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Supervisory Recurrent Fuzzy Neural Network
Control of Wing Rock for Slender Delta Wings

Chih-Min Lin, Senior Member, IEEE, and Chun-Fei Hsu

Abstract—Wing rock is a highly nonlinear phenomenon in which
an aircraft undergoes limit cycle roll oscillations at high angles of
attack. In this paper, a supervisory recurrent fuzzy neural network
control (SRFNNC) system is developed to control the wing rock
system. This SRFNNC system is comprised of a recurrent fuzzy
neural network (RFNN) controller and a supervisory controller.
The RFNN controller is investigated to mimic an ideal controller
and the supervisory controller is designed to compensate for the
approximation error between the RFNN controller and the ideal
controller. The RFNN is inherently a recurrent multilayered neural
network for realizing fuzzy inference using dynamic fuzzy rules.
Moreover, an on-line parameter training methodology, using the
gradient descent method and the Lyapunov stability theorem, is
proposed to increase the learning capability. Finally, a compar-
ison between the sliding-mode control, the fuzzy sliding control
and the proposed SRFNNC of a wing rock system is presented to
illustrate the effectiveness of the SRFNNC system. Simulation re-
sults demonstrate that the proposed design method can achieve fa-
vorable control performance for the wing rock system without the
knowledge of system dynamic functions.

Index Terms—Recurrent fuzzy neural network (RFNN), super-
visory control, wing rock system.

I. INTRODUCTION

W
HILE high-performance aircraft maneuver at high an-

gles of attack, they may become unstable and enter into

a limit cycle oscillation, mainly rolling motion known as wing

rock [6], [7]. Because of the complex geometry of high-per-

formance aircraft, it is difficult to isolate the various flow phe-

nomena created by the forebody, strake and wing, or their rela-

tionship to the wing rock. Several theoretical and experimental

studies have been proposed to determine or analyze the aeroe-

lastic models from flight tests or wind-tunnel measurements [1],

[4], [9], [15], [20], [21]. Recently, the control of the wing rock

systems has become a significant research topic, and a series

of papers considered the control based on output feedback lin-

earization theory and adaptive control technique [13], [16], [17].

The neural-network-based control technique has represented an

alternative design method for control of the dynamic systems

to compensate the effects of nonlinearities and system uncer-

tainties, so that the stability, convergence and robustness of the

control system can be improved [5], [14], [18], [22], [25]. The
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fuzzy neural network (FNN) possesses advantages both of fuzzy

systems and neural networks [2], [3], [11]. However, the neural

networks presented in [2], [3], [5], [11], [14], [22], [25] are static

feedforward networks. Recurrent neural networks have capa-

bilities superior to the feedforward neural network, such as the

dynamic response and the information storing ability [8], [10],

[12]. Since the recurrent FNN captures the dynamic response of

a system, the network model can be simplified.

In this paper, a supervisory recurrent fuzzy neural network

control (SRFNNC) system is developed for the wing rock con-

trol system. This SRFNNC system is comprised of a recurrent

fuzzy neural network (RFNN) controller and a supervisory con-

troller. The RFNN controller is used to mimic an ideal con-

troller and the supervisory controller is designed to compen-

sate for the approximation error between the RFNN controller

and the ideal controller. The RFNN is inherently a recurrent

multilayered neural network with feedback connections in the

second layer. An online parameter training methodology, using

the gradient descent method and the Lyapunov stability the-

orem, is proposed to increase the learning capability. In addition,

to relax the requirement for the uncertain bound in the supervi-

sory controller, an estimation mechanism is incorporated to ob-

serve the uncertain bound. Thus, the chattering phenomena of

the control efforts can be relaxed. Finally, a comparison between

the sliding-mode control (SMC) [19], the fuzzy sliding control

(FSC) [24] and the proposed SRFNNC is presented. Simulation

results verify the effectiveness of the proposed SRFNNC system

in achieving favorable control performance with unknown of

system dynamic functions.

II. PROBLEM STATEMENT AND MATHEMATICAL MODELING

The delta wing for the wing rock motion control is repre-

sented schematically in Fig. 1. This wing has one degree of

freedom, and the dynamical system includes the wing (a flat

uniform plate) and the parts of the string that rotate with it. The

aerodynamic rolling moment is a complex nonlinear function

of the rolling angle, roll rate, angle of attack and sideslip angle.

The nonlinear wing rock equation of motion for an 80 slender

delta wing has been developed by Nayfeh et al. [15]. The dif-

ferential equation describing the wing rock motion is given by

[15], [18]

(1)

where is the roll angle, an over-dot denotes a derivative with

respect to time, is the control effort, is the density of air,

is the freestream velocity, is the wing reference area, is

1063-6706/04$20.00 © 2004 IEEE
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Fig. 1. Scheme of the delta wing: (a) plan view; (b) end view; (c) side view.

the chord, is the mass moment of inertia, and is the roll

moment coefficient. The roll-moment coefficient is written as

(2)

The aerodynamic parameters are nonlinear functions of the

angle of attack and have been derived in [15]. The numerical

values of the parameters have been provided for different angles

of attack for the 80 slender delta wing. Substituting (2) into (1),

system (1) can then be rewritten as

(3)

where

(4)

and the parameters , are given by

(5)

The open-loop system time response with was simulated

for two initial conditions: a small initial condition ( ,

) and a large initial condition ( ,

). The phase-plane plot is shown in Fig. 2.

For the small initial condition a limit cycle oscillation is ob-

tained, and for the large initial condition the roll angle is diver-

gent. Thus, it is shown that the uncontrolled nonlinear wing rock

system will be unstable for some initial conditions.

Now, assuming that the aerodynamic parameters are known,

the nominal model of the wing rock system can be represented

as follows:

(6)

Fig. 2. Phase-plane portrait of uncontrolled wing rock motion system.

where is the nominal value of . If uncertainties

occur, i.e., the parameters of the system deviate from the nom-

inal value, the controlled system can be formulated as

(7)

where denotes the uncertainty with the assumption

, in which is a positive constant.

III. SMC

A reference model is specified by a linear time-invariant dif-

ferential equation

(8)

where is the reference trajectory vector and

(9)

where is the damping ratio and is the natural

frequency. For the choice of the damping ratio and natural fre-

quency, is a Hurwitz matrix and the reference trajectory

vector starting from any nonzero initial condition tends to

zeros as . The control objective is to find a control law so

that the roll angle can track the desired command . Define

the tracking error

(10)

Suppose that an integrated sliding function is defined as

(11)

where and are positive constants. The sliding-mode con-

trol law is defined as [19]

(12)
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Fig. 3. Supervisory recurrent fuzzy neural network control wing rock motion system.

where the equivalent controller is represented as

(13)

and the hitting controller is designed to dispel the system

uncertainties as

(14)

in which is a sign function.

IV. SRFNN CONTROL

If the system parameters are well known and measurable, an

ideal controller can be obtained [19]

(15)

Substituting (15) into (7), gives

(16)

If and are chosen to correspond to the coefficients of a

Hurwitz polynomial, that is a polynomial whose roots lie strictly

in the open left half of the complex plane, then

. Since the system parameters may be unknown or perturbed,

the ideal controller is always unobtainable. Thus, an RFNN

controller will be designed to approximate this ideal controller.

In addition, a supervisory controller will be used to compensate

for the approximation error between the RFNN controller and

the ideal controller. The block diagram of the SRFNNC wing

rock system is shown in Fig. 3, where the inputs of the RFNN

controller are and . The SRFNNC is assumed to take

the following form:

(17)

where is to approximate the ideal controller in (15) and

is the supervisory controller utilized to compensate the approx-

imation error.

Fig. 4. Network structure of a recurrent RFNN.

A. Recurrent Fuzzy Neural Network Controller

A four-layer fuzzy neural network shown in Fig. 4, which is

comprised of the input (the layer), membership (the layer),

rule (the layer), and output (the layer) layers, is adopted to

implement the proposed RFNN [10]. Layer 1 accepts the input

variables. Layer 2 is used to calculate the Gaussian membership

values. The nodes of layer 3 represent fuzzy rules. The links

before layer 3 represent the preconditions of the rules, and the

links after layer 3 represent the consequences of the rule nodes.

Layer 4 is the output layer. The recurrent feedback is embedded

in the network by adding feedback connections in the second

layer of the fuzzy neural network. The signal propagation and

the basic function in each layer are as follows.

• Layer 1—Input layer: For every node in this layer,

the net input and the net output are represented as

(18)

(19)

where represents the th input to the node of layer 1.
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• Layer 2—Membership layer: In this layer, each node

performs a membership function and acts as a unit of

memory. The Gaussian function is adopted as the mem-

bership function. For the th node

(20)

(21)

where is the mean, is the standard deviation and

is the feedback gain of the Gaussian function in the

th term of the th input linguistic variable to the node

of layer 2, respectively, and is the total number of the

linguistic variables with respect to the input nodes. It is

clear that the feedback gain contains the memory terms

, which denotes the output signal of layer 2 in the pre-

vious time.

• Layer 3—Rule layer: Each node in this layer is de-

noted by , which multiplies the incoming signals and

outputs the result of the product. For the th rule node

(22)

(23)

where represents the th input to the node of layer 3,

the weights between the membership layer and the

rule layer are assumed to be unity.

• Layer 4—Output layer: The single node in this layer

is labeled as , which computes the overall output as the

summation of all incoming signals

(24)

(25)

where the link weight is the output action strength of

the th output associated with the th rule, represents

the th input to the node of layer 4, and is the output

of the recurrent FNN controller.

B. Online Learning Algorithm

In the SMC, the sliding condition is derived as such

that the stability and convergence of as can be

guaranteed for the closed-loop system [19]. In order to train the

RFNN, the online learning algorithm is a gradient descent algo-

rithm in the space of network parameters and aims to minimize

for achieving fast convergence of . Therefore, is selected

as the error function [11]. Taking the derivative of and using

(3), it can be obtained that

(26)

where . Substituting (17) into (26),

and multiplying both sides by , gives

(27)

According to the gradient descent method, the weights in the

output layer are updated by the following equation:

(28)

where the positive constant is a learning rate. Since the

weight in the rule layer is a unity, only the approximation error

term needs to be calculated and propagated by the following

equation:

(29)

The multiplication is done in the membership layer and the error

term is computed as follows:

(30)

The update laws of , and can be obtained by the

gradient search algorithm, i.e.,

(31)

(32)

(33)

where , and are the learning rates with positive con-

stants.

C. Supervisory Controller

The most useful property of a neural network is its ability to

approximate linear or nonlinear mapping through learning. By

the universal approximation theorem [10], [23], there exists an

optimal RFNN such that

(34)

where is the ideal weight

vector of the recurrent neural network controller, and denotes

the approximation error and is assumed to be bounded by
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Fig. 5. Simulation results of SMC wing rock system for the small initial
condition.

where is a positive constant. The error bound is as-

sumed to be a constant during the observation, however it is dif-

ficult to measure it in practical applications. Therefore, a bound

estimation is developed to observe the bound of the approxima-

tion error. Define the estimation error of the bound

(35)

where is the estimated error bound. The supervisory con-

troller is designed to compensate for the effect of approximation

error and is chosen as

(36)

By substituting (17) into (7), it is revealed that

(37)

Fig. 6. Simulation results of SMC wing rock system for the large initial
condition.

After some straightforward manipulation, the error equation

governing the system can be obtained through (11), (15), and

(34), as follows:

(38)

Define a Lyapunov function as

(39)

where the positive constant is a learning rate. Differentiating

(39) with respect to time and using (34)–(36) and (38), it is ob-

tained that

(40)
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Fig. 7. Simulation results of FSC wing rock system for the small initial
condition.

If the adaptive law of the supervisory controller is chosen as

(41)

then (40) can be rewritten as

(42)

Since is negative semi-definite, that is

, it implies that and

are bounded. Let function ,

and integrate with respect to time, then it is obtained that

(43)

Fig. 8. Simulation results of FSC wing rock system for the large initial
condition.

Because is bounded, and is non-

increasing and bounded, the following result can be obtained:

(44)

Also, is bounded, so by Barbalat’s Lemma [19],

. That is, as . Hence, the

supervisory recurrent fuzzy neural network control system is

asymptotically stable.

V. SIMULATION RESULTS

The aerodynamic parameters of the delta wing for 25 angle

of attack are used for simulation. It is assumed that

and . The parameter for the model (3)

are given by [15], [18]

(45)
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Fig. 9. Simulation results of SRFNNC wing rock system for the small initial condition.

The reference trajectory vector is chosen for as

with the parameters and chosen as 1 and 0.8, respectively.

It should be emphasized that the derivation of SRFNNC does

not need to use the aerodynamic parameters and the structure

of the aerodynamic functions. The system parameters are used

only for simulations. For practical implementation, the SRFNNC

parameters can be tuned online by the proposed adaptive laws

without the need of the system parameters. A RFNN with five

hiddenlayerneuronsintherulelayerisutilizedtoapproximatethe

ideal controller. To investigate the effectiveness of the developed

control system, two initial conditions (small initial condition

, and large initial condition

, ) are used for simulation.

Fora stable system, the coefficients in (16)are chosen as

and . The sampling time is 0.002 s. The parameters of

the proposed SRFNNC system are selected as follows:

and (46)
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Fig. 10. Simulation results of SRFNNC wing rock system for the large initial condition.

Firstly, the SMC in [19] is applied to control the wing rock

system. The simulation results of the SMC for small and large

initial conditions with uncertainty bound are shown

in Figs. 5 and 6, respectively. The state responses are shown

in Figs. 5(a) and 6(a), the phase-plane portraits are shown in

Figs. 5(b) and 6(b), and the associated control efforts are shown

in Figs. 5(c) and 6(c), respectively. Simulation results show that

the robust tracking performance has been achieved for different

initial conditions. However, the chattering phenomena of the

control efforts shown in Figs. 5(c) and 6(c) are undesirable.

Second, the FSC in [24] is applied to control the wing rock

system. The simulation results of the FSC for small and large

initial conditions are shown in Figs. 7 and 8, respectively.

These results show that not only the tracking performance can

be achieved but also the control chattering can be eliminated.

Finally, the developed SRFNNC is applied to control the wing

rock system for comparing. The simulation results of the

SRFNNC for small and large initial conditions are shown in
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Fig. 11. Simulation results of trained SRFNNC wing rock system for the small
initial condition.

Figs. 9 and 10, respectively. From these simulation results,

it can be seen that robust tracking performance can be also

achieved; and moreover, the chattering phenomena is much

reduced in the control effort due to the on-line adaptation of

the bound value in the supervisory controller. However, since

the control rules are initialized from zero, the SRFNNC has the

drawback of large transient responses of the state trajectories

and control efforts at the initial learning phase. After 20 s of

training in these simulations, the trained SRFNNC is applied to

control the wing rock system again. The simulation results of

this trained SRFNNC for small and large initial conditions are

shown in Figs. 11 and 12, respectively. From these simulation

results, it shows that the tracking performance of the trained

SRFNNC is better than SMC and FSC.

VI. CONCLUSION

In this paper, an SRFNNC system is developed for a wing

rock system with significant uncertainties on the system dynam-

Fig. 12. Simulation results of trained SRFNNC wing rock system for the large
initial condition.

ical behaviors. The SRFNNC system is comprised of an RFNN

controller and a supervisory controller. The RFNN controller

is investigated to mimic an ideal controller and the supervi-

sory controller is designed to compensate for the approximation

error between the RFNN controller and the ideal controller. For

comparison, an SMC, a fuzzy sliding control and the proposed

SRFNNC are simulated for the wing rock system. Simulation

results demonstrate that the trained SRFNNC can achieve the

best control performance for wing rock control.
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