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Supervisory Predictive Control of Standalone
Wind/Solar Energy Generation Systems
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Abstract—This work focuses on the development of a supervi-
sory model predictive control method for the optimal management
and operation of hybrid standalone wind-solar energy generation
systems. We design the supervisory control system via model pre-
dictive control which computes the power references for the wind
and solar subsystems at each sampling time while minimizing a
suitable cost function. The power references are sent to two local
controllers which drive the two subsystems to the requested power
references. We discuss how to incorporate practical considerations,
for example, how to extend the life time of the equipment by re-
ducing the peak values of inrush or surge currents, into the formu-
lation of the model predictive control optimization problem. We
present several simulation case studies that demonstrate the ap-
plicability and effectiveness of the proposed supervisory predictive
control architecture.

Index Terms—Model predictive control (MPC), solar energy,
standalone wind and solar systems, supervisory predictive control,
wind energy.

I. INTRODUCTION

A LTERNATIVE energy technologies, like wind- and solar-
based energy generation systems, are receiving national

and worldwide attention owing to the rising rate of consumption
of nuclear and fossil fuels. In particular, drivers for solar/wind
renewable energy systems are the environmental benefits (re-
duction of carbon emissions due to the use of renewable energy
sources and the efficient use of fossil fuels), reduced investment
risk, fuel diversification, and energy autonomy, increased en-
ergy efficiency (less line losses) as well as potential increase
of power quality and reliability and in certain cases, potential
grid expansion deferral due to the possibility of generation close
to demand. In a recent report of the California Energy Com-
mission, for example, the state’s target is to generate from re-
newable sources the 33% of the energy needed by year 2020,
with about 70% of that energy being produced by wind and
solar systems [1]; many other states have similar goals. How-
ever, achieving such major renewable energy production goals
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requires addressing key fundamental challenges in the opera-
tion and reliability of intermittent (variable output) renewable
resources like solar- and wind-based energy generation systems.
Specifically, unexpected drops in energy production of a solar
or wind energy systemmay require quick start units to cover the
shortfall while unexpected increases require the ability to absorb
the unscheduled generation. One way to deal with the variable
output of wind and solar energy generation systems is through
the use of integrated energy generation systems using both wind
and photovoltaic energy, which are also tightly integrated with
distributed energy storage systems (batteries) and controllable
energy loads like, for example, a water production system that
operates at controllable time intervals to meet specific demand.
With respect to previous results on control of wind and solar

systems, most of the efforts have focused on standalone wind or
solar systems. Specifically, there is a significant body of liter-
ature dealing with control of wind energy generation systems
(see, for example, [2]–[12] for results and references in this
area), while several contributions have been made to the con-
trol of solar-based energy generation systems (see, for example,
[13]–[17]). However, there are few works that have focused on
the control of standalone hybrid wind-solar energy generation
systems. In [18], a reduced-order nonlinear model was used to
design a controller to regulate the wind power generation to
complement the power generated by a photovoltaic subsystem
and to satisfy a specific power demand. In [19], sliding mode
control techniques were used to control the power generated by
a photovoltaic array in order to satisfy the total instantaneous
power demand in a highly uncertain operating environment. In
[20], a supervisory control system was developed to satisfy the
load power demand and to maintain the state of charge of the
battery bank to prevent blackout. In a recent work [21], a cost-ef-
fective control technique was proposed for maximum power
point tracking from the photovoltaic array and wind turbine
under varying climatic conditions without measuring the irra-
diance of the photovoltaic or the wind speed. However, no at-
tention has been given to the development of supervisory con-
trol systems for standalone hybrid wind-solar energy generation
systems that take into account optimal allocation of generation
assignment between the two subsystems.
The objective of the present work is to develop a supervi-

sory predictive control method for the optimal management and
operation of hybrid wind-solar energy systems. We propose to
design the supervisory control system via model predictive con-
trol (MPC) which computes the power references for the wind
and solar subsystems at each sampling time while minimizing a
suitable cost function. The power references are sent to two local
controllers which drive the wind and solar subsystems to the de-
sired power reference values. MPC is a popular control strategy
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Fig. 1. Wind-solar energy generation system.

because of its ability to account for state and input constraints
as well as optimality considerations explicitly in the evaluation
of control actions. MPC uses a model of the system to predict at
each sampling time the future evolution of the system from the
current state along a given prediction horizon [22], [23]. Using
these predictions, the input/set-point trajectory that minimizes
a given performance index over a finite-time horizon is com-
puted solving a suitable optimization problem subject to con-
straints. In this work, we discuss how we can incorporate prac-
tical considerations (for example, how to extend the life time of
the equipments by reducing the peak values of inrush or surge
currents) into the formulation of the MPC optimization problem
by determining an appropriate cost function and constraints. We
present several simulation case studies that demonstrate the ap-
plicability and effectiveness of the proposed supervisory predic-
tive control architecture.

II. WIND-SOLAR SYSTEM DESCRIPTION

The wind-solar energy generation system considered in
this work is based on the models developed in [18]–[20]. A
schematic of the system is shown in Fig. 1. In this hybrid
system, there are three subsystems: wind subsystem, solar sub-
system, and a lead-acid battery bank which is used to overcome
periods of scarce generation.
First, we describe the modeling of the wind subsystem. In the

wind generation subsystem, there is a windmill, a multipolar
permanent-magnet synchronous generator (PMSG), a rectifier,
and a dc/dc converter to interface the generator with the dc bus.
The converter is used to control indirectly the operating point
of the wind turbine (and consequently its power generation) by
commanding the voltage on the PMSG terminals.
The mathematical description of the wind subsystem written

in a rotor reference frame is as follows [18]:

(1)

where and are the quadrature current and the direct current
in the rotor reference frame, respectively; and are the per
phase resistance and inductance of the stator windings, respec-
tively; is the electrical angular speed; is the flux linked by
the stator windings; is the voltage on the battery bank termi-
nals; is the control signal [duty cycle of the dc/dc converter

(dc/dc converter 1 in Fig. 1)], is the PMSG number of poles,
is the inertial of the rotating parts, and is the wind turbine

torque. The wind turbine torque can be written as

(2)

where is the air density, is the turbine-swept area, is the
turbine radius, is the wind speed, and is a nonlinear
torque coefficient which depends on the tip speed ratio (

with being the angular shaft speed).
Based on (1), we can express the power generated by the wind

subsystem and injected into the dc bus as follows:

(3)

The model of the wind subsystem can be rewritten in the fol-
lowing compact form:

(4)

where is the state vector of the wind sub-
system and , are
nonlinear vector functions whose explicit form is omitted for
brevity.
Next, we describe the modeling of the solar subsystem. In the

solar subsystem, there is a photo-voltaic (PV) panel array and
a half-bridge buck dc/dc converter. The solar subsystem is con-
nected to the dc bus via the dc/dc converter. In this subsystem,
similar to the wind subsystem, the converter is used to control
the operating point of the PV panels.
The mathematic description of the solar subsystem is as fol-

lows [19]:

(5)

where is the voltage level on the PV panel array terminals,
is the current injected into the dc bus, and are electrical

parameters of the buck converter (dc/dc converter 2 in Fig. 1),
is the control signal (duty cycle), is the current generated

by the PV array, is the number of PV cells connected in
series, is the number of series strings in parallel, is the
Boltzman constant, is the cell deviation from the ideal
junction characteristic, is the photocurrent, and is the
reverse saturation current. The power injected by the PV solar
module into the dc bus can be computed by

(6)

Note that this power indirectly depends on the control signal
.
The model of the solar subsystem can be rewritten in the fol-

lowing compact form:

(7)
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where is the state vector of the solar subsystem
and are nonlinear vector func-
tions and is a nonlinear scalar function whose explicit
form is omitted for brevity.
The dc bus collects the energy generated by both wind and

solar subsystems and delivers it to the load and, if necessary, to
the battery bank. The voltage of the dc bus is determined by the
battery bank which comprises of lead-acid batteries. The load
could be an ac or a dc load. In the case under consideration in
the present work, it is assumed to be an ac load; therefore, a
voltage inverter is required. We also assume that the future load
of the system for certain length of time is known, that is the total
power demand is known.
Because all subsystems are linked to the dc bus, their concur-

rent effects can be easily analyzed by considering their currents
in the common dc side. In this way, assuming an ideal voltage
inverter, the load current can be referred to the dc side as an
output variable current . Therefore, the current across the bat-
tery bank can be written as

(8)

where is assumed to be a known current.
The lead-acid battery bank may be modeled as a voltage

source connected in series with a resistance and a
capacitance . Based on this simple model and (8), the dc bus
voltage expression can be written as follows:

(9)

where is the voltage in capacitor and its dynamics can be
described as follows:

(10)

The model of the battery bank can also be rewritten in the fol-
lowing compact form:

(11)

where is a nonlinear scalar function.
The dynamics of the hybrid generation system can be written

in the following compact form:

(12)

where and are suit-
able composition of and , and .
The explicit forms of and are omitted for brevity.
Note that the maximum power that can be drawn from the

wind and solar subsystems is determined by the maximum
power that can be generated by the two subsystems. When the
two subsystems are not sufficient to complement the generation
to satisfy the load requirements, the battery bank can dis-
charge to provide extra power to satisfy the load requirements.
However, when the power limit that can be provided by the
battery bank is surpassed, the load must be disconnected to

Fig. 2. Supervisory control of a wind-solar hybrid energy system.

recharge the battery bank and avoid damages. In this work, we
do not consider the power needed to charge the battery bank
explicitly. However, this power can be lumped into the total
power demand. In the reminder of this work, we refer to the
total power demand as .

III. CONTROL PROBLEM FORMULATION AND

CONTROLLERS DESIGN

A. Control Problem Formulation

We consider two control objectives of the wind-solar energy
generation system. The first and primary control objective is to
compute the operating points of the wind subsystem and of the
solar subsystem together to generate enough energy to satisfy
the load demand. The second control objective is to optimize
the operating points to reduce the peak value of surge currents.
With respect to the second control objective, specifically, we
consider that there are maximum allowable increasing rates of
the generated power of the two subsystems and that frequent
discharge and charge of the battery bank should be avoided to
maximize battery life. Note that the constraints on themaximum
increasing rates impose indirect bounds on the peak values of
inrush or surge currents to the two subsystems.
The proposed control system is shown in Fig. 2 in which

the supervisory control system optimizes the power references
and (operating points) of the wind and solar

subsystems, respectively. The two local controllers (wind
subsystem controller and the solar subsystem controller) ma-
nipulate and to track the power references, respectively.

Remark 1: Note that, in this work, we consider hybrid en-
ergy generation systems that already operate in normal gener-
ating conditions, and do not address the issues related to system
startup or shut down. Moreover, we focus on the application
of the proposed supervisory control system and do not provide
specific conditions (and detailed theoretical derivation) under
which the stability of the closed-loop system is guaranteed. We
also note that, in the case of a energy generation system con-
taining several solar and wind subsystems, the proposed super-
visory control approach can be extended to control the system
in a conceptually straightforward manner by letting the supervi-
sory controller determine the power references of all the subsys-
tems or a distributed MPC approach (in which each MPC con-
trols only some of the subsystems) can be applied. However, the
distributed MPC approach is out of the scope of this work.
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B. Wind Subsystem Controller Design

For the wind subsystem controller, the objective is to track
the power reference computed by the supervisory predictive
controller.
In order to proceed, we introduce the maximum power that

can be provided by a wind subsystem, , first. de-
pends on a few turbine parameters and on a simple measurement
of the angular shaft speed as follows [18]:

(13)

where and is the tip
speed ratio at which the coefficient reaches its
maximum [18], and is the torque coefficient of the wind
turbine.
We follow the controller design proposed in [9]. Specifically,

the controller is designed as follows:

if
if (14)

where

with and being design constants and

In the control design shown in (14), and
are the sliding surfaces. When the power refer-

ence is less than the maximum power that can be provided by
the wind subsystem, the control law will operate the sub-
system to generate the desired power; when the power reference
is greater than the maximum power that can be provided by the
wind subsystem, the control law will drive the subsystem
to operate at points in which the subsystem provides the max-
imum power.

C. Solar Subsystem Controller Design

The objective of the solar subsystem controller is to force the
subsystem to track the power reference computed by the super-
visory controller. Themaximum power operating point (MPOP)
of the solar subsystem can be computed, in principle, by the fol-
lowing expression [19]:

(15)

In the present work, the maximum solar power provided,
, is computed numerically through direct evaluation of

the following expression [19] in the region where (15) is close
to zero

(16)

We follow the controller design proposed in [19] to design the
solar subsystem controller. Specifically, this controller is de-
signed as follows:

if
if
if

if
if
if

(17)

where and .

D. Supervisory Controller Design

The objective of the supervisory control system is to deter-
mine the power references of the wind and solar subsystems.
We propose to design the supervisory controller via MPC. By
using MPC, we can take optimality considerations into account
as well as handle different kinds of constraints. As stated in
Section III-A, the primary control objective is to manipulate the
operating points of the wind subsystem and of the solar sub-
system together to generate enough energy to satisfy the load
demand. This control objective will be considered in the design
of the cost function for the MPC optimization problem (please
see Section IV). The second control objective is to optimize the
operating points to reduce the peak value of surge currents. In
order to take into account this control objective, we will incor-
porate hard constraints in the MPC optimization problem to re-
strict the maximum increasing rates of the generated power of
the two subsystems as well as a term in the cost function to avoid
frequent discharge and charge of the battery bank.
We consider the case where the future load of the system for

certain length of time is known, that is the total power demand,
, is known. The main implementation element of supervi-

sory predictive control is that the supervisory controller is evalu-
ated at discrete time instants , with
the initial time and the sampling time, and the optimal future
power references, and , for a time period (predic-
tion horizon) are obtained and only the first part of the references
are sent to the local control systems and implemented on the two
units. In order to design this controller, first, a proper number of
prediction steps and a sampling time are chosen.
The proposedMPC design for the supervisory control system

is described as follows:

(18a)

s.t.

(18b)

(18c)
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(18d)

(18e)

(18f)

(18g)

(18h)

(18i)

(18j)

where is the predicted future state trajectory of the hybrid
system, is a positive definite function of the
state and the two power references that defines the optimiza-
tion cost, and are the maximum allowable in-
creasing value of and in two consecutive power
references, is the prediction horizon,
and is the state measurement obtained at time . We de-
note the optimal solution to the optimization problem of (18)
as and which are defined for

.
The power references of the two subsystems generated by the

supervisory controller of (18) are defined as follows:

(19)

In the optimization problem of (18), (18a) defines the op-
timization cost that needs to be minimized, which will be
carefully designed in the simulations in Section IV. Because
the MPC optimizes the two power references in a discrete time
fashion and the references are constants within each sampling
interval, the constraints of (18b)–(18c) require that the com-
puted power references should be smaller than the minimal of
the maximum available within each sampling interval, which
means the power references should be achievable for the wind
and solar subsystems. Constraints of (18d)–(18e) impose con-
straints on the increasing rate of the two power references. In
order to estimate the maximum available power of the two sub-
systems along the prediction horizon, the model of the system
(18f), the current state (18g) and the equations expressing the
relation between the maximum available power and the state
of each subsystem [(18i) and (18j)] are used. Note that in the
MPC optimization problem, in order to estimate the future
maximum available power of each subsystem, we assume that
the environment conditions such as wind speed, insolation
and temperature remain constant. When the sampling time
is small enough and the prediction horizon is short enough,
along with high-frequency wind variations caused by gusts and
turbulence being reasonably neglected, this assumption makes
physical sense [20]. The constraints of (18b)–(18e) are inspired
by results on the design of Lyapunov-based model predictive
control systems [24]–[27].
In the remainder of this work, the sampling time and the pre-

diction horizon of theMPC are chosen to be 1 s and .
The maximum increasing values of the two power references

are chosen to be 1000 W and 500 W,
respectively. Note that the choice of the prediction horizon is
based on the fast dynamics of the hybrid generation system, the
uncertainty associated with long-term future power demand and
is also made to achieve a balance between the evaluation time
of the optimization problem of the supervisory MPC and the de-
sired closed-loop performance.

IV. SIMULATION RESULTS

In this section, we carry out several sets of simulations to
demonstrate the effectiveness and applicability of the designed
MPC when the control objectives stated in Section III are taken
into account. Note that in all the simulations, standard numerical
methods, e.g., Runge–Kutta, are used to carry out the numerical
integration of the closed-loop system.

A. Constraints on the Maximum Increasing Rates of
and

In this set of simulations, the control objective is to operate
the hybrid wind-solar energy generation system to satisfy the
total power demand , subject to constraints on the rate of
change of and . Because the constraints on the max-
imum increasing rates of and are considered as
hard constraints in the formulation of the MPC [i.e., constraints
of (18d)–(18e)], in the cost function, we only penalize the total
power demand. The cost function designed for these control ob-
jectives is shown as follows:

(20)

where and are constant weighting factors.
The first term, , in the cost function
penalizes the difference between the power generated by the
wind-solar system and the total power demand, which drives
the wind and solar subsystems to satisfy the total demand to
the maximum extent. Because there are infinite combinations
of and that can minimize the first term, in order to
get a unique solution to the optimization problem, we also put
a small penalty on . This implies that the wind subsystem
is operated as the primary generation system and the solar sub-
system is only activated when the wind subsystem alone can not
satisfy the power demand. In the simulation, we assume that the
environmental conditions remain constant with wind speed
12 m/s, insolation 90 mW/cm and PV panel temperature

65 C.
Fig. 3 shows the results of the simulations. From Fig. 3, we

see that at 4 s there is a demand power increase from 2100
to 4000 W [see Fig. 3(a)], and that because of the constraints on
the maximum increasing rates of and , the wind-
solar system cannot supply sufficient power [see Fig. 3(b)–(c)]
and the shortage of power is made up by the battery bank [see
Fig. 3(a)].
Note that we assume that the future power demand for a short

time period is known to the MPC. Because of this, at 8
s, when the MPC supervisory controller receives information
about a power demand increase at 9 s, and having informa-
tion of the limits on the power generation of the two subsystems,
it coordinates the power generations of the wind and solar sub-
systems to best satisfy the power demand by reducing the power
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Fig. 3. Power trajectories with constraints on the maximum increasing rates of
� and � . (a) Generated power � � � (solid line), total power de-
mand � (dashed line) and power provided by battery bank � (dotted line).
(b) Power generated by wind subsystem � (solid line), wind power reference
� (dashed-dotted line) and maximum wind generation � (dashed
line). (c) Power generated by solar subsystem � (solid line), solar power refer-
ence� (dashed-dotted line) andmaximum solar generation� (dashed
line).

generation of the wind subsystem and activating the solar sub-
system in advance at 8 s. This coordination renders the two
subsystems able to approach as much as possible to the total
power demand requirement at 9 s (even though they cannot
fully meet this requirement due to operation constraints of the
wind and solar subsystems) by boosting their power production
at the maximum possible rate, i.e., about 1500W boost in power
production from 8 s to 9 s. On the other hand, if there
is no information of the future power demand increase that is
fed to the MPC, the wind-solar system would not increase its
production as fast to approach the total power demand require-
ment because the solar subsystem would stay dormant up to
9 s (the power demand requirement at 8 s can be fully sat-
isfied by the wind subsystem only) and the presence of a hard
constraint on the rate of change of power generated by the solar
subsystem would not allow to boost its production enough to
meet the total power demand requirement at 9 s (in this
case, the total power demand requirement cannot be achieved
by operation of the wind subsystem only); as a result the boost
in total power production in this case would be only 1200 W.

B. Suppression of Battery Power Fluctuation

In this set of simulations, we modify the cost function of (20)
to take into account the fluctuation of the battery power in order

Fig. 4. Power trajectories taking into account suppression of battery power
fluctuation. (a) Generated power � �� (solid line), total power demand �
(dashed line) and power provide by battery bank � (dotted line). (b) Power
generated by wind subsystem � (solid line), wind power reference �
(dashed-dotted line) and maximum wind generation � . (c) Power gen-
erated by solar subsystem � (solid line), solar power reference � (dashed-
dotted line) and maximum solar generation � . (d) Generated power � �

� (solid line), total power demand � (dashed line) and power provide by bat-
tery bank � (dotted line).

to avoid frequent battery charge and discharge. The cost func-
tion is modified as follows:

(21)

where is the change of the power provided by the battery
bank between two consecutive steps and is a weighting
factor. Note that this newly added term requires that we store
the trajectory of . In this set of simulations, the environmental
conditions are set with wind speed 11 m/s, insolation
90 mW/cm and PV panel temperature 65 C.
Fig. 4 shows the simulation results. From Fig. 4, we see that

there is a power demand decrease at 3 s, and though the
wind and solar subsystems are able to provide enough power to
satisfy the demand, the supervisory controller will not reduce
the power generated by the battery to 0 immediately at
3 s; instead, the supervisory controller operates the system to
make the power provided by the battery bank decrease slower
and reach its recharge state at 5 s [see Fig. 4(a)]. Fig. 4(d)
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Fig. 5. Environmental conditions and load current. (a) Wind speed �. (b) Inso-
lation � . (c) PV panel temperature � . (d) Load current � .

shows the power trajectory of the battery bank if no penalty on
the change of the power provided by the battery bank is applied.

C. Varying Environmental Conditions

In this subsection, we carry out simulations under varying en-
vironmental condition. Time evolution of wind speed, PV panel
temperature and insolation are shown in Fig. 5(a)–(c). Fig. 5(d)
shows the trajectory of total power demand.
It can be seen from Fig. 6(a) that the wind/solar/battery

powers coordinate their behavior to meet the load demand.
Time evolution of output power and maximum available power
from the wind subsystem and solar subsystem are plotted in
Fig. 6(b)–(c). When sufficient energy supply can be extracted
from the two subsystems such as during 0–60 s, 100–140 s, and
160–173 s, the battery is being recharged. In other periods, load
demand is relatively high and the weather condition, which
determines the maximum available generation capacity of the
two subsystems, cannot permit sufficient energy supply. Thus,
the supervisory controller drives wind/solar parts to their in-
stant maximum capacity and calls the battery bank for shortage
compensation.

D. Consideration of High-Frequency Disturbance of Weather
Condition

In the preceding scenario, we assumed that the variation of
weather-related parameters, like wind speed and insolation,
within each sampling time interval is negligible. While this
assumption is reasonable in most cases, additional attention for
robust system operation should be given under even harsher
conditions where high frequency disturbances that influence the
values of wind speed and insolation are present. This scenario is
possible when the wind turbine encounters turbulent flow [28],

Fig. 6. Power trajectories under varying environment conditions. (a) Generated
power � � � (solid line), total power demand � (dashed line), and power
provided by battery bank � (dotted line). (b) Power generated by wind sub-
system � (solid line), wind power reference � (dashed-dotted line), and
maximum wind generation � (dashed line). (c) Power generated by solar
subsystem � (solid line), solar power reference � (dashed-dotted line),
and maximum solar generation � (dashed line).

Fig. 7. Environmental conditions and load current. (a) Wind speed with high
frequency disturbance �. (b) Insolation with high frequency disturbance � .
(c) PV panel temperature � . (d) Load current � .
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Fig. 8. Power trajectories under varying environment conditions with high fre-
quency disturbance. (a) Generated power � � � (solid line), total power de-
mand � (dashed line), and power provided by battery bank � (dotted line).
(b) Power generated by wind subsystem � (solid line), wind power reference
� (dashed-dotted line) and maximum wind generation � (dashed
line). (c) Power generated by solar subsystem � (solid line), solar power refer-
ence� (dashed-dotted line) andmaximum solar generation� (dashed
line).

or when insolation is affected by abrupt changes in atmospheric
turbidity [29].
To study this case from a control point of view and evaluate

the robustness of the proposed control system in this case, we in-
troduce disturbances in two parameters; specifically, 10% vari-
ation in the wind speed and 5% variation in the insolation. The
profiles of the wind speed and insolation are shown in Fig. 7(a)
and (b). We have used the system model to establish that the
control system operating on the wind subsystem can tolerate the
wind disturbance and no additional measures are needed to be
taken to secure its reliability. However, for the solar subsystem,
which is characterized by faster dynamics, in order to maintain
its closed-loop stability we need to use a more conservative es-
timate of the insolation (i.e., 95% of the value of the measured
insolation) in the evaluation of the power reference. This con-
servative estimate of insolation ensures that the predicted max-
imum power delivered by the solar subsystem does not exceed
what the weather permits.
The closed-loop profiles of power generation are displayed in

Fig. 8(a)–(c). Again, the entire energy generation system oper-
ates reliably, thereby yielding positive results for the robustness
of the control system with respect to abrupt variations in wind
speed and insolation. Both maximum power generation capa-
bilities of the two subsystems are perturbed as a result of the
weather disturbance, but both the wind subsystem and the solar
subsystem operate in a robust fashion and the total power de-
mand is met.

V. CONCLUSION

In this work, we focused on the development of a supervi-
sory predictive control method for the optimal management and
operation of hybrid wind-solar energy generation systems. We
proposed a supervisory control system designed viaMPCwhich
computes the power references for the wind and solar subsys-
tems at each sampling time while minimizing a suitable cost
function. The power references are sent to two local controllers
which drive the two subsystems to the power references.We dis-
cussed how to incorporate practical considerations, for example,
how to reduce the peak values of inrush or surge currents, into
the formulation of the MPC optimization problem. Simulation
results demonstrated the effectiveness and applicability of the
proposed approach. Future work will include the investigation
of large time span behavior of the hybrid wind-solar generation
system taking into account information of future weather fore-
cast, and investigation of the performance of the system under
the condition that the future power demand is unknown.
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