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Abstract

Despite the many approaches to study differential splicing from RNA-seq, many challenges remain unsolved, including
computing capacity and sequencing depth requirements. Here we present SUPPA2, a new method that addresses
these challenges, and enables streamlined analysis across multiple conditions taking into account biological variability.
Using experimental and simulated data, we show that SUPPA2 achieves higher accuracy compared to other methods,
especially at low sequencing depth and short read length. We use SUPPA2 to identify novel Transformer2-regulated
exons, novel microexons induced during differentiation of bipolar neurons, and novel intron retention events during
erythroblast differentiation.
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Background

Alternative splicing is related to a change in the relative

abundance of transcript isoforms produced from the same

gene [1]. Multiple approaches have been proposed to study

differential splicing from RNA sequencing (RNA-seq) data

[2, 3]. These methods generally involve the analysis of

either transcript isoforms [4–7], clusters of splice junctions

[8, 9], alternative splicing events [10, 11], or exonic regions

[12]. Relative abundances of the splicing events or

transcript isoforms are generally described in terms of a

percentage or proportion spliced-in (PSI) and differential

splicing is given in terms of the difference of these relative

abundances, or ΔPSI, between conditions [13, 14]. PSI

values estimated from RNA-seq data have shown a good

agreement with independent experimental measurements,

and the magnitude of ΔPSI represents a good indicator of

biological relevance [10, 15]. However, despite the multiple

improvements achieved by recent RNA-seq analysis

methods, many challenges remain unresolved. These

include the limitations in processing time for current

methods, the computational and storage capacity required,

as well as the constraints in the number of sequencing

reads needed to achieve high enough accuracy.

An additional challenge for RNA-seq analysis is the lack

of robust methods to account for biological variability

between replicates or to perform meaningful analyses of

differential splicing across multiple conditions. Although

many methods assess the estimation uncertainty of the

splicing event or transcript isoforms [10–12], they gener-

ally do so on individual events rather than considering the

genome-wide distribution. Additionally, most methods

determine the significance of differential splicing by per-

forming tests directly on read counts, leaving the selection

of relevant ΔPSI values to an arbitrary cut-off. In other

cases, fold changes instead of ΔPSI are given, which are

even harder to interpret in terms of splicing changes.

We showed before that transcriptome quantification

could be leveraged for the fast estimation of event PSI

values with high accuracy compared with experimental

and simulated datasets [16]. We now present here a new

method for analyzing differential splicing, SUPPA2,

which builds upon these principles to address the

current challenges in the study of differential splicing,

and taking into account biological variability. Compared
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with other existing approaches for differential splicing

analysis using RNA-seq data, SUPPA2 provides several

advantages. SUPPA2 can work with multiple replicates

per condition and with multiple conditions. Additionally,

SUPPA2 estimates the uncertainty of ΔPSI values as a

function of the expression of transcripts involved in the

event, taking into account all events genome-wide to test

the significance of an observed ΔPSI, thereby directly

estimating the biological relevance of the splicing change

without relying on arbitrary ΔPSI cut-offs. Moreover,

SUPPA2 incorporates the possibility to perform cluster-

ing of differentially spliced events across multiple condi-

tions to identify groups of events with similar splicing

patterns and common regulatory mechanisms. In con-

clusion, SUPPA2 enables cost-effective use of RNA-seq

for the robust and streamlined analysis of differential

splicing across multiple biological conditions. The soft-

ware described here is available at https://github.com/

comprna/SUPPA.

Results

SUPPA2 monitors uncertainty to determine differential

splicing

We showed before that the inclusion levels of alternative

splicing events can be readily calculated from transcript

abundances estimated from RNA-seq data with good

agreement with experimental measurements and with

other methods based on local measurements of splicing

[16]. SUPPA2 extends this principle to measure differen-

tial splicing between conditions by exploiting the vari-

ability between biological replicates to determine the

uncertainty in the PSI values (see “Methods”). To illus-

trate our approach and to evaluate the dynamic range of

SUPPA2 we used it to analyze RNA-seq data obtained

after the double knockdown of TRA2A and TRA2B spli-

cing regulators compared with controls [17] (Fig. 1a).

The differences in PSI value for each event between bio-

logical replicates are higher at low expression, in agree-

ment with the expected higher variability at low read

count. This biological variability provides information on

the uncertainty of the PSI estimates. The significance of

an observed ΔPSI value between conditions will depend

on where in the distribution of the uncertainty it falls. A

large splicing change (|ΔPSI| value) may not be signifi-

cant if it falls within a range of high uncertainty, whereas

a small splicing change may be defined as robustly sig-

nificant if it falls in the low uncertainty range. SUPPA2

estimates the significance considering the distribution

between replicates for all events with similar transcript

abundance; hence, it provides a lower bound for signifi-

cant |ΔPSI| values that vary with the expression of the

transcripts describing the event (Fig. 1b; see “Methods”).

The description of the uncertainty in terms of transcript

abundances, given in transcripts per million (TPM) units,

rather than read counts provides several advantages.

These include speed, as there is no need to store or go

back to read information, as well as interpretability and

a 

b 

c 

Fig. 1 Overview of SUPPA2 differential splicing and time
benchmarking analysis. a The central panel displays the ΔPSI values
between replicates (y-axis) as a function of the average transcript

abundance (x-axis), using data from [17] (“Methods”). The attached
panels display the ΔPSI values along the x-axis (top panel) and along
the y-axis (right panel). The green dot represents an example of ΔPSI

observed between conditions. The top-right panel shows the
between-replicate |ΔPSI| density distribution against which an ob-

served |ΔPSI| is compared to obtain a p value. This density distribu-
tion is calculated from events with similar associated expression. b
The central panel displays the ΔPSI values (y-axis) between condi-

tions (green) or between replicates (gray) as a function of the aver-
age transcript abundance (x-axis) in log10(TPM + 0.01) scale. Only

events with p value < 0.05 according to SUPPA2 are plotted in green.
The attached panels display the distribution of the significant ΔPSI
values along the x-axis (top panel) and along the y-axis (right panel).

c Time performance of SUPPA2 compared to rMATS, MAJIQ, and
DEXSeq in the differential splicing analysis between two conditions,

with three replicates each [17]. Time (y-axis) is given in minutes and
in each case it does not include the read mapping, transcript
quantification steps, or the calculation of PSI values
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application range, as transcript abundances are already

normalized for transcript length and remain stable at dif-

ferent library sizes. More details on these advantages are

provided below.

We compared SUPPA2 results with three other

methods that calculate differential splicing using multiple

replicates per condition: rMATS [11] and MAJIQ [9],

which describe changes in terms of ΔPSI, and DEXSeq

[12], which uses fold changes. Importantly, we found that

SUPPA2 was much faster than the other methods, devot-

ing 24 s to the PSI quantification and about 32 min and

47 s for differential splicing analysis on the same datasets

(Fig. 1c). Since SUPPA2 performs the significance test

directly on the ΔPSI values without needing to go back to

the read data, it hence provides unmatched speed for

differential splicing analysis. Comparing the results ob-

tained with each method (Additional file 1: Figure S1), we

observed that rMATS and DEXSeq detect many appar-

ently significant events with small inclusion changes that

are not distinguishable from the variability between bio-

logical replicates, whereas SUPPA2 and MAJIQ separate

well these two distributions. As SUPPA2 exploits the

between-replicate variability to test for significance, it

avoids the use of an arbitrary global |ΔPSI| threshold to

identify biologically relevant events and detects significant

events across a wide range of gene expression values

(Additional file 1: Figure S1). This feature of SUPPA2

should hence better rationalize |ΔPSI| threshold cut-offs.

SUPPA2 provides high accuracy at low sequencing depth

and with short read lengths

To test the accuracy of SUPPA2 with different sequencing

settings and compare it with other methods, we simulated

277 exon-cassette (SE) events and 318 alternative splice

site (A5/A3) events with |ΔPSI| > 0.2 between two condi-

tions with three replicates per condition (Additional file 1:

Figure S2a). To perform a balanced comparison, we con-

sidered the same number of negative controls, consisting

of different SE and A5/A3 events with arbitrary PSI values

but with no simulated change between conditions

(Additional file 2: Table S1; “Methods”). We simulated

genome-wide RNA-seq reads using RSEM [18] at different

sequencing depths (120, 60, 25, 10, and 5 million (M) 100-

nucleotide (nt) paired-end reads per sample) and for

different read lengths (100, 75, 50, and 25 nt at a fixed

depth of 25 M paired-end reads). Despite the differences

in the numbers and length of the reads (Additional file 2:

Table S2), the genes containing the positive and negative

events used for benchmarking showed similar distribu-

tions of expression values at all depths and read lengths

(Additional file 1: Figure S2b). We then calculated differ-

entially spliced events with SUPPA2, rMATS, MAJIQ, and

DEXSeq and evaluated the detection rate and accuracy on

the simulated events (Additional file 2: Table S3).

The detection rate was calculated as the proportion of

simulated positive and negative cassette events that each

method was able to measure from the RNA-seq data,

i.e., the event was recovered regardless of whether it was

detected as significant. The detection rate of SUPPA2

was superior than the other methods in all conditions,

even at low depth and for shorter reads (Additional file 1:

Figure S2c). We also measured the true positives, i.e.,

the positive events that were observed to change signifi-

cantly and in the same direction by each method, and

the false positives, i.e., the negative events predicted to

change significantly. For SE events the true positive rates

were comparable across different sequencing depths

(Fig. 2a). On the other hand, for shorter read length

SUPPA2 recovered a higher proportion of true positives

compared to the other methods (Fig. 2b). For A5/A3

events we also observed a similar decay in true positives

with sequencing depth for all methods (Fig. 2c) and a

higher accuracy of SUPPA2 with shorter read lengths

(Fig. 2d). The same accuracies were observed if we

imposed in addition the cutoff |ΔPSI| > 0.2 for the pre-

dictions (Additional file 2: Table S3). The reduced pro-

portion of true positives at low depth and shorter read

length in other methods was probably due to them rely-

ing on having sufficient junction and/or exonic reads.

Additionally, even though SUPPA2 recovered in general

more negative events, i.e., events simulated to be not

differentially spliced, the false positive rate remained

comparable to the other methods, and below 5% for all

conditions (Additional file 2: Table S3). To further evalu-

ate the accuracies of the different methods, we computed

receiver operating characteristic (ROC) and precision-

recall (PR) curves (Additional file 2: Table S3). MAJIQ

and SUPPA2 show similar areas under the ROC and PR

curves, which drop at low depth and with short read

lengths, whereas DEXSeq and rMATS show smaller areas

across all values of depth and read length.

We also considered an unbalanced configuration

where one replicate had 120 M reads and the other two

replicates had 10 M reads. In this hybrid configuration,

SUPPA2 recovered a high number of events and a high

number of true positives for SE events. On the other

hand, for A5/A3 events we observed a slight drop in

accuracy (Additional file 2: Table S3), probably due to a

high proportion of short variable regions in the alterna-

tive sites events (79 events (25%) of the A5/A3 events

involved a region of under 9 nt), which may be more

problematic for correct transcript quantification than

using direct mapping to splice junctions. Importantly,

although MAJIQ showed a high detection rate and

accuracy in the unbalanced configuration, it had to be

run with specialized parameters (“Methods”), whereas

SUPPA2 was run in the same way for all cases. Addition-

ally, SUPPA2 also showed high correlation values between
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the predicted and simulated ΔPSI values (Additional file 2:

Table S3), and similar to those obtained with rMATS and

MAJIQ. In light of these results, we can conclude that

SUPPA2 performs comparably to other methods under a

wide spectrum of sequencing conditions and, in particular,

it outperforms other methods at low sequencing depth

and short read length.

SUPPA2 provides accurate splicing change quantification

compared with experimental results

To further evaluate the accuracy of SUPPA2 in recovering

ΔPSI values we used 83 events that had been validated

experimentally by RT-PCR upon TRA2A and TRA2B

knockdown compared to control cells (Additional file 2:

Table S4; “Methods”) [17]. For each method, we compared

the ΔPSI estimated from RNA-seq with the ΔPSI from RT-

PCR. SUPPA2 agreement to the RT-PCR ΔPSI values was

similar to rMATS and MAJIQ (Fig. 3a; Additional file 2:

Table S5). Using two other independent RT-PCR datasets

published previously [9], SUPPA2 also showed similar

accuracy compared to rMATS andMAJIQ (Additional file 1:

Figure S3a, b; Additional file 2: Tables S6–S9). Finally, using

44 RT-PCR negative cassette events that did not show any

significant change upon the double knockdown of TRA2A

and TRA2B, SUPPA2 had a lower false positive rate com-

pared to the other methods (Fig. 3b; Additional file 2:

Tables S10 and S11).

SUPPA2 identifies experimentally reproducible splicing

changes not detected by other methods

The results described above suggest a general agreement

between the different methods in the detection of

significant differentially spliced events. To assess this

question, we performed a direct comparison of the re-

sults obtained from the four methods, SUPPA2, rMATS,

MAJIQ, and DEXSeq, using the same RNA-seq data for

the knockdown of TRA2A and TRA2B compared with

controls [17]. Since exon-cassette (SE; 48.71%) and alter-

native splice site (A5/A3; 37.71%) events are the most

frequent events in humans compared to mutual exclu-

sion (6.22%) or intron-retention (7.36%), we decided to

match SE and A5/A3 events across all four methods.

We were able to identify 7116 SE events and 2924 A5/

A3 events unambiguously detected by all four methods,

Fig. 2 Accuracy analysis with simulated data. a Proportion of events measured by each method (y-axis) from the 277 positive simulated cassette

events at different sequencing depths (x-axis), from 120 million (120M) down to five million (5M) paired-end reads, using 100-nt paired-end reads.
b As in a but for different read lengths (x-axis) at fixed depth (25 M). c True positive (TP) rate (in terms of percentage) for each method (y-axis) at
different sequencing depths (x-axis) for 100-nt paired-end reads. TPs were calculated as the number of statistically significant events according to

each method: corrected p value < 0.05 for SUPPA2, rMATS, and DEXSeq; and posterior(|ΔPSI| > 0.1) > 0.95 for MAJIQ. d As in c but for different
read lengths (x-axis) at fixed depth (25 M)
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i.e., they were measured and tested for significance by all

methods (Additional file 1: Figure S4a; Additional file 2:

Table S12; “Methods”).

For the 7116 SE events, each method found between 133

and 274 events to be significant, with 370 events predicted

as significant by any one method, but only 22 events

predicted by all four methods (Additional file 1: Figure

S4a). Similarly, 352 A5/A3 events were predicted to be sig-

nificant by at least one method, and only two predicted by

all four methods (Additional file 1: Figure S4a). Events

detected by more methods tended to have higher ΔPSI

values (Additional file 1: Figure S4b) and covered a smaller

range of gene expression values (Additional file 1: Figure

S4c). Despite the low detection overlap, the significant

events predicted by each method independently showed

enrichment of TRA2B CLIP tags and of Tra2 binding

motifs (Additional file 2: Table S13; Additional file 3: Sup-

plementary methods); hence, each set independently had

the expected properties related to the knockdown experi-

ment. It is possible that each method describes a different

subset of changes and generally misses others. To seek fur-

ther support for this point, we selected for experimental

validation 15 SE events and seven A3 events that had CLIP

tags and Tra2 motifs nearby the regulated exon. The seven

A3 events and six of the 15 SE events were predicted only

by SUPPA2, whereas the remaining nine were not predicted

by any of the four methods, but were significant according

to SUPPA2 before multiple test correction (Additional file 2:

Table S14). From these 15 SE events, five only showed one

PCR band and could not be evaluated. However, for the

rest, seven changed significantly according to the RT-PCR

(two-tailed t-test p value < 0.05), with six of them changing

in the same direction predicted by SUPPA2. Overall, nine

events changed in the same direction as predicted (Fig. 3c;

Additional file 2: Table S14). In particular, we validated a

new event in EML4 (Fig. 3d), a gene involved in cancer

through a fusion with ALK that is not present in MDA-

MB-231 cells [18]. In addition, we could measure six of the

seven A3 events; all were measured to change in the same

direction as predicted by SUPPA2 and four were significant

(two-tailed t-test p value < 0.05; Additional file 2: Table

S14). This analysis shows the value of using a suite of

methods based on different algorithms, like SUPPA2, to

reveal novel experimentally reproducible events that are

missed by other methods.

SUPPA2 finds biologically relevant event clusters across

multiple conditions

SUPPA2 is also able to analyze multiple conditions by com-

puting the pairwise differential splicing between conditions,

a b

c d

298 bp

124 bp

Control Tra2 double 

knockdown 

Fig. 3 Experimental validation of differentially splicing predictions by SUPPA2. a Comparison of predicted and experimentally validated ΔPSI
values for 83 cassette events differentially spliced between the double knockdown of TRA2A and TRA2B and control in MDA-MB-231 cells. We
show the cumulative proportion of cases (y-axis) according to the absolute difference between the predicted and the experimental value (|ΔPSI −

RTPCR|), for the events detected by each method: SUPPA2 (66), rMATS (78), and MAJIQ (72). Additionally, we give for each method the Pearson
correlation R between predicted and experimental values. b False positive rate (FPR) calculated using 44 RT-PCR negative events. FPR was

calculated as the proportion of the detected events that was found as significant by each method: SUPPA2 (1/31), rMATS (2/35), MAJIQ (2/36),
DEXSeq(2/25). c Experimental validation by RT-PCR of a subset of novel events with TRA2B CLIP tags and Tra2 motifs. These events include cases
that were only predicted by SUPPA2 (CHRAC1, NDRG3, METTL10) and cases that were not predicted by any method but were significant

according to SUPPA2 before multiple test correction (ERLEC1, PYGL, DCAF10, HAUS8, EML4, UBA3) (Additional file 2: Table S14). RT-PCR validation
was performed in triplicate. Error bars indicate the standard error of the mean. Cases that change significantly (p < 0.05) according to a two-tailed
t-test comparing the three values of the knockdown versus control are indicated with an asterisk. d Experimental validation of a new skipping

event in EML4 upon knockdown of TRA2A and TRA2B (three biological replicates shown in each case)
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and can detect groups of events with similar splicing pat-

terns across conditions using density-based clustering

(“Methods”). To evaluate the ability of SUPPA2 to cluster

events, we analyzed a 4-day time-course of differentiation

of human induced pluripotent stem cells (iPSCs) into bipo-

lar neurons [19], which had not been analyzed yet for alter-

native splicing. SUPPA2 identified 2780 regulated cassette

events (p value < 0.05), out of which 207 (8.4%) were micro-

exons (length < 28 nt), which represent an enrichment

(Fisher’s exact test p value < 2.2e-16, odds ratio = 3.94)

compared to a set of 20,452 non-regulated cassette events

(p value > 0.1), with the majority of these microexons (69%)

significantly more included in differentiated cells (ΔPSI > 0

and p value < 0.05 between the first and fourth day).

We evaluated the performance of the two density-based

cluster methods implemented in SUPPA2, DBSCAN [20],

and OPTICS [21], using different input parameters. In

spite of OPTICS requiring more computing time than

DBSCAN (43 vs 5 s), it produced slightly better clustering

results (Additional file 1: Figure S5a–d; Additional file 2:

Table S15). For a maximum reachability distance of 0.11,

i.e., maximum distance of an event to a cluster to be

considered part of the cluster, we obtained three well-

differentiated clusters (silhouette score = 0.572; Fig. 4a–c;

Additional file 2: Table S16). Cluster 0 increased inclusion

at late steps of differentiation and showed an enrichment

in microexons (32 out of 115 events) with respect to

unclustered regulated cassette events (Fisher’s exact test p

value = 0.0148, odds ratio = 5.3521). In contrast, clusters 1

and 2 decreased inclusion with differentiation, and con-

tained two (out of 20 events) and no microexons, respect-

ively. These results are in agreement with the previously

observed enrichment of microexon inclusion in differenti-

ated neurons [22, 23].

To further validate the findings with SUPPA2, we per-

formed a motif enrichment analysis in regulated events

compared to non-regulated events. Notably, compared

to the non-regulated events, the 2780 regulated cassette

events showed enrichment in binding motifs for the

RNA binding protein (RBP) SFPQ (z-score > 4), which

has been described before as a necessary factor for neur-

onal development [24]. Additionally, the differentially

spliced events in clusters were enriched in, among

others, CELF, RBFOX, ESRP, MBNL, and SRRM4 motifs

a b c 

Day Day Day 

e f d 

Fig. 4 Prediction and clustering of differentially spliced events across bipolar neuron differentiation. Density-based clustering performed on the
2780 regulated cassette events that change splicing significantly in at least one comparison between adjacent steps across four differentiation

stages (days after differentiation 0, 1, 3, 4). a–c The average PSI (y-axis) per stage (x-axis) of the events in the three clusters obtained. Microexons
(< 28 nt) are plotted in blue over the rest of the events in orange. d–f Motif enrichment associated with each of the three clusters in a–c in the
regions upstream (200 nt), exonic, and downstream (200 nt). Only enriched motifs associated with splicing factors that are differentially expressed

are shown in each comparison between differentiation stages (days after differentiation 0, 1, 3, 4). In red we indicate the splicing factors that are
upregulated and in blue those that are downregulated at each stage. The color intensity indicates the z-score of the motif enrichment. Motifs are

shown in each cluster and region where they are found enriched
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(Fig. 4d–f ), in concordance with the described role of

CELF, RBFOX, and SRRM4 genes in neuronal differenti-

ation [23, 25–27]. Consistent with these findings,

SRRM4 and members of the CELF and RBFOX families

showed upregulation at the initial steps of iPSC differen-

tiation into neurons (Additional file 1: Figure S5;

Additional file 2: Table S17). On the other hand, CELF5

and ESRP1 were downregulated during differentiation.

The MBNL3 gene showed initial upregulation at stage 1,

followed by downregulation at later stages (Additional file 1:

Figure S5; Additional file 2: Table S17). Notably, we found

that only the cluster enriched in microexon splicing inclu-

sion showed an enrichment of SRRM4 motifs upstream of

the regulated exons, in agreement with the previous de-

scription of SRRM4 binding upstream of microexons to

regulate their inclusion during neuronal differentiation [26],

and further supports the specificity of SRRM4 to regulate

microexons. Our results also suggest possible novel regula-

tors of neuronal differentiation, such as the MBNL proteins

in the regulation of events increasing exon inclusion and

ESRP in events that decrease exon inclusion (Fig. 4d–f).

We also used SUPPA2 to analyze differential splicing

across five stages of erythroblast differentiation [28]. In

this case we considered all event types for clustering.

For the optimal value of maximum reachability distance

(S = 0.1), we obtained two homogeneous and well-

differentiated clusters (silhouette score = 0.91), one for

events with low PSI that increased at the last differenti-

ation stage with 149 events, and a second cluster with

86 events that showed the opposite behavior (Add-

itional file 1: Figure S6). In agreement with previous re-

sults [29], we observed an enrichment of intron

retention events in the cluster of events that increased

inclusion at the late differentiation stage, as compared

with the other cluster, which does not include any

retained intron (Fisher’s exact test p value = 0.04958).

We conclude that SUPPA2 provides a powerful ap-

proach to analyze splicing across multiple conditions,

validated not only by intrinsic measures of clustering

consistency, but also by recovering known biological re-

sults and new features.

Discussion
Our extensive evaluations here indicate that SUPPA2

provides a broadly applicable solution to current chal-

lenges in the analysis of differential splicing from RNA

sequencing data across multiple conditions, and has

features that will make it attractive to many potential

users. SUPPA2 is faster than other methods and main-

tains a high accuracy, especially at low sequencing depth

and for short read length. Despite using less reads or

shorter reads, SUPPA2 could detect the majority of the

simulated events and maintained a high proportion of

true positives and low proportion of false positives.

SUPPA2 thus offers an unprecedented opportunity to

study splicing in projects with limited budgets, or to re-

use for splicing studies available sequencing datasets

with lower depth than usually required by other

methods. Additionally, the low computing and storage

requirements of SUPPA2 makes it possible to perform

fast differential splicing processing and clustering ana-

lysis on a laptop. Thus, coupled with fast methods for

transcript quantification [30–32], SUPPA2 facilitates the

study of alternative splicing across multiple conditions

without the need for large computational resources. The

simplicity and modular architecture of SUPPA2 also

makes it a very convenient tool in multiple contexts, as

PSI values from other methods and for other event

types, like complex events, or data types, like transcripts,

can be used in SUPPA2 for differential splicing analysis

or for clustering across conditions.

According to our simulated benchmarking analysis, as

well as others published before, it may seem that bio-

informatics methods used to analyze RNA-seq data tend

to coincide on a large number of events. However, using

real experimental data we actually observed low agree-

ment in targets between methods. These discrepancies

in target selection can be explained by various factors,

including the different ways in which a splicing change

is represented by each method (e.g., an event, an exon,

or a graph), how changes in splicing patterns are tested

by each method, and how biological and experimental

variability affects these tests. Intriguingly, the results

from each method do make sense biologically, in that

differentially spliced events were enriched in motifs and

mapped protein–RNA interaction sites related to the

depleted splicing factor. This makes it unlikely that any

one method provides a clear advantage in terms of the

results, and instead suggests that at least two or three

methods should be used to identify all the possible

significant splicing variants between different conditions.

In particular, we chose for comparison three other

methods with very different representations of the spli-

cing and statistical approach. The results we obtained

recommend use of two or more such tools to compre-

hensively monitor splicing complexity by picking out dif-

ferent sets of events that would not otherwise be

discovered, rather than identifying largely overlapping

groups of events. Supporting this point we could validate

experimentally events not predicted by any other

methods but predicted by SUPPA2. We further observed

that although most methods had the power to identify

small significant ΔPSI values, different methods tended

to agree on events with large splicing changes. Import-

antly, a fraction of these significant events with small

ΔPSI are indistinguishable from the variability observed

between replicates and hence are not likely to be bio-

logically relevant. SUPPA2 also performs a statistical test
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that can separate significant splicing changes from the

biological variability, providing thus an advantage to

identify biologically relevant changes across a wide range

of expression values. By exploiting the biological vari-

ability, without having to go back to the read data,

SUPPA2 provides a fast and accurate way to detect dif-

ferential splicing without the need for arbitrary global

ΔPSI thresholds.

Although SUPPA2 relies on genome annotation to de-

fine events, poorly annotated genomes can be improved

and extended before analysis by SUPPA2. In fact, recent

analyses have shown that improved annotations lead to

significantly better PSI estimates from RNA-seq when

benchmarked to high-resolution RT-PCR measurements

[33–35]. Current technological trends predict an in-

crease in the number of efforts to improve the transcrip-

tome annotation in multiple species and conditions [36].

In this direction, SUPPA2 could play a key role for the

systematic and rapid genome-wide analysis of splicing

following annotation and sample updates.

Conclusions
The speed, modularity, and accuracy of SUPPA2 enable

cost-effective use of RNA sequencing for the robust and

streamlined analysis of differential splicing across multiple

biological conditions.

Methods
Differential splicing

SUPPA2 uses transcript quantification to compute inclu-

sion values (PSI) of alternative splicing events across

multiple samples. Given the calculated PSI values per

sample, SUPPA2 considers two distributions: one for the

ΔPSI values between biological replicates and one for

the ΔPSI values between conditions. For the first distri-

bution, for each event SUPPA2 calculates the ΔPSI value

between each pair of biological replicates together with

the average abundance of the transcripts describing the

event across the same replicates:

Erep ¼
1

j Rc j

X

r∈Rc

log10

X

a

TPMa;r

 !

where r = 1,..,|Rc| runs over the replicates in each condi-

tion c = 1,2, and a indicates the two or more transcripts

describing the event, and TPMa,r indicates the abun-

dance of transcript a in replicate r in transcripts per mil-

lion (TPM) units. For the distribution between

conditions, the ΔPSI values are calculated as the differ-

ence of the means in the two conditions, together with

the average abundance of transcripts describing the

event across both conditions for each event:

Econd ¼
1

2

X

c¼1;2

1

j Rc j

X

r∈Rc

log10

X

a

TPMa;r;c

 !

where TPMa,r,c indicates the abundance of transcript a

in replicate r in condition c in TPM units. Given the

observed ΔPSI and Econd values for an event between

conditions, its significance is calculated from the com-

parison with the ΔPSI distribution between replicates for

events with Erep values in the neighborhood of the ob-

served Econd. This neighborhood is defined by first

selecting the closest value E*rep from all points i from the

between-replicate distribution:

E�
rep ¼ min

i
Ei;rep−Econd

�

�

�

�

� �

using binary search and selecting a fixed number of

events (1000 by default) around the E*rep value in the

interval or ordered values. The selected events define an

empirical cumulative density function (ECDF) over

|ΔPSI| from which a p value is calculated:

p ¼ 1−ECDF jΔPSIjð Þð Þ=2

Here we implicitly assume that the background distri-

bution is symmetric. SUPPA2 includes an option to cor-

rect for multiple testing using the Benjamini-Hochberg

method across all events from the same gene, as they

cannot be considered to be entirely independent of each

other, for which the false discovery rate (FDR) cut-off

can be given as input.

Clustering

SUPPA2 currently implements two density-based clus-

tering methods: DBSCAN [20] and OPTICS [21].

Density-based clustering has the advantage that one

does not need to specify the expected number of clus-

ters, and the choice between the two methods depends

mainly on the computational resources and the amount

of data. Both methods use the vectors of mean PSI

values per event and require as input the minimum

number of events in a cluster (N), which could be inter-

preted as the minimum expected size of the regulatory

modules. OPTICS also requires the maximum reachabil-

ity distance (S), which represents the maximum distance

in PSI space of an event to a cluster. On the other hand,

DBSCAN requires as input the maximum distance to

consider two events as cluster partners (D), which OP-

TICS calculates through an optimization procedure

allowing any value below S. DBSCAN allows simple and

fast data partitioning but has the drawback of being sen-

sitive to the input parameters. On the other hand, OP-

TICS, which can be seen as a generalization of

DBSCAN, explores the possible maximum values for D

beyond which clustering quality drops. OPTICS can thus
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potentially produce better clustering results since it is

not limited to a fixed radius of clustering, but it is penal-

ized by a greater computational cost. Clustering is per-

formed only with events that change significantly in at

least one pair of adjacent conditions. Three different dis-

tance metrics can be currently used: Euclidean, Manhat-

tan, and Cosine. Cluster qualities are reported using the

silhouette score [37], which indicates how well the

events are assigned to clusters, and the root mean

square standard deviation (RMSSTD), which measures

the homogeneity of each cluster. Additionally, the num-

ber and percentage of events in clusters are also re-

ported. Motif enrichment analysis was performed as

before [38] using MOSEA, available at https://github.-

com/comprna/MOSEA. Further details on the motif en-

richment and analysis of differential expression are

provided in Additional file 3: Supplementary material.

Simulated datasets

For the simulation we used the quantification of RefSeq

transcripts for the three control samples from [17]

(GSE59335) with Salmon [31] as theoretical abundances,

and considered genes with only two isoforms containing

a skipping exon (SE) or alternative splice site (A5/A3)

event and only one associated event. For the benchmark-

ing analysis, we selected a set of positive and a set of

negative events for each event type with the same num-

ber of randomly chosen events, 277 for SE events and

318 for A5/A3 events. For the positive set we simulated

differential splicing by exchanging the theoretical abun-

dance of their associated transcript values. We selected

to be positive events only those having an absolute dif-

ference of relative abundance greater than 0.2, so that

the simulated change was sufficiently large:

j TPM1−TPM2 j

TPM1 þ TPM2
> 0:2

where TPM1 and TPM2 are the abundances for the two

transcripts in the gene, given in TPM units. For the

negative set, we took an equal number of events without

exchanging their TPM values. These negative events had

a gene expression distribution and a distribution of tran-

script relative abundance similar to the positive events,

and an expected variability between conditions similar to

the variability between biological replicates. We used

RSEM [39] to simulate sequencing reads for the two con-

ditions, three replicates each, at various depths (120, 60,

25, 10 and 5 M 100-nt paired-end reads per sample) and

at various read lengths (100, 75, 50, and 25 nt, at a depth

of 25 M paired-end reads) (Additional file 2: Tables S1–

S3). Further details of the simulations are given in the

Additional file 3:Supplementary material. Datasets and

commands to reproduce these simulations are available at

https://github.com/comprna/SUPPA_supplementary_data.

Experimental datasets

We analyzed RNA-seq data for the double knockdown of

TRA2A and TRA2B in MDA-MB-231 cells and controls

with three replicates per condition [17] (GSE59335). For

benchmarking, we used 83 RT-PCR validated events for

comparison (Additional file 2: Tables S4 and S5) and 44

RT-PCR negative events (Additional file 2: Tables S12 and

S13). We also analyzed data from cerebellum and liver

mouse tissues covering eight different time points from two

full circadian cycles [40] (GSE54651) and performed a com-

parison with 50 events validated by RT-PCR [9] comparing

samples CT28, CT40, and CT52 in cerebellum with the

same circadian time points in liver (Additional file 2: Tables

S8 and S9). We also analyzed RNA-seq data for stimulated

and unstimulated Jurkat T cells and compared them with

RT-PCR validated events (no tested replicates) [9, 41]

(SRP059357; Additional file 2: Tables S10 and S11). From

these 54 RT-PCR validated events, we only used the 30

events that had experimental value |ΔPSI| > 0.05. For the

study of multiple conditions, we used RNA-seq samples

from a 4-day time-course for the differentiation of human

iPSCs into bipolar neurons [19] (GSE60548). Original data

were for days 0, 1, 3, and 4 after initiation of differentiation.

Additionally, we analyzed RNA-seq from five steps of

differentiating human erythroblasts [29] (GSE53635), with

three replicates per condition. RNA-seq reads from all

experiments were used to quantify human and mouse tran-

scripts from Ensembl (version 75, without pseudogenes)

with Salmon [31]. Reads were mapped to the human

(hg19) or mouse (mm10) genomes using TopHat [42]. All

methods other than SUPPA2 were used with these map-

pings. Cassette events from SUPPA2 and rMATS were

matched to the RT-PCR validated events in each dataset,

considering only those cases where the middle exon

matched exactly the validated exons and confirming the

flanking exons with the RT-PCR primers when available.

Ambiguous matches were discarded from the comparison.

For MAJIQ we selected the inclusion junction compatible

with the validated event that had the largest posterior prob-

ability for |ΔPSI| > 0.1. For DEXSeq we considered only

exonic regions that matched exactly with the regulated

exon of the experimentally validated cassette event. To se-

lect a set of cassette events common to all four methods,

we selected the events measured by both SUPPA2 and

rMATS such that the middle exon matched exactly a DEX-

Seq exonic region and did not appear in more than one

event from SUPPA2 or rMATS. From this set, we selected

those for which any of the two inclusion junctions was

present in MAJIQ, and selected the junction with the lar-

gest posterior probability for |ΔPSI| > 0.1. Further details

are provided in Additional file 3: Supplementary material.
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Time performance

Running time was measured using the Unix time com-

mand time. For SUPPA2 running time was measured

independently of the transcript quantification step. Simi-

larly, for all other methods the running time did not in-

clude the read-mapping step. Time was measured

independently for PSI calculation and for differential

splicing analysis. All methods were run on a Unix machine

with 12 Gb of RAM and eight Intel Xeon 2-GHz

CPU cores.

Experimental validation

Details on the experimental validation are given in

Additional file 3: Supplementary material.

Software and datasets

SUPPA2 is available at https://github.com/comprna/SUPPA.

Commands and datasets used in this work are available at

https://github.com/comprna/SUPPA_supplementary_data.

Software for the motif enrichment analysis is available

at https://github.com/comprna/MOSEA.

Additional files

Additional file 1: Figures S1–S6. (PDF 3939 kb)

Additional file 2: Tables S1–S17. (XLSX 3050 kb)

Additional file 3: Supplementary methods. (PDF 315 kb)
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