
SUPPLE: Automatically Generating User Interfaces

Krzysztof Gajos
University of Washington

Seattle, WA, USA

kgajos@cs.washington.edu

Daniel S. Weld
University of Washington

Seattle, WA, USA

weld@cs.washington.edu

ABSTRACT
In order to give people ubiquitous access to software appli-
cations, device controllers, and Internet services, it will be
necessary to automatically adapt user interfaces to the com-
putational devices at hand (e.g., cell phones, PDAs, touch
panels, etc.). While previous researchers have proposed so-
lutions to this problem, each has limitations. This paper
proposes a novel solution based on treating interface adap-
tation as an optimization problem. When asked to render an
interface on a specific device, our Supple system searches for
the rendition that meets the device’s constraints and mini-
mizes the estimated effort for the user’s expected interface
actions. We make several contributions: 1) precisely defin-
ing the interface rendition problem, 2) demonstrating how
user traces can be used to customize interface rendering to
particular user’s usage pattern, 3) presenting an efficient in-
terface rendering algorithm, 4) performing experiments that
demonstrate the utility of our approach.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User Interfaces;
H.5.2 [User Interfaces]: Graphical User Interfaces (GUIs)

General Terms
Algorithms, Design, Human Factors

Keywords
adaptive user interfaces, user interface generation, optimiza-
tion, constraint satisfaction, decision theory, user trace

1. INTRODUCTION
Ubiquitous computing promises seamless access to a wide

range of computational tools and Internet-based services —
regardless of the user’s physical location. For example, when
a person enters a room, room’s wall display and input fa-
cilities might be allocated for that individual, allowing her

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.
Copyright 2004 ACM 1-58113-815-6/04/0001 ...$5.00.

to control aspects of the immediate physical environment as
well as interact with the applications forming her persistent
computational environment. On the other hand, if the user
were in a remote location, she might use a phone, a PDA,
or another mobile device to similar effect.

A critical aspect of this vision is the premise that every
application (whether it be an email client or room-lighting
controller) should be able to render an interface on any de-
vice at the user’s disposal. Furthermore, the rendering of
an interface should reflect the needs and usage pattern of
individual users. Given the wide range of device types, form
factors, input methods, and personal needs and interaction
styles, it is unscalable for the human programmers to create
interfaces for each type of device and every kind of user.
Instead, an automated solution is necessary.

A number of researchers have identified this challenge and
several solutions have been proposed, e.g. [11, 13, 14]. Al-
though promising, the current solutions do not handle device
constraints in a general enough manner to accommodate the
wide range of display sizes and interaction styles available
even in today’s ubicomp environments. For example, the in-
terface generators from the Pebbles project [11] make rough
assumptions about the screen size (PDA) and cannot deal
with situations when the most desirable rendition of an in-
terface does not fit in the available area. iCrafter [13] relies
on hand-crafted templates and XIML [14] relies on the in-
terface designer to explicitly specify what widgets to use
under what size constraints. Tools like Damask [10] greatly
simplify the process of designing user interfaces for several
platforms at once but even they cannot cope with the sit-
uations where device constraints cannot be anticipated in
advance and where interface functionality is generated dy-
namically. Finally, previous systems do not address the in-
dividual needs and differences among users in rendering the
interfaces.

With the Supple system, we take a different approach —
treating interface generation as an optimization problem.
When asked to render an interface (specified functionally)
on a specific device and for a specific user, Supple searches
for the rendition that meets the device’s constraints and
minimizes the estimated cost (user effort) of the person’s
activity. For example, Figure 2 in Section 5 depicts two dif-
ferent interfaces Supple deemed optimal (with respect to a
cost function derived from the device and user models) for
two devices with the same screen size but different interac-
tion methods; Figure 4 shows two interfaces rendered for a
single device in response to different user traces. It is impor-
tant to note that unlike some of the earlier work, e.g. [6, 12,

93

Light Level:
τ: <int, [0,10]>

Power:
τ: bool

Light:
τ: { , }

Light Bank:
τ: { , , }

Light ... Light ...

A/V:
τ: { , }

Projector:
τ: { , }

Classroom:
τ: { , , }

Input:
τ: <string, {data1,data2, video}>

Vent:
τ: <int, [0,3]>

Power:
τ: bool

Screen:
τ: bool

Figure 1: Tree depiction of the functional interface specification for a classroom appliance controller.

8], we not only compute the optimal layout but also choose
the individual widgets to be used in rendering of the UI. In
summary, this paper presents the following contributions:

• We provide a precise definition of interface generation
as a constrained decision-theoretic optimization prob-
lem. This general approach allows us to generate “op-
timal” user interfaces given a declarative description of
an interface, device characteristics, available widgets,
and a user- and device-specific cost function.

• We include user traces as an essential component of the
cost function. This allows Supple to generate differ-
ent interface renditions in response to different usage
patterns.

• We present an efficient rendering algorithm which can
dynamically render an interface in less than 2 seconds
for all of the examples in this paper.

• We evaluate the effectiveness of our rendering algo-
rithms with a preliminary experimental study.

2. INTERFACES, DEVICES & USERS
Intuitively, an adaptive interface renderer requires three

inputs: an interface specification (I), a device model (D),
and a user model, which we represent in terms of user traces
(T). We describe each of these components in turn.

To make this concrete, we refer to two examples through-
out the paper: an interface for controlling appliances in a
university classroom and an FTP client. The first example
was chosen because one can plausibly imagine using very
different display devices and interaction techniques for the
purpose of controlling a physical environment. The FTP
example was chosen because of its interactive nature.

The university classroom has several appliances that can
be controlled electronically. There are three sets of lights,
each with a brightness controller and an on/off switch. There
is also a vent controller and an LCD projector with three
possible inputs (video and two data inputs), and a mecha-
nized screen for projection. An interface to these appliances
needs to be rendered on a touch panel somewhere in the
classroom. In addition, some faculty requested a capabil-
ity to control the classroom directly from their PDAs and
laptops.

The FTP client interface has two main views. Initially
the user is asked for login information (user name, password,
host name). Upon submitting this information, the user is
presented with an interface that allows her to browse the

local and remote file systems, upload and download files,
and to choose between ASCII and binary transfer modes.
The user can also choose to log out at any time and is then
brought back to the login view.

2.1 Functional Interface Specification
Following earlier work on model-based UIs, e.g. [21, 9,

11], we adopt a functional representation — i.e., one which
says what functionality the interface should expose to the
user, instead of how to present those features. Our rendering
algorithm (Section 4) makes the latter decision.

Figure 1 illustrates the formal specification of the class-
room interface. An interface is defined to be I ≡ 〈E , CI〉,
where E is a set of interface elements, and CI is a set of
interface constraints specified by the designer.

The interface elements included in the description corre-
spond to units of information that need to be conveyed via
the interface between the user and the controlled appliance
or application. Each element is defined in terms of its type.
Formally, we define the possible types as:

τ ≡ int|float|string|bool|〈τ , Cτ 〉|vector(τ)|{τ i
i∈1...n}|τ 7→ nil

Here int, float, string, and bool are primitive types. For
example, power switches in the classroom interface are de-
fined as booleans. 〈τ , Cτ 〉 denotes a derivative type, where
τ is the parent type and Cτ is a set of constraints over the
values of this type. In our example, light intensity and vent
speed are defined as derivatives of the int type with added
constraints on legal values (light intensity has to be between
0 and 10 and vent speed between 0 and 3). Elements of type
vector(τ) denote an ordered sequence of zero or more values
of tpe τ . In the specification of the FTP client, the variable
holding the currently selected files is of type vector(string).
{τ i

i∈1...n} represents a container type, which is a sequence
of elements. For example, all of the interior nodes in the
specification tree in Figure 1 are instances of the container
type. Finally, τ 7→ nil denotes an action type, which returns
no value of consequence to Supple. There are no elements of
action type in the classroom example but they are used fre-
quently in the FTP client interface. For example, the login
window is defined as an action with a container type holding
the three parameters (see Figure 5(a) for a rendering).

The CI component of the interface description I repre-
sents the interface constraints, which are functions that map
a full or partial rendering (defined below) to either true or
false. In our example classroom interface, constraints have
been added to ensure that all lights are rendered with the

94

same widgets. The local and remote file browsers in the
FTP client are similarly constrained.

Furthermore, some additional information can be pro-
vided for each element, such as a label, an indication that
an element is read only, a list of likely values or information
on how to generate labels for the values (e.g., even though
the power switch is specified as a boolean, the individual
values are represented as “On” and “Off” in a rendering in
Figure 2(b)).

2.2 Device Capabilities
We model a display-based device as a tuple:

D ≡ 〈W, CD,M,N〉

where W is the set of available UI widgets, CD denotes a
set of device-specific constraints and M and N are device-
specific functions for evaluating the suitability of using par-
ticular widgets in particular contexts. Below we describe all
of these elements in detail.

Widgets are objects that can turn abstract UI elements
into components of a rendered UI. There are two disjoint
classes of widgets: W = Wp ∪Wc; those in Wp can render
primitive types, and those in Wc are containers, providing
aggregation capabilities (i.e. layout panes, tab panes, etc.).

Like the interface constraints, the device-specific constraints
in CD are simply functions that map a full or partial set of
element-widget assignments to either true or false. For
example, a constraint is used to reflect the available screen
size.

We reflect certain aspects of a device’s capabilities and
interaction requirements by providing Supple with appro-
priate widget libraries. For example, if the primary mode of
interaction with the rendered UI is going to be touch, only
widgets big enough to be manipulated with a finger may be
used.

The remaining components of the device model, i.e. the
M and N functions, reflect the estimated user effort asso-
ciated with manipulating individual widgets in certain con-
texts.
M is a device-specific matching function that measures

how appropriate each widget is for manipulating state vari-
ables of a given type. The effort required to manipulate
some widgets may depend on the value the user wants to
choose for that element. For example, the spinner widget (a
text field with up and down arrows on the side, e.g. the light
level control in Figure 4(b)) is most convenient for choosing
a new value that is close to the current one. For that reason,
the value of M may depend not only on the widget choice
but also on the values it is being used for.
N : {sw, lv, ent} ×Wc → < is a function, specific to con-

tainer widgets, that estimates the user effort required to
navigate through a rendered interface. In particular, there
are three particular ways (denoted sw, lv, and ent) in which
users can transition through container widgets. If we con-
sider a widget w representing an interface element e, the
three transitions are sibling switching (sw), when user ma-
nipulates two elements that belong to two different children
of e; leaving (lv), when a child of e is manipulated followed
by an element that is not a child of e; and entering (ent),
which is the opposite of leaving. For different types of con-
tainer widgets, these three transitions are predicted to in-
crease user effort in different ways. For example, suppose
that e represents a tab pane widget; N (sw, e) denotes the

cost of switching between its children and would be high, be-
cause this maneuver always requires clicking on a tab pane.
Leaving a tab widget requires no extra interactions with the
tab pane and thus incurs no cost: N (lv, e) = 0. Entering a
tab pane usually requires extra effort unless the tab the user
is about to access has been previously selected. In case of a
pop-up window, both entering and leaving require extra ef-
fort (click required to pop-up the window on entry, another
click required to dismiss it) but no extra effort is required
for switching between children if they are rendered side by
side.

2.3 Modeling Users with Traces
The best rendering depends on how the user will use an

interface, and users with different needs may disagree on the
best rendering. Thus a good estimate of the effort involved
in manipulating an interface requires a usage model. Given
that the goal of our research is to adapt user interfaces to
users as well as devices, we chose to use user traces as the
source of information about the intended use of the inter-
face. A user trace, T , is a set of trails where, following [20],
the term trail refers to “coherent” sequences of elements
manipulated by the user (the abstract elements from the in-
terface description and not the widgets used for rendering).
The important property of a trail is that if two subsequent
events refer to different interface elements, this sequence of
events indicates a transition made by the user. We assume
that a trail ends when the interface is closed or otherwise
reset. We define a trail T as a sequence of events ui, each
of which is a tuple 〈ei, voldi , vnewi〉. Here ei is the interface
element manipulated and voldi and vnewi refer to the old
and new value this element assumed (if appropriate). It is
further assumed that u0 = 〈root,−,−〉.

As the trace information accumulates, it can be used to re-
render the interface adapting it to the needs of a particular
user. This, of course, has to be done very carefully because
frequent changes to the interface can be distracting. Also,
because the format of a trace is independent of a particular
rendering, the information gathered on one device can be
used to create a custom rendering when the user chooses to
access the application from a different device.

Of course an interface needs to be rendered even before
the user has a chance to use it and generate any traces.
A simple smoothing technique ensures that our algorithm
works correctly with empty or sparse user traces. We note
also that the designer of the interface may provide one or
more “typical” user traces. In fact, if several different traces
are provided, the user may be offered a choice as to what
kind of usage pattern they are most likely to engage in and
thus have the interface rendered in a way that best reflects
their needs.

3. RENDERING AS OPTIMIZATION
Our objective is to render each interface element with a

widget. Thus we define a legal rendering to be a mapping
φ : E 7→ W which satisfies the interface and device con-
straints in CI and CD. Of course, there may be many legal
renderings, and we seek the best — the one which minimizes
the expected cost of user effort.1 We use a cost function, $,

1We note that there are often many conflicting goals in UI
design: easy to learn, fast to use for novices, suitable for
experts, ease of error recovery, etc. In the future we hope

95

as an estimate of the user effort involved in manipulating a
particular rendering of an interface. In general, we define $
to be of the form:

$(φ, T) ≡
∑
T∈T

|T |−1∑
i=1

N(φ, ei−1, ei) +M(φ(ei), voldi , vnewi)

(1)
where N is an estimate of the effort of navigating between
widgets corresponding to the subsequent interface elements
referenced in a trail. Hence, the cost of a rendering is the
sum of the costs of each user operation recorded in the trace.

In order to use Equation 1, we must first reformulate it so
that N is defined in terms of the primitive navigation func-
tion, N , which is part of the device model. Furthermore,
equation 1 requires re-analyzing the entire user trace each
time a new cost estimate is necessary, so we wish to trans-
form the cost function into an algebraic form that allows
incremental computation on an element-by-element basis.

Recall that our interface specification is a hierarchy of in-
terface elements. If we assume a rendition where no short-
cuts are inserted between sibling branches in the tree de-
scribing the interface, we can unambiguously determine the
path between any two elements in the interface.2 We de-
note path between elements ei and ej to be p(ei, ej) ≡
〈ei, ek1 , ek2 , . . . , ekn , ej〉. We can thus choose the navigation
cost function, N , from Equation 1 to be of the form:

N(φ, ei−1, ei) =

|p(ei−1,ei)|−2∑
k=1

N (sw, φ(ek)) if child(ek, ek−1)

∧ child(ek, ek+1)
N (lv, φ(ek)) if child(ek, ek−1)

∧ child(ek+1, ek)
N (ent, φ(ek)) if child(ek−1, ek)

(2)

In the above formula, we iterate over the intermediate
elements in the path, distinguishing among the three kinds
of transitions described in the previous section. If both ek−1

and ek+1 are children of ek, then we consider this to be
a sibling switch between the children of ek. If ek−1 is a
grand child of ek+1 then the path is moving up the interface
description hierarchy and we say that we leave ek. Finally,
if the path is moving down the hierarchy, we are entering
ek.

The cost of navigation thus defined, it is easy to see that
the total navigation-related part of the cost function is de-
pendent on how many times individual interface elements
are found to be on the path in the interactions recorded
in the user trace. We thus define appropriate count func-
tions: #sw(T , e), #ent(T , e) and #lv(T , e). Smoothing
towards the uniform distribution (by adding a constant to
each count) ensures that we avoid the pathological situations
where some of the weights are 0.

In our current implementation we have further chosen to
use a match function, M , that is independent of the partic-
ular values assigned to the widgets by the user during the
interaction. Therefore, our match function depends only on
the choice of a widget for a given interface element, and we

to consider alternative cost models to see if our approach
extends to these cases.
2Relaxing the assumption of tree structure is a key element
of our ongoing research.

optimumSearch(vars, constraints)
1. if propagate(vars, constraints) = fail) return
2. if currentCost(vars)

+remainingCostEstimate(vars) ≥ bestCost
return

3. if completeAssignment(vars)
4. bestCost← cost
5. bestRendition← vars
6. return
7. var ← selectUnassignedV ariable(vars)
8. for each value in orderV alues(getV alues(var))
9. setV alue(var, value)
10. optimumSearch(vars, constraints)
11. restoreDomain(var)
12. undoPropagate(vars)
13. return

Table 1: Branch and bound optimization applied to
the rendering problem. The variables (vars) repre-
sent widget-to-element assignments and are passed
by reference. The constraints variable contains both
the interface and device constraints.

may state the component cost of an interface element, φ(e),
as:

$(φ(e), T) = #sw(T , e)×N (sw, φ(e))
+ #ent(T , e)×N (ent, φ(e))
+ #lv(T , e)×N (lv, φ(e))
+ #(T , e)×M(φ(e))

(3)

The total cost of the rendering can be thus reformulated
in terms of the component elements as

$(φ, T) =
∑
e∈E

$(φ(e), T) (4)

This cost can now be computed incrementally, element-
by-element, as the rendering is constructed. As a simple
optimization, the values of the count functions are precal-
culated, once per interface/trace combination.

We are now ready to define our problem formally. Specif-
ically, we define an interface rendering problem as a tuple
〈I,D, T 〉, where I is a description of the interface, D is a
device model specifying the size constraints and available
widgets and T is the user trace. φ is a solution to a render-
ing problem if φ is a legal rendering with minimum cost.

4. RENDERING ALGORITHM
Table 1 shows our algorithm for solving the interface-

rendition problem. The algorithm, a branch-and-bound con-
strained search, is guaranteed to find an optimal solution.
The remainingCostEstimate function referenced in line two
of the optimumSearch procedure is an admissible heuristic
for pruning partial solutions whose cost is guaranteed to ex-
ceed that of the best solution found so far. This function
looks at all unassigned variables and adds the costs of the
best available widgets for each of these variables (ignoring
constraints).

The search is directed by the selectUnassignedVariable
subroutine. Since all variables are eventually considered,

96

the order in which they are processed does not affect com-
pleteness, but (as researchers in constraint satisfaction have
demonstrated) the order can have a significant impact on
solution time. We have experimented with three variable
ordering heuristics: bottom-up chooses the variable corre-
sponding to the deepest widget in the interface specification
tree (Figure 1), which leads to construction of the interface
starting with the most basic elements, which then get ar-
ranged into more and more complex structures. Top-down
chooses the top-most unassigned variable; this causes the al-
gorithm to first decide on the general layout and only then
populate it with basic widgets. Our final heuristic, mini-
mum remaining values (MRV), has proven highly effective
in other constraint satisfaction problems [15]; the idea is al-
ways to focus on the most constrained variable, i.e., the one
with the fewest number of possible values remaining.

We have further optimized the algorithm by implement-
ing full constraint propagation at each step of the search.
The constraint propagation ensures that after each variable
assignment, the potential widgets considered for unassigned
variables are consistent with all constraints. This allows us
to more quickly detect paths that will not yield a legal so-
lution. For example, suppose a (large) slider widget was
chosen for the vent speed; constraint propagation might im-
mediately realize that there was no way to fit a widget for
light intensity. Furthermore, it allows us to make more ac-
curate estimates of the final cost of the complete interface
allowing for more efficient branch-and-bound pruning. As
shown in Section 5.1, this optimization proved very effec-
tive.

Before arriving at this algorithm, we also implemented
one based on simulated annealing. That algorithm was very
fast at producing a legal solution, but did not guarantee
optimality. Furthermore, once we optimized the systematic
algorithm, local search lost its speed advantage as well.

Our algorithm is inherently discrete, while some aspects
of a UI are better modeled with continuous values. For
example, the length of a list widget for listing local and
remote files in the FTP Client interface (Figure 5(b)) can
vary reasonably from 4 to 40 entries. Our system addresses
the problem by providing a few discretized approximations
(e.g. lists of 5, 10, 15 elements). An alternative would be to
use an optimization method capable of handling continuous
parameters, but this complexity does not seem worthwhile.

5. EVALUATION
This section presents our preliminary evaluation of Supple.

We first report on computational efficiency. Next, we show
some of the interface renderings generated automatically for
different devices and for different usage patterns; these in-
clude a multi-window interface generated for the FTP client
application. Finally, we describe an experiment in which we
asked human experts to design the user interfaces under the
same constraints as those imposed on our system.

5.1 Performance
Table 2 summarizes the results of our performance study.

With no constraint propagation, the algorithm took up to
13 seconds to find the best solution and nearly 6 minutes
to complete. Enabling full constraint propagation brought
the numbers down to less than a second for the best solu-
tion and less than 10 seconds to complete. Varying variable
ordering produced mixed results, however MRV proved to

Table 2: Performance results for the classroom in-
terface rendered on three different touch-based de-
vices chosen to be particularly challenging (nei-
ther under- nor over-constraining the search space).
There were over 1.8× 109 potential renderings to ex-
plore. The numeric values represent time in sec-
onds. The first two columns list the optimizations
used: three options for propagation (none, forward
checking (FC) or full) and three different variable
orderings (bottom-up, minimum remaining values
(MRV), and top-down) – all described in Section 4.
The first column for each device shows the time nec-
essary to arrive at the best rendering. The second
column reports the time taken till the search com-
pleted (confirming that there was no better render-
ing to be found). The results were collected on a P4
1.5GHz computer with 512MB RAM and running
Red Hat Linux 7.3 with Sun Java SDK 1.4.2.

behave most predictably always completing search within 2
seconds, even though both top-down and bottom-up outper-
formed it on device 1.

5.2 Adapting To Device Characteristics
Figures 2, 3 and 4 show several different renditions of the

classroom interface. Figures 2(a) and 2(b) show the interface
rendered for two different devices with the same display size.
On the first device, the interaction is pointer based. The
second uses a touch screen. Figure 4(a) shows the same
interface rendered on a device with a smaller screen size. In
order to fit the interface in the available screen space, a less
convenient widget was used for choosing the input to the
projector and the light controllers were placed in individual
tabs in a tab pane.

Finally, Figure 3 shows the classroom interface rendered
on a cell phone. The top page, in addition to the widgets
for controlling the A/V equipment and the vent, also con-
tains a link to another page containing the controls for the
lights. The figure shows the steps necessary to manipulate
the brightness of one of the lights.

In order to produce these different renderings of the class-
room interface, we only varied the device model. In all cases
we used the same functional interface specification and an
empty user trace.

5.3 Adapting To Usage Patterns
Figure 4 shows the classroom interface rendered for a

smaller device. Both renditions were obtained under the
same conditions with the only difference being the user trace.
The rendition in Figure 4(a) was based on an empty trace
and the one in Figure 4(b) was generated after heavy use of
the light controls was recorded. The second rendition, even
though it uses less convenient widgets and only a portion
of the available space, makes it easy to navigate between
individual light controls.

97

(a) (b)

Figure 2: The classroom interface rendered for two devices with the same size: (a) a pointer-based device
(b) a touch-panel device

Figure 3: The classroom interface rendered on a WAP cell phone simulator (Sony Ericsson T68i); the
successive screen shots illustrate the steps necessary to manipulate the brightness level of one of the lights.

(a) (b)

Figure 4: The classroom interface rendered on another, smaller, device: (a) with an empty user trace (b)
with a trace reflecting frequent transitions between individual light controls. The second rendering does not
use all of the available space.

(a) (c)(b)

Figure 5: The interface for the FTP client application. (a) The initial login window. (b) The main window
for transferring files between local and remote locations. (c) After logging out, the login window is rendered
again – as the application adds user and host names to the respective lists of likely values, these changes are
reflected in the new rendering of the login window.

98

5.4 An Interactive Interface
Figure 5 shows different windows rendered for the FTP

client application. Figure 5(a) shows the initial login win-
dow. If the information entered is correct and the “Login”
button is pressed, the login window is replaced by the main
window (Figure 5(b)). Pressing the “Logout” button takes
the user back to the login window. After each successful lo-
gin, the application records the user names and host names
entered by the user and adds them to the list of likely val-
ues for the corresponding state variables in the interface de-
scription. Thus, subsequent renditions of the login window
reflect that change (Figure 5(c)). All of these windows are
rendered and disposed of dynamically upon a request from
the application, which supplies an abstract description to
the renderer. In each case, the rendering takes less than a
second.

5.5 Conceptual User Study
In order to compare Supple’s performance to that of

human designers, we conducted an informal user study in
which we asked human experts (graduate students in Com-
puter Science who have taken at least one HCI course) to de-
sign user interfaces for the classroom under similar size and
widget selection constraints as those imposed on Supple.
We gave our subjects a functional description of the ap-
pliances and a “library” of UI widgets. The widgets were
printed on paper and cut out so the subjects’ task was to
arrange the widgets within a prescribed area. The tab pane
widget was rendered as a booklet, thus allowing the subjects
to fill the contents of each tab pane.

There were four subjects and two different size constraints.
In the end we obtained three designs for each size constraint.
Results for the size constraints depicted in Figure 4(a) var-
ied the most and revealed interesting differences among our
subjects as well as between the subjects and Supple. Due
to space constraints we present only a brief summary of our
observations from this study.

One subject came up with a design which was almost iden-
tical to Supple’s, when its rendering was based on an empty
user trace. Another subject felt that all light controls
should be rendered together. Thus she rendered controls for
all three lights in a single tab pane, using spinner widgets.
She argued that users were likely to want to manipulate all
lights at the same time and thus it was more important to
render them next to each other than to use more convenient
widgets such as sliders. We subsequently used the interface
simulating the usage pattern hypothesized by that subject
and recorded the trace. When we ran Supple using the
new user trace, we obtained a rendering equivalent to that
produced by the subject (Figure 4(b)).

6. RELATED WORK
Our work follows two decades of research on model-based

user interface design. In the terminology of Szekely’s retro-
spective paper [18], Supple falls into the category of auto-
mated design tools. Like other similar systems (e.g. [9, 11]),
ours uses a domain model to describe the kinds and structure
of the information to be exchanged between the user and the
application. Unlike many of the other tools, Supple does
not have an explicit task or dialogue model, however the
traces provide some information on the intended usage of
the system.

Most importantly, however, the earlier work, including
recent systems such as the Personal Universal Controller
(PUC) [11], uses decision trees to render the interfaces. As
noted by others [7], despite their advantages, decision trees
have a number of problems. Most importantly, using this
technique, interfaces are rendered in a single pass with all
decisions taken at the level of individual widgets or group-
ings making effective tradeoffs between available screen size
and widget quality nearly impossible. Another recent sys-
tem, XWeb [12], is even further limited by the fact that
leaf widgets are prespecified and only their layout is chosen
dynamically.

Optimization-based, constraint techniques have a long his-
tory in user interface research, primarily for controling pre-
sentation and maintaining consistency (e.g. [4]). Recently,
optimization has been used in new ways (e.g. LineDrive [1]
and GADGET [8]). GADGET in particular has been used
to lay out elements in a dialog box but it neither chose the
widgets nor was capable of creating navigationally-complex
interfaces (i.e., ones that would not display all elements at
once).

7. CONCLUSIONS AND FUTURE WORK
This paper makes four contributions: first, we formally

define the interface rendering problem as a decision-theoretic
optimization problem. Second, our framework includes as
an input a trace of typical user behavior, allowing for user-
specific renderings. Third, we present an efficient branch
and bound rendering algorithm, implemented as the Supple
system. Fourth, we describe several experiments, showing
the speed of Supple, the quality of the resulting interfaces,
and Supple’s ability to customize for individual users.

Despite our progress, much remains to be done. We need
to explore the limits of our approach. We are extending
Supple to handle an even wider range of devices (e.g., wall-
sized displays and J2ME phones). While we have demon-
strated that Supple is capable of generating interfaces for
two different kinds of applications, they are both relatively
simple. We aspire to complex applications such as Microsoft
Word and Outlook, but this will require more sophisticated
data models and attributes. We plan to remove Section 3’s
assumption that renditions are tree structured; this will al-
low Supple to add shortcuts and duplicate commonly-used
functionality. The approach will be to extend related work
has been done for adaptive web sites [2, 3] and mobile por-
tals [17]. The principle of partitioned dynamicity may allevi-
ate user confusion [19]. We wish to make several extensions
to the cost function: accounting for the actual old and new
values in user traces and incorporating a number of estab-
lished UI evaluation metrics. In particular, a metric like
the layout appropriateness [16], which uses Fitts’ Law and
usage traces to evaluate the quality of precise widget lay-
out within a pane, could help us to fine tune the rendering.
Visual search models could also be used to evaluate the com-
plexity of any given view of the interface; it has further been
suggested that different visual search models could be used
to reflect the behavior of users with different levels of ex-
pertise [5]. Finally, spatial information (e.g., the physical
location of individual lights) could also be a useful addi-
tion to our interface specification, as shown in the iCrafter
project [13].

Automatic interface adaptation complements explicit end-
user customization, and we wish to investigate customiza-

99

tion languages and mechanisms. In particular, we would
like to enable users to easily influence how Supple inter-
faces are rendered. We are also exploring mechanisms for
allowing users to customize the functionality of the interface
rather than the presence and placement of pre-specified UI
widgets.

Ultimately, the utility of our approach will be determined
by adoption. We suspect that UI designers will be skeptical,
uncomfortable with a functional specification, and preferring
the fine control of layout provided by existing methods. A
UI critiquing tool, based on Supple, could still be useful to
these designers, suggesting aspects of an interface that need
review. And if end-users come to like automatic adaptation,
because of trace-driven personalization or combination with
explicit customization, then designers will be forced to take
notice. The next step in this regard is a more detailed user
study and evaluation.

8. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous subjects

who participated in our preliminary study. We would also
like to acknowledge Mark Adler, Alan Borning, Gaetano
Borriello, Tessa Lau, Jeffrey Nichols, Steven Wolfman and
Alexander Yates for their thorough and insightfull comments
on earlier drafts of this paper.

This research was funded in part by Office of Naval Re-
search Grants N00014-98-1-0147 & N00014-02-1-0932, Na-
tional Science Foundation Grants IRI-9303461, IIS-9872128,
DL-9874759, and a CAREER Award.

9. REFERENCES
[1] M. Agrawala and C. Stolte. Rendering effective route

maps: Improving usability through generalization. In
E. Fiume, editor, SIGGRAPH 2001, Computer
Graphics Proceedings, pages 241–250. ACM Press /
ACM SIGGRAPH, 2001.

[2] C. R. Anderson, P. Domingos, and D. S. Weld.
Adaptive web navigation for wireless devices. In
Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, 2001.

[3] C. R. Anderson and E. Horvitz. Web montage: a
dynamic personalized start page. In Proceedings of the
eleventh international conference on World Wide
Web, pages 704–712. ACM Press, 2002.

[4] A. Borning and R. Duisberg. Constraint-based tools
for building user interfaces. ACM Transactions on
Graphics (TOG), 5(4):345–374, 1986.

[5] A. Bunt, C. Conati, and J. McGrenere. What role can
adaptive support play in an adaptive system. In
Proceedings of IUI’04, Funchal, Portugal, 2004.

[6] L. Cardelli. Building user interfaces by direct
manipulation. In ACM Symposium on User Interface
Software and Technology, pages 152–166, 1988.

[7] J. Eisenstein, J. Vanderdonckt, and A. Puerta.
Adapting to mobile contexts with user-interface
modeling. In Workshop on Mobile Computing Systems
and Applications, Monterey, CA, 2000.

[8] J. Fogarty and S. E. Hudson. GADGET: A toolkit for
optimization-based approaches to interface and
display generation. In Proceedings of UIST’03,
Vancouver, Canada, 2003.

[9] W. C. Kim and J. D. Foley. Providing high-level
control and expert assistance in the user interface
presentation design. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 430–437, Amsterdam, The Netherlands, 1993.
ACM Press.

[10] J. Lin and J. A. Landay. Damask: A tool for
early-stage design and prototyping of multi-device
user interfaces. In In Proceedings of The 8th
International Conference on Distributed Multimedia
Systems (2002 International Workshop on Visual
Computing), pages 573–580, 2002.

[11] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K.
Harris, R. Rosenfeld, and M. Pignol. Generating
remote control interfaces for complex appliances. In
CHI Letters: ACM Symposium on User Interface
Software and Technology, UIST’02, Paris, France,
2002.

[12] D. R. Olsen, S. Jefferies, T. Nielsen, W. Moyes, and
P. Fredrickson. Cross-modal interaction using XWeb.
In Proceedings of the 13th annual ACM symposium on
User interface software and technology, pages 191–200,
San Diego, California, United States, 2000.

[13] S. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and
T. Winograd. ICrafter: A service framework for
ubiquitous computing environments. In Proceedings of
Ubicomp 2001, pages 56–75, 2001.

[14] A. Puerta and J. Eisenstein. XIML: A universal
language for user interfaces, 2002. unpublished paper
available at http://www.ximl.org/.

[15] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 1995.

[16] A. Sears. Layout appropriateness: A metric for
evaluating user interface widget layout. Software
Engineering, 19(7):707–719, 1993.

[17] B. Smyth and P. Cotter. Personalized adaptive
navigation for mobile portals. In Proceedings of
ECAI/PAIS’02, Lyons, France, 2002.

[18] P. Szekely. Retrospective and challenges for
model-based interface development. In F. Bodart and
J. Vanderdonckt, editors, Design, Specification and
Verification of Interactive Systems ’96, pages 1–27,
Wien, 1996. Springer-Verlag.

[19] D. S. Weld, C. Anderson, P. Domingos, O. Etzioni,
K. Gajos, T. Lau, and S. Wolfman. Automatically
personalizing user interfaces. In IJCAI03, Acapulco,
Mexico, August 2003.

[20] A. Wexelblat and P. Maes. Footprints: History-rich
tools for information foraging. In CHI, pages 270–277,
1999.

[21] C. Wiecha, W. Bennett, S. Boies, J. Gould, and
S. Greene. ITS: a tool for rapidly developing
interactive applications. ACM Transactions on
Information Systems (TOIS), 8(3):204–236, 1990.

100

