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The subject of this paper is to discuss selected effective known and novel structures for advanced process control and
optimization. The role and techniques of model-based predictive control (MPC) in a supervisory (advanced) control layer
are first shortly discussed. The emphasis is put on algorithm efficiency for nonlinear processes and on treating uncerta-
inty in process models, with two solutions presented: the structure of nonlinear prediction and successive linearizations
for nonlinear control, and a novel algorithm based on fast model selection to cope with process uncertainty. Issues of co-
operation between MPC algorithms and on-line steady-state set-point optimization are next discussed, including integrated
approaches. Finally, a recently developed two-purpose supervisory predictive set-point optimizer is discussed, designed to
perform simultaneously two goals: economic optimization and constraints handling for the underlying unconstrained direct
controllers.
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1. Introduction

The hierarchical, multilayer approach to process auto-
mation is a standard in process industries and a well-
understood technique able to cope with the complexity
and multiple criteria of operation. The main control lay-
ers include: the regulatory (feedback) control layer, which
keeps the process at given operating points and can itself
be divided into basic and advanced control layers, and the
set-point optimisation layer, which calculates these ope-
rating points (Findeisen et al., 1980; Marlin, 1995; Fin-
deisen, 1997; Blevins et al., 2003; Brdys and Tatjew-
ski, 2005; Tatjewski, 2007). In complex control systems
applying advanced control techniques, the regulatory con-
trol layer consists typically of two layers: the basic (di-
rect) dynamic control layer, usually equipped with PID
controllers, and a higher, advanced control layer (called
also the constraint control layer, set-point control layer or
the MPC layer), in which model predictive control (MPC)
algorithms are typically implemented, see, e.g., Blevins et
al. (2003), Qin and Badgwell (2003), Maciejowski (2002),
Brdys and Tatjewski (2005) or Tatjewski (2007). The most
important advantage of MPC algorithms is the fact that
they have the unique ability to take into account constra-
ints imposed on process inputs (manipulated variables)

and outputs (controlled variables) or state variables. Mo-
reover, the MPC technique is very efficient when multi-
variable control is important (processes with strong inte-
ractions) and, generally, for processes with difficult dyna-
mics. These properties have usually crucial influence on
the quality, economic efficiency and safety of production.
The control structure incorporating the discussed layers is
presented in Fig. 1, where the set-point optimization layer
is denoted as local set-point optimization connected with
the actual controlled part of the plant, with the plant-wide
optimization/management in the next layer.

A detailed discussion of multilayer control hierar-
chies is beyond the scope of this paper, see elsewhere, e.g.,
the works of Blevins et al. (2003), Bryds and Tatjewski
(2005), Tatjewski (2007) and also Skogestad (2000; 2004)
and Zheng et al. (1999) for topics such as the selection
of manipulated and controlled variables, controller types,
etc. We shall only mention that the structure of Fig. 1
stems from a functional decomposition, as it is based on
assigning a set of functionally different partial control ob-
jectives in a structure of verticaly dependent layers. These
partial objectives are as follows:

1. To maintain the process in a safe operation mode, i.e.,
to constrain to an acceptable level the probability of
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Fig. 1. Multilayer control structure.

undesirable, uncontrollable process behaviour (cau-
sed by disturbances, faults, etc.): the direct control
layer.

2. To meet demands on the product quality and econo-
mical usage of technological apparatuses, i.e., to ke-
ep certain process input and output values on or wi-
thin prescribed limits: the advanced control layer.

3. To maximize the current production profit: the local
optimization layer.

Let us notice that the history and significance of the
advanced control layer is directly connected with the de-
velopment of advanced control algorithms, in fact almost
exclusively MPC algorithms. There was no such a distinc-
tion made in the previous literature, see, e.g., the research
of Lefkowitz (1966), Mesarović et al. (1970) or Finde-
isen et al. (1980). It was the development of computer
technology that enabled the realization of more compu-
tationally demanding advanced control algorithms based
on process models, such as the popular DMC algorithm
and other MPC type algorithms, leading to a separation of
a dedicated supervisory feedback control layer. Since then
this distinction has been commonly encountered in the pa-
pers of leading vendors delivering control equipment and
software, as well as in review papers and basic textbooks,
especially those devoted to process control, see, e.g., the
publications by Qin and Badgwell (2003), Marlin (1995),
Goodwin et al. (2001), Blevins et al. (2003), Tatjewski
(2007; 2008). It should also be mentioned that the set-
point control layer cannot always occur. It is not distin-
guished in cases when there is no need for supervisory
set-point feedback control in the sense described above.
Moreover, this layer can be not fully separating the direct

control layer from the local optimization layer as indica-
ted in the structure of Fig. 1.

When the standard multilayer control system structu-
re is discussed, it is assumed that the individual layers are
clearly distinct in the sense that each higher layer opera-
tes with an intervention frequency significantly lower (i.e.,
with the sampling interval significantly longer) than the
intervention frequency of the directly subordinated layer.
For example, in process control, typical the sampling in-
tervals of the direct control layer can be in the range of
seconds, whereas sampling interval of the constraint con-
trol layer can be in the range of minutes and local steady-
state optimization can be activated every hour or even less
frequently (Qin and Badgwell, 2003). This chief assump-
tion is justified if main disturbances influencing the per-
formance of control units or the on-line optimization unit
of individual layers have dynamics sufficiently slow com-
pared with the sampling intervals of these units, i.e., they
are appropriately slowly-varying when compared with the
dynamics of the controlled process. In particular, if the dy-
namics of external disturbances shifting an economically
optimal set-point are significantly slower than those of the
underlying controlled plant, activating optimization signi-
ficantly less frequently than the intervention frequency of
feedback control is reasonable, otherwise this may lead
to economic losses. However, in many important cases,
the dynamics of main disturbances are comparable with
the process dynamics. Quite often these disturbances, for
example, flow rates, properties of feed and energy stre-
ams etc., vary significantly and are not much slower than
the dynamics of the controlled process. Certainly, in the
era of powerful computers, control system designers try
to cope with that problem, which leads to stronger inte-
ractions between layers and control structures where the
discussed clear distinctions between layers hold no lon-
ger. These topics will be focus points of Sections 3 and 4
of this paper.

The paper is organised as follows. The following
Section 2 will be devoted to selected problems concerning
advanced control algorithms, in fact, exclusively MPC al-
gorithms. Full, numerical realisations of these algorithms
relying on on-line constrained optimization will be discus-
sed, with the focus on effective ways to cope with process
nonlinearity and model uncertainty. In particular, the idea
of predictive control algorithms with fast model selection
will be presented. In Section 3, on-line set-point optimi-
zation with a close relation to or even integrated with the
MPC control layer will be discussed. Finally, in Section 4,
an application of MPC technology to the construction of a
supervisory unit manipulating set-points for direct uncon-
strained controllers will be presented, aimed at integrated
set-point optimization and constraint handling.
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2. MPC for advanced control of nonlinear
and uncertain processes

MPC is now undoubtedly the dominant advanced con-
trol technology, although advanced control algorithms are
usually defined more generally, as all those more advan-
ced than classical PID ones, see, e.g., the works of Macie-
jowski (2002) and Blevins et al. (2003). The main reasons
for that were stated in Introduction, and due to this domi-
nance the advanced control layer is even sometimes called
the MPC layer. Therefore, only MPC algorithms are con-
sidered with in this control layer in this paper. However,
rapid development of computer technology made it possi-
ble to apply now MPC also for direct control (in simpler
versions if necessary, explicit unconstrained or constra-
ined), when improved control performance is required and
cannot be achieved with PIDs. In general, MPC refers to a
class of computer control algorithms which at every sam-
pling instant compute a sequence (a trajectory) of incre-
ments or amplitudes of manipulated variables which mi-
nimize predicted control errors over a prediction horizon.
One of typical general formulations of the MPC dynamic
optimization problem (MPC-DO problem) is based on the
process description in the form of an input-output model,
e.g., step responses or an ARX type model, as used in clas-
sical DMC and GPC algorithms, respectively. Then the
MPC-DO problem is as follows (assuming dim y = dim u),
see, e.g., the results of Camacho and Bordons (1999), Ma-
ciejowski (2002), Rossiter (2003), Tatjewski (2007):

JMPC(k)

= min
�u(k)

{ N∑
p=1

‖ysp(k + p|k)

− y(k + p|k)‖2 + λ

Nu−1∑
p=0

‖�u(k + p|k)‖2
}
,

(1)

umin ≤ u(k + p|k) ≤ umax,

−�umax ≤ �u(k + p|k) ≤ �umax,

p = 0, . . . , Nu − 1,

ymin ≤ y(k + p|k) ≤ ymax, p = 1, . . . , N,

where �u(k) = [�u(k|k)T · · · �u(k + Nu − 1|k)T ]T

is the vector of decision variables (controller outputs) of
dimension nu · Nu (nu =dimu), y(k + p|k) denotes the
process output prediction for the future sampling instant
k + p, calculated at the current sample k using the pro-
cess model; N and Nu denote prediction and control ho-
rizons, respectively, and λ is a weighting coefficient (dia-
gonal weighting matrices can be used, in general). The
constant set-point trajectory is usually assumed over the
prediction horizon in process control applications, i.e.,
ysp(k + p|k) = ysp(k), p = 1, . . . , N . Actually only
the first element �u(k) = �u(k|k) of the optimal trajec-
tory vector �u(k) is applied and the whole procedure is

repeated at the next sample, etc. (receding horizon appro-
ach).

A crucial element of the MPC-DO formulation is the
process model. When it is linear (affine), then the vector
of predictions y(k) = [y(k + 1|k)T · · · y(k + N |k)T ]T

can be, due to the superposition principle, decomposed to
the sum

y(k) = G�u(k) + y0(k)

=

⎡
⎢⎢⎢⎣

g1�u(k) + y0(k + 1|k)
g2�u(k) + y0(k + 2|k)

...
gN�u(k) + y0(k + N |k)

⎤
⎥⎥⎥⎦ , (2)

where y0(k) = [y0(k +1|k)T · · · y0(k +N |k)T ]T is the
“free trajectory” (or “free response”) vector of the length
ny ·N (ny = dim y) depending on the past only, whereas
G is the dynamic matrix of dimension nyN ·nuNu, com-
posed of coefficients of the process step responses. The
G�u(k) component of (2), depending only on the futu-
re input increments �u(k), is usually called the “forced
trajectory”. The resulting MPC-DO is then a QP problem,
and thus it can be easily implemented for on-line appli-
cation in the advanced control layer, and also in the di-
rect control layer if sufficient computing power and ade-
quate software is available in the DCS control units. If
this is not the case and a simpler implementation is re-
quired, then inequality constraints can be neglected when
solving the (then unconstrained) MPC-DO problem—its
solution can be then derived analytically off-line, as an
MPC explicit, unconstrained control law, depending on
the form of the process model used. It can be also often
efficiently used in the presence of process input constra-
ints simply projecting the controller output on the con-
straints, if only certain implementation principles are pre-
served (Tatjewski, 2007; 2008). An alternative to this sub-
optimal approach, especially for smaller problems without
significant uncertainties, can be the design and use of an
explicit piecewise-affine (constrained) MPC control law
(Bemporad et al., 2002; Tondell et al., 2003).

The application of MPC algorithms with linear pro-
cess models for supervisory constraint control in late
1970s and 1980s was a breakthrough, the opening of a
new era in process control. Better control performance in
feedback control layers made it possible to increase pro-
duction effectiveness based on on-line process optimiza-
tion. However, on-line economical set-point optimization
means changing (adopting) set-points to varying distur-
bances and production requirements, thus shifting to dif-
ferent regions of the usually nonlinear process, correspon-
ding to different local process characteristics. Therefore,
nonlinear feedback control was needed. This led to the
development of nonlinear MPC algorithms. The presen-
tation of this broad area is beyond the scope of this paper,
see, e.g., the reserch of Mayne et al. (2000). Let us only
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mention that the formulation of the MPC-DO (1) rema-
ins in fact unchanged, only the predictions y(k + p|k) are
now based on a nonlinear model, thus leading to a nonli-
near MPC-DO problem, often difficult for on-line imple-
mentation. A practical, suboptimal but in most cases very
satisfactory, approach is to base part of the prediction de-
pending on the past (free trajectory) on a nonlinear model,
and the prediction depending on decision variables (forced
trajectory) on a linear model stemming from on-line line-
arization of the nonlinear one at a current process state—
the formula (2) remains valid, but with nonlinear y0(k)
and G = G(k) stemming from current linearization.

The structure of this MPC-NPL algorithm (MPC
with nonlinear prediction and linearization) is presented in
Fig. 2. Certainly, for weakly nonlinear processes, lineari-
zation needs not be made at every sampling instant, it can
be performed every few samples, their number depending
on the nonlinearity. On the other hand, for strongly nonli-
near processes and large set-point or disturbance changes,
the standard NPL approach may be not sufficiently effec-
tive. A remedy for that may be the use of process line-
arization around the predicted nonlinear free trajectory, or
even a repetitive approach with a few successive lineari-
zations around the successively improving predicted non-
linear trajectory, see the work of Tatjewski (2007) for a
detailed discussion of these topics.

Fig. 2. Structure of the MPC-NPL algorithm.

However, perhaps the main challenge for the design
of MPC algorithms are the ways to cope with process un-
certainties and changes. As in classical feedback control,
we have two main approaches here:

• An off-line approach: design of a robust MPC algo-
rithm taking into account a model of possible uncer-
tainties at the design phase.

• An on-line approach: design of an adaptive MPC al-
gorithm modifying on-line the control algorithm ba-
sed on current process measurements.

In the first case, the simplest practical approach is to de-
tune the algorithm taking appropriately large values of the
weighting coefficients for the part of the MPC cost func-
tion which penalizes future control increments over the
control horizon. This leads, however, to decreased control

performance under nominal conditions and needs excessi-
ve simulations of the process behaviour under all possible
operating conditions. More elaborate approaches for the
design of robust MPC controllers base on the “worst ca-
se principle”. This leads to min-max approaches, which
are usually computationally prohibitive for on-line appli-
cations for most processes and are also known to lead to
conservative designs: the larger the uncertainty, the more
conservative the controller. The worst-case min-max ap-
proach can be open-loop or closed-loop. The latter leads
to a less conservative design but needs even much mo-
re computations than the former, thus being usually re-
garded as impractical. We shall not discuss this case in
the paper and the reader is referred to the literature, (Lee
and Yu, 1997; Scokaert and Mayne, 1998; Bemporad and
Morari, 1999; Kerrigan and Maciejowski, 2004; Diehl and
Bjornberg, 2004). Let us recall that a complete description
of the uncertainty is needed at the design phase of the ro-
bust controller, i.e., the structure of the model uncertainty
and ranges of its possible parameter variations. However,
the situation can be improved in this case by approaches
with more advanced tractability of uncertainty (Brdys and
Chang, 2001; Wang, 2002; Deinrych et al., 2007; Tran and
Brdys, 2009).

In the second case, the standard approach of indi-
rect adaptive MPC is usually used, i.e., an on-line pro-
cess identification procedure is applied and successive ad-
aptation of the process model used in the MPC algori-
thm is performed, at every sampling instant or after every
preselected number of sampling instants (Feng and Lo-
zano, 1999; Jeong and Park, 2002). The moving horizon
estimation (MHE) is regarded here as a recommended
one (Allgöwer et al., 1999; Rao et al., 2003; Haseltine
and Rawlings, 2005). The indirect adaptive approach has
known advantages and drawbacks, the main drawback be-
ing the need to assure conditions of reliable on-line model
identification, which can be difficult in feedback control
loop.

A new, effective approach to uncertainty combining
advantages of the two approaches described above will
be now presented. It relies on a complete description of
the uncertainty but, unlike in the robust approach, on-line
modification of the model parameters is performed and,
unlike the classical adaptive approach, typical indepen-
dent and involved model identification is not used—only
a simple recalculation of the model parameters relying on
the prediction procedure is performed. The approach will
be called MPC with fast on-line model selection—MPC-
MS (model selection). It can be applied to any kind of
the process parametric model, under certain assumptions
on possible parameter values. It will now be presented for
MPC formulation with the state-space process model, as-
sumed in the following form:

x(k + 1) = Ax(k) + Bu(k), (3)
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where the model matrices A and B are uncertain—can
be varying with time, but are assumed to be always from
the set being the convex hull of a given number, say L, of
“vertex” models, i.e.,

(A(k),B(k)) ∈ co{(A1,B1), . . . , (AL,BL)}. (4)

For further discussion in this section, we will be
using the formulation of the MPC-DO problem, slightly
different then (2) using the just introduced state-space pro-
cess model:

JMPC(k) = min
�u(k)

{ N∑
p=1

‖xsp(k) − x(k + p|k)‖2
Q

+
N−1∑
p=0

‖u(k + p|k) − usp(k)‖2
R

}

u(k + p|k) ∈ U, p = 0, . . . , N − 1,

x(k + p + 1|k)
= A(k)x(k + p|k) + B(k)u(k + p|k) ∈ X,

p = 0, . . . , N − 1,

x(k + N |k) ∈ XT ,

(5)

where (xsp(k), usp(k)) is the desired full set-point (equ-
ilibrium) state, xsp(k) corresponding to the input value
usp(k); x(k|k) = x(k) denotes the current measured va-
lue of the state, and XT is a terminal set for the state ap-
plied to assure stability (a standard positive invariant set
under a linear state feedback KT ). Notice that differences
between the process input signal and the set-point for the
input are penalized in the second sum, not in the process
input signal increments as in (2)—this formulation is often
used with the state-space model as often more convenient,
in particular for nonlinear models. Further, full state me-
asurement and, for simplicity, the set-point equal to zero
will be assumed. Thus, we shall be considering the stan-
dard regulator problem (under full state measurement).

Fast on-line model selection will be performed using
the defined set of vertex models for state predictions. At
sampling instant k, based on the previous control input
u(k− 1) and the previously measured state x(k − 1), cur-
rent state predictions are calculated for every vertex mo-
del:

xj(k|k − 1)
= Ajx(k − 1) + Bju(k − 1), j = 1, . . . , L. (6)

Then, for further predictions in the MPC algorithm, the
weighting coefficients λj are selected which minimize the

norm of the current prediction error:

{λ̂1(k), . . . , λ̂L(k)}

= arg min
λ1,...,λL

‖x(k) −
L∑

j=1

λjx
j(k|k − 1)‖,

λj ∈ [0, 1], j = 1, . . . , L,

L∑
j=1

λj = 1, (7)

A(k) =
L∑

j=1

λ̂j(k)Aj , B(k) =
L∑

j=1

λ̂j(k)Bj . (8)

That is, prediction equations at sampling instant k are

x(k + p + 1|k)

=
( L∑

j=1

λ̂j(k)Aj

)
x(k + p|k)

+
( L∑

j=1

λ̂j(k)Bj

)
u(k + p|k),

p = 0, . . . , N − 1. (9)

Stability analysis of uncertain predictive control sys-
tems is generally a very difficult problem. For the MPC-
MS algorithm considered, stability results have been obta-
ined (Sztyber, 2008), provided the algorithm is augmented
with an additional safeguarding mechanism, based on the
following condition (10):

∧
x∈Xp

∧
j=1,...,L

Xp+1={Ajx + Bj û(k + p|k)} ⊆ X,

XN ⊆ XT , p = 0, . . . , N−1, X0 = {x(k)}. (10)

Theorem 1. Assume that there exist matrices P > 0 and
F such that

1. the sets X and XT are convex,

2.
∧

x∈X Fx ∈ U ,

3.
∧

x∈X

∧
j=1,...,L(Aj + BjF)x ∈ X ,

4.
∧

j=1,...,L(Aj + BjF)T P(Aj + BjF) − P < 0.

Then the following algorithm: “If the condition (10) is sa-
tisfied, then û(t|t) generated by MPC-MS is applied to the
process, otherwise the process input is set to uf = Fx” is
stable.

Example 1. (Sztyber, 2008) The second order process is
simulated, described by matrices from the uncertainty set:

(A,B) ∈ co{(A1,B1), (A2,B2)},
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Fig. 3. Nominal MPC: state variables (upper plot) and the con-
trol signal (lower plot).

Fig. 4. MPC-MS: state variables (upper plot), the control signal
(middle plot) and optimal model parameters (lower plot).

A1 =
[

0 1
−1.6 1

]
, B1 =

[
0
1

]
, (11)

A2 =
[

0 1
0.1 1

]
, B2 =

[
0
1

]
. (12)

The MPC controller was designed for the process matrices
(Am,Bm) placed in the middle of the above set,

Am =
[

0 1
−0.7 1

]
, Bm =

[
0
1

]
. (13)

The MPC-MS controller was implemented with

N = 3, Q =
[

1 0
0 1

]
, R = [1],

KT = [0.7492 − 0.9890],

XT = {x : xT

[
19.5639 −0.2347
−0.2347 21.2817

]
x ≤ 5}.

During the simulation, the process was assumed to
be (A1,B1), and the constraints were U = [−1, 1], X =
R

n. The performance of the nominal MPC and the MPC-
MS algorithm is presented in Figs. 3 and 4, showing state
variables, control signal and optimal model parameters (7)
as functions of time. �

3. On-line set-point optimization for
advanced feedback control

The formulation of economic set-point optimization in the
optimization layer of the control structure depends, in ge-
neral, on dynamical properties of disturbances, i.e., pro-
cess inputs not controlled at the optimization layer (co-
ming as “true” disturbances from the process environment
or as demand changes from higher layers of the hierar-
chy). Two general cases can be distinguished here:

1. Dynamic trajectories of disturbance predictions over
a certain time horizon are available, e.g., water de-
mands in water treatment and distribution systems,
prescribed dynamic trajectories of certain variables
in batch processes, etc.

2. Measured or estimated current values of disturbances
are only available.

The first case leads to dynamic set-point optimization, the
second applies mainly to continuous control, leading usu-
ally to steady-state set-point optimization. There are then
two main cases:

2.1. Disturbances are slow varying compared with the
controlled process dynamics, or changing abruptly
but rare, (e.g., when switching to a different source
of feed or changing the product specifications).

2.2. The disturbance dynamics are comparable with the
feedback controlled process dynamics.

Assuming a typical linear form of the economic
performance function, the model-based local steady-state
optimization problem (LSSO) can be stated as the follo-
wing LP problem:

min
uss,yss

{
JE(k) = cT

u uss − cT
y yss

}
,

umin ≤ uss ≤ umax,

ymin ≤ yss ≤ ymax,

yss = F (uss, w̃), (14)

where F (u, w) denotes a comprehensive steady-state pro-
cess model, usually a nonlinear mapping, often given in an
implicit numerical form, w̃ is the current estimate or me-
asurement of disturbances, cu and cy are prices resulting
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from economic considerations, umin, umax, ymin, ymax

are constraint limits imposed on process input and out-
put variables, respectively. Further, nu, nw, ny denote the
numbers of process input variables u, disturbances w af-
fecting the plant and output variables y, respectively. Let
us point out that updating the model is a key issue in the
optimization layer. It is a difficult problem for nonlinear
constrained dynamic models; a popular technique is the
extended Kalman filtering, and recently MHE (moving
horizon estimation) has been recommended. For steady-
state models the situation is known to be simpler. For fa-
ster changing disturbances the key issue may be the time
needed for relevant model update and re-optimization, as
it may limit the frequency of optimization execution. The
issues of model identification (and update) are beyond the
scope of this paper.

In Case 2.1, there are long time intervals when distur-
bance values can be treated as constant parameters. Then
the classical multilayer structure from Fig. 1 applies wi-
thout loss of economic efficiency, with the optimization
layer performing steady-state (static) optimization rarely,
much less frequently than the advanced controller execu-
tes. When a significant inaccuracy in the usually com-
plex, comprehensive nonlinear steady-state process mo-
del is a problem, then certain iterative optimizing algori-
thms based on steady-state feedback may lead to impro-
vements (Roberts, 1979; Brdys and Tatjewski, 2005; Ta-
tjewski, 2007).

In Case 2.2 the dynamics of disturbances are compa-
rable with the controlled process dynamics. In this case,
operation in the classical hierarchical structure with the
frequency of economic optimization much lower than that
of MPC can result in a significant loss of economic effec-
tiveness as keeping then the set-point constant over many
sampling periods waiting for the next calculation of LSSO
despite changes in disturbances could lead to economic
losses. Certainly, the most obvious and successful appro-
ach would be to perform LSSO as often as needed, even
as frequently as the MPC controller executes. However,
LSSO uses a comprehensive, nonlinear steady-state mo-
del of the process, performing its identification and nonli-
near constrained optimization. This may be a difficult and
time-consuming task, impossible to be executed on-line at
each or even at every few sampling periods of MPC.

Therefore, a simpler approach became an industrial
practice: the use of additional steady-state target optimi-
zation (SSTO) coupled with the MPC algorithm, see, e.g.,
the works of Kassmann et al. (2000), Blevins et al. (2003),
Qin and Badgwell (2003) or Tatjewski (2007). The resul-
ting control structure is depicted in Fig. 5, where direct in-
terconnection of the optimization unit with the direct con-
trol layer is omitted (cf. Fig. 1), as this simplifies presen-
tation, without loss of generality. As usual in a multilayer
structure, each control unit (functional control block) cal-
culates its output with a different frequency; the higher the

block in the structure, the lower the frequency, but MPC
SSTO and MPC dynamic optimization (MPC-DO) consti-
tute now functionally one control unit operating with the
same sampling period.

Denote by (ŷss, ûss) steady-states calculated at the
LSSO layer and transmitted to the lower layer, as in
Fig. 5. The role of SSTO is to recalculate these values
every time the MPC controller executes, to cope with va-
rying disturbances. Denote these recalculated values by
(yss, uss) (without “hats”). There are two main appro-
aches to SSTO: in the first one the goal is to follow the
set-points (ŷss, ûss) by the targets (yss, uss) as close as
possible (Rao and Rawlings, 1999); in the second one the
set-points are optimally recalculated based on the origi-
nal economic performance function (that from LSSO), but
using a simplified steady-state process model (Kassmann
et al., 2000; Blevins et al., 2003). The second approach
is more important and interesting, as SSTO is then a sim-
plified version of the LSSO problem (14). In many cases,
a steady-state version, i.e., the gain matrix of the linear
dynamic model used in MPC-DO is reported to be used
(Kassmann et al., 2000; Blevins et al., 2003; Qin and Bad-
gwell, 2003). This results in a linear programming (LP)
problem if the economic objective function is linear. Ha-
ving LSSO in the form (14), SSTO takes then the form

min
�uss,�yss

{
JE(k) = cT

u�uss − cT
y �yss

}
,

yss = y0(k + N |k) + �yss,

uss = u(k − 1) + �uss,

umin ≤ uss ≤ umax,

ymin ≤ yss ≤ ymax,

�yss = Gss�uss, (15)

Fig. 5. Control structure with SSTO.
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where Gss is the gain matrix of the dynamic model used
in MPC-DO. The LP problem (15) is usually solved at
each sampling instant of the MPC algorithm, after the
prediction of the free output at the end of the horizon
y0(k +N |k) and before the solution of the MPC-DO pro-
blem.

However, the constant linear process model used in
(15) may be too different from the nonlinear one used in
LSSO, for most of the operating points, which may lead to
losses in economic optimality. Hence, in the work of Qin
and Badgwell (2003) using linearizations of the nonline-
ar model instead of the gain matrix of the dynamic one
is reported. The reason is that the model used in SSTO
should be consistent with the comprehensive steady-state
nonlinear model from the LSSO layer, rather than with
the dynamic one applied in MPC. Using the linearization
of the LSSO model F (·, w̃(k)) at sampling instant k (i.e.,
for u(k − 1)) leads to the adaptive SSTO problem of the
following LP form:

min
�uss,�yss

{
JE(k) = cT

u�uss − cT
y �yss

}
,

yss = F (u(k − 1), w̃(k)) + �yss,

uss = u(k − 1) + �uss,

umin ≤ uss ≤ umax,

ymin ≤ yss ≤ ymax,

�yss = H(k)�uss, (16)

which is similar to (15), but with F (u(k − 1), w̃(k)) in-
stead of y0(k + N |k) and with H(k) in place of Gss.
The SSTO problem (16) should be solved at each sam-
pling instant, but it may be reasonable to update the non-
linear model F (·, w̃(k)) and the gain matrix H(k) not so
frequently. Updating H(k) is sensible after a significant
change in model nonlinearity, similarly as updating the va-
lue w̃ after a reasonably significant change in disturbance
measurement/estimation. The resulting control structure is
presented in Fig. 6, see also (Tatjewski, 2007). The simu-
lations have shown that this structure leads in most cases
to control performance very close to the reference (and
not realistic) one from Fig. 1 with LSSO repeated at eve-
ry sample of MPC (Ławryńczuk et al., 2007; Ławryńczuk
et al., 2008).

Because the optimization problems (2) and (16) are
solved at the same sampling instants, it is possible to in-
tegrate them into one problem, e.g., adding appropriately
the weighted cost function from (16) to the cost function
of (2) and collecting all constraints. This leads to the fol-
lowing integrated MPC-DO-SSTO problem:

JINT (k)

= min
�u(k),uss,yss

{ N∑
p=1

‖yss − gp�u(k)

Fig. 6. Control structure with adaptive SSTO.

− y0(k + p|k)‖2 + λ

Nu−1∑
p=0

‖�u(k + p|k)‖2

+ γ(cT
u uss − cT

y yss)
}
,

umin ≤ u(k − 1) +
∑p

i=0 �u(k + i|k) ≤ umax,

−�umax ≤ �u(k + p|k) ≤ �umax,
p = 0, . . . , Nu − 1,

ymin ≤ gp�u(k) + y0(k + p|k) ≤ ymax,
p = 1, . . . , N,

umin ≤ uss ≤ umax,

ymin ≤ yss ≤ ymax,

yss = F (u(k−1, w̃)
+ H(k)(uss− u(k−1)), (17)

where γ is a weighting coefficient. The approach was in-
vestigated by simulation for several process control mo-
dels. In most cases it leads to acceptable results very close
to those from the multilayer approach from Fig. 6 (Ław-
ryńczuk et al. 2007; 2008).Generally, integration is not a
novel idea. There were earlier attempts to integrate nonli-
near LSSO with MPC-DO (but without linearizations) for
a specific process (Zanin et al., 2002).

It should be noticed that further development of the
SSTO problem, for strongly nonlinear processes, was al-
so proposed by Tatjewski et al. (2006; 2007), involving
quadratic and piecewise-linear approximations.

It should also be pointed out that for successful non-
linear MPC control the choice of the form of the nonli-
near process model is of great importance. It is not only
vital when a nonlinear MPC-DO problem is solved on-
line, but also when the nonlinear model must be frequen-
tly updated and linearized, as in the structures discussed



Supervisory predictive control and on-line set-point optimization 491

in this section. The use of computationally superior fuz-
zy or neural models, being often approximations of in-
volved original nonlinear first-principle models, is here
recommended (Tatjewski and Ławryńczuk, 2006; Tatjew-
ski, 2007; Marusak and Tatjewski, 2009; Ławryńczuk and
Tatjewski, 2010). Such models can be also hybrid, as, e.g.,
a Hammerstein model with neural or fuzzy nonlinear part
(Ławryńczuk et al., 2009b).

4. Predictive set-point optimizer/governor
for unconstrained direct controllers

There is a class of processes having the basic feedback
control layer equipped with unconstrained controllers
(usually PIDs), for which a supervisory advanced feed-
back control layer is not needed, but improved economic
set-point optimization and, first of all, the handling of pro-
cess input and output constraints is required. In the work
of Ławryńczuk et al. (2009a), see also that of Marusak
and Tatjewski (2008), a control structure was described
in which a supervisory predictive model-based economic
optimiser is responsible not only for on-line set-point opti-
mization but also for the fulfilment of the constraints—it
is presented in Fig. 7. The optimizer acts as a set-point
governor for satisfying constraints in the underlying basic
feedback controlled system. The idea of reference value
(set-point) governors is known (Bemporad, 1998). On the
other hand in the research by Saez et al. (2002) design of
a similar predictive set-point optimiser, for generally un-
constrained processes, was introduced.

The supervisor described here is constructed by in-
tegrating three elements: the MPC technique, economic
optimization, and models of the basic unconstrained con-
trollers. The integrated problem involving optimization
with the nonlinear process model (14) is as follows:

JINT (k)

= min
�u(k),uss,yss

{ N∑
p=1

‖yss − gp�u(k)

− y0(k + p|k)‖2 + λ

Nu−1∑
p=0

‖�u(k + p|k)‖2

+ γ(cT
u uss − cT

y yss)
}

,

umin ≤ u(k − 1) +
∑p

i=0 �u(k + i|k) ≤ umax,

−�umax ≤ �u(k + p|k) ≤ �umax,
p = 0, . . . , Nu − 1,

ymin ≤ gp�u(k) + y0(k + p|k) ≤ ymax,
p = 1, . . . , N,

umin ≤ uss ≤ umax,

ymin ≤ yss ≤ ymax,

yss = F (uss, w̃),
�u(k) = K(yss − y0(k)), (18)

where yss = [(yss)T · · · (yss)T ]T is the vector con-
sisting of “repeated” yss to be consistent with y0(k) as
defined directly after (2). In (18), K describes a linear
internal feedback control law applied for basic control,
which can be, e.g., the unconstrained MPC control law
with K = (GTG + λI)−1 as in (18), or the PID law,
u(k) = R(yss − y(k)). Observe that, due to the internal
feedback controller model included into (18), the control
increments vector �u(k) is in fact no longer the inde-
pendent decision variable. It depends linearly on the con-
trol error vector. In fact, the only independent variable is
the input set-point uss, as yss results from the steady-state
process model.

The problem (18) is a nonlinear one. In order to trans-
form it into a quadratic programming problem, more reali-
stic to be solved on-line, a natural approach is to lineari-
ze the steady-state process model, taking into account the
current state of the plant. As a result, the following opti-
mization problem is obtained (compare with the formula-
tions (18) and (17)):

JINT (k)

= min
�u(k),uss,yss

{ N∑
p=1

‖yss − gp�u(k)

− y0(k + p|k)‖2 + λ

Nu−1∑
p=0

‖�u(k + p|k)‖2

+ γ(cT
u uss − cT

y yss)
}
,

umin ≤ u(k − 1) +
∑p

i=0 �u(k + i|k) ≤ umax,

−�umax ≤ �u(k + p|k) ≤ �umax,
p = 0, . . . , Nu − 1,

ymin ≤ gp�u(k) + y0(k + p|k) ≤ ymax,
p = 1, . . . , N,

umin ≤ uss ≤ umax,

ymin ≤ yss ≤ ymax,

yss = F (u(k − 1), w̃) + H(k)(uss − u(k − 1)),
�u(k) = K(yss − y0(k)). (19)

Observe that also the output constraints can be ta-
ken into account in the supervisor action. After solving
(19), the new set-point values yss for direct feedback con-
trollers are obtained. Because the dynamic model of the-
se controllers is taken into consideration by the set-point
optimiser, not only process output y(k) but also process
input u(k) generated by the internal controller are predic-
ted and considered during the calculation of the set-point
values, which is performed taking into account the con-
straints put on these predicted process output and input
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Fig. 7. Control structure with the integrated set-point supervi-
sor.

values. It should be mentioned that an alternative formu-
lation of the problem (18) and (19) is possible: namely, the
dynamic plant model and the local feedback controller can
be described using one dynamic model of the closed loop.
Such an approach surfaces if the plant and the feedback
controllers are modelled (identified) together.

Example 2. The CSTR with the van de Vusse reaction is
considered (DoyleIII et al., 1995), shown in Fig. 8. The

Fig. 8. CSTR with the van de Vusse reaction.

state equations are as follows:

dCA

dt
= −k1CA − k3(CA)2 +

F

V
(CAf − CA),

dCB

dt
= k1CA − k2(CB) − F

V
CB, (20)

where CA, CB are compositions of components A and B,
F is the feed inflow, V is the volume (assumed constant,
V = 1 l), CAf is the composition of the component A in
the feed stream and considered as a measured disturbance.
Kinetic parameters of the reaction are k1 = 50 1/h, k2 =
100 1/h, k3 = 10 l/(h mol).

The composition CB of the product B in the output
stream is the output variable, F is the manipulated input.

Fig. 9. Trajectories of the output in the multilayer structure with
the integrated predictive supervisor (black line) and in
the classical multilayer structure (grey line); dotted lines
denote set-point trajectories.

It was assumed during the experiments that the disturbing
composition CAf varies according to the formula

CAf (t) = CAf0 − sin
( 2π

100
t
)
, (21)

where CAf0 = 10 mol/l. The economic performance
function, yielding the maximization of the production out-
put, is JE = −F . The constraints are 0l/h ≤ F ≤
150 l/h for the process input and CB ≥ 1, 15 mol/l
for the process output. They are taken into consideration
both in the optimization layer and in the integrated pre-
dictive optimizer, which generates set-points for the in-
ternal unconstrained controller. The latter is the analytic
(unconstrained) DMC control law. The sampling time is
Tp = 3, 6 s, and the parameter values N = 30, Nu = 15,
λ = 0, 001 were assumed when designing the DMC con-
trol law.

Figures 9 and 10 present results of simulations in the
presented control structure with the integrated predictive
supervisor and in the classical multilayer structure (basic
feedback control + LSSO). There is a clear difference be-
tween these cases, especially during the first phase, when
difference between generated set-point trajectories for ba-
sic controllers is significant. This is due to the presence
of both the process and basic (internal) controller models
and all the constraints in the optimizer. �

5. Conclusions

The paper presented a short review and selected algo-
rithms of supervisory advanced control and on-line set-
point optimization. It was indicated that, for applications
of advanced MPC technology the design of computatio-
nally effective nonlinear control is important and effective
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Fig. 10. Trajectories of the control signal in the multilayer struc-
ture as in Fig. 9.

robust control is a challenge. The calculation of the free
output trajectory using a nonlinear model combined with
the linearized model for the optimization of control incre-
ments (thus leading to QP) was indicated as an effective
practical way to cope with process nonlinearity.

The new technique of MPC with fast on-line model
selection was presented as a possible way to cope effec-
tively with model uncertainty, in particular with models
undergoing unknown, unpredicted changes, but within an
a priori known parameter set. The importance of proper
selection of the control structure for on-line set-point opti-
mization for MPC for frequently met cases when the dy-
namics of disturbances are comparable with the control-
led process dynamics was pointed out. Control structu-
res for this situation were discussed, starting from clas-
sical SSTO (steady-state target optimization), and presen-
ting adaptive SSTO and an integrated approach. Finally,
a two-purpose integrated predictive set-point optimizer-
governor was presented for cases where there is no ne-
ed for supervisory advanced feedback control over uncon-
strained direct feedback control, but improved set-point
optimization and constraint handling is required. A conc-
lusion from the presented designs is that a number of so-
lutions emerged for the most difficult case with the dy-
namics of disturbances comparable with the controlled
process dynamics, leading to non-conventional multilay-
er structures and algorithms.
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land, (on CD-ROM).
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