motor model and
the FOC are depicted in Figure 1, with the FOC de"ned as

C(RK ): �
u"eJ� �

�
*��

�* �"�
cos(�) !sin(�)
sin(�) cos(�) � �

�
*��

�* �
�R "

RK
��

H

�
�

�
�
"!K

�
e�!K

�
v

vR "e�
e�"�!�

H

(2)

Here RK '0 is the constant estimated rotor resistance, andK
�
,K

�
'0 are tuning gains. We use

the notation C(RK ) to underscore the dependence of the controller on the estimated rotor
resistance. It is important to remark that, even though �

�
is unknown, the controller does not

attempt to estimate it, since its e!ect is countered by the integral action, at least as long as
�
�
remains constant.
The following remark concerning the practical implementation of FOC is in order: the angle �,

which plays the role of an estimate of the rotor #ux angle, is generated as the output of an
integrator whose input �

�
converges to a non-zero constant, therefore it grows unbounded. Since

� is subsequently used as the argument of periodic functions, the windup problem is avoided by
simply resetting the integrator.
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�Bounds on the allowable estimation error in terms of K
�
, K

�
and �

�
are also given in that paper.

**For all practical purposes we can relax this assumption to &R su$ciently close to a set member'. This can, of course, be
ensured taking a "ner grid, at the price of increased computational burden.

Figure 1. Current-fed induction motor with indirect FOC. Motor model presented in a frame
of reference rotating with rotor electrical speed.

In Reference [1] (see also Reference [2]) we have shown that the closed-loop system (1)} (2) has
a unique equilibrium point if and only if 0(RK )3R. This is satis"ed in most practical
applications. Furthermore, we prove that this equilibrium is globally exponentially stable provided
�R!RK � is su$ciently small.� This establishes, via total stability arguments, that the algorithm is
robustly stable vis-a% -vis variations in the rotor resistance, which are unavoidable in practical
applications. However, extensive simulation and experimental evidence, e.g., References [3}5, 2]
have shown that performance and power e$ciency are signi"cantly degraded when there are large
errors in the rotor resistance estimate. This stems from the fact that the main objective of "eld
orientation is not achieved in this case [2].
A natural approach to solve this problem is to make the FOC adaptive by de"ning an update

law for RK . In this paper we achieve this by making use of a supervisory control [6, 7]. To this end,
we de"ne a discrete set of candidate resistance values

RO�R
�
,R

�
,2,R

�
	L[R

�
,R

�
] (3)

with N*2, and assume that the actual rotor resistance belongs to this set,** i.e.

� i
H

3NO�1, 2,2,N	 :R
�H

"R

A supervisor, which selects values in R to be applied to the FOC, is then set in place. The
supervisor (i) continuously compares suitably de"ned performance signals, each associated with
a speci"c element of R, and (ii) uses in the FOC that value in R that corresponds to the smallest
performance signal. The rationale underlying the supervisor's operation is straightforward: the
nominal model whose associated performance signal is the smallest, &best' approximates the
process behaviour and thus the corresponding controller ought to be able to control the process
better. The origin of this idea is the concept of certainty equivalence. This is a well-known
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heuristic idea central to the whole adaptive control literature whose role has been formally
established for linear plants in Reference [8] and extended to non-linear systems in the recent
paper [9]. See also Reference [10].
The performance signals in supervisory control [6] are generated by designing an estimator for

each member of R and evaluating their norm-squared output estimation error. This task is
complicated in the present problem because, besides the uncertainty in R, the load torque �

�
is

also unknown. Furthermore, not all state variables are available for measurement. To overcome
these di$culties we need to implement a #ux observer and simultaneously estimateR and �

�
. The

main result of the paper is the proof that this new globally convergent adaptive observer*which
is of interest on its own*together with the proposed supervisor achieves global stabilization of the
system. Apparently, this is the "rst globally convergent adaptive algorithm for current-fed
machines, which is, moreover, an &add-up' to the widely popular FOC, and not a radically new
complicated controller that will hardly be adopted by practitioners.
The problem of control of induction motors with uncertain rotor resistance has a long

history, dating at least as far back as Reference [11]. Many papers on the industrial
electronics literature have been reported on this topic. However, as discussed in Reference [12],
most of these studies rely on simplifying assumptions like linearization and quasi-static opera-
tions. For current-fed machines besides the algorithm reported here, we are aware only of two
other results. First, the globally convergent estimation algorithm of Reference [12], which
contains also some interesting closed-loop experimental results. However, no proof of stability for
the control problem is given in that paper. Second, we proposed in Reference [13] a sliding
mode-based adaptive FOC, which is shown to be globally convergent provided the rotor
resistance ranges in a suzciently small set. It is somehow paradoxical that interesting theoretical
solutions have already been found for the more complicated voltage-fed induction machine, see
e.g. References [14, 15]. This might be explained by the fact that this model includes the stator
dynamics which provides more information about the state of the machine through additional
measurable signals. It should be pointed out that, except for Reference [13], all the other works
cited above propose new control schemes, whose complexity is in sharp contrast with the
simplicity of FOC.
The remaining of the paper is organized as follows. In Section 2 we present the supervisory

control algorithm. The stability analysis of the closed loop is given in Section 3. In Section 4 we
show some simulation results which illustrate the properties of the algorithm. We close the paper
with some concluding remarks in Section 5. The proof of a technical lemma needed for the main
result is given in the Appendix.

2. ESTIMATOR-BASED SUPERVISION

A block diagram describing the overall supervisory control system is depicted in Figure 2. It
consists of the induction motor model P : (u, �

�
)C� (described by (1)), in closed-loop with the

parameterized FOC C(RK ) : (�,�
H
,�

H
)C u (with dynamics (2)), whose estimated rotor resistance

RK is generated by the estimator-based supervisor 
 : (u,�)CRK . We proceed now to derive the
elements entering in the de"nition of 
. To motivate our developments we consider "rst (Section
2.1) a hypothetical case of known parameters. The supervisor is derived in Section 2.2. For ease of
reference we summarize the equations in Section 2.3.
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Figure 2. Con"guration of the supervisory control system.

��Notice that we have introduced a weighting factor (1#�u��) in the correction term of the observers. The role of this term
will be clari"ed later.

2.1. Observer design for the known parameter case

Assume for the moment that R and �
�
were known. In this case one could construct a nonlinear

state-observer for (1) using the equations��

�KQ "!R�K #Ru (4)

�LR "u�J�K !�
�
!� (1#�u��)(�( !�) (5)

where � is any constant larger than �
�
. In fact, with �K and �( so de"ned, one can show that the

estimation errors

�IO�K !�, �� O�( !� (6)

converge to zero exponentially fast for any piecewise continuous (possibly unbounded) input
signal u. To see that this is so consider an arbitrary piecewise continuous input signal u. From (6)
one concludes that

�IQ "!R�I , �� "u�J�I !� (1#�u��)��

along solutions to (1), (4)} (5). Thus, de"ning the exponentially weighted Lyapunov-like function

<"e�	�
1

2R
��I ��#

1

2
�J ��
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where � is a positive constant, one concludes that

<Q "�<#e�	(!��I ��#�� u�J�I !� (1#�u��)�� �)

)�<#e�	(!��I ��#��� u� ��I �!� (1#�u��)�� �)

along solutions to (1), (4)} (5). Using the Schwartz inequality one further concludes that

<Q )�<#e�	 (!�
�

��I ��!��J �!(�!�
�
) �u���� �)

and therefore

<Q )!e�	 (�!�
�
) �u���J � (7)

for any positive constant � such that

�)min �R, 2�	

For such a �, and since �'�
�
, < must then be bounded and therefore both �I and �J converge to

zero as fast as e��	� 	. Moreover, integrating both sides of (7), one further concludes that

�
	




e���u(�)���J � (�) d�)

2

2�!1
<(0), t*0

Now, for each piecewise continuous signal u, Equation (5) can be regarded as a linear time-
varying system with inputs u�J�K #� (1#�u��)� and !�

�
. Thus the same estimate �L could also

be generated by the two-dimensional system

�R "!�(1#�u��)�#u�J�K #�(1#�u��)� (8)

�R "!�(1#�u��) �!1 (9)

�L "�#�
�
�. (10)

We will see shortly that generating�L as above is more convenient for our purposes. The following
has been proved:

Proposition 2.1
Let � be a positive constant no larger than min�R, 2�	. For any piecewise continuous signal

u and any initial conditions there exist positive constants c
�
, c

�
, c

�
such that

��I �)e��	� 	c
�
, ��J �)e��	� 	c

�
, �

	




e��(1#�u (�)��)�J �(�) d�)c
�
, t*0

along solutions to (1), (4), (6), (8)} (10).
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��The "rst component of each of the w
�
is generated by the same di!erential equation so the performance signal generator

could be implemented more e$ciently using a (2N#1)-dimensional system, instead of the 3N-dimensional system in
(11).

AA In general, the optimization in (14) can be computed in a closed form because, for each value of i, �(w
�
, �) is a quadratic

function of �.

2.2. Derivation of the supervisor

The previous proposition motivates the following multi-estimator:

�Q
�
"!R

�
�
�
#R

�
u, i3N

�R
�
"!�(1#�u��)�

�
#u�J�

�
#� (1#�u��)�, i3N

�R "!�(1#�u��) �!1

and performance signal generator��

¹�wR �"!w
�
#(1#�u��)

��

2� (�
�
!�)

(�
�
!�)�

, i3N (11)

where ¹� is a positive constant no smaller then 1/min�R, 2�	. For each pair �i, �	3N�T we
can then de"ne a performance signal

�����	O�(w
�
, �) (12)

where �: ���TP� denotes the performance function de"ned by

� (w, �)"[�� � 1] w

The above de"nitions of the performance signal generator and performance function are
prompted by the observation that, with the �����	 given by (12),

¹��R ����	"!�����	#(1#�u��)(�
�
#��!�)� (13)

Now, it follows from (10) that �J "�
�H

#�
�
�!�. Therefore, since 1/¹�)min�R, 2�	, Proposi-

tion 2.1 guarantees that for �i, �	"�i
H
, �

�
	, �����	 converges to zero as fast as e�		
� . Thus, each

�����	 can be viewed as a measure of the expected performance of i and � as estimates of i
H
and �

�
,

respectively. In a supervisory control context, it is then natural to regard the pair AA

�i
���
, �

����
	O arg min

����	�N�T

�����	"arg min
����	�N�T

� (w
�
, �) (14)

as an estimate of �i
�H
, �

�
	. This is because the pair �i

���
, �

����
	 is at least &as good as' �i

�H
, �

�
	 as far

as the values of the corresponding performance signals are concerned.
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Figure 3. Scale-independent hysteresis switching logic.

BBThis can be achieved, for example, by setting w
�
(0)"[a, 2b, c]�, i3N, for some a, b, c3� so that a'0 and

b�!ac(0.

The algorithm used to generate RK is the scale-independent hysteresis switching logic [10] and
can be regarded as the hybrid dynamical system, with state �O��

�
, �

�
	3N�T and output

RK "R	�
(15)

de"ned by the computer diagram in Figure 3. Here h is a pre-speci"ed positive constant called the
hysteresis constant, the �����	 are de"ned by (12), and the pair �i

���
, �

����
	 is de"ned by (14).

We shall require that the performance signal generator be initialized so thatBB

�����	(0)'0, ∀i3N, �3T (16)

Because of (13), this guarantees that all the �����	 remain strictly positive for all future times. This is
used in the sequel to exclude the possibility of chattering.

2.3. Summary

We regroup in this subsection all the equations describing the supervisor.

(i) A multi-estimator E : (u,�)C (�
�
,2, �

�
, �) composed of N adaptive observers E

�
(R

�
),

i3N described by

E
�
(R

�
) : �

�Q
�
"!R

�
�
�
#R

�
u

�R
�
"!� (1#�u��)�

�
#u�J�

�
#�(1#�u��)�

�R "!�(1#�u��) �!1

(17)

where �'�
�
and the R

�
's are chosen from (3).
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(ii) A performance signal generator PS : (�
�
,2, �

�
, �,�, u)C (�����	 ,2,�����	) composed of

N subsystems PS
�
, i3N of the form

¹�wR �"!w
�
#(1#�u��)

��

2�(�
�
!�)

(�
�
!�)�

(18)

�����	"[�� � 1]w
�

where ¹�'0 is a time constant that plays the role of a forgetting factor, as in standard
adaptive control [16].

(iii) A switching logic S: (�����	 ,2, �����	)CRK , with output RK "R	�
, which generates the

estimate to be applied to the FOC according to the #ow-graph of Figure 3. The hysteresis
constant h'0 de"nes a relative threshold for the switching.

Besides the standard PI gains K
�
, K

�
of the FOC there are three more tuning gains in the

proposed supervisory controller: �, h and ¹� . The gain � determines the speed of convergence for
the adaptive observers. High values of � make the adaptive observers more rapid, but also more
sensitive to measurement noise. As mentioned above, ¹� acts as a forgetting factor in the
evaluation of the performance signals, hence establishing a compromise between adaptation
alertness and switching dither. The hysteresis threshold h, which is usually a very small number,
has a similar e!ect in the transient performance. These issues will be illustrated with simulations
in Section 4.

3. MAIN RESULT

¹heorem 3.1
Assume that the setT*to which �

�
is known to belong*is "nite and consider the induction

motor model (1) in closed-loop with the parameterized FOC (2), the multi-estimator (17), the
performance signal generator (18), and the switching logic in Figure 3 with output given by (15).
For any initialization of the closed-loop system such that (16) holds, the solution exists on [0,R)
and the signals �,�, v, �, �

�
, �

�
,w

�
, i3N are uniformly bounded on [0,R). Moreover, � grows at

most linearly with time and �P�
H
as tPR.

To prove Theorem 3.1. we need to introduce an auxiliary &injected system'. To this e!ect,
suppose that for a certain period of time the state � of the switching logic is equal to some
qO�k, �

��
	 in N�T. Let

�(
�
O�

�
#�

��
� (19)

be the corresponding �-estimate and

�J
�
O�L

�
!� (20)
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��Thus � is also uniformly bounded on [0, ¹ ) if ¹(R.

the corresponding estimation error. Using (20) to eliminate � from Equations (2), (17), (15), one
obtains

�
vR "�(

�
!�

H
!�J

�

�R "R
�

�
�

��
H

�
�
"!K

�
(�L

�
!�

H
!�J

�
)!K

�
v

u"eJ� �
�
H
��
�* �

(21)

and

�
�Q
�
"!R

�
�
�
#R

�
u, i3N

�R
�
"!� (1#�u��) �

�
#u�J�

�
#� (1#�u ��) (�L

�
!�J

�
), i3N

�R "!�(1#�u��) �!1

(22)

Equations (19), (21), and (22) can be regarded as a dynamical system*often called the qth injected
system*whose input is the estimation error �J

�
and whose state consists of the combined states of

the parameterized FOC and the multi-estimator [9].
Suppose for a moment that �J

�
"0. In view of (19) and (22)

�Q
�
"!R

�
�
�
#R

�
u, �LR

�
"u�J�

�
!�

��

thus ��
�
, �

�
	 could be regarded as the state of an induction motor model with rotor resistance

R
�
and load torque �

��
. It is therefore not surprising that the interconnection of these equations

with the FOC (21)*which was designed for a rotor resistance equal to R
�
*results in a stable

system. One could then conclude that all signals would be bounded if �J
�
"0. When �J

�
O0,

boundedness is still preserved provided that �J
�
is well behaved. The following lemma, which is

proved in the Appendix, formalizes this observation.

Lemma 3.2
Consider the qth injected system de"ned by (19), (21), and (22). Given an interval [t



,¹ ) (with

t


*0 and ¹3(t



,#R]) and any piecewise continuous signal �J

�
for which

�



	


�J �
�
(�) d�(R and �




	


�u (�)���J �
�
(�) d�(R

the signals v, �, �
�
, �

�
, i3N are uniformly bounded on [t



,¹) and � grows, at most, linearly with

time.�� Moreover, if ¹"#R then �L
�
P�

H
, ��

�
�P�

H
, and vP!�

��
/K

�
as tPR.

We can now proceed with the proof of Theorem 3.1. For any piecewise-constant signal
s: [0, R)PN�T and any initialization of the system de"ned by (1), (2), (17)} (18), and (15), with
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�"s, it follows from Proposition 2.1 that

e
� 	
����H ��� 	(¹�
)(R

where [0,¹
�
) is the interval of maximal length on which the solution exists. Therefore, if we de"ne

the scaled performance signals

�N ����	 (t)Oe		

������	 (t), �i, �	3N�T (23)

then (i) �N ��H ��� 	 is bounded on [0,¹�
). Moreover, because of (13) and (16),

�NR ����	"
e		
�

¹�
(1#�u��) (�

�
#��!�)�, �N ����	(0)'0, �i, �	3N�T

thus we also conclude that (ii) each �� ����	 is positive and has a limit as tP¹
�
. This is because each

�N ����	 is a non-decreasing functions of t that starts positive. In the sequel we make use of the above
properties (i) and (ii).
The interconnected system de"ned by (1), (2), (17)} (18), (15) is a dynamical system of the form

z "f	 (z), �����	"g����	(z), �i, �	3N�T (24)

where zO��,�, v, �, �, �
�
, �

�
,w

�
: i3N	 and, for each �i, �	3N�T, f����	 and g����	 are locally

Lipschitz. Because of the hysteresis constant h, for each initial state �z (0); � (0)	 for which (16)
holds, there must be an interval [0,¹) of maximal length on which there is a unique pair �z; �	
with z continuous and � piecewise constant, which satis"es (24) when � is generated by the scale-
independent hysteresis switching logic [10]. Moreover, on each proper subinterval [0, �)L[0,¹),
� can switch at most a "nite number of times.
The term &scale-independence' is prompted by the fact that if � is any piecewise continuous

signal which is positive on [0, R), the state � of the switching logic remains unchanged if each
performance signal �����	 , �i, �	3N�T is replaced ������	 . Thus, because of (23), and as far as the
signal � is concerned, we can think of the switching logic as being driven by the scaled
performance signals �N ����	"������	 , with � (t)"e		
� , t*0. The fact that the �N ����	 possess proper-
ties (i) and (ii) noted above, enable us to exploit the scale-independent hysteresis switching lemma
[10] and consequently to draw the following conclusion.

Lemma 3.3
For an arbitrary initialization of the closed-loop system such that (16) holds, let

��, �, �, v, �, �, �
�
, �

�
,w

�
: i3N	 denote the unique solution to (1), (2), (17)} (18), (15) with � gene-

rated by switching logic in Figure 3. If [0,¹) is the largest interval on which this solution is
de"ned, there is a time¹H(¹ beyond which � is constant and e		
��	�
H

(t) is bounded on [0,¹).

Let �, �, �, v, �, �, �
�
, �

�
,w

�
, (i3N), ¹, and ¹H be as in Lemma 3.3 and set �k,�

��
	O�(¹H).

Because of (13) and the observation that e		
��	�
H
(t) is bounded on [0,¹), one concludes that

1

¹� �





H

e�	
�(1#�u (�)��)�J �
�
(�) d�(R (25)
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with

�J
�
O�L

�
!�, �L

�
O�

�
#�

��
� (26)

Since � is frozen at �k, �
��

	 for t3[¹H,¹) and (25) holds, Lemma 3.2 (with t


O¹H) allows one to

conclude that the combined state of the parameterized FOC and the multi-estimator is bounded
on [¹H,¹), except for � (t) that grows linearly with t. Now, in view of Proposition 2.1, we also
know that

�� (t)!�
�H
(t)!�

�
�(t) �(R, ��(t)!�

�H
(t)�(R

Thus, since �
�H
, �, and �

�H
are bounded on [¹H,¹ ), so are � and �. From this and (18) one further

concludes that all the w
�
are bounded on [¹H,¹).

Now if ¹ were "nite, the solution to (1), (2), (17)} (18), (15) could be continued onto at least an
open half interval of the form [¹,¹

�
) thereby contradicting the hypothesis that [0,¹) is the

system's interval of maximal existence. By contradiction one can therefore conclude that ¹"R

and that the signals �, �, v,�, �
�
, �

�
, w

�
, i3N are uniformly bounded on [0, R).

With global existence of solution established, Lemma 3.2 allows one to further conclude that
lim

	�
�L

�
"�

H
. Now lim

	�
�J

�
"0 because �J �

�
3L�[0, R) and (d/dt)�J

�
� is bounded on

[0, R) (cf. [17, Lemma 1, p. 58]). From this and (26) it follows that lim
	�

�"lim
	�

�L
�
"�

H
.

4. SIMULATIONS

With the goal of verifying the performance of the supervisor FOC described above several
simulation tests were carried out. We consider "rst the academic example reported in Reference
[5], then we test our algorithm in the benchmark problem studied in Reference [18]. Some
experimental results for the latter may be found in Reference [19].

4.1. Academic example

In the example of Reference [5] the ("xed parameter) FOC operates very close to the stability
boundary predicted in proposition 4 of Reference [1], and a small change in the rotor resistance
drives the system to instability. This is illustrated in Figure 4 where we have set K

�
"0.1,

K
�
"1, �

H
"1, �

H
"10, RK "10, the initial conditions are all set equal to zero except

�(0)"10.1 and the motor operates without load, i.e. �
�
"0. The rotor resistance changes from

its initial value R"6, for which the closed-loop is stable, to the instability region of R"4 at
t"40. The theoretical stability/instability boundary in this case is R"4.9. Figure 5 shows the
same experiment but with the supervisory FOC with N"6, R"�2, 4,2, 12	, �

�
(0)"0.5 (note:

�
�
(0) is the initial estimate for �

�
) , RK (0)"10 and �"5, h"0.02, ¹�"1/3.5. For the extreme

points of the interval, to which the load torque �
�
belongs, we have "xed �

��
"0 and �

��
"5.

The initial conditions of w
�
were chosen so that (16) holds. Their initial values were

w
�
(0)"[2,!2, 2]� for i3N. Notice that, after a very brief transient, the supervisor correctly

estimates the resistance value and stabilizes the motor.
With the goal of testing the sensitivity of the proposed scheme to the discrete set of resistance

values, we simulated the case where the real value of the rotor resistance does not match any of
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Figure 4. Instability in the non-adaptive FOC due to a change in the rotor resistance.

the values of the discrete set R. The simulation is the same as above except for the real rotor
resistance that changes from its initial value R"6 to R"3.8 at t"40, instead of R"4. This is
illustrated in Figure 6, where we can see that the estimator chooses the value of the discrete set
that is the closest to the real value.
In a third test, we considered a situation where both the rotor resistance and the load torque

change. The rotor resistance changes from its initial value R"6 to 8 at t"60 and the load
torque changes from its initial value �

�
"2 to 3 at t"20 and changes again to �

�
"4 at t"40.

From Figure 7, one can observe that the tracking as well as the correct estimation of the rotor
resistance and the load torque are achieved with only brief burstings at the jump instants.
Finally, we investigated the sensitivity of the algorithm vis-a% -vis the "lter time constant¹� . For

this, we repeated the simulation of Figure 5 (with the di!erence of having set �
�
"2 instead of

�
�
"0), changing the value of¹� . Figure 8 shows that, as expected due to a longer memory in the

performance signals, when the value of ¹� is increased (in this case to 1/0.35), the transient
becomes much slower. On the other hand, if we set¹� to a very small value (1/100 in Figure 9) the
switching is faster but exhibits signi"cant dither.
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Figure 5. Stabilization with supervisory FOC.

Other simulations with various values of � and h con"rmed that performance is less sensitive to
these parameters, and their e!ect is as predicted in Section 2.3.

4.2. Benchmark problem

The benchmark problem proposed in Reference [18] included some reference tracking experi-
ments with time}varying rotor resistance and step changes in the load torque for a motor with the
speci"cations given in the Table I.
In Figure 10 we show the performance of the estimators of load torque and rotor resistance

with the following control parameters and test conditions:K
�
"0.5, K

�
"0.3, h"0.45, �"12,

¹�"0.1, R"�4, 6, 8	 and �
�
"$3.6 N m. Notice that the supervisor correctly estimates the

resistance value and the load torque. The speed error, which is not shown here, is kept within
practically reasonable bounds. The gainsK

�
andK

�
were selected following the tuning procedure
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Table I. System parameters of induction motors.

Motor description Notation Value Unit

Rated power P� 1.1 KW
Rated torque �� 7 Nm
Power factor cos(�) 0.83
Number of pole-pairs n

�
2

Rated speed w�
�

73.3 rad/sec
Rated rotor #ux norm ��

H
1.14 Wb

Stator resistance R
�

8 Ohm
Rotor resistance R

�
4 Ohm

Stator inductance ¸
�

0.47 H
Rotor inductance ¸

�
0.47 H

Mutual inductance ¸
��

0.44 H
Total leakage factor(�

�
#�

�
"2�0.06) � 0.12

Shaft inertia moment J 0.015 Kg!m�

Inverter description

Rated stator voltage ��;
�
�� 210 V

Rated stator current ��I
�
�� 12 A

Sampling frequency f
�	

13 kHz

of Reference [5]. The initial conditions are all set equal to zero except RK (0)"4 and w
�
(0)"

[2,!2, 2]� for i3�1, 2, 3	.
In a second test, we investigated the sensitivity of the algorithm vis-a% -vis the hysteresis

threshold h, and the "lter time constant ¹� . To this end, we repeated the simulation of Figure 10
changing the corresponding parameters as indicated in Figures 11 and 12. As expected, there is
a clear tradeo! between alertness of the estimator and transient behavior. We also tested the
robustness of the scheme with respect to uncertainty to other motor parameters, e.g. the inertia J,
showing that it is quite insensitive.

5. CONCLUSIONS

We have presented in this paper an application of supervisory control to induction motors with
uncertainty in the rotor resistance. This is a problem of great practical importance which, in the
authors' opinion, had not found a satisfactory solution in the literature. Motivated by industrial
practice we consider the case of current-fed induction motors and propose to adjust on-line one
parameter of the existing FOC. The overall algorithm is shown to be globally convergent under
the assumption that the actual rotor resistance belongs to a given discrete set and that the load
torque ranges in some known "nite set. Both assumptions are reasonable in applications. The
assumption that �

�
belongs to a xnite setT is of technical nature. The simulation results indicate

that the algorithm performs well even whenT is an interval. We should remark that we can take
a very "ne grid for T without increasing the computational burden.
In spite of its apparent complexity the supervisor involves very simple operations, which can be

easily implemented in modern DSPs with numerically robust algorithms. The performance of the
algorithm, as well as its sensitivity to the various tuning parameters, were tested via simulations
both in an academic example and in a benchmark problem recently proposed in the literature.
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Figure 6. Sensitivity to the discrete set of resistance values. (- . -) Real rotor resistance (*)
Estimated rotor resistance.

APPENDIX A

Proof of Lemma 3.2. De"ning,

e
�
Ov#

�
��

K
�

, e��
O�L

�
!�

H
, e
�

O�
�
!�

�

with �
�
O�

H
[
�� �
��� �], from (19), (21), and (22) one concludes that

eR 
�
"!R

�
e
�

(A1)

eR
�
"e��

#�
�
K

�

!1� �J
�

(A2)
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Figure 7. Simultaneous change of rotor resistance and load torque.

eR ��
"��

�
Je
�

#�1#
��
�
e
�

��
H
� �

�
!�

��
!� (1#�u��) �J

�
(A3)

�
�
"!K

�
e��

!K
�
e
�
#�

��
#K

�
�J

�
(A4)

�J
�
�u��"�J

�
u����

#

1

��
H

J�
�
�
�� (A5)

Replacing (A4)} (A5) in (A3) yields

eR ��
"!�1#

��
�
e
�

��
H

!�J
�
u�

1

��
H

J�
�� (K�

e��
#K

�
e
�
)#��

� �J#

�
��

��
H

I� e
�

#K
� �1#

��
�
e
�

��
H

!�� �J
�
!��

� �I!
�
��

��
H

J� u�J
�
#K

�

1

��
H

��
�
Ju�J �

�
(A6)
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Figure 8. Sensitivity with respect to ¹� .

Thus one can write (A2) and (A6) as

xR "(A#�J
�
u�AM )x#b

�
e
�

#b
�
�J

�
#B

�
u�J

�
#B

�
u�J �

�
(A7)

where xO[e
�
e��
]� and A,AM , b

�
, b

�
,B

�
,B

�
are appropriately de"ned time-varying uniformly

bounded matrices with A converging exponentially fast to the asymptotically stable matrix
[ 
 �
��� ���

]. This is because �
�
is uniformly bounded and e
�

converges to zero exponentially fast.
The fact that A#�J

�
u�AM di!ers from an exponentially stable matrix by an L� perturbation

guarantees that A#�J
�
u�AM is still exponentially stable [20]. Thus (A7) can be regarded as an

exponentially stable linear time-varying system whose inputs e
�
, �J

�
, and u��

�
are in L�[t



,¹)

and the input u�J �
�
is inL�[t



, ¹) (note that �u�J �

�
�)�

�
�u�J

�
��#�

�
�J �

�
). This allows one to conclude

that x must be uniformly bounded on [t


, ¹) and, if ¹"#R, we also have that lim

	�
x"0.
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Figure 9. Sensitivity with respect to ¹� .

The latter implying that lim
	�

�L
�
"�

H
and lim

	�
v"!�

��
/K

�
. Note also that (A1) implies

that lim
	�

��
�
!�

�
�"0 and therefore that lim

	�
��

�
�"��

�
�"�

H
.

Now uniform boundedness of x guarantees uniform boundedness of v and �L
�
but it still

remains to show that the remaining signals are bounded. To this e!ect note that from (21) and
(A4) one concludes that

u"u
�
#u

�
with

u
�
O�I#

�
��

��
H

J� �
�
!

1

��
H

J�
�
(K

�
e��

#K
�
e
�
), u

�
O

K
�

��
H

J�
�
�J

�
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Figure 10. Load torque and rotor resistance estimation.

Since �
�
and x are uniformly bounded, u

�
is also uniformly bounded and since�J

�
is inL�[t



, R),

u
�
is also in L�[t



,¹). Thus all the �

�
(i3N) are uniformly bounded because these signals

are generated by stable linear systems with input u"u
�
#u

�
with u

�
bounded and

u
�

3L�[t


,¹). A similar reasoning can also be used to conclude that � and all the �

�
are

uniformly bounded.
Regarding the boundedness of �, from (21) and (A4), one concludes that

�(t)"� (0)#
R

�
��
H
�

	




�
�
(�) d�

)� (0)#
R

�
2��

H
�

	




(��
��

!K
�
e��

!K
�
e
�
�#K

�
��J

�
�) d�
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Figure 11. Sensitivity of the resistance estimator with respect to h.

)� (0)#
R

�
2��

H
�

	



�����

!K
�
e��

!K
�
e
�
�#

K
�
2

#

K
�
2

�J �
�� d�

Here we used Schwartz inequality. Since it has been established that e��
and e

�
are bounded and

�J
�
3L�[t



,¹), one concludes that � (t) grows at most linearly with t. �
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Figure 12. Sensitivity of the resistance estimator with respect to ¹� .
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