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Abstract 

Near a vortex in a monochromatic light beam, the length of the local 

wavevector (phase gradient) can exceed the wavenumber in any of the 

plane waves in the superposition representing the beam. One way to 

detect these ‘superweak’ momenta could be by ‘superkicks’ imparted to a 

small particle located near the vortex, by absorbing individual large-

momentum photons from the beam. A model for this process is a two-

level atom with a transition resonant with the light beam. A semiclassical 

analysis shows that the momentum distribution of the atom is shifted by 

interaction with the vortex beam, by amounts less than the target 

superkicks but greater than the momenta in the plane waves comprising 

the beam. 
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1 Introduction 

A fundamental feature of phase singularities [1-4] of monochromatic 

fields representing waves in three-dimensional space r is that they are 

optical vortex lines, near which the phase varies on scales smaller than 

the wavelength !. It follows that the length of the local wavevector k(r) – 

the phase gradient – exceeds the free-space wavenumber k0 =2"/!. Such 

rapid variations are now recognized as ‘superoscillations’[5, 6], where the 

‘weak value’ [7] of momentum 
 
!k r( )  exceeds the free-space momentum 

 
!k

0
. The question we address here, in the spirit of quantum weak 

measurement theory [8-10], is whether such large local momenta could 

be imparted as ‘superkicks’ to test particles (‘atoms’) in the field. This 

situation appears paradoxical, because the momentum 
 
!k r( )  imparted to 

the absorbing particle exceeds that of any single photon in the field, 

raising concerns about global momentum conservation.  Our resolution 

follows from considering the quantum mechanics of the motion of an 

absorbing atom.  We need to account for the wave nature both of the 

electromagnetic field and the atom used to probe it. 

A local model for the field strength near a vortex line of strength m  

on the z axis of a linearly polarized paraxial wave, is  

Em (r, t) = Em r( )exp !i!t( ), ! = ck0,

Em r( ) = Nrm exp i m! + k0z( ){ } = N(x + iy)m exp ik0z( ),               
(1.1) 

in which here and hereafter N denotes a generic multiplier or 

normalization  constant. The corresponding local wavevector is  

k r( ) = !arg"
m
r,t( ) =

m

r
e# + k0ez .            (1.2) 
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Its transverse part exceeds k0 inside the cylinder k
0
r < m . The factor 

(x+iy)m describes any locally symmetric vortex on strength m; it is also a 

small-r approximation to the exact Bessel beam solution [11] of the 

Helmholtz equation: 

E
m,Bessel r( ) = NJm Kr( )exp i m! + z k0

2
" K

2
"#t( ){ }  .         (1.3) 

Paraxiality corresponds to K<<k0. 

 In section 2 we derive the approximate Hamiltonian for a model 

quantum detector in the form of a two-level atom placed in the field, and 

show that when the atom gets excited its position wavefunction inherits 

the form of the optical field. In section 3 we calculate the corresponding 

atomic momentum distribution, incorporating the momentum uncertainty 

implied by localizing the atom near the vortex. In particular, we calculate 

the average momentum, and elucidate the conditions under which this can 

exceed the momentum of free-space optical photons. 

 This study, developing an idea envisaged earlier [7, 12], 

complements and extends existing explorations [13, 14] of possible 

quantum effects associated with the cores of optical vortices. 

 

2. Atom Hamiltonian 

As a probe for the optical field, we consider a model two-level atom of 

mass M, with electronic ground and excited states g and e  and 

corresponding energies #g and #e, coupled by electric dipole interaction.  It 

suffices to work within the semi-classical approximation, in which the 

atom is treated quantum mechanically and the field is described 
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classically [15, 16].  We can describe the coupled the atom-field system 

by the state !
0
t( ) , driven by the Hamiltonian 

Ĥ
0
=

p̂
2

2M
+ !

e
e e + !

g
g g " µ̂ E

m
(r,t)+ E

m

*
(r,t)#$ %& ,            (2.1) 

where p̂2  is the square of the total atomic momentum and µ̂  is the 

electric dipole operator.  Neither of the electronic states has an intrinsic 

dipole moment, so the dipole operator has only off-diagonal matrix 

elements in this basis and can be written in the form 

µ̂ = µ g e + e g( )  .                                                      (2.2) 

We immediately eliminate some of the fast oscillations by 

transforming to a new state ! t( )  (equivalent to the interaction picture): 

 

! 0 t( ) = exp "
i

!
t #

g
g g + #

e
e e( )$

%
&

'
(
)
! t( ) .          (2.4) 

Thus the Schrödinger equation is 

 
i!!

t
" t( ) = Ĥ " t( ) .                        (2.5) 

with the new Hamiltonian 

 

Ĥ =
p̂

2

2M
! µ g e exp !

i

!
("

e
! "

g
)

#
$
%

&
'
(
+

)
*+

              + e g exp
i

!
("

e
! "

g
)

#
$
%

&
'
(
,
-.
E
m

(r,t)+ E
m

* (r,t)( ).
      (2.6) 

(Here we have used the fact that g  and e  are orthogonal, and the 

consequence that the operators e e  and g g  commute.) 
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We can make three further simplifications.  First we can make the 

atom sufficiently massive and slowly-moving such that the first (kinetic) 

term has little effect during the short times will be of interest to us and 

can be neglected. Second, we choose exact resonance, so that 

 
!
e
" !

g
= !# .  Third, we note that from the form of the electric field 

amplitude (1.1), Ĥ  contains time-independent terms and also terms 

rotating at 2$: twice the optical frequency.  The effect of these rapidly 

rotating terms will tend to average out over relevant time scales, and 

discarding them leads to the final time-independent ‘rotating wave’ 

Hamiltonian [16]:  

Ĥ
RW

= !µ g e E
m

*
(r)+ e g E

m
(r)( )  ,                                   (2.7) 

We can now analyse the effect on the atomic motion of absorbing a 

quantum of energy near to the vortex core, where the local optical 

momentum |k(r)|>k0. In doing so it is essential to include a quantum 

description of the motional state of the atom as well as its electronic state.  

Let the initial state of the atom be  

r! (0) = g "
init
(r)  ,                                                          (2.8) 

corresponding to the atom being in its electronic ground state and in the 

motional state !
init
(r) .  After a short time this state will evolve to a 

superposition of the ground and excited states. We can describe this using 

first-order perturbation theory, because we are interested only in the 

effects of a single absorption event.    
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r! (t) " 1# i
Ĥ

RW
t

!

$

%&
'

()
r! (0)

= g *
init
(r)# i

µt

!
E
m
(r) e *

init
(r) .

                                (2.9) 

If after this short time the atom has made a transition to the excited state 

(by absorbing a single quantum from the field) then its associated 

motional wavefunction will be 

! m (r) = N(x + iy)
m exp ik0z( )! init (r)  ,                                      (2.10) 

Clearly, the phase of the electric field has been imprinted on the motional 

wavefunction and this encodes the ‘kick’ given to the atom.  Our focus 

will be on the transverse momentum, but we note the immediate obvious 

consequence of (2.10) that for !
m
(r)  the average momentum in the z-

direction exceeds by 
 
!k

0
that for !

init
(r) . This is the familiar atomic 

recoil associated with the conservation of linear momentum. 

 

3. Momentum distribution 

It follows from (2.10) that the momentum state of the excited atom is 

given in terms of the initial momentum state !
0
k( )  (Fourier transform of 

(2.10)) by 

  ! m k( ) = N "kx + i"ky( )
m

!
init

kx ,ky ,kz # k0( ) . 

                  

(3.1) 

An immediate consequence is that the final momentum state can contain 

only momenta that were present in the initial state: the only effect of the 

interaction with the light is a redistribution of momenta that the atom 

already possessed as a result of its localization near the vortex. In 
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particular, if the initial momentum state has bounded support in k, the 

final state has the same bounded support. 

Nevertheless, it is possible for the atom to acquire momenta larger 

than k0. We explore this for an initial (unexcited) atomic wavefunction 

located close to r=(x0,0,0), in the form of the Gaussian  

 ! init r( ) = N exp "
x " x0( )

2
+ y

2
+ z

2

2# 2

$

%
&

'

(
)  ,           (3.2) 

In order to localize the atom in the region k0r<m where the light is 

superoscillatory, we restrict the position x0 and the width %  to 

 x
0
<
m

k
0

=
2!m

"
, # < m"  .             (3.3) 

The corresponding initial momentum distribution is 

 ! init k( ) = N exp " 1
2#

2
kx
2
+ ky

2
+ kz

2( )+ ikxx0( ) .           (3.4) 

 An easy calculation (iterating (3.1) for successive values of m) 

gives the final momentum probability distribution 

 

! m k( )
2

= N
2
exp " kz " k0( )

2

# 2( )$

kx
2
+ ky + x0 /#

2( )
2

( )
m

exp " kx
2
+ ky

2( )# 2( ).
          (3.5) 

This shows that in addition to the obvious z momentum shift by k0,  the 

distribution is skewed towards +y (if x0>0), as illustrated in figure 1 for 

several values of x0/% and m.  

To quantify this y kick, we calculate the momentum expectation 

values for different vortex strengths m:  
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 km =
dkk! m k( )

2

""
dk! m k( )

2

""
# kmey + k0ez  .             (3.6) 

The ky shifts can be evaluated exactly in terms of Laguerre polynomials 

[17]: 

k
m
=
x0Lm!1

(1)
!x0

2 /" 2( )
"
2
L
m
!x0

2 /" 2( )
=
1

2
#
x0
log L

m
!x0

2 /" 2( )( ) .           (3.7) 

The first few shifts are 

k
1
=

x
0

!
2
+ x

0

2
, k

2
=

2x
0
2!

2
+ x

0

2( )
2!

4
+ 4x

0

2
!
2
+ x

0

4
,

k
3
=

3x
0
6!

4
+ 6x

0

2
!
2
+ x

0

4( )
6!

6
+18x

0

2
!
4
+ 9x

0

4
!
2
+ x

0

6
,

k
4
=

4x
0
24!

6
+ x

0

2
6!

2
+ x

0

2( )
2

( )
24!

8
+ 96x

0

2
!
6
+ 72x

0

4
!
4
+16x

0

6
!
2
+ x

0

8
.

           (3.8) 

These functions should be compared with the corresponding 

superkicks that we hope to detect in the optical field, given by (cf. (1.2)) 

k
m,super =

m

x0

 .                        (3.9) 

Comparisons are shown in figure 2.  The average momentum shifts 

acquired by the atoms reach their greatest value kmmax when x0=x0max~% ; 

the precise values are given in Table 1.  

m 1 2 3 4 5 6

x
0max

/! 1 0.939 0.900 0.874 0.854 0.840

k
mmax

! 0.5 0.858 1.151 1.404 1.629 1.835
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Table 1. Maximal momentum shifts for vortex strengths m 

Figure 3 shows the momentum distributions along the symmetry line k
x
=0 

for x0 corresponding to these maximum shifts, illustrating how the shifts 

get bigger for larger m.  

It is clear from figure 2 that the average momentum shifts tend to 

the superkick values (3.9) as x0 increases but fall short for smaller x0. The 

shifts vanish as xo!0, because then the atomic wavefunction overlaps the 

other side of the vortex where k(r) is in the opposite direction. 

Notwithstanding the shortfall, in the superoscillatory region near the 

vortex where the the atom shifts are maximal (Table 1) these shifts 

exceed the momenta k0 in the plane-wave superpositions comprising the 

field, by an amount 

 

k
mmax

k
0

=
k
mmax

!( )
2"

#

!
!

k
mmax

!( )
2"

#

x
0

,          (3.10) 

which is greater than unity if the atom is close enough to the vortex.  

 We have calculated the momentum distribution of the atom on the 

assumption that a resonant transition has taken place. However, the 

probability that such a transition will occur is very small when the atom is 

near a vortex. From (2.9), standard time-dependent perturbation theory 

gives the transition probability per unit time as 

 
P ! dr r,e" (t)

2

# ! N dr E
m
r( )

2

$
init
r( )

2

#
% N E

m
x
0
,0,0( )

2

= Nx
0

2m
,

                  (3.11) 

where we have assumed that &init is localized near (x0,0,0) as in (3.2), and 

the field has the vortex form (2.1). This is consistent with the following 
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picture [7, 12] for the time-averaged force on the atom (classical radiation 

pressure), resulting from the collective effect of many quantum 

transitions. The force, given by the probability per unit time multiplied by 

the momentum shift at each transition, is proportional to the large 

momentum transfer (the superkick) weighted by the weak light intensity. 

Classically, this corresponds to the important distinction, emphasized 

earlier [7], between the local momentum 
 
!k r( )  and the local current 

Im E
m

*
r( )!E

m
r( )"# $% = E

m
r( )

2

k r( ) .          (3.12)  

 

4. Concluding remarks 

It is important to consider how superkicks might be observed in an 

experiment.  The natural way to proceed would be to trap a suitable atom 

and to cool it to its motional ground state.  In this state the atomic 

motional wavefunction will be approximately Gaussian, the width of 

which will be determined by the experimentally controllable trapping 

potential.  If the trap is switched off then the atomic wave-packet will 

spread but, for sufficiently short times, the atom will remain localised 

near to the trap position.  Applying a short laser pulse carrying orbital 

angular momentum will induce a transition to the atomic excited state and 

with it the superkick of interest.  This should be observable by examining 

the momentum probability distribution for the excited atom.   

A number of improvements on this basic idea may make 

superweak momentum transfer more readily observable.  The first is the 

use of a Bose-Einstein condensate rather than a single atom.  Such 

condensates have the advantage that many atoms share the same motional 

state; a transition for a small proportion of these may be more readily 
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observable than a low-probability transition for a single trapped atom.  

Moreover, the use of a two-photon Raman transition rather than a single-

photon transition would make it possible to remove the large momentum 

kick in the z direction, the existence of which might otherwise mask the 

azimuthal superkick we seek.  Finally, using a magnetic trap may remove 

the requirement for turning off the trap before applying the 

electromagnetic field.  If the field is tuned so as to flip the electron spin in 

the trapped atom then the trapping potential will become repulsive and 

the trapped atom will be ejected from the trap.  The superkick should then 

be visible as a preferred azimuthal direction of ejection from the trap.  

Assessing which of these ideas provides the greatest potential for 

observing superweak momentum transfer requires further details of the 

particular experimental arrangement and lies beyond the scope of this 

paper. 

Finally, we note a curious feature of the classical mechanics of the 

test particles we have been considering, as represented by the time-

averaged force on them, in circumstances where this is proportional to the 

Poynting vector [7, 18]. For the scalar model we have used here, the 

time-averaged force is  

F r( )! E
m
r( )

2

k r( ) ,               (4.1) 

in which the local wavevector momentum is multiplied by the wave 

intensity, in contrast with the bare wavevector as in the quantum kicks 

 
!k r( ) . As is known [19, 20] and has been emphasized [21], this force has 

non-zero curl, so it is not derivable from a potential. In such ‘curl forces’ 

[22], the classical motion is Newtonian but not Hamiltonian or 

Lagrangian, so – for example – Noether’s theorem does not apply, and 

the link between symmetries and conservation laws is broken. It is hard to 
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see how such non-hamiltonian physics can be directly quantized,  but our 

analysis reported here, in which classical radiation pressure (here 

associated with a curl force) is quantally deconstructed into individual 

superkicks, points to a route where quantum effects might nevertheless be 

understood.  
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Figure captions 

Figure 1. Momentum distribution (3.5) of excited atom in transverse 

planes, for (a) x0=%, m=1, (b) x0=%, m=3, (c) x0=2%, m=3, (d) x0=5%, m=4. 

Figure 2. Full curves: mean momentum shifts km in y direction (equations 

(3.6) and (3.7); dashed curves: local optical momenta (target superkicks) 

km,super (equation (3.9)); as functions of the atom position x0, for (a) m=1, 

(b), m=2, (c) m=3, (d) m=4.  

Figure 3. Full curves: momentum distributions (3.4) of the excited atom 

along the symmetry line kx=0 for fixed kz, for atom positions x0 

corresponding to the maximum average shifts in Table 1, for (a) m=1; (b) 

m=3; (c) m=5; (d) m=7. Dashed curves: the corresponding initial atomic 
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momentum distributions (3.4). (The curves are normalized to facilitate 

comparison.) 
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