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Abstract: Neural activity signifying the expectation of reward has been found recently 

in many parts of the brain, including midbrain and cortical structures. These signals can 

facilitate goal-directed behavior or the learning of new skills based on reinforcements.  

Here we show that neurons in the supplementary motor area (SMA), an area concerned 

with movements of the body and limbs, also carry a reward expectancy signal in the post-

saccadic period of oculomotor tasks.  While the monkeys performed blocks of memory-

guided and object-based saccades, the neurons discharged a burst after a ~200 ms delay 

following the target acquiring saccade in the memory task, but often fired concurrently 

with the target acquiring saccade in the object task. The hypothesis that this post-

saccadic bursting activity reflects the expectation of a reward was tested with a series of 

manipulations to the memory-guided saccade task.  It was found that, while the timing of 

the bursting activity corresponds to a visual feedback stimulus, the visual feedback is not 

required for the neurons to discharge a burst. Second, blocks of no-reward trials reveal

an extinction of the bursting activity as the monkeys come to understand that they would 

not be rewarded for properly generated saccades.  Finally, the delivery of unexpected 

rewards confirmed that, in many of the neurons, the activity is not related to a motor plan 

to acquire the reward (e.g. licking).  Thus we conclude that reward expectancy is 

represented by the activity of SMA neurons, even in the context of an oculomotor task.  

These results suggest that the reward expectancy signal is broadcast over a large extent of 

motor cortex, and may facilitate the learning of new, coordinated behavior between 

different body parts.
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Introduction:

There has been substantial progress in recent years on the identification and 

characterization of the network of brain areas that are involved in the processing of 

reward.  Reward expectancy signals have been found in many cortical areas such as the 

medialfrontal (Matsumoto et al. 2003; Shidara and Richmond 2002), dorsolateral 

prefrontal (Barraclough et al. 2004; Kobayashi et al. 2002), orbitofrontal (Hikosaka and 

Watanabe 2000; Tremblay and Schultz 2000), and parietal cortices (Musallam et al. 

2004; Platt and Glimcher 1999; Sugrue et al. 2004).  Subcortical regions expressing 

reward expectancy include the caudate (Watanabe et al. 2003), striatum (Cromwell and 

Schultz 2003; Hassani et al. 2001; Tremblay et al. 1998), superior colliculus (Ikeda and 

Hikosaka 2003), and midbrain dopamine neurons (Satoh et al. 2003; Schultz et al. 1997).  

Reward related signals have also been found in the dorsomedial frontal cortex (DMFC), 

an anatomical region that includes our current area of interest, the supplementary motor 

area (SMA).  

The DMFC has been shown to participate in volitional (Schlag and Schlag-Rey 

1985), or goal-oriented motor acts (Mann et al. 1988).   It contains at least three well-

studied motor-representation areas that are thought to be involved in higher order control 

of behavior: the SEF (Schlag and Schlag-Rey 1987, 1985), the SMA (Luppino et al. 

1991; Matsuzaka et al. 1992) and the presupplementary motor area (pre-SMA) (Fujii et 

al. 2002; Nakamura et al. 1998; Shima and Tanji 2000). These three motor areas of 

DMFC can be distinguished based on anatomical connectivity (Luppino et al. 1993; 

Parthasarathy et al. 1992), and physiological responsivity (Matsuzaka et al. 1992). The 

SMA and pre-SMA are located in the DMFC on and above the medial wall in the frontal 

lobe.  An orofacial region occupies the rostral end of the SMA, and further rostral is the 

pre-SMA.  Intracortical microstimulation evokes movements in both areas, though the 

movements evoked in the pre-SMA require longer trains of pulses that produce more 

complex movements (Fujii et al. 2002). The pre-SMA has been implicated in planned 

motor acts (Matsuzaka and Tanji 1996), and the acquisition (Nakamura et al. 1998), 

planning and regulating (Shima and Tanji 2000) of sequential procedures.  Additionally, 

pre-SMA neurons respond more often to visual stimulation compared to SMA neurons.

The SMA consists of a rostrocaudal progression of orofacial, forelimb, and hindlimb 

movement representations (Mitz and Wise 1987). Lateral to the SMA, microstimulation

will evoke eye movements.  This area is defined as SEF (Fujii et al. 2002).  Several 

studies have shown that electrical microstimulation at low currents (<50 µA, and 

sometimes as low at 10 µA) will elicit saccades in SEF (Chen and Wise 1995; Fujii et al. 

1995; Mann et al. 1988; Russo and Bruce 1993; Tehovnik and Sommer 1996).  

Three recent studies have explicitly connected the SEF to reward variables.  

Amador et al. discovered reward-predicting and reward-detecting neuronal activity in 

SEF (Amador et al. 2000).  Schall and colleagues used the countermanding task to 

characterize three different types of neurons in the SEF – error, conflict, and 

reinforcement neurons, and suggested that these could serve a performance monitoring 

function (Stuphorn et al. 2000).  Roesch and Olson found modulations of neural activity 

in response to both reward and punishment (Roesch and Olson 2003, 2004), and 

concluded that these modulations during the early stages of the trials correlate with the 

motivation and not reward expectation.  In this study we present neural activity reflecting 

reward expectation during a later stage of the trials, specifically after the monkey 
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performs the instructed behavior.  Our findings are similar to the reports of Amador and 

colleagues and Stuphorn and colleagues, however, the reward expectancy signal we 

describe is found in the SMA, while these other studies were recording from nearby SEF.  

Taken together, these results suggest that a reward expectancy signal may be present 

throughout the DMFC.  

In this study we present evidence that a reward expectancy signal is expressed in 

the neural activity of the SMA during the performance of an oculomotor task.  The signal 

is not related to the metric of the eye movement.  Rather, it encodes expectation of the 

reward after the successful completion of the instructed behavior. The results presented 

here began as a discovery during a project that was originally intended to investigate the 

contribution of the SEF to saccades to objects.  Some early recordings in the SMA 

uncovered a post-saccadic bursting activity that we hypothesized might be related to the 

expectation of reward, and experiments devised during the course of the project 

confirmed this hypothesis.  While future studies of reward expectancy in SMA might use 

tasks that are specifically designed to investigate reward variables, with the two 

oculomotor tasks employed here we are able to establish two novel findings.  First, we 

show that a reward expectancy signal is present in the SMA, an area that has been 

thought to be concerned only with movements of the body and limbs, during an 

oculomotor task.  Second, we show the coupling of the signal’s onset time with a 

secondary reinforcer.  These findings suggest a general learning mechanism that would

reinforce all motor representations in DMFC that are active just before the animal can 

expect to receive a reward. A preliminary account of this study has appeared previously 

(Campos et al. 2003).
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Methods:  

Studies were performed on two behaving, male rhesus monkeys (Macaca mulatta).  Each 

was chronically fitted with a stainless steel head post for head immobilization, and a 

recording chamber over a craniotomy for electrode insertions.  All procedures were 

approved by the Caltech Institutional Animal Care and Use Committee.  

Stimuli and tasks.  Monkeys were seated in a dimly lit room, 42 cm from a 

tangent screen.  Stimuli were rear-projected with 800x600 resolution and a refresh rate of 

72 Hz using a custom built software display client with OpenGL.  Task logic was 

controlled by National Instruments real time LabView software.

Two eye movement tasks were used; a memory-guided saccade task and an 

object-based saccade task.  In both tasks the monkey was instructed to perform a saccade 

from a central fixation point to one of 43 targets placed at regular intervals to cover the 

entire visual field out to 17 deg of visual angle in every direction from central fixation.

In the memory-guided saccade task (Figure 1a) monkeys were required to 

maintain central fixation while a peripheral target was briefly flashed, wait until the 

central fixation point extinguished, and then saccade to the remembered location.  After 

successfully holding fixation at the target location, the target re-appeared to provide 

visual feedback of the correct eye position.  The monkey then had to maintain fixation on 

the visible target for an additional interval of 250 before receiving a juice reward of about 

0.2 ml.  

In the object-based saccade task (Figure 1b), an object (isosceles triangle) was 

presented behind the central fixation point while the monkey fixated there.  The object 

was cued for one of two possible locations on the object, and then, after a delay period,

the object extinguished and reappeared at a peripheral location and new orientation.  The 

monkeys were required to saccade to the previously cued part of the object in the new 

location and orientation.  The cued locations of the object were chosen so that the correct 

saccade ended in the same screen location as the targets in the memory-guided task.  

After maintaining fixation on the cued part of the object for 250 ms, the monkeys were

rewarded with a drop (about 0.2 ml) of juice.  

The memory-guided and object-based saccade tasks were designed to investigate 

the neural computations supporting object-based saccades; however, the important 

difference between the tasks for the purposes of this study was actually what happened 

after the saccade was completed.  In the object task the target was visible at the time of 

the saccade, and the monkey could acquire a visible target.  In the memory task the target 

reappeared 250 ms after the saccade to the remembered location.  Thus in the object task 

the animals received earlier feedback from a secondary reinforcement stimulus.

In a recording session a block of memory-guided saccades preceded a block of 

object based saccades.  The memory-guided saccade block consisted of 3 correct 

saccades to each location.  The object-based saccade block consisted of 12 correct 

saccades to each location.  Control trials were performed during the memory-guided 

saccade block at the discretion of the experimenter.

Recording Procedure.  Neurons were accessed on vertical penetrations with glass 

coated platinum-iridium electrodes (Fred Haer Co.).  The electrodes were advanced with 

a Fred Haer or Narashige microdrive system, through a blunt stainless steel guide tube

pressed against the dura.  Neurons were generally found 1-3mm beneath the exterior of 

the dura.  
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Waveforms were amplified and isolated online with a commercial hardware and 

software package (Plexon Inc.).  Cell activity was monitored with custom built online 

data visualization software written in Matlab. 

Data Analysis. Bursting activity was identified using a burst detection algorithm  

(Hanes et al. 1995; Thompson et al. 1996).  Bursts were initially detected by a threshold 

crossing of a surprise index (SI), which is the negative of the log of a calculated 

significance level.  The significance level describes the likelihood that the observed 

number of spikes would occur in a given interval, considering the average firing rate of 

the cell, based on the assumption that the inter-spike intervals follow a Poisson 

distribution.  The significance level used to calculate the threshold for the SI was 0.01.

The mean of the Poisson distribution was calculated as the number of spikes in the trial 

divided by the duration of the trial.  Since the mean can change from trial to trial, the 

algorithm assumes stationarity only over the duration of a single trial, and the threshold 

will adapt to changes in the baseline firing rate of the neuron over time.  After the initial 

threshold crossing, the beginning and end of the burst were precisely identified, and 

multiple bursts could be identified in a single spike train (Thompson et al. 1996).

For ANOVA of firing activity in task intervals, the intervals were defined as 

follows.  The baseline period was the interval between the acquisition of the fixation 

point and the cue appearance.  The cue period was the interval that the cue was visible, 

and the memory period was the interval between the cue disappearance and the fixation 

point disappearance (the signal for the monkey to make the saccade).  The saccade period 

was the 200 ms interval preceding the acquisition of the target, and the post-saccadic 

period was the interval from the target acquisition until the delivery of reward.  All 

intervals were defined by these same events in both the memory and object-based tasks.

The duration of the post-saccadic interval was 500 ms in the memory task, and 250 ms in 

the object-based saccade task.  

Electrical Stimulation. A BAK instruments stimulator was used to deliver 

biphasic currents at 330 Hz of typically less than 200 µA in 100-500 ms trains through 

the recording electrodes.

Electromyography.  Electromyography (EMG) recordings were performed in one 

monkey with a World Precision Instruments (DAM 80) AC/DC amplifier, and paired 

hook-wire electrodes (44 ga x 100 mm) from Viasys healthcare.

MR Imaging.  Magnetic resonance (MR) imaging was performed at the Caltech 

Brain Imaging Center on a 3 T Siemens Trio.  Anatomical images were acquired 

sagittally with 0.7 mm slice thickness using an in plane field of view of 168 x 168 mm on 

a 256 x 256 base matrix, yielding a final native voxel resolution of 0.656 x 0.656 x 0.7 

mm.  These images were realigned via multi-planar reformat to recording chamber 

landmarks using Siemens Syngo software (version MR 2003T DHHS.)  This rotated 

volume was resliced at 0.7 mm spacing along the z-axis of the chamber and visualized 

using the AFNI software package (Cox 1996).
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Results:

With a series of single electrode penetrations 173 cells were recorded in both tasks from 

two monkeys (monkey S: 100; R: 73).  According to ANOVA of baseline firing rates 

versus the post-saccadic interval, 50 (S: 34; R: 16) neurons demonstrated a significant 

modulation in the post-saccadic interval, with 17 (S: 9; R: 8) of these modulated in the 

post-saccadic interval exclusively.  Many of the neurons were also active during task 

periods.  According to ANOVA of baseline firing rates versus cue, memory, and saccade 

intervals 84 (S: 55; R: 29) of the recorded cells were significantly (p < 10^-5) modulated

during at least one of these intervals in both tasks.  A breakdown of neurons with 

significant modulations for the individual periods of the memory saccade task (cue: 23,

memory: 51, saccade: 71), show that there was substantial activity present in all task 

intervals, however this activity was generally not spatially tuned (see Table 2 and 

discussion below). Summary cell count information is provided in Table 1, along with 

results of control experiments.

Anatomic localization of the recording sites. The sites of all of the electrode penetrations 

included in this study are superimposed on axial MRI scans in Figure 2 (a,b).  While 

recordings were taken on the surface of cortex, MRI sections for anatomical localization 

were chosen at a depth appropriate to clearly show the locations of the penetrations 

relative to surrounding sulci.

The sites which yielded the 50 neurons with significant (ANOVA, p<10^-5, see 

above) post-saccadic modulations are shown in red, and the remaining sites are shown in 

blue.  Not all neurons recorded at the sites marked in red were modulated in the post-

saccadic period.  The red marker only indicates that at least one of these 50 neurons of 

interest was recorded at that site.  

While much of SMA is in F3 on the mesial surface, there is also a portion of F3 

on the dorsal surface, within about 3 mm of the midline that is also considered SMA 

proper (Luppino et al. 1991; Matsuzaka et al. 1992).  The neurons of interest in this 

report, indicated in red on the axial slices in Figure 2, mostly cluster within this distance 

to the left (monkey’s right) of the midline for monkey S, and to the right (monkey’s left) 

of the midline for monkey R.  No recordings were performed in SEF.  In both monkeys

some of the recordings were in area F2, lateral to SMA-proper (Luppino et al. 1991).  In 

monkey S the majority of the recordings were directly medial to the genu of the arcuate 

sulcus, while in monkey R the recordings were medial and somewhat posterior.  The SEF 

is medial to the arcuate sulcus and somewhat anterior, though there is some variability in 

the precise location of SEF as described in previous studies.  See Sommer and Tehovnik 

1999 for review.     

Microstimulation. Electrical stimulation experiments show the progression of body 

movement responses typical of the SMA (Mitz and Wise 1987).  Since eye movements 

were not observed to be elicited in either of the monkeys by stimulation of 50 µA, which 

is the upper limit of the low threshold criterion for eliciting eye movements in the SEF 

(Russo and Bruce 1993), or even currents as high as 200 µA, the recordings were not in 

the oculomotor area SEF. 
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Population characteristics. The average spike activity recorded during memory 

saccades from all sites for each monkey is summarized in Figure 2 (c,d).  The average 

firing rate aligned to the target acquire event (end of saccade) is shown.  The activity 

from monkey R (Figure 2d) is exclusively post-saccadic.  In monkey S saccadic and 

memory period activity was also observed (Figure 2c), which could be due to the more 

anterior placement of the chamber.  In monkey S the dominant peak of activity still 

occurs after a delay following the target acquire event.  

While there were many neurons with modulated activity during different epochs 

of the task (see Table 2), very few were spatially tuned.  A 2-way ANOVA between 

baseline firing rates, and 1) the firing rates from different task intervals, and 2) the spatial 

locations of the targets, was used to confirm this observation.  A very small number of 

neurons passed the significance test (p < 10^-3) for dependence of firing rate on task 

interval and target location (cue: 1; memory: 7; saccade: 6).

A shift in burst onset times. The post-saccadic burst in both trial types (a,b – memory, c,d 

– object) for one of these neurons in Figure 3 is illustrated with raster plots of spike traces 

aligned to the target acquire event (a,c) and the reward delivery (b,d). Bursts of activity 

identified with the burst detection algorithm (methods) are shown as horizontal blue lines 

beneath the spike trains.  The bursts in the object task (c) begin at a time that could be 

related to saccade generation.  However, the bursts of activity in the memory task (a) 

come substantially later, revealing that these bursts do not participate in the generation of 

a saccade, or at least not in the context of the memory saccade task.  For this neuron the 

post-saccadic firing terminates with reward delivery.  Other neurons (see Figure 5 for 

example) were also observed to terminate just before or soon after reward delivery.

In Figure 4a histograms for the time to burst, relative to the target acquire event in

each trial type are shown for the recording presented in Figure 3.  There is a clear 

separation of these two groups (ANOVA, p << 10^-5).  The mean bursting times relative 

to the target acquire event is 105 ms in the object task, and 537 ms in the memory task.  

The bursts in both tasks terminate with the delivery of the reward after successful 

completion of the task.

The difference of the mean time to burst in the memory task and the object task 

for the population of neurons that discharged a burst in at least 30% of the trials in both 

tasks (N = 30) is plotted as a histogram in Figure 4b.  In general, the bursting activity 

came later, relative to the target acquire event, in the memory task compared to the 

object-based task.  Neurons in this category showed a mean shift in the onset time of the 

burst of 202 ms.  This number is comparable to, though slightly less than, the amount of 

the time the animal was required to fixate the remembered target location in the memory 

task before the reappearance of the target (250 msec).

The onset time of the burst corresponded to the appearance of the visual feedback, 

which was immediate in the object-based task, but delayed in the memory-guided

saccade task.  In both cases the visual feedback could serve as a predictor of a reward.  

The hypothesis that bursting activity reflects an expectation of reward was then tested in 

a series of control experiments outlined below.  

Bursting does not accompany non-rewarded target acquisitions. It could be argued that 

the neurons simply signal the acquisition of any target, regardless of the expectation of 
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reward. We tested this possibility by comparing the activity of the neurons after the 

initial acquisition of the fixation point with the activity after the reappearance of the 

target in the memory-guided saccade task.  We used ANOVA on two intervals: the first 

interval was between the fixation acquire event and the appearance of the cue (250 ms), 

and the second interval was between the target onset and the reward delivery (250 ms).  

This analysis reveals that of the 50 neurons with a significant post-saccadic modulation, 

none were significantly active during the initial acquisition of the fixation point.  

Bursting is not a visual response. Control trials of the memory-guided saccade task in 

which the visual feedback was withheld were run to test whether or not the bursting 

activity is related to the visual feedback signal.  As shown in Figure 3 and again in Figure 

5, removal of the visual feedback (indicated in the figures with the green bar composed of 

green stars) does not eliminate the onset of the bursting activity, though it may reduce the 

intensity, or vary the onset time.  Figure 5a shows an example in which the post-saccadic 

bursting activity was slightly extended by this control, though otherwise unchanged.  

The bursting signal is therefore not indicating the reappearance of the target, 

though the visual reinforcement serves to sharpen and intensify the neural discharge. 

This control was run on 34 neurons, and 12 of them showed no significant difference in 

the mean firing rate from the time the target appeared (or should have appeared) until the 

end of the trial (ANOVA, p < 10^-5) in control vs. normal trials.  Of the remaining 

neurons, many exhibited a temporal shift in their active periods, or a decrease in firing, 

but only 1 showed an extinction of the bursting activity.  This control shows that visual 

feedback could be dissociated from the reward delivery, and the neural response 

remained. 

Bursting properties in the absence of reward.  To see if, all else being equal, the absence 

of reward would have an effect on the neural activity, we occasionally withheld the

reward for a block of trials during the memory-guided saccade task, even for correctly 

performed trials.  In the no reward blocks, the monkeys generally continued to correctly 

perform the task for about thirty trials before stopping, and this comprehension of 

changing task conditions was reflected in the recorded neural activity.  After a few trials, 

bursting activity would stop altogether.  This control was run while recording 11 neurons, 

and all of these showed a significant difference in the mean firing rate from the target 

acquire event until the end of the trial (ANOVA, p < 10^-5) in control vs. normal trials.  

The vast majority (10) ceased firing during the pre-reward interval in the no-reward 

blocks, and the remaining neuron (of the 11 that were modulated) increased its firing rate 

after the reward period.  An example neuron is shown in Figure 5b.  The firing activity is 

gradually extinguished in the no reward block (black bar).  In contrast, the activity during 

the no-visual feedback trials (green bar) has a less precise onset time, but does not 

extinguish. While the no-visual feedback trials show the effect of removing a predictor 

of reward, the no-reward blocks reveal the dynamic effects of the monkeys coming to 

understand that they should no longer expect a reward.   

Unexpected reward trials. By removing the reward, the possibility that the bursting 

activity encoded an orofacial (e.g. licking) motor response was not eliminated. Every 

time the monkey expected a reward, he would presumably also plan a licking movement 
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to acquire it.  The monkey would often stop licking the juice tube in the blocks of trials in 

which the reward was turned off, and this would correspond to the termination of the 

bursting activity.  Of course, if the monkey no longer expected to be rewarded for the eye 

movements, he also had no reason to lick the juice tube.  

To dissociate licking movements from the expectation of reward, control trials 

were run in which an unexpected reward was delivered.  A bonus reward would be 

delivered with a 5% probability at the end of the fixation interval, just before the cue 

presentation.  To quantify a response, an ANOVA (p < 10^-5) compared firing rates in 

the 200 msec interval during the bonus reward delivery, with the corresponding 200 msec 

period at the end of the fixation interval in normal trials. This first interval is the actual 

interval that the valve regulating the flow of reward was open.  While running this control

25 neurons with reward related activity were recorded, and 23 of these demonstrated no 

correlated activity in the unexpected juice delivery period. This control shows that the 

majority of the recorded neurons are not responsive to rewards when they are not 

expected, ruling out the possibility that the neural activity is attributable to motor 

commands required to obtain the reward, such as licking and swallowing.

To address the possibility that the neural activity reflected monkey’s postural responses 

or attempted postural responses, or preparation for either, we recorded muscle activity in 

three muscles active during postural adjustments.  We recorded EMG (see Methods) from 

left and right Latissimus dorsi and right Semitendinosus of Monkey S during the 

performance of both tasks. We observed that these muscles were active during trunk 

movements and leg movements.  While there was activity recorded from these muscle 

groups during the execution of the task, we found that it was not temporally locked to 

reward expectation.  These negative EMG results rule out the possibility that the monkey 

is consistently making postural adjustments in anticipation of the reward delivery.    
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Discussion:

Bursting activity related to reward expectation was found in a cortical area that is not 

directly responsible for the generation of the behavior (saccade) that achieves the reward.

This report separates itself from other reports by (1) investigating the reward expectation 

activity in the motor area SMA, and (2) showing a shift of activity in time course based 

on a secondary reinforcer, the visual feedback that usually predicts the upcoming reward.  

Below we outline and justify our findings, compare our results with the results of other

studies, and suggest a functional role for the representation of reward expectancy in SMA 

during eye movement tasks.  

Onset of reward-expectancy signal corresponds to a secondary reinforcer. The activity 

generally started with the secondary reinforcer and stopped with the delivery of the 

reward.  The secondary reinforcer in this context was visual feedback that occurred 

before reward delivery.  In the memory task the target reappears after 250 ms of fixation 

on the remembered target location.  This visual feedback helped ensure accuracy in the 

initial learning of the task, but also became a predictor of the upcoming reward.  In the 

object task the saccade target is visible, and so the monkey can be sure that he made a 

saccade to the target because he can see it.  The onset time of the reward expectancy 

signal corresponds to the onset of the visual feedback in the tasks, either 250 ms after the 

correct saccade in the memory task, or immediately during the correct saccade in the 

object task.

As shown in control experiments, while the secondary reinforcer helped to 

synchronize the timing of the bursting activity, it was not necessary for the neurons to 

burst.  This and other controls discussed below confirm that the bursting discharge carries 

a reward expectancy signal.

Control experiments establish the reward expectancy interpretation. In a series of 

control experiments the argument was built that this activity reflects an expectation of 

reward.  First, the bursting activity was dissociated from visual feedback, with the

demonstration that visual feedback is not required for the neurons to discharge, though it 

regularizes the timing of the onset.   Second, when the reward was removed for a block of 

trials, the reward expectancy activity gradually disappeared, showing that this activity 

represents a dynamic variable corresponding to the comprehension of a changed task 

condition.  Finally, the possibility that the neural trace signified a licking plan or a 

detection of reward was ruled out since there was generally no response to unexpected 

reward delivery.  

Reward related activity in the supplementary eye fields.  Reward related neural signals 

have already been described in the SEF (Amador et al. 2000; Roesch and Olson 2003; 

Stuphorn et al. 2000).  We found a reward expectancy signal in the SMA that appears 

very similar to types of activity found by Amador and colleagues and Stuphorn and 

colleagues.  

1) Reward expectancy and reward prediction.  Reward prediction (RP) neurons have 

been described in SEF along with a set of complementary reward detecting (RD) neurons 
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(Amador et al. 2000). The neural activity we are describing as reflecting reward 

expectation is similar to the RP neural activity.  We did not find evidence of RD activity.      

The firing rates of RP neurons increase before the occurrence of a reward, then

abruptly cease firing at reward delivery, just as we found in the bursting activity of many 

of the neurons in this study.  Our results, combined with the results of Amador and 

colleagues, are therefore evidence that reward expectation can be found in both SMA and 

SEF, and likely throughout the DMFC. Our study adds to the findings of RP neurons by 

(1) recording neural responses during the unexpected delivery of reward and (2) 

submitting the monkey to short blocks of no-reward trials.    

We choose to use the term reward expectancy, since “expectancy” captures the 

way the neural activity continues until reward delivery.  Furthermore, this designation 

separates itself from reward prediction nomenclature found in the dopamine neuron 

literature.  To predict is to foretell on the basis of experience, while to expect is to await 

or look forward to the coming or occurrence.  The reward prediction signal found in 

midbrain dopamine neurons and the reward expectancy signal in the DMFC likely play 

different roles in learning and goal-oriented behavior (see below).

2) Reward expectancy and reinforcement. Reinforcement signals have been found in 

SEF using a countermanding saccade task (Stuphorn et al. 2000). The reinforcement 

neurons were shown to increase activation while awaiting reward.  The term reward 

expectancy describes the function of this activity.  Again, the results of this study are

evidence that the reward expectation signal found in the SMA is also present in the SEF.  

3) Reward expectancy vs. enhanced motivation. The post-saccadic burst cannot be a 

correlate of motivation (Roesch and Olson 2003, 2004) simply because it comes after the 

behavior it would presumably motivate. Our use of the burst detection algorithm (Hanes 

et al. 1995; Thompson et al. 1996) establishes that this bursting activity comes in the 

post-saccadic interval.

In the Roesch and Olson study, the preferred direction of a neuron was first 

identified, and then a memory-guided saccade task was run to and away from the 

preferred direction of the cell.  Since we rarely found neurons to be spatially tuned, we 

may have been recording from different types of neurons in the SMA.  

Interestingly, the authors noted that in areas in which reward effects were 

common, such as the SMAr, neurons “fired more strongly than reward-insensitive 

neurons during the period extending from the completion of the saccade to delivery of the 

ingested reward.”  The authors did not think their paradigm capable of distinguishing 

between various interpretations of the significance of this effect, such as preparation and 

execution of liking movements, or increased intensity of reward anticipation.  In the 

present study, our control experiments show that the post-saccadic activity in SMA 

reflects reward expectation.

Reward expectancy vs. attention.  The expected value of a reward has been shown to 

modulate activity during the performance of a task (Ikeda and Hikosaka 2003; Platt and 

Glimcher 1999; Shidara and Richmond 2002; Watanabe 1996).  It has been argued that 

so far sufficient controls for these studies have not been performed to determine whether 

the cognitive state being manipulated is expected value or attention, since these two states 
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likely occur together and can be easily confounded.  Likewise, studies examining 

attention may have recorded the effects of expected value (Maunsell 2004).  

In the current study it is unlikely that the reward expectancy signal is actually an 

attention signal.  The signal occurs after the task and is not spatially tuned and thus 

cannot reflect attention to the saccade location.  It also cannot reflect attention to the 

reward since there was no activity when the reward was presented unexpectedly –

novelty is a powerful attractor of attention.

Reward signals and reinforcement learning algorithms.  A reinforcement learning 

algorithm (Sutton and Barto 1988) has been proposed to account for different reward-

related signals that have been found in the brain, such as the error of reward prediction in 

midbrain dopamine neurons (Schultz et al. 1997).  The prediction error signal is widely 

recognized as evidence for the implementation of a reinforcement learning algorithm in 

the brain.  For example, the prediction error can serve to update action value estimates, so 

that the animal can have accurate estimates of the reward that can be expected for an 

action. In this formalism, the expected value, V, is updated after every trial according to 

the experienced reward by the equation:

V
t+1 

= V
t
 + α(R

t
– V

t
)

Where R
t
 is the amount of reward obtained at time t, V

t
 is the amount of reward expected 

at time t, α is the learning rate, and V
t+1 

is the updated estimate of expected value at time 

t+1.  In this formulation the time steps are individual trials, and the signal that 

corresponds to the error of reward prediction found in dopamine neurons (Schultz et al. 

1997) is the term in the parentheses, R
t
– V

t
. The action value signal, V, that we are 

describing would not be used instead of a prediction error signal, R-V.  Rather, both 

signals are supposed components of a larger reinforcement learning mechanism.

The dynamics of the reward expectancy signal in SMA corresponds to the 

dynamics of the expected value of the action, V.  Specifically, this algorithm captures the 

way the post-saccadic firing activity in the SMA gradually dissipates in no-reward 

blocks. When the reward, R, is zero for a series of trials, the equation above will 

diminish the expected value of the action, V, until it reaches the new value of the reward, 

0.  The learning rate parameter, α, determines how quickly the estimate of the expected 

value approaches the new value.  This equation also describes how the neural activity

will return to normal firing when the reward is again delivered as usual.   

Functional significance of reward expectancy in DMFC -- a signal to guide learning. As 

in neural network models of reinforcement learning (Mazzoni et al. 1991; Suri and 

Schultz 1999), the reward signal found in DMFC could be used to train other parts of 

cortex to perform visuospatial tasks requiring arbitrary sensorimotor transformations.  

The reward expectancy signal found in the SEF (Amador et al. 2000; Stuphorn et al. 

2000) is in position to shape future oculomotor behavior through its connections with the 

frontal eye fields (FEF) (Schall et al. 1993) and the superior colliculus (SC) (Fries 1984).  

A reward expectancy signal is better than the detection of the reward itself for 

training purposes for two reasons.  First, the reward expectancy signal implies that there 

is an internal model with an expected sensory outcome for a behavior, in this case the 



JN-00022-2005.R1

14/31

secondary reinforcer.  This model can be matched with a reward signal, and refined as 

often as rewards are delivered or unexpectedly withheld.  Second, the reward expectancy 

signal comes at a time that is more proximal to the behaviors which earned the reward, 

and thus may be able to reinforce the high level motor signals in DMFC related to those 

behaviors.

Usefulness of reward expectancy in SMA during an eye movement task.  A reward 

expectancy signal present in DMFC could maintain and enhance the high-level 

representations of behaviors that earn a reward.  But why would this activity be present in 

the SMA, which is concerned with movements of the body and limbs, during an eye 

movement task?  It is possible that the reward expectancy signal is maintained throughout 

DMFC so that it can enhance any volitional motor acts that precede reward.  For instance, 

in hand eye coordination tasks the reward signal can reinforce activity in the limb area of 

SMA and SEF together.  Other areas of SMA which do not have a convergence of 

activation of the motor map activation and reward signal would not be reinforced and 

would not produce learning (Sutton and Barto 1988).  Thus, the expectation signal may 

be more widely broadcast than the motor activations of a particular behavior.  This 

broader signal may serve to learn new coordinations of different body parts for particular 

tasks.
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Figure Legends:

Figure 1.  Time course of oculomotor tasks.  Progression of tasks are shown in 

successive panels from the top left to bottom right.  In the memory-guided saccade task

(a), the monkey is required to acquire a central fixation point at the start of the trial.  

After a variable delay, a cue is briefly flashed at one of 43 targets in the periphery.  The 

possible targets cover the entire visual field out to 17 degrees.  Following a hold interval 

the fixation point is extinguished and the monkey is required to saccade to the 

remembered target location and fixate there.  After 250 ms the target reappears, and then 

following an additional 250 ms fixation, the animal is rewarded with a drop of juice.  In 

the object-based saccade task (b), the monkey begins the trial by acquiring a central 

fixation point.  An object appears over the fixation point, and after a delay one side of the 

object is briefly cued.  Following a hold period the object is extinguished and 

immediately reappears in a new location.  The monkey is then required to saccade to the 

cued portion of the object and fixate there for 250 ms, before receiving a juice reward.

Figure 2.  Sites of neural recording.  Projections of chamber walls are indicated with a 

blue circle superimposed on axial MRI scans of Monkey S (a) and R (b).  Anatomical 

landmarks are of the arcuate sulci (AS), principle sulci (PS) and central sulcus (CS).  

Recording sites that yielded reward interval activity are shown as red dots, and the 

remaining recording sites are blue.  Averaged output of all recorded neurons (c, d) shows 

the average firing rate for all recorded neurons for each monkey aligned on the target 

acquire event of memory saccade trials. 

Figure 3.  Shift in burst onset times.  Peri-event time histograms in memory (a,b) and 

object (c,d) saccades tasks.  Spikes are represented in red, aligned to the target acquire 

event (a,c), and the reward delivery event (c,d).  The smoothed average firing rate for

normal trials is plotted as a blue curve, for no-visual feedback trials in green.  Horizontal 

blue lines indicate periods of burst activity for the spike trains above.  Green stars 

forming a bar on the right edge of the panels indicate trials in which visual feedback was 

withheld.  Cyan markers indicate the reappearance of the target.

Figure 4.  Histograms of burst onset times.  a) Distribution of time to burst for each trial 

of the memory (filled) and object (open) saccade tasks for the cell shown in Figure 3.  

Mean time to burst is: memory task: 537 ms, object task 105 ms.  Memory task data 

clusters to the right of the object task data. b) Differences in time to burst onset after the 

target acquire event in memory vs. object tasks.  Only cells with bursts in at least 30% of 

the trials in both tasks are shown (N=30).  Mean difference: 202 ms.  The population of 

average shift times is significantly different from 0 (t-test, p < 10^-5). 

Figure 5.  Example response to control trials.  (a) Withheld visual feedback control trials. 

All trials shown are from the memory-saccade task.  Green stars forming a bar on the 

edge of the panel indicate trials in which visual feedback was withheld.  Smoothed 

average firing rates for normal trials are drawn in blue, and can be compared with the 

average firing rates during the withheld feedback trials drawn in green.  (b) Withheld 

reward block of trials.  All trials shown are from the memory-saccade task.  Black stars 

forming a bar slightly inset from the right edge of the panel indicate the successfully 

completed trials in which the reward was not delivered.  Green stars forming a bar on the 
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right edge of the panel indicate trials in which visual feedback was withheld.  Only the 

spike trains from successfully completed trials are shown.  Trials are arranged 

chronologically from top to bottom.  Smoothed average firing rates for normal trials are 

drawn in blue, and can be compared with the average firing rates during the withheld 

reward trials shown in black, and the withheld feedback trials drawn in green.  Cyan 

markers indicate the reappearance of the target.

Table 1. Total number of recorded neurons for both monkeys.  All statistical tests are 

ANOVA (p < 10^-5).  Task related modulation indicates a modulation in one or more of 

cue, memory, saccade, or reward intervals relative to baseline.  Reward period activity 

compares the baseline to reward interval; exclusive reward activity excludes neurons with 

significant cue or memory period activity.  Control categories compare a time interval of 

interest (see text) associated with the control, in normal and control trials.  Numbers in 

parentheses are the number of cells recorded while each control was run, and the numbers 

beside them are the number of cells with a significant modulation in firing rates 

according to ANOVA analyses described in the text.

Table 2. Cell counts for spatial tuning properties of recorded neurons. Active above 

baseline refers to a significant modulation according to an ANOVA test (p < 10^-5) 

comparing baseline firing rates to firing rates in cue, memory, or saccade intervals.  

Significant spatial and interval dependency indicates significant dependence of firing 

rates (2-way ANOVA, p < 10^-3) on the task interval, the spatial location of the targets, 

and the interaction between these two factors.  All tests refer to data collected in memory 

saccade trials.
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Monkey S Monkey R Total

memory object both memory object both memory object both

Total recorded neurons 103 107 100 76 77 73 179 184 173

Task related modulation 71 77 55 42 44 29 113 121 84

Reward period activity 56 59 34 31 31 16 87 90 50

Post-saccadic bursts in > 30% of trials 32 27 18 18 21 12 50 48 30

Exclusive reward period activity 29 22 9 20 21 8 49 43 17

Response to no visual feedback control 16 (26) 6 (8) 22 (34)

Response to no reward control 10 (10) 1 (1) 11 (11)

Response to unexpected reward 2 (22) 0 (3) 2 (25)
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cue memory saccade

Monkey S

active above baseline 16 37 48

significant spatial and interval dependency 1 6 6

Monkey R

active above baseline 7 14 23

significant spatial and interval dependency 0 1 0


