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Abstract—It is becoming increasingly clear that mitochondria
play an important role in neural function. Recent studies show
mitochondrial morphology to be crucial to cellular physiology
and synaptic function and a link between mitochondrial defects
and neuro-degenerative diseases is strongly suspected. EM mi-
croscopy, with its very high resolution in all three directions, is
one of the key tools to look more closely into these issues but
the huge amounts of data it produces make automated analysis
necessary.

State-of-the-art computer vision algorithms designed to oper-
ate on natural 2D images tend to perform poorly when applied
to EM data for a number of reasons. First, the sheer size of a
typical EM volume renders most modern segmentation schemes
intractable. Furthermore, most approaches ignore important
shape cues, relying only on local statistics that easily become
confused when confronted with noise and textures inherent in
the data. Finally, the conventional assumption that strong image
gradients always correspond to object boundaries is violated by
the clutter of distracting membranes.

In this work, we propose an automated graph partitioning
scheme that addresses these issues. It reduces the computational
complexity by operating on supervoxels instead of voxels, incor-
porates shape features capable of describing the 3D shape of the
target objects, and learns to recognize the distinctive appearance
of true boundaries.

Our experiments demonstrate that our approach is able to
segment mitochondria at a performance level close to that
of a human annotator, and outperforms a state-of-the-art 3D
segmentation technique.

Index Terms—Electron microscopy, segmentation, supervoxels,
mitochondria, shape features.

I. INTRODUCTION

IN addition to providing energy to the cell, mitochondria

play an important role in many essential cellular func-

tions including signaling, differentiation, growth and death.

An increasing body of research suggests that regulation of

mitochondrial shape is crucial for cellular physiology [10].

Furthermore, localization and morphology of mitochondria

have been tightly linked to neural functionality. For example,

pre- and post- synaptic presence of mitochondria is known to

have an important role in synaptic function [34].

Mounting evidence also indicates that there is a close link

between mitochondrial function and many neuro-degenerative
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diseases. Mutations in genes that control fusion and divi-

sion events have been found to cause neurodegenerative pro-

cesses [26]. For example, mutations of the gene coding for

a protein kinase called PINK1, which is known to regulate

mitochondrial division, have been linked to a type of early-

onset Parkinson’s disease [46].

Unfortunately, because mitochondria range from less than

0.5 to 10 µm in diameter [9], optical microscopy does not

provide sufficient resolution to reveal fine structures that are

critical to unlocking new insights into brain function. Recent

Electron Microscopy (EM) advances, however, have made it

possible to acquire much higher resolution images, and have

already provided new insights into mitochondrial structure and

function [39]. The data used in this work were acquired by a

focused ion beam scanning electron microscope (FIB-SEM,

Zeiss NVision40), which uses a focused beam of gallium

ions to mill the surface of a sample and an electron beam

to image the milled face [27]. The milling process removes

approximately 5nm of the surface, while the scanning beam

produces images with a pixel size of 5 × 5nm. Repeated

milling and imaging yielded nearly isotropic image stacks

containing billions of voxels, such as the ones appearing in

Figure 1.

Analyzing such an image stack by hand could require

months of tedious manual labor [40] and, without reliable

automated image-segmentation tools, much of this high quality

data would go unused. This situation arises in part from

the fact that most state-of-the-art EM segmentation algo-

rithms [25], [42] were designed for highly anisotropic EM

modalities, such as Transmission Electron Microscopy (TEM).

Such data tends to have a greatly reduced resolution in

the z-direction, and associated segmentation algorithms often

process slices individually to deal with the missing data.

Our approach processes large 3D volumes in a single step,

which is advantageous for isotropic FIB-SEM stacks. More

generic Computer Vision algorithms that perform well on

natural image benchmarking data sets such as the Pascal VOC

(Visual Object Classes) data set [13] perform poorly on EM

data, whether it is isotropic or not. There are several reasons

for this. The amount of data in a typical EM stack is a

major bottleneck, rendering these approaches intractable both

in terms of memory and computation time. Furthermore, these

approaches rarely account for important shape cues and often

rely only on local statistics which can easily become confused

when confronted with the noise and textures found in EM

data. Finally, the conventional assumption that strong image

gradients always correspond to significant boundaries does not

hold, as illustrated in Figure 1.

To overcome these limitations, we advocate a graph parti-
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Fig. 1. FIB-SEM data sets. The top row contains 3D image stacks acquired
using FIB-SEM microscopy. Details in the bottom row are taken from the
blue boxes overlaid on the stacks. Mitochondria, which we wish to segment,
are indicated by black arrows. The high resolution allows neuroscientists to
see important details but poses unique challenges. FIB-SEM image stack
dimensions are orders of magnitude larger than conventional images, which
limits the usefulness of many state-of-the-art segmentation algorithms, as
discussed in Sec. IV-D1. Further complicating the problem are the presence of
numerous objects with distracting shapes and textures, including vesicles and
various membranes. Finally, we can not rely on strong contrasts to indicate
object boundaries. Note that the Striatum data is split into training and testing
sections, denoted by a dashed line. A separate training stack is used for the
CA1 Hippocampus (not shown).

tioning approach that combines the following components.

• Operating on supervoxels instead of voxels. We cluster

groups of similar voxels into regularly spaced supervoxels

of nearly uniform size, which are used to compute

robust local statistics. This reduces the computational and

memory costs by several orders of magnitude without

sacrificing accuracy because supervoxels naturally respect

image boundaries.

• Including global shape cues. The supervoxels are con-

nected to their neighbors by edges and form a graph.

Most graph segmentation techniques rely only on local

statistics to partition the graph, ignoring important shape

information. We introduce features that capture non-local

shape properties and use them to evaluate how likely a

supervoxel is to be part of the target structure.

• Learning boundary appearance. EM data is notori-

ously complex, violating the standard assumption that

strong image gradients always correspond to significant

boundaries. Spatial and textural cues must be considered

when determining where true object boundaries lay. We

therefore train a classifier to recognize which pairs of su-

pervoxels are most likely to straddle a relevant boundary.

This prediction determines which edges of the supervoxel

graph should most likely be cut during segmentation.

We demonstrate our approach for the purpose of segmenting

mitochondria in two large FIB-SEM image stacks taken from

the CA1 hippocampus and the striatum regions of the brain.

We show that our approach performs close to the level of a

human annotator and is much more accurate than a state-of-

the-art 3D segmentation approach [52].

II. RELATED WORK

In this section, we begin by examining previous attempts

to segment mitochondria. We then broaden our discussion to

include the use of machine learning techniques for other tasks

in EM imagery. Finally, we discuss methods that rely on a

graph partitioning approach to segmentation.

A. Mitochondria Segmentation

As discussed in the introduction, understanding the pro-

cesses that regulate mitochondrial shape and function is

important. Perhaps due to the difficulty in acquiring the

data, relatively few researchers have attempted to quantify

important mitochondria properties in recent years. In [59],

a Gentle-Boost classifier is trained to detect mitochondria

based on textural features. In [43], texton-based mitochondria

classification of melanoma cells is performed using a variety

of classifiers including k-NN, SVM, and Adaboost. While

these techniques achieve reasonable results, they consider

only textural cues while ignoring shape information. A recent

approach, described in in [52], using state-of-the-art features

and a Random Forest learning approach for segmentation has

been successfully applied to 3D EM data in [32]. We compare

our approach to [52] in Section IV.

In [44], shape-driven watersnakes that exploit prior knowl-

edge about the shape of membranes are used to segment

mitochondria from the liver. However, this approach is adapted

to anisotropic TEM data. Recently, new features have been

introduced to segment mitochondria in neural EM imagery.

Ray features, first introduced in [51], were applied to 2D

mitochondria segmentation in [36]. Inspired by Ray features,

Radon-like features were proposed in [33], but have shown to

perform significantly worse than Ray features in [55].

B. Machine Learning in EM Imagery

Besides mitochondria segmentation, machine learning tech-

niques have found their way into other tasks in EM imagery

including membrane detection and dendrite reconstruction. We

refer the reader to [23] for an excellent survey covering some

of these applications. EM data poses unique challenges for

machine learning algorithms. In addition to the large number

of voxels involved, a variety of sub-cellular structures exist

including mitochondria, vesicles, synapses, and membranes.

As seen in Fig. 1, these structures can be easily confused when
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Fig. 2. Segmenting an image stack into supervoxels. (left) A cropped FIB-
SEM image stack containing a mitochondrion. (right) The cropped stack is
segmented using the SLIC algorithm into groups of similar voxels called
supervoxels. For visualization, supervoxels in the center of the image stack
have been removed, leaving supervoxels belonging to the mitochondrion
interior and on the caps of volume. Boundaries between supervoxels are
marked in black. Notice that voxels with similar intensities are grouped while
respecting natural boundaries.

only local image statistics are considered, especially given the

often low signal-to-noise ratio of the data. This is one of the

reasons why algorithms that perform well on natural images

are far less successful on EM data.

While a large body of research is dedicated to segmenting

axons and dendrites from EM data, only a small faction uses

a machine learning approach. In [22], a Convolutional Net-

work (CN) performs neuronal segmentation by binary image

restoration. This work is extended in [21] by incorporating

topological constraints. In [54], CNs are used to predict an

affinity graph that expresses which pixels should be grouped

together using the Rand index [49], a quantitative measure of

segmentation performance. In another recent approach [25], a

random forest classifier is used in a cost function that enforces

gap-completion constraints to segment TEM slices.

Machine learning techniques have also been applied to de-

tect membranes, a common preprocessing step in registration

and axon/dendrite reconstruction. In [24], Neural Networks

relying on feature vectors composed of intensities sampled

over stencil neighborhoods are trained to recognize membranes

in TEM image stacks. In [58], an Adaboost classifier is trained

to detect cell membranes based on eigenvalues and Hessian

features. A hierarchical random forest classification scheme is

used to detect boundaries and segment EM stacks in [5].

C. Segmentation by Graph-Partitioning

While active contours and level sets have been successfully

applied to many medical imaging problems [12], they suffer

from two important limitations: each object requires individual

initialization and each contour requires a shape prior that may

not generalize well to variations in the target objects. EM

image stacks contain hundreds of mitochondria, which vary

greatly in size and shape. Proper initialization and definition

of a shape prior for so many objects is problematic.

In recent years, graph partitioning approaches to segmen-

tation have become popular. They produce state-of-the-art

segmentations for 2D natural images [50], [14], generalize

well, and unlike level sets and active contours, their com-

plexity is not affected by the number of target objects. In

2010, the top two competitors [11], [16] in the VOC seg-

mentation challenge [13] relied on such techniques. Graph

Algorithm 1 SLIC Supervoxels

/∗ Initialization ∗/

Initialize cluster centers Ck = [Ik, uk, vk, zk]
T by sam-

pling voxels at regular grid steps S.

Move cluster centers to the lowest gradient position in a

3× 3× 3 neighborhood.

Set label l(i) = −1 for each voxel i.

Set distance d(i) = ∞ for each voxel i.

repeat

/∗ Assignment ∗/

for each cluster center Ck do

for each voxel i in a 2S × 2S × 2S neighborhood

surrounding Ck do

Compute distance δik between Ck and voxel i.
if δik < d(i) then

set d(i) = δik
set l(i) = k

end if

end for

end for

/∗ Update ∗/

Compute new cluster centers.

Compute residual error E.

until E ≤ threshold

/∗ Post-processing ∗/

Enforce connectivity.

partitioning approaches minimize a global objective function

defined over an undirected graph whose nodes correspond

to pixels, voxels, superpixels, or supervoxels; and whose

edges connect these nodes [6], [8], [2]. The energy function

is typically composed of two terms: the unary term which

draws evidence from a given node, and the pairwise term

which enforces smoothness between neighboring nodes. Some

works introduce supplementary terms to the energy function,

including a term favoring cuts that maximize the object’s

surface gradient flux [28]. This alleviates the tendency to

pinch off long or convoluted shapes, which is important when

tracking elongated processes [42]. However, as noted in [25],

it cannot entirely compensate for weakly detected membranes

and further terms may have to be added.

A shortcoming of standard graph partitioning methods, as

we will discuss in Section III-C, is that most do not consider

the shape of the segmented objects.

III. METHOD

The first step of our approach is to over-segment the image

stack into supervoxels, small clusters of voxels with similar

intensities. All subsequent steps operate on supervoxels instead

of individual voxels, speeding up the algorithm by several

orders of magnitude. This step is described in Section III-A.

Next, a feature vector containing shape and intensity in-

formation is extracted for each supervoxel, as described in

Section III-B. The final segmentation is produced by feeding



IEEE TRANSACTIONS ON MEDICAL IMAGING, REVISED SUBMISSION, SEPT 2011 4

the extracted feature vectors to classifiers that define the unary

and pairwise potentials of a graph cut segmentation step

described in Section III-C. The learning procedure and a list

of parameters are provided in Section IV.

A. Supervoxel Over-segmentation

Many popular graph-based segmentation approaches such

as graph cuts [6] become exponentially more complex as

nodes are added to the graph. In practice, this limits the

amount of data that can be processed. EM stacks can contain

billions of voxels, making such methods intractable both in

terms of memory and computation time. Even for moderately-

sized stacks, standard minimization techniques [29], [60],

[31] become intractable. By replacing the voxel-grid with a

graph defined over supervoxels, we reduce the complexity by

several orders of magnitude while sacrificing little in terms of

segmentation accuracy.

To efficiently generate high-quality supervoxels, we extend

our earlier superpixel algorithm, simple linear iterative clus-

tering (SLIC) [48], to produce 3D supervoxels such as those

depicted in Fig. 2. The approach used in SLIC is closely

related to k-means clustering, with two important distinctions.

First, the number of distance calculations in the optimization

is dramatically reduced by limiting the search space to a

region proportional to the supervoxel size. Second, a novel

distance measure combines intensity and spatial proximity,

while simultaneously providing control over the size and

compactness of the supervoxels.

The supervoxel clustering procedure is summarized in the

table marked Algorithm 1. Initial cluster centers are chosen

by sampling the image stack at regular intervals of length S
in all three dimensions. The number of supervoxels k and the

number of voxels in the volume N determines the length,

S =
√

N/k. Next, the centers are moved to the nearest

gradient local minimum. The algorithm then assigns each

voxel to the nearest cluster center, recomputes the centers, and

iterates. After n iterations, the final cluster members define the

supervoxels.

SLIC is many times faster than standard k-means cluster-

ing thanks to a distance function measuring the spatial and

intensity similarities of voxels within a limited 2S × 2S × 2S
region

δik =

√

(Ik − Ii)2

m2
+

(uk − ui)2 + (vk − vi)2 + (zk − zi)2

S2
,

(1)

where I is image intensity; ui, vi, and zi are the spatial

coordinates of voxel i; uk, vk, and zk are those of cluster

center k. Normalizing the spatial proximity and intensity terms

by S and m1 allows the distance measure to combine these

quantities which have very different ranges. Simply applying

a Euclidean distance without normalization would result in

clustering biased towards spatial proximity. Supervoxel com-

pactness is regulated by m. As seen in Figure 3, higher m

1S and m are the average expected spatial and intensity distances within
a supervoxel, respectively. m can be adjusted to control compactness.

values produce more compact supervoxels while lower m
values produce less compact ones that more tightly fit the

image boundaries.

To ensure that the total number of distance calculations

remains constant in N , irrespective of k, the distance calcu-

lations are limited to a 2S × 2S × 2S volume around the

cluster centers. This makes the complexity O(N), whereas a

conventional k-means implementation would be of complexity

of O(kN) where N is the number of voxels.

A post-processing step enforces connectivity because the

clustering procedure does not guarantee that supervoxels will

be fully connected. Orphan voxels are assigned to the most

similar nearby supervoxels using a flood-fill algorithm. We

refer the interested reader to [4] for further details.

We found SLIC to be particularly well adapted to EM

segmentation as it delivers high quality supervoxels efficiently,

provides size and compactness control, and can operate on

large volumes. Besides SLIC, only a few algorithms are

designed to generate supervoxels. In [57], supervoxels are

obtained by stitching together overlapping patches followed

by optimizing an energy function using a graph cuts approach.

However, this approach performs worse than SLIC in terms of

segmentation quality using standard measures [4], consumes

too much memory, and it is 20 times slower with a worst

case complexity is O(N2). A second alternative, used in [5],

applies the watershed algorithm [57] to generate supervoxels.

However, the size and quality of the watershed supervoxels

are unreliable. Finally, other popular superpixel methods could

potentially be extended to 3D, including Quickshift [35],

Turbopixels [56], and the method of [14]. However, these

methods all produce lower quality segmentations than SLIC

in 2D [4], and are orders of magnitude slower: 13, 164 and

5 times slower, respectively. They also require much more

memory. These comparisons are documented in [4].

B. Feature Vector Extraction

After extracting supervoxels, the next step of the algorithm

is to extract feature vectors that capture local shape and texture

information. For each supervoxel i, we extract a feature vector

f i combining Ray descriptors and intensity histograms, written

as

fi = [fRay
i

⊤
, fHist

i

⊤
]⊤ , (2)

where f
Ray
i represents a Ray descriptor and f

Hist
i represents an

intensity histogram. For simplicity, we omit the i subscript in

the remainder of the section.

1) Ray Descriptors: Rays are a class of image features

introduced in [51] that capture non-local shape information

around a given point. We extend Ray features to 3D in this

work, and propose a method for bundling a set of Ray fea-

tures into a rotationally invariant descriptor. Ray features are

attractive because they provide a description of the local shape

relative to a given location. This formulation fits naturally into

a graph partitioning framework because Rays can provide a

description of the local shape for locations corresponding to

every node in the graph. Descriptors commonly used for shape

retrieval that rely on skeletonization or contours, including
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Fig. 3. Supervoxel size and compactness as a function of parameters m and S of Eq. 1. (top left) A cropped EM slice containing three mitochondria.
(middle left) Typical supervoxels sizes for S = 10, S = 20, and S = 30. (bottom left) Standard deviation of supervoxel size as a function of varying m.
(right) A matrix of supervoxel segmentations showing the effect of varying m and S. Increasing m produces more compact, regular supervoxels. Increasing
S increases supervoxel size. Note that supervoxels are three-dimensional, yet the images above show only a two-dimensional slice of each supervoxel.
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Fig. 4. Ray feature function r(I, ci, θl, γl). All components of the Ray
descriptor depend on this basic function. For a given location ci, it returns
the location of the closest boundary point r in direction l defined by angles
(θl, γl). dl is the corresponding distance from ci to the boundary.

distance sets [18] and Lipschitz embeddings [19], do not have

this property.

A Ray feature is computed by casting an imaginary ray in

an arbitrary direction (θl, γl) from a point c, and measuring

an image property at a distant point

r = r(I, ci, θl, γl) (3)

where the ray encounters an edge (depicted in Figure 4). In our

implementation, edges are found by applying a 3D extension

of the Canny edge detection algorithm [20].

For supervoxel i, we construct a Ray descriptor by con-

catenating a set of 3L Ray features emanating from the

supervoxel center ci, where L is a fixed set of orientations.

The L orientations are uniformly spaced over a geodesic

sphere, as depicted in Figure 5, and defined by polar angles

Θ = {θ1, . . . , θL} and Γ = {γ1, . . . , γL}. The Ray descriptor

for supervoxel i in an image stack I at orientation (θl, γl) is

written

f
Ray(I, ci, θl, γl) = [fndist, fnorm, fori]

⊤, (4)

where individual Ray features are given by

fndist(I, ci, θl, γl) =
‖r(I, ci, θl, γl)− ci‖

D
,

fnorm(I, ci, θl, γl) = ‖∇I(r(I, ci, θl, γl))‖ , (5)

fori(I, ci, θl, γl) =
∇I(r(I, ci, θl, γl))

‖∇I(r(I, ci, θl, γl))‖
·

r− ci
‖r− ci‖

,

and ∇I is the gradient of the image stack.

In other words, each descriptor f
Ray contains three Ray

features that measure image characteristics at the nearest edge

point r given by Eq. 3. The features in Eq. 5 are

• fndist, the most basic feature, simply encodes the distance

from ci to the closest edge dl = ‖r(I, ci, θl, γl)− ci‖. It

is made scale-invariant by normalizing by D, the mean

distance over all L directions,

• fnorm, the gradient norm at r,

• fori, the orientation of the gradient at r computed as the

dot product of the unit Ray vector and a unit vector in

the direction of the local gradient at r.

The final step is to align the descriptor to a canonical

orientation, making it rotation invariant. It is important that

the descriptor is the same no matter the orientation of the

mitochondria, otherwise the learning step would have difficulty

finding a good decision boundary. In Fig. 5(a), two perpendic-

ular axes n1 and n2 define a canonical frame of reference for

the descriptor. These axes are assigned specific locations in the

feature vector shown in Fig. 5(b), and all other elements are

ordered according to their angular offsets from n1 and n2. To

achieve rotational invariance, we re-order the descriptor such

that n1 and n2 align with an orientation estimate.

To obtain an orientation estimate, Principle Component

Analysis (PCA) is applied to the set of Ray terminal points,

yielding two orthogonal vectors e1 and e2 in the directions of

maximal variance of the local shape. Because e1 and e2 do
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(a) L Rays cast on a geodesic sphere.

n1 n2

(b) The fndist descriptor ordered according to

the canonical orientation defined by n1 and n2.

(c) A cropped EM image stack containing a

mitochondrion. Edges appear in white.

(d) L Rays cast from ci in the mitochondrion

to the closest surface boundary. Principle axes

e1 and e2 appear in green and red.

e2

e1

(e) The fndist descriptor re-ordered into the

canonical orientation defined by e1 and e2.

Fig. 5. Rotation invariant 3D Ray descriptor. (a)-(b) depict the Ray descriptor cast from the center of a unit sphere. The two axes defining the orientation
of the descriptor n1 and n2 are shown in green and red, respectively. (c) shows a cropped volume containing a mitochondria with boundaries highlighted in
white. The white point corresponds to the location of the Ray descriptor in (d)-(e). e1 and e2 are used to estimate the orientation of the descriptor and are
aligned to the canonical orientation.

not necessarily correspond to any of the Ray vectors, we pick

the two closest Ray vectors e1 and e2 to be the principle axes,

as shown in Fig. 5(d). Finally, the extracted feature vector is

re-ordered into the canonical orientation such that e1 and e2

correspond to n1 and n2, as shown in Fig. 5(e). Note that

the accuracy of the pose estimation depends on the number of

Rays in the descriptor.

2) Histogram Features: Recall from Eq. 2 that the feature

vector f contains intensity histograms f
Hist extracted for a

given supervoxel i and its neighborhood. It complements the

Ray features by providing low level intensity and texture cues.

We tried several types of local texture and intensity features,

including local binary patterns [38] and DAISY [53], but found

that a simple histogram computed from a supervoxel i and its

set of neighboring supervoxels N yields the best results. fHist

is a concatenation of two b-dimensional histograms. The first

one is extracted from the central supervoxel i, and the second

from all supervoxels belonging to the neighborhood N of i.
We write

f
Hist(I, i) =



h(I, i, b),
1

|N |

∑

j∈Ni

h(I, j, b)





⊤

, (6)

where h(I, j, b) is a histogram extracted from I over the

voxels contained in supervoxel j. Including the neighbors

is necessary, because individual supervoxels are not very

discriminative as their intensities are nearly uniform by design.

C. Graph Cuts with Learned Potentials

The final step of our approach is to segment mitochondria

using a graph cuts approach where the unary and pairwise

potentials of the energy function incorporate shape cues and

learned boundary appearance.

1) Energy Function: Graph partitioning approaches min-

imize a global objective function defined on an undirected

graph G = (V, E). In our work, nodes i correspond to

supervoxels and edges connect neighboring supervoxels [6],

[8], [2]. Our energy function takes the standard form,

E(y|x, λ) =
∑

i

ψ(yi|xi)
︸ ︷︷ ︸

unary term

+ λ
∑

(i,j)∈E

φ(yi, yj |xi, xj)
︸ ︷︷ ︸

pairwise term

, (7)

where E is the set of edges and yi ∈ {0, 1} is a class label

assigned to i corresponding to the foreground and the back-

ground. The so-called unary term ψ encourages agreement

between a node’s label yi and the local image evidence xi. φ
is known as the pairwise term, which promotes consistency

between labels of neighboring nodes i and j. The weight λ
controls the relative importance of the two terms.

We segment the image stack by finding a graph cut that

minimizes the energy function of Eq. 7. When the pairwise

term is submodular2, which is the case in our formulation,

a global minima of the energy function can be found using

the mincut-maxflow algorithm [17]. This results in an optimal

labeling

ŷ = argmin
y

E(y|x, λ). (8)

However, following this standard approach does not mean

that resulting segmentations are necessarily perfect, or even

good. This is because, as is the case in most other works, the

criterion being minimized fails to take shape information into

account, even though it is crucial for effective segmentation.

Another contributing factor is that the standard pairwise term

2The submodularity condition requires (1) that the unary term ψ(yi|xi)
be positive. This is achieved by adding a constant to the energy without
affecting the minimum. Submodularity also requires (2) that the pairwise
term φ(yi, yj |·) satisfies the following condition: φ(0, 0|·) + φ(1, 1|·) ≤
φ(0, 1|·) + φ(1, 0|·). Note that the minimum energy of binary submodular
functions can be found in polynomial time [30].
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fails to properly encode the likelihood that edges correspond

to mitochondrial membranes, due to the noisy nature of EM

data and presence of distracting membranes. In the following

subsections, we propose machine learning based solutions to

these shortcomings.

2) Learned Shape Cues in the Unary Term: We train

a Support Vector Machine (SVM) classifier to predict the

unary term in Eq. 7 using the feature vector f defined in

Section III-B. Because f includes rotationally invariant shape

cues in the form of the Ray descriptor, the SVM injects

important shape information into the unary term, which is

taken to be

ψ(yi|xi) =
1

1 + Pψ(yi|xi)
, (9)

where yi = 0 indicates background, yi = 1 indicates fore-

ground, and Pψ represents the probability that i is within a

mitochondria. Because the mitochondria have thick boundaries

with specific gray-level statistics, the classifier is trained using

manually annotated data with three labels {BG,BD,MI},

corresponding to background, boundary, and mitochondria

instead of only background and mitochondria. Empirically, we

found that introducing an explicit boundary class improved the

classifiers’ ability to recognize mitochondrial membranes from

other membranes in the image stack. Thus, the SVM returns

probabilities of being within a mitochondria P (MI|xi), within

the boundary P (BD|xi), or outside P (BG|xi). Since the

boundary label separates background regions from mitochon-

dria regions, we write

Pψ(yi|xi) =

{

P (BG|xi) , if yi = 0 ,
P (BD|xi) + P (MI|xi) , otherwise .

(10)

A three-way one-vs-rest SVM classifier was used to estimate

Pψ , using a Radial Basis Function (RBF) kernel whose pa-

rameters were optimized through cross validation to minimize

the estimated generalization error.

Only a few previous graph-partitioning methods have at-

tempted to incorporate shape information into the energy

function, having done so only for 2D images. They can be

categorized as either template or fragment-based. The first

category fits shape templates to the image in an alignment

or detection step. Templates represent target objects as either

contours [15] or silhouettes [1], [42], which are learned or

painstakingly constructed beforehand. Typically, a distance

transform from the template is used to modulate the potential

functions. The complexity of these types of approaches and the

difficulty of simultaneously aligning multiple templates have

restricted previous works to segment singular well-centered

objects.

Fragment-based approaches match image patches extracted

around a graph node to a predefined fragment code book in an

attempt to encode shape information [3], [37]. However, for

highly deformable objects such as mitochondria, an extremely

large code book is necessary, making such an approach pro-

hibitively expensive.

3) Learned Boundary Appearance in the Pairwise Term:

Most graph-partitioning approaches define the pairwise term

as a simple function which favors cutting edges at locations

of abrupt color or intensity changes, such as the one proposed

in [6]

φ(yi, yj |xi, xj) =

{

exp
(

− ||xi−xj ||
2

2σ2

)

, if yi 6= yj

0 , otherwise,
(11)

where the observation xi is simply Ii, the intensity taken from

node i, and σ is a constant. However, in EM imagery contain-

ing many distracting contours, this may backfire and result in

erroneous cuts either along one of the many membranes found

in the data or through a mitochondrial cristae.

We address this problem by learning from the data what

types of image characteristics indicate a true object boundary

and incorporating this information into the pairwise potential.

The pairwise term φ is defined as

φ(yi, yj |xi, xj) =

{ 1
1+Pφ(yi,yj |xi,xj)

, if yi 6= yj ,

0 , otherwise,
(12)

where Pφ is the SVM output probability that i is within the

mitochondria and i’s neighbor j is outside. In our application,

relevant boundaries are characterized by a very dark membrane

separating bright cytoplasm on the exterior, and the dark

textured interior of the mitochondria on the interior, as seen

in Fig. 1. We therefore train the second three-way SVM using

concatenated feature vectors from neighboring supervoxels i
and j

fi,j = [f⊤i , f
⊤
j ]⊤, (13)

where fi and fj are the feature vectors extracted from the

individual supervoxels. The resulting classifier assigns proba-

bilities to one of the three classes yij = {0, 1, 2} where class

0 corresponds to BD-BG pairs, class 1 corresponds to BD-

BD pairs, and class 2 corresponds to any other combination

∗∗-∗∗ of ground truth labels

Pφ(yi, yj |xi, xj) =

{
P (yij = 0|xi, xj) , if yi 6= yj ,
P (yij = 1|xi, xj) +
P (yij = 2|xi, xj) , otherwise.

(14)

Very few other works use a more sophisticated pairwise po-

tential than that of Eq. 11. While some incremental extensions

based on Laplacian zero-crossings, gradient orientations, and

local histograms exist [41], very few works go much further. A

recent exception can be found in [2], where the authors define

an interaction term that encodes geometric relations between

multi-region objects. In [47], a set of boundary pixels extracted

with an edge detector are pruned using a classifier such that

only class-specific edges remain. These edges are attenuated

in the pairwise term of the graph cuts segmentation.

IV. RESULTS

In this section, we first provide details related to the

experimental setup and the FIB-SEM data. We then list the

parameters we used and describe the learning procedure. We

then present our mitochondria segmentation results, investigate

some of the trade-offs of our approach, and finally compare

our approach to a state-of-the-art method.
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TABLE I
PARAMETERS AND SETTINGS

Parameter Value(s) Notes

S 10 Normalized spatial distance. Controls the number

of voxels per supervoxel.

m 40 Normalized intensity distance. Controls supervoxel

compactness.

n 5 Number of iterations required for supervoxel

clustering to converge.

L 42 Number of Ray directions. Corresponds to vertices

on a geodesic sphere.

ρ ≈ 50 Number of Ray features computed per supervoxel.

σG 9 Variance of Gaussian derivative filter used to

compute gradient in fori and fnorm.

σC (8,10) Variance used in 3D Canny edge detection for

(CA-1 Hippocampus, Striatum).

tl (8,14) Lower threshold used in 3D Canny edge detection

for (CA-1 Hippocampus, Striatum).

tu (16,27) Upper threshold used in 3D Canny edge detection

for (CA-1 Hippocampus, Striatum).

b 10 Number of histogram bins. fHist concatenates two

b-bin histograms from i and i’s neighborhood.

A. Experimental Setup

The data used in our experiments, shown in Figure 1, come

from two different locations in the brain. The first image

stack represents a 5 × 5 × 5 µm section taken from the CA1

hippocampus, corresponding to a 1024×1024×1000 volume

which contains N ≈ 109 total voxels. The resolution of each

voxel is approximately 5 × 5 × 5 nm. The second section

measures approximately 9×5×2.5 µm, and was taken from the

striatum, a subcortical brain region. This image stack contains

1536× 872× 318 voxels, with a 6× 6× 7.8 nm resolution.

Because of the forbiddingly large amount of labor involved

in generating an accurate ground truth for such large volumes,

we annotated sub-volumes for training and testing purposes.

The testing sub-volume for the CA1 hippocampus consists of

the first 165 slices of the 1024× 1024× 1000 image stack, as

indicated by the dotted line in Figure 1. A separate image stack

from another hippocampus sample containing 200 similarly

sized slices was annotated for training our algorithm.

For the striatum, the 1536 × 872 × 318 volume was fully

annotated and split into a training and test set, as indicated in

Figure 1.

Each of these sub-volumes had a size of 768× 872× 318.

The results provided in Figure 7 and Table II are computed

on the test sub-volumes after training the classifiers on the

training sub-volumes. The segmentations shown in the top row

of Figure 6 are over the entire 1024 × 1024 × 1000 image

stack for the hippocampus data including the test volume and

unannotated data, while the striatum segmentations are shown

only for the test sub-volume.

B. Parameters and Implementation Details

A summary of parameters used in our experiments is

provided in Table I. The sampling interval S for supervoxel

centers introduced in Section III-A was chosen empirically.

The resulting supervoxels contain approximately 1000 voxels

on average. Supervoxels of this size typically fit within the

membranes which helps to ensure that superpixels do not

straddle boundaries. As discussed in Section IV-D1, using

supervoxels decreases the computational complexity by several

orders of magnitude as compared to what would have been

required to operate directly on voxels. A strength of the SLIC

supervoxel generation scheme is that S value can be adapted

if the image resolution were to be changed. The compactness

factor m was chosen empirically and provides a good com-

promise between compactness and boundary adherence. The

typical neighborhood size of a supervoxel is |N | ≈ 8 for the

m and S values given in Table I.

The ray descriptors fRay of Eq. 4 are 3L = 126 dimensional

vectors, consisting of 3 Ray feature types and L orientations.

We have found L = 42 to be a good trade-off between

computational complexity and angular resolution for the ro-

tational alignment discussed at the end of Section III-B. Rays

terminate when they encounter edges found in a 3D Canny

edge map [20], whose parameters σG, σC , tl, and tu must be

tuned to the data. Because the Canny edge detector can easily

miss edges or add spurious ones, we increase robustness by

shooting rays from 5% of the voxels within each supervoxel—

50 in our case—for each direction and average the results. It

is those averages that we use for classification.

All parameters of our algorithm were fixed for both data

sets, except for parameters related to the 3D canny edge

detector which was adjusted due to differences in contrast

between the two data sets.

C. Experiments and Evaluation

We evaluate our segmentation in terms of the so-called

Jaccard index, or VOC score [13] to measure segmentation

quality when ground-truth data is available. It is computed as

VOC =
True Pos

True Pos + False Pos + False Neg
, (15)

which is the ratio of the areas of the intersection between what

has been segmented and the ground truth, and of their union.

As an alternative to the Jaccard index, we also considered

using the Rand index [21] which attempts to penalize topo-

logical segmentation errors. However, since the Rand index

does not account for all types of topological errors and the

Jaccard index is the de facto standard in the Computer Vision

community, we report our results using the latter.

Table II summarizes the segmentation results of our ap-

proach and several baseline methods for the hippocampus

TABLE II
SEGMENTATION RESULTS MEASURED BY THE VOC SCORE [13]

Method

Ilastik Standard Learned Standard Learned

fHist Cube f f f

Hippocampus 61% 63% 68% 81% 84%

Striatum 58% 60% 60% 70% 74%
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Fig. 6. Segmentation of mitochondria from FIB-SEM image stacks and 3D reconstructions. We applied our approach to two FIB-SEM test stacks acquired
from different brain regions. The left column shows the 3D reconstructions of extracted mitochondria. Renderings were produced using V3D [45]. The right
column shows segmentation results on individual image slices taken from the image stack. Automatically segmented mitochondria are marked by red contours.
Most mitochondria are correctly segmented, but some mistakes remain. Failure modes are indicated by black arrows. (a) Dendritic or axonal membranes in
close proximity to a mitochondrion can confuse our algorithm, causing it to include part of the nearby membrane with the mitochondrion. (b) Occasionally,
neighboring mitochondria are erroneously merged by the smoothness constraint in graph cuts when the space between the membranes is very small. (c) A
cluster of vesicles is mistaken for a mitochondrion. The texture of vesicles can appear deceptively similar to that of mitochondria.

and striatum test sets. Adding the Rays to the feature vector

f = [fRay
i

⊤
f

Hist
i

⊤
]⊤ (Standard f ) is compared to histogram

features alone f = f
Hist (Standard f

Hist). We also report results

for learning the pairwise term of Eq. 12 with the full feature

vector (Learned f ). Finally, Table II also contains the results

obtained using Ilastik [52], and results obtained by replacing

the supervoxels with regularly space cubes (Learned Cube f ).

The discussion in the next section provides further details for

each method.

The VOC scores reported in Table II were computed by

fixing the value of λ to a value determined through a cross-

validation process on the training data. Typically, λ ranged

from 0.07 to 0.13.

In the left of Figure 6, 3D reconstructions of mitochondria

extracted from the test volumes using our approach are pro-

vided. In the right column of the same figure, segmentation

results on individual image slices are shown where segmented

mitochondria are marked by red contours. The total training

and processing time was 23 hours for the hippocampus data

set and 7 hours for the striatum data set on a 8-core Intel Xeon

CPU 2.4 GHz machine with 48 GB RAM.
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(b) Supervoxels vs. Regular Cubes (d) Contributions of our approach (f) Comparison vs. state-of-the-art
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Fig. 7. Segmentation results. The top row contains results obtained for the CA1 Hippocampus data, and the bottom row contains results obtained for the
Striatum data. (a)-(b) Supervoxels vs. regular cubes. We compare segmentation results obtained using SLIC supervoxels of size S = 10 to simple 10×10×10
cubes. Supervoxels, which respect boundaries in the image stack, significantly outperform the cubes while similarly reducing computational complexity. (c)-(d)

Contributions of our approach. The dashed blue line labeled “Standard, fHist” represents a baseline result obtained by using a unary term that only depends
on the histogram features of Eq. 6 and a contrast-based pairwise term given in Eq. 11. Replacing this pairwise term by the learned one of Eq. 12 results in
the improved solid blue curve labeled “Learned, fHist.” An even larger improvement is obtained by introducing the Ray features of Eq. 2, producing the green
dashed curve labeled “Standard, f .” Finally, combining the learned pairwise term and the Ray features yield the high quality result denoted by the solid green
curve labeled “Learned, f”. (e)-(f) Comparing our approach to Ilastik [52]. We trained the publicly available Ilastik software on the same data we used to
train our SVMs and evaluated the segmentations. The solid green curve was generated using our approach. Results obtained using Ilastik appear in as yellow
dotted lines. Because Ilastik includes neither smoothing nor regularization, we plot results obtained by thresholding the unary term of Eq. 9 in our approach
for a more fair comparison. The dotted curves essentially compare Ilastik’s local texture features to our shape and texture features. Note that thresholding the
unary term does not perform as well as our full approach but still better than Ilastik, indicating that the features we use are better adapted to the task at hand.
As noted in Section IV-C, the ROC-like plots in (a)-(f) were generated by varying the weight λ, thus changing the influence of the unary and pairwise terms
in the energy function of Eq. 7 (with the exception of the dotted curves in (e) and (f), which are conventional ROCs).

D. Discussion

We now investigate several aspects of our approach in

further detail. We will show the computational advantages of

SLIC supervoxels, the benefits of using Ray descriptors, and

the performance gained from learning the pairwise term. We

also compare our approach against the state of the art, and

discuss failure modes of our approach.

These discussions refer to results appearing in the ROC-like

curves appearing in Figure 7. The ROC-like curves provided

in Figure 7 explore points within the operating regimes of

the various method we discuss. To generate these curves, we

vary the value of λ, thus changing the influence of the unary

and pairwise terms in the energy function of our approach.

This results in variations in the true positive rate (TPR) and

false positive rate (FPR) of the segmentation, albeit in a non-

linear fashion. True ROC curves, like the dotted lines in

Figures 7(e) and 7(f) are obtained by varying a classification

or decision threshold for independent elements (supervoxels

in our case). Most of the curves in Figure 7 were generated

by jointly labeling supervoxels using information from their

neighbors through graph cuts, thus, strictly speaking, they are

not ROCs. However, they still provide valuable insight into

how consistently our algorithm performs over a range of false

positive rates.

1) Computational Advantage of SLIC Supervoxels: The

major bottleneck in our approach is in applying graph-cuts,

which has a worst case complexity of O(|E| |V|2), where |E|
is the number of edges and |V| is the number of vertices [7].

Using supervoxels instead of voxels reduces |V| by several

orders of magnitude (a factor of 1000 given the parameters

described in IV-B), and therefore significantly speeds up the

processing. It is also important to note that memory limitations

make it impossible to process a graph of the size required by

EM data sets such as ours on a conventional computer. The

graph-cuts implementation of [7] requires 40V + 32E bytes

to store the graph on a 64-bit machine, which translates to

a 227GB memory footprint (for 6-connectivity) or a 852GB

memory footprint (for 26-connectivity) for the graph required

by the CA1 hippocampus volume. Using supervoxels with
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our parameters reduces the memory consumption to a more

manageable size of 296MB.

As an alternative to supervoxels, one might consider down-

sampling the data to reduce processing time and memory

consumption. However, doing so reduces the quality of the

segmentation. This is because supervoxels adhere to local im-

age boundaries, whereas downsampling does not. To demon-

strate this effect, we compare segmentations obtained using

our method with SLIC supervoxels to segmentations obtained

by replacing the supervoxels with regularly spaced 10×10×10
cubes, which have roughly the same size but ignore bound-

aries. The results appear in Figure 7(a) and Figure 7(b). Results

using our method with SLIC supervoxels are denoted Learned,f

while the down-sampled results are labeled Cubes, Learned f.

It is clear that downsampling produces significantly worse

segmentations than using similarly sized SLIC supervoxels.

Consequently, downsampling reduces the VOC score by 14 to

16%, as shown in Table II.

2) Benefits of Ray Descriptors: The Ray descriptor f
Ray

in the feature vector of Eq. 2 captures important information

about the shape of mitochondria. Without it, the feature vector

contains only local information provided by the intensity

histograms f
Hist. To demonstrate the importance of including

shape information, we compare our method using the full

feature vector f = [fRay
i

⊤
f

Hist
i

⊤
]⊤ to our method using only

histogram features f = f
Hist.

The results appear in Figure 7(c) and Figure 7(d). Blue lines

denote the results obtained using f = f
Hist, while green lines

incorporate the Ray features f = [fRay⊤
f

Hist⊤]⊤. Dashed

lines and solid lines correspond to a standard or learned

pairwise term, which are discussed in the next section. Rays

significantly improve the segmentation performance. Without

them, the VOC score drops by 18% (see Table II).

Looking at Figure 8, we can see the discriminative power of

the combined feature vector. In Figure 8(b) the mitochondria

probabilities output by the SVM of Eq. 9 are shown. Directly

thresholding these probabilities already results in reasonably

good segmentations (Fig. 8(c)).

3) Learning the Pairwise Term: Further improvement to

segmentation performance is gained by learning the pairwise

term of Eq. 12. Results obtained using the standard pairwise

potential of [6], which uses a gradient based approach of the

form given in Eq. 11, is shown in Figure 7(c) and Figure 7(d)

as dashed lines. Replacing this pairwise potential with one

that learns which types of image characteristics indicate a true

object boundary (Eq. 12) results in a significant increase in

performance, as indicated by the solid lines.

This corresponds to an increase in the VOC score by ap-

proximately 4%. In Figure 8(d), segmentation results using the

learned pairwise term with graph cuts significantly improves

the segmentation produced by the unary term in Figure 8(c).

For the purpose of this experiment, we set σ = 1
2E[Îi−Îj ]2

in

Eq. 11, where Îi is the average intensity within supervoxel i
and E[.] denotes the expectation over supervoxels.

(a) Original image slice (b) Unary probabilities from

SVM of Eq. 9

(c) Thresholded unary probabilities (d) Full approach (“Learned, f”)

Fig. 8. Thresholding unary SVM predictions vs. our learned pairwise

approach. (a) Original image slice. (b) Unary mitochondria probability from
SVM of Eq. 9 (dark pixels indicate probable mitochondria). (c) Segmentation
results obtained by directly thresholding (b). (d) Results obtained with our
full approach using graph cuts with a learned the pairwise term (“Learned,
f”). The TPR was set to 85% in (c) and (d).

4) Comparing against a state-of-the-art method: The Inter-

active Learning and Segmentation Tool Kit (Ilastik) is a soft-

ware package for image classification and segmentation [52].

It allows for interactive labeling of an arbitrary number of

classes in data sets of various dimensionality. Similar to the

work of [43] which also segments mitochondria, Ilastik uses

texture cues as well as color and edge orientation in a machine

learning framework to perform segmentation. Ilastik’s Random

Forest classifier can provide real-time feedback of the current

classifier predictions, allowing it to perform interactive or fully

automatic classification and segmentation.

We provided Ilastik with the same training data used to train

our approach, and compare its output to ours in Figure 7(e)

and Figure 7(f). In addition to comparing Ilastik to our full

approach, we also plot results obtained by simply thresholding

probabilities of Eq. 9 that define the unary term in the energy

function. We do this to provide a more fair comparison of

our features against those of Ilastik, which does not include a

smoothing or regularization step.

While Ilastik achieves a reasonable segmentation, our ap-

proach consistently outperforms it, even when using only

the unary term. As shown in Table II, our full approach

outperforms Ilastik by a margin of 23% on the hippocampus

data and 16% on the striatum, as measured by the VOC score.

Example segmentations comparing our method to Ilastik are

provided in Figure 9. Ilastik mistakenly labels vesicles as

mitochondria and has trouble with other various membranes

and synapses. Without the global shape information provided

by the Ray features such mistakes are difficult to avoid.

5) Failure modes: Qualitatively our segmentation results

are very promising. Note that the 84% VOC score achieved

by our algorithm is outstanding in terms of results reported
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(a) Ilastik (b) Our approach

Fig. 9. Visual comparison of our results vs. Ilastik. (a) The voxels of a
particular slice that are labeled as being within mitochondria by Ilastik are
marked by a red contour. These include a number of voxels that belong to
vesicles instead of mitochondria. (b) These mistakes disappear when using
our approach.

in the VOC challenge [13]. However, this number should be

taken with a grain of salt, as the VOC Challenge contains 21

categories of objects, while we only deal with 2 – the mito-

chondria and the background. Despite the promising results of

our approach, there is still room for improvement. Examples

of three failure modes are indicated by arrows in Figure 6.

Dendritic or axonal membranes in close proximity to mito-

chondria can confuse our algorithm, causing it to include part

of the nearby membrane with the mitochondria. Occasionally,

neighboring mitochondria are erroneously merged as a result

of smoothness enforced by graph cuts when the space between

the membranes is very small. Finally, clusters of vesicles are

mistaken for mitochondria because texture of vesicles can

appear deceptively similar to that of mitochondria.

The shallow depth of the training data in the z-direction

could account for some of these failure modes, as very

few mitochondria were fully contained withing the training

volumes. Increasing the amount of training data or enhancing

the learning procedure using a bootstrapping approach could

potentially reduce these errors. Furthermore, it would be

relatively simple to exploit the fact that graph-cut minimization

allows for efficient user interaction [6]. This means that,

given an adequate interface, remaining errors could be quickly

corrected by the user.

V. CONCLUSION

While the EM image stacks used in this work contain over

a billion voxels, they span volumes smaller than 10× 10× 10
µm, which represents less than a billionth of the volume of

the entire mouse brain. If it is ever to be mapped in its entirety,

efficient automatic segmentation methods, such as the one we

propose in the work, will be required.

Our fully automatic approach to segment mitochondria from

FIB-SEM image stacks overcomes the limitations of standard

graph-partitioning approaches by: operating on supervoxels

instead of voxels for computational efficiency, by using 3D

Ray descriptors to model shape in the unary term, and by using

a learning approach to model the appearance of the boundary

in the pairwise term. We have demonstrated the computational

efficiency of using supervoxels, and experimentally shown the

increases in segmentation quality attributed with using Ray

descriptors and learning to model boundaries in the pairwise

term. Our experiments have also demonstrated that our ap-

proach outperforms a state-of-the-art 3D segmentation method,

and that our segmentation closely matches the performance of

human annotators.

While the focus of our work is on the segmentation of mi-

tochondria in FIB-SEM image stacks, the proposed techniques

should be applicable to other cellular structures in EM as well

as in other forms of microscopy. Future work will investigate

this. We will also focus on learning boundaries using higher-

order cliques, exploring the use of other features, and applying

our technique to additional types of data.
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