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Selenium is an essential mineral naturally found in soil, water, and some of the food. As an antioxidant, it is one of the necessary
trace elements in human body and has been suggested as a dietary supplement for health benefit. Although the human body only
needs a trace amount of selenium every day, plenty of recent studies have revealed that selenium is indispensable for maintaining
normal functions of metabolism. In this study, we reviewed the antioxidant role of nutritional supplementation of selenium in the
management of major chronic metabolic disorders, including hyperlipidaemia, hyperglycaemia, and hyperphenylalaninemia.
Clinical significance of selenium deficiency in chronic metabolic diseases was elaborated, while clinical and experimental
observations of dietary supplementation of selenium in treating chronic metabolic diseases, such as diabetes, arteriosclerosis,
and phenylketonuria, were summarized. Toxicity and recommended dose of selenium were discussed. The mechanism of action
was also proposed via inspecting the interaction of molecular networks and predicting target protein such as xanthine
dehydrogenase in various diseases. Future direction in studying the role of selenium in metabolic disorders was also highlighted.
In conclusion, highlighting the beneficial role of selenium in this review would advance our knowledge of the dietary
management of chronic metabolic diseases.

1. Introduction

With its name derived from the Greek word “Selene,” sele-
nium has caught attention as a micronutrient since 1817,
when it was first described as a by-product from sulphuric
acid production. Although selenium is an essential element
which is naturally occurring in the body, its endogenous level
fluctuates across populations in different geographical areas,
as well as different age groups in the same area, indicating
that both environmental and internal factors may affect the
selenium level [1, 2]. Both organic and inorganic forms of
selenium can be absorbed by the small intestine and in turn
can be widely distributed in various body tissues and render
important biological functions, primarily through regulating
the synthesis of selenoproteins [3]. Human selenoproteins
are a series of 25 selenium-containing proteins whose synthe-
sis requires insertion of a selenium-containing homolog of
cysteine. The major role of multiple selenoproteins, such as
glutathione peroxidase (GPX), thioredoxin reductase (TrxR),
and iodothyronine deiodinases (IDD), is to act as important

intracellular antioxidants in preventing oxidative injury [4].
Therefore, the importance of selenium supplementation in
boosting up the internal antioxidative defence has been
highlighted in recent years.

It was not until 1957 that the therapeutic role of selenium
as a micronutrient was identified by Wrobel et al., who
observed that selenium supplementation at a low dose can
prevent a rat liver from necrosis [3]. Since then, mounting
studies have suggested the beneficial effects of selenium
supplementation in maintaining immune-endocrine func-
tion, metabolic cycling, and cellular homeostasis. In addition
to its essential physiological function, the potential of
selenium supplementation in remitting human pathological
conditions, especially chronic metabolic disorders, has been
frequently proposed. Wei et al. found that daily selenium
intake has a negative correlation with metabolic syndromes
[5]; however, the role of selenium supplementation as antiox-
idants in major metabolic syndromes, such as hyperlipidae-
mia and hyperglycaemia, has not yet been critically
reviewed. Here, we retrieved studies from PubMed database
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and systematically reviewed the biological activity and
underlying mechanism of selenium in various metabolic
diseases. Toxicity and recommended dose of selenium were
reviewed and discussed. In addition, as the molecular action
of selenium was less identified, we predicted and discussed
the potential interaction on gene networks and signalling
proteins upon selenium supplementation.

2. The Role of Selenium in
Treatment of Hyperlipidaemia

Hyperlipidaemia refers to a phenomenon of abnormal high
concentrations of lipid products and lipoproteins in the
blood. It could be primarily caused by the genetic and familial
factors, but in most of the cases, it is triggered by other
metabolic disorders. Secondary hyperlipidaemia is a kind of
metabolic abnormality involved in several chronic human
diseases, such as diabetes and obesity. Healthy young subjects
with higher dietary selenium intake (higher than 82.4μg/day)
showed lower level of sialic acid and triacylglycerol, and they
exhibited reduced inflammatory response and prevalence of
metabolic syndromes such as lipid profile impairment and
insulin resistance [6]. It was found that increased hair sele-
nium concentration in hyperlipidemic patients had adverse
association with their lipid profiles [7]. Karita et al. showed
that the selenium level in erythrocytes may be an indicative
factor of decreased total cholesterol (TC) and low-density
lipoprotein cholesterol (LDL-C) after menopause in Japanese
premenopausal and postmenopausal women [8]. This
indicated the beneficial effect of selenium intake in regulating
lipid metabolism. In contrast, another study found that
plasma selenium level was raised in preaging cases (aged
59–71) of lipemia [9].

In rats with hyperlipidaemia caused by diazinon, one
of the most organophosphate insecticides used in agricul-
ture and industry, selenium supplementation in the form
of sodium selenite (200μg/kg/d) could normalize the
serum thiobarbituric acid reactive substances (TBARS),
total lipids, cholesterol, urea, and creatinine, which may
be due to the induced antioxidant enzymes and glutathi-
one content [10]. Additionally, nicotine reduced the
intestinal intake of selenium and caused hyperlipidaemia
in rats. Selenium supplementation (1μg/kg/d) improved
the hyperlipidaemic condition, as evidenced by the
reduced expression of hydroxymethylglutaryl-CoA reduc-
tase (HMGCoA) and lipogenic enzymes [11]. In Triton
WR-1339-induced hyperlipidaemia, supplementation of
selenium in the form of diphenyl diselenide (10mg/kg)
increased the high-density lipoprotein cholesterol (HDL-
C) while reduced the non-HDL and triglyceride in the
serum of mice, indicating its hypolipidemic effect [12].
But another study suggested that this effect was indepen-
dent to its antioxidant property [13]. Furthermore, it was
found that hyperlipidaemia had a significant adverse effect
on male fertility, while supplementation of inorganic sele-
nium or selenium-enriched probiotics (equivalent to
0.05μg/g Se) was suggested to improve fertility in humans
and animals [14].

2.1. Arteriosclerosis. Kalkan et al. found that dyslipidemic
patients with glycogen storage disease type I and type III,
which did not lead to premature atherosclerosis, exhibited
lower plasma concentration of selenium compared with
healthy control [15]. Chan et al. found that selenium defi-
ciency may be associated with reduced arterial function in
patients, with higher potential of vascular incidents [16].
Supplementation of selenium in the form of selenium yeast
(0.1mg/kg) subsidized the cardiac enzymes, lipid peroxida-
tion, and inflammation, indicating that it can improve myo-
cardial performance by preventing oxidative damage [17].
Treatment of a formula containing selenium (10 ppm for 30
days) might modulate the lipid profile of hyperlipidaemic
rats, mainly reducing the level of TC, non-HDL-C, and
atherogenic index [13]. In contrast, another study in British
adults showed that higher level of selenium in serum indi-
cated an adverse cardiometabolic risk, with increased total
and non-HCL cholesterol [18].

Supplementation of selenium was also suggested when
antiatherogenic mode of nutrition was applied to patients,
according to a study of 800 persons, in which the results indi-
cated that sodium selenite treatment could give out a favour-
able outcome on the immune system [19]. Delattre and
colleagues showed that treatment of LDL apheresis might
be the direct cause of low plasma selenium in normocholes-
terolemic subjects [20]. This was further evidenced by the
observation that LDL apheresis treatment, which eliminated
cholesterol-containing LDL from bloodstream, could lower
plasma level of selenium but not the other antioxidants
including vitamin E and β-carotene [21]. However, an argu-
ment was raised on a long-term benefit of LDL apheresis
treatment in reducing atherogenic cholesterol oxidation
products (COP) in the plasma, and therefore acute drop of
selenium by the treatment seemed not meaningful [22].

2.2. Hypercholesterolemia. The significance of serum sele-
nium concentration was highlighted by the study from
Galicka-Latala and colleagues. The lipid peroxidation marker
malondialdehyde (MDA) had a negative correlation with
serum selenium level in both normo- (plasma total choles-
terol less than 5.2mmol/L) and hypercholesterolemic
(plasma total cholesterol greater than 5.2mmol/L) patients,
while the MDA, to be specific in low-density lipoprotein,
was negatively associated with selenium level in patients
diagnosed with hypercholesterolemia [23]. In an experimen-
tal model, deficiency of selenium in hypercholesterolemic
animal led to lower expression of hepatic LDL receptor and
HMG-CoA reductase but elevated apolipoprotein B (ApoB)
level, which can be subsidized by selenium resupplementa-
tion (1 ppm) [24–26]. In high-fat diet-fed rats, treatment of
selenite (0.173mg/kg/d via gavage for 10 weeks) could
suppress LDL-C in serum, triglyceride, and TC in the
liver, which was probably due to the reduced expression
of fatty acid synthase [27]. Kaur et al. found that supple-
mentation of selenium (1ppm) could diminish the high-
fat diet-induced ROS levels by 29% and suppress the
serum paraoxonase 1 but not platelet-activating factor
acetylhydrolase, indicating its potential in limiting the
complications of hypercholesterolemia [28]. Furthermore,
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selenium supplementation (1 ppm) could restore the reduced
T3 and T4 hormones in the serum of high-fat diet-fed rab-

bits, with improvement of type I iodothyronine 5′-deiodi-

nase (5′-DI) in the liver, indicating that selenium is capable
of regulating thyroid behaviours in hyperlipidaemic state
[29, 30]. Selenium supplementation (2.5mg/kg, i.p.) was also
found to improve dysregulated renal morphology caused by
hypercholesterolemia [31].

3. The Role of Selenium in
Treatment of Hyperglycaemia

A lot of studies have revealed that hyperglycaemic patients
exhibited selenium deficiency in the blood, though a study
in diabetic Germans showed that blood selenium level was
higher in patients with hyperglycaemia [32]. Compared
with some contradicting outcomes in the therapeutic effect
of selenium supplementation on type 2 diabetes mellitus, it
is quite a consensus that selenium is beneficial for patients
with type 1 diabetes mellitus as well as for treatment of
hyperglycaemia-related complications.

3.1. Type 1 Diabetes Mellitus. It was found that selenium was
distinctly decreased in the red blood cells of type 1 diabetic
patients and was negatively correlated with the elastic and
viscous component of whole blood viscosity, indicating the
selenium deficiency in red blood cells may be associated with
impaired haemorpheology of type 1 diabetic patients [33].
Another study showed that selenium level in erythrocyte
was lower in type I diabetic groups [34]. Sheng et al. treated
alloxan-induced diabetic mice with sodium selenite (via
gavage, 2mg/kg/d for 4 weeks) and found that selenite
reduced blood glucose and improved glutathione (GSH)
levels in the liver and brain of diabetic mice; nonetheless,
selenite treatment in normal mice surprisingly reduced
hepatic GSH level [35]. Using STZ-induced diabetic model,
Guney and colleagues found that combination of vitamin E
(60mg/kg/d) and sodium selenite (1mg/kg/d) treatment
decreased blood glucose level by inducing expression and
activities of several antioxidant enzymes, such as catalase,
superoxide dismutase, and GPX [36]. Similar antioxidant
treatment could also reverse the skin lipid peroxidation and
subsequent damage [37]. Furthermore, Satyanarayana et al.
found that half or single therapeutic dose of selenium (0.9
and 1.8μg/200 g, resp.) had hypoglycaemic effect in
alloxan-induced diabetic animal, while double dose of
selenium (3.6μg/200 g rat) increased blood glucose. Combi-
nation treatment of selenium improved the hypoglycaemic
effect of gliclazide in both normal and diabetic animals
[38]. Atalay et al. compared the effect of oral administration
of sodium selenate (0.3mg/kg/d) and doxycycline on STZ-
induced hyperglycaemic rats and concluded that selenate
can reduce blood glucose level without triggering significant
loss of body weight. Selenate preserved thioredoxin-1
(TRX-1) level in skeletal muscle but not in the liver, while
the protein carbonyl capacity and oxygen radical absorbance
capacity in the liver were suppressed. In addition, free and
total protein thiol levels were restored by selenate treatment
(0.3mg/kg, p.o.) in both the skeletal muscle and liver of

diabetic rats [39]. Bajpai et al. had similar conclusion about
the hypoglycaemic effect of sodium selenite, another
inorganic form of selenium in STZ-induced diabetic rats.
Treatment of selenite (10–30μg/ml for 14 days) can reduce
serum glucose and improve the wound closure of diabetic
mice by normalizing the low levels of vascular endothelial
growth factor (VEGF) and extracellular superoxide dismut-
ase. It also improved angiogenesis in the wound site of
diabetic rats [40]. Mechanistically, Chen et al. suggested that
selenium (1 ppm) might play an insulin-like role to normal-
ize the glucose metabolism and improve glucose uptake and
metabolism in the liver of alloxan-induced diabetic animals
[41]. Selenium supplementation (5 ppm/d for 4 weeks) could
restore glucagon-like peptide 1 receptor (GLP-1R) expres-
sion and suppress insulin receptor substrate-1 (IRS-1) and
Raf-1 in the liver, which may render hypoglycaemic effect
on STZ-induced diabetic rats [42]. In addition, Kahya et al.
showed that 1.5mg/kg/d of sodium selenite treatment can
improve brain and erythrocyte lipid peroxidation and plasma
IL-1β and IL-4 levels due to the restoration of antioxidant
status in STZ-induced diabetic rats [43]. Erbayraktar et al.
compared the hypoglycaemic effect of different forms of
selenium in STZ-induced diabetic rats and found that both
sodium selenate and selenomethionine (2μmol/kg/day via
orogastric route for 12 weeks) can suppress elevation of
blood glucose in diabetic mice. However, sodium selenate
seemed to have a stronger effect in inducing GPX activity
than selenomethionine [44]. Xu et al. examined the combina-
tion effect of low-dose insulin and selenium (180μg/kg/d) in
treatment of STZ-induced hyperglycaemia and found that
this combination could facilitate reduction of blood glucose
and lipid levels, with remarkable restoration of PI3K and
GLUT4 in cardiac muscle, which eventually improved myo-
cardial function [45]. Selenium supplementation (0.3mg/kg
Se) in the form of selenium-enriched Catathelasma ventrico-
sum mycelia can normalize serum glucose, insulin, and anti-
oxidant enzyme activity in STZ-induced diabetic mice and
suppress α-amylase and α-glucosidase activities in in vitro
gastric and intestinal models [46]. Supplementation of
sodium selenite (intraperitoneal injection of 0.3mg/d for
25 days) can increase vitamin E level in the liver and
plasma of STZ-induced diabetic animals. Treatment of
selenium can increase GPX activity and GSH concentra-
tion in the red blood cells and liver, which reduces TBARS
concentration [47].

3.2. Type II Diabetes Mellitus. Anderson et al. found that in
patients with type 2 diabetes the selenium level and antioxi-
dant status in plasma remained normal, though 30% of the
subjects may have Zn deficiency [48]. A clinical study
conducted by Stranges et al. showed that selenium uptake
(200 ug/d) had no significant beneficial effect to the incidence
of type 2 diabetes. Nonetheless, in the highest tertile of base-
line plasma selenium level, selenium statistically increased
the risk for type 2 diabetes occurrence (hazard ratio, 2.70
(CI, 1.30 to 5.61)) [49]. Another study revealed that inactiva-
tion of selenium-dependent enzymes by glycation might
eventually lead to oxidative stress in patients with type II
diabetes [50]. Study on growing rats with developing obesity
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and diabetes, from Mueller and colleagues, revealed that a
recommended dietary level or superanutritional level of
selenium uptake (1-2mg/kg in diet), in the forms of either
selenite or selenate in diets, increased the body weight of rats.
The expression of GPX1 in the liver was upregulated by
selenium supplementation, which then triggered overexpres-
sion of PTP1B and reduction of glutathionylation [51]. Wang
et al. reported that overexpression of GPX1 may deliver a
beneficial effect by changing pancreatic expressions of
PDX1 and UCP2 via elimination of ROS and hyperacetyla-
tion of H3 and H4 histone in islet. However, in long term,
it may lead to chronic hyperinsulinaemia by dysregulating
beta cell mass and pancreatic content [52]. Surprisingly,
Zhou et al. found that, instead of being an antioxidant,
selenium might foster lipid peroxidation and decrease
GSH/GSSG in the liver and promote ASK1/MKK4/JNK
oxidative stress pathway [53]. These observations revealed a
plausible mechanism underlying the action of selenium
supplementation on the development of obesity and diabetes
[51]. Furthermore, Faghihi et al. observed, in a clinical study
of type 2 diabetes patients, that selenium intake (200μg/d for
3 months) accelerated disease progression by increasing
fasting plasma glucose, glycosylated haemoglobin A1c, and
serum HDL-C level, indicating an unflavoured outcome of
selenium uptake in type 2 diabetes despite the restoration of
serum selenium level towards optimal concentration of anti-
oxidant activity [54]. In contrast, an experimental observation
in high-fat diet/STZ-induced type 2 diabetic rats showed that
supplementation of selenium (180–500μg/kg/d) can reduce
blood glucose, cholesterol, and triglyceride level and improve
antioxidant status and nitric oxide (NO) release [55].
Additionally, treatment of selenium-containing tea polysac-
charides (Se-GTP, 200–800mg/kg/d for 8 weeks) in high
fructose-induced resistant animals could significantly
improve hyperglycaemia and hyperinsulinemia and restore
antioxidant and hepatic lipid levels. However, this does not
prove the direct effect of selenium supplementation in
improving type 2 diabetic condition as no comparative study
has been made to understand the independent efficacy of tea
polysaccharides without selenium [56]. Similar concern was
raised by the research from Tanko et al., which showed
selenium-enriched yeast (0.1–0.2mg/kg/d via oral adminis-
tration for 6weeks) can improve cholesterol diet-induced type
2 diabetes mellitus in rats by reducing blood glucose and
increasing antioxidant activities, yet it could not rule out the
possibility of independent therapeutic effect of nonselenium
components in the yeast [57].

3.3. Gestational Diabetes. Al-Saleh et al. measured the serum
concentration of selenium in gestational diabetic patients,
and the results showed that plasma selenium was signifi-
cantly lower (102.3 versus 75.2 μg/L) [58]. Hawkes observed
that pregnant women at between 12 and 34 weeks of gesta-
tion had a lower level of serum selenium, which was inversely
correlated with increased fasting glucose, but not the insulin
level, suggesting that seleniummay affect glucose metabolism
independent to insulin [59]. Bo and colleagues found that
dietary intakes of selenium but not vitamins were signifi-
cantly lower in hyperglycaemic subjects; in particular, the

intake of selenium was negatively correlated with gestational
hyperglycaemia. Selenium level was particularly lower in
patients with impaired glucose tolerance [60]. However,
maternal intake of selenium (6.3/95μg/d, mean/maximum)
had neither positive nor negative correlation with the inci-
dence of advance beta cell autoimmunity in early childhood
[61]. Guney et al. applied a combination treatment of vitamin
E (60mg/kg/d) and sodium selenite (1mg/kg/d) onto dia-
betic pregnant rats and found that after 21 days of treatment,
the abnormal lipid peroxidation (LPO) level in rats was
significantly normalized, which may be related to the potent
increase of antioxidant enzymes [62]. Asemi et al. con-
ducted a RCT clinical study of selenium supplementation
in patients with gestational diabetes. The results indicated
that selenium (200μg/d for 6wk from weeks 24 to 28 of
gestation) could significantly reduce fasting plasma glucose,
serum insulin level, and insulin resistance. In addition,
selenium could reduce serum high-sensitivity C-reactive pro-
tein and increase GSH, resulting in reduction of plasma
MDA. However, there was no significant changes on β-cell
function, lipid profiles, plasma NO, or total antioxidant
capacity concentrations observed [63].

3.4. Hyperglycaemic Complications. The direct evidence of
antioxidant effects of selenium in STZ-induced diabetes was
obtained by Naziroglu and colleagues. Treatment of sodium
selenite (0.3mg/d for 21 days) improved vitamin E concen-
tration, reduced MDA level in the plasma, and suppressed
testicular lipid peroxidation, indicating that selenium supple-
mentation may reduce reactive oxygen substances and
improve testicular complications in diabetes [64]. Aliciguzel
et al. found that in diabetic rats fed with 10% sucrose follow-
ing alloxan injection, GPX activity was lower in the liver,
brain, kidney, and heart in both early and late stages of diabe-
tes [65]. Furthermore, Liu and colleagues found that supple-
mentation of selenium in the form of Se-polysaccharide from
Catathelasma ventricosum (100mg/kg/d) could also reduce
MDA and LDL-C in diabetic mice, which was associated with
the increased antioxidant enzymes in the liver and kidney.
These together with restoration of LDL-C rendered protec-
tive effect on the pancreas, liver, and kidney against peroxida-
tive damage [66]. In addition, nanoparticles of selenium
exhibited a beneficial effect (0.1mg/kg via oral administra-
tion for 28 days) in improving the testicular tissue condition
in STZ-induced diabetic rats. This was related to reduce lipid
peroxidation and NO with increased glutathione content and
antioxidant enzyme activities. Molecular studies showed
that mRNA level of Bcl-2 was upregulated in testicular
tissue of selenium nanoparticle-treated rats while Bax
was suppressed. Treatment of selenium nanoparticles
(0.1mg of SeNPs/kg) increased PCNA expression as well
as testicular function [67].

Faure et al. found that selenoprotein GPX activity in dia-
betic patients was lower than that in healthy subjects, which
was associated with thrombosis and cardiovascular complica-
tions [68]. In STZ-induced diabetic animals, Ayaz et al.
observed that sodium selenite treatment (i.p. 5μmol/kg/d
for 4 weeks) could prevent myofibril loss and reduce myocyte
size. Selenium supplementation (5μmol/kg/d) rendered
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remission on discus intercalaris and nucleus in the heart
and preserved myofilament and Z-lines [69]. Treatment
of sodium selenite (10μmol/kg/d for 3 weeks) corrected
adenosine-induced negative chronotropic effect in STZ-
induced diabetic animals, but selenium supplementation
had a minimal effect on carbachol-induced inotropic and
chronotropic responses in the left and right atria [70]. In
the aorta of STZ-induced diabetic rats, sodium selenate treat-
ment (0.3mg/kg/d for 4 weeks) can improve isoproterenol-
induced relaxation and contraction responses and preserve
the morphology of smooth muscle cells. This may be related
to the regulation onMMP-2 activity and protein loss in aorta,
as well as the inhibition of tissue nitrite and protein thiol
oxidation. Pathway study revealed that selenium supplemen-
tation might improve endothelin-1, PKC, and cAMP produc-
tion in the aorta [71]. Aydemir-Koksoy et al. found that
treatment of sodium selenite (0.3mg/kg/d) could prevent
depression in the left ventricular development pressure and
the rates of changes in developed pressure in STZ-induced
diabetic rats, and this effect was much greater than antioxi-
dant treatment using vitamin E combined with omega-3 fish
oil. The increase of myocardial oxidized protein sulfhydryl
and nitrite concentration in the heart of diabetic rats was
normalized by selenium supplementation [72]. Mechanism
study revealed that myocardial MMP-2 and TIMP-4 were
normalized, and selenite treatment increased expression of
Tnl and α-actin in the heart of diabetic mice [73]. Liu et al.
also revealed that high glucose-induced cardiomyocyte
apoptosis could be attenuated by selenium supplementation
through regulating TLR-4/MyD-99 signalling pathway and
ROS formation [74]. Inhibition of NF-κB-mediated proin-
flammatory cytokine transcription and suppression of leuko-
triene pathway by sodium selenite treatment also contributed
to the protective effect of selenium against diabetic cardiac
hypertrophy [75]. Ng et al. observed that a water-soluble
selenium-containing sugar rendered antioxidant activity in
the aortae and prevented hyperglycaemia-induced endothe-
lial dysfunction through reducing superoxide levels, as well
as improving basal NO availability and vasoconstrictor
prostanoids [76]. Combination of selenium with low-dose
insulin can restore PI3K-mediated GLUT4 in cardiac muscle,
which reduced damage and dysfunction of myocardial cells
in STZ-induced diabetic rats [45].

Kornhauser et al. observed that, in type 2 diabetic
patients, plasma selenium level was reduced. Serum concen-
tration of GPX was significantly lower in diabetic patients
with microalbuminuria than in those without nephropathy.
Notably, microalbuminuria was negatively correlated with
plasma level of selenium and GPX in patients with type 2
diabetes [77]. The role of selenium in diabetic nephropathy
was evident by the observation that animal fed with
selenium-deficient diet developed albuminuria and glomeru-
lar sclerosis as well as increased expression of TGF-β1
mRNA. Supplementation of selenium (0.27mg/kg Se in diet)
in the form of sodium selenite in diabetic rats improved glo-
merular sclerosis and tubulointerstitium [78]. Roy et al.
observed that sodium selenate treatment (16μmol/kg) could
improve serum creatinine, urea, and albumin levels, as well as
the renal antioxidant enzyme activities, such as superoxide

dismutase (SOD), catalase, and GSH in STZ-induced diabetic
rats. Selenate treatment could reduce lipid peroxidation and
TGF-β1 in the diabetic rat kidney and improve cellular archi-
tecture of the kidney. This may lead to reduce apoptotic renal
cells in diabetic mice [79]. In contrast, study from Bas et al.
found that sodium selenite treatment (1mg/kg for 28 days)
had a minimal effect on diabetes-mediated toxicity in kidneys
through improving lead nitrate-induced nephrotoxicity in
nondiabetic animals [80].

Intraperitoneal injection of sodium selenite (5μmol/kg/
day) for 4 weeks did not significantly improve high blood
glucose and body weight loss in diabetic animals, but seemed
to improve diabetes-induced structural alterations in the
mandible [81]. Ozdemir et al. observed in STZ-induced
diabetes that intraperitoneal injection of 5μmol/kg/d for 4
weeks could prevent deterioration of structural and ultra-
structural changes in the long bones of diabetic rats [82].

In type 1 diabetic rats induced by STZ injection,
treatment of sodium selenite (5μg/kg/d, intraperitoneal
injection for 4 weeks) could significantly improve liver anti-
oxidant enzymes in diabetic rats. The ultrastructure of the
liver tissue, including variation in staining quality of hepato-
cyte nuclei, density, and eosinophilia of the cytoplasm, focal
sinusoidal dilatation and congestion, and number of abnor-
mal mitochondria, was normalized by sodium selenite
treatment [83]. Intraperitoneal injection of sodium selenite
(1.5mg/kg/d for 4 weeks) could improve the liver function
of STZ-induced diabetic animals and increase the hepatic
expression of superoxide dismutase, reduce glutathione, lac-
tate dehydrogenase, pyruvate kinase, and hexokinase, which
rendered inhibition to NO, MDA, and phosphoenolpyruvate
carboxykinase (PEPCK) in the liver [84]. Supplementation of
selenium in the form of sodium selenite (1 ppm in drinking
water) reduced aspartate aminotransferase (AST), alanine
aminotransferase (ALT), and alkaline phosphatase (ALP) in
diabetic rats, with a significant improvement in serum
antioxidant enzymes and reduction of GSH level. Improve-
ment of hepatic lipid accumulation and centrilobular
hepatocyte degeneration was also observed [85]. In addition,
treatment of sodium selenite (0.5mg/kg/d for 4 weeks) could
significantly reduce aldehyde oxidase and xanthine oxidase
activities in the liver, but not in the kidney or heart, which
might be associated with improvement of total antioxidant
status after selenium supplementation [86].

4. The Role of Selenium in
Treatment of Hyperphenylalaninemia

Phenylketonuria (PKU) is a born error in amino acid
metabolism which leads to mildly or strongly elevated
concentrations of the amino acid phenylalanine in the blood.
PKU is the major cause of hyperphenylalaninemia. Studies
have supported that in patients with PKU, the antioxidant
defence in plasma and erythrocytes was decreased, which
can be due to the secondary deprivation of micronutrients
[87]. An observation from 156 patients with hyperphenylala-
ninemia showed that selenium was diminished in 25% of the
subjects, 95% of which exhibited phenylketonuric phenotype
[88]. The reason of low plasma selenium could be diet

5Oxidative Medicine and Cellular Longevity



related, as PKU patients are often required to take natural
protein and phenylalanine-restricted diet, which brings risk
of low selenium intake [89]. Plasma level of selenium was
significantly lower in patients with phenylketonuria or
milder hyperphenylalaninemia, consistent with low total
antioxidant status. The plasma selenium was correlated with
erythrocyte GPX activity, which was lower in phenylketon-
uria, but inversely associated with free triiodothyronine and
thyroxine [90, 91]. In contrast, Artuch and colleagues
showed that plasma selenium concentration in patients with
phenylketonuria had no different change compared with the
healthy population [92]. In maternal Czech women with
hyperphenylalaninemia, reduction of serum and urinary
selenium level was observed [93]. Selenium deficiency led to
defective GPX activities and consequently an increased level
of MDA and organic hydroperoxides in the serum [94].
Further study showed that selenium deficiency in phenylke-
tonuria might be the aetiology of dysrhythmia and cardiac
dysfunction [95, 96]. Selenium deficiency in phenylketonuria
might cause reduced response to OKT3mitogenesis via T-cell
antigen receptor complex (TCR/CD3) [97]. Gassio et al.
reported a consistent observation of low-serum selenium
level in patients with phenylketonuria and found that
selenium concentration was associated with worsen Conners’
Continuous Performance Test measures (more omission
errors, fluctuating attention and inconsistency of response
times, and slowing reaction time as the test progressed)
[98]. However, another study showed that the neuropsycho-
logical disturbance in phenylketonuria patients might be
independent to selenium level, as plasma selenium seems to
be normal in patients, while patients with lower selenium
GPX had more severe neuropsychological disturbances [99].

The decreased level of serum selenium in phenylketon-
uric patients did not improve by dietotherapy [100, 101]. A
study in Czech patients with phenylketonuria and hyperphe-
nylalaninemia showed that controlled diet with low protein
may cause serum selenium deficiency in adults, while preal-
bumin, zinc, and iron remained unchanged [102]. Consistent
observation was found in another 12-year study on selenium
status in 78 phenylketonuric children (aged 1–16) [103].
In patients with phenylalanine-restricted diet, intake of
sodium selenite (115μg/d) for 3 months could increase
selenium level in plasma and blood cells and improve
plasma GPX activity and left ventricular cardiac index, which
led to decrease of thyroxin, free thyroxin, reverse triiodthyr-
onin, TC, mean erythrocyte and thrombocyte volume,
and lymphocytic CD2 expressions [104]. In patients with
phenylalanine-restricted diet, selenium supplementation
(1μg/kg/d for 3 weeks) could reduce both concentrations of
prohormone thyroxine (T4) and metabolic inactive reverse
triiodothyronine (rT3), which could be probably due to the

increase in activity of type I 5′-deiodinase [105, 106].
A pilot observation on 5 patients was conducted by

Lombeck and colleagues, who showed that supplementation
of selenium (45μg/d) could render a normal selenium level
in blood of phenylketonuric patients after a 4-week treat-
ment, though GPX activity was only partially normalized
[107]. However, Zachara et al. found that GPX activity in
red blood cells of patients with phenylketonuria well

indicated the functional restoration of selenium supplementa-
tion [108]. A possible mechanism underlying this discrepancy
may be understood from the observation that selenium
supplementation (0.13mmol/kg/day) could only result in a
short-term (within 10 days) but not long-term increase of
plasma selenium level [109]. Using a special formula contain-
ing 31.5μg/d selenium and 98mg/d L-carnitine reduced lipid
peroxidation and protein oxidative damage and improved
GPX activity in phenylketonuric patients, indicating that
selenium supplementation was important for the amelioration
of neurological symptoms of phenylketonuria via regulating
oxidative stress pathways [110]. Alves observed in a clinical
study of phenylketonuric children that selenium supplementa-
tion could significantly increase serum selenium and GPX in
erythrocytes, which in turn reduced serum concentration of
free thyroxin and improved patient conditions [111].

5. Discussion and Conclusion

5.1. Toxicity of Selenium. Although the reviewed studies and
some other ongoing investigations have been providing
mounting evidence on the beneficial role of selenium in both
healthy people and patients, it is necessary to pay attention to
its toxicity which is probably due to overdose of daily intake
from food and water. As selenium can be accumulated
through the food chain, selenium contamination, especially
in the aquatic environment, can lead to enrichment of sele-
nium speciation, such as Se(IV), Se(VI), and selenomethio-
nine in plants and fishes [112]. These selenium species may
cause direct toxicity [113], which may be related to the induc-
tion of ROS-associated oxidative stress [114]. What is more,
aquatic organisms exposed under high-dose selenium are tak-
ing a risk of organ damage and genome mutation [115, 116],
making them susceptible in safety as human food. In this case,
environmental selenium accumulation may bring primary
risk (for selenium enrichment) and secondary risk (from
unknown mutation-borne food toxicity) to the human body,
and this yielded attempt to set up criteria for allowable sele-
nium level in aquatic system by different organizations
(Table 1, adopted from review by Sharma et al. [117]).

Chronic exposureof environment seleniumhasbeendem-
onstrated to be a high risk factor of health in human popula-
tion. Selenium overdose in humans may develop selenosis
[118, 119], thoughquite rare, and is possible to cause amyotro-
phic lateral sclerosis [120] regardless of races and ethnicities
[121–123]. Mechanistically, cellular exposure of high-dose
selenium can cause elevation of intracellular ROS, which is
considered as the main mediator of selenium-induced
cell toxicity [124]. Though selenium is overall regarded
as an essential factor of antioxidant enzyme production,
chemically, it is capable to react and form intramolecular
disulfide bond (S-Se) with essential thiol groups, or cyste-
ine resides in the substrates [125] and indirectly generates
ROS. The increasing oxidizing cellular environment may
then cause DNA damage and genome instability, leading
to initiation of cell apoptosis [126, 127]. The oxidative
stress-involving selenium toxicity might therefore lead to
impaired immune function, cytotoxicity, genotoxicity, and
carcinogenesis [128–130]. Overdose of selenium can be
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lethal; as shown in rats, the LD50 values were 7, 138, and
6700mg Se/kg.bw for selenite, selenium sulphide, and ele-
mental Se, respectively [131]. In humans, daily intake of
selenium at 4.9mg/person/day was considered toxic in
Chinese and Indian populations [4, 132, 133]. The issue of
dose of intake shall be therefore taken into serious account
when using selenium as a nutritional or therapeutic agent.

5.2. Dose Recommendation for Selenium Intake. Given the
double-sword nature of selenium intake, the daily dose of
intake is quite a critical issue for selenium as either nutri-
tional supplements or therapeutics. In spite of the official
guideline for the use of selenium as beneficial supplements
in patients is not yet developed, a lot of efforts have been
made to specify the selenium intake in a healthy population.
The World Health Organization (WHO) has made recom-
mendation on the dose of selenium for adults to be 30 to
40μg/day and stated that daily intake up to 400μg selenium
shall be considered safe [134]. Recommended dose of
selenium varies in different countries in consideration of
differences in geographical and racial natures as well as
in living styles of particular populations. Table 2 summa-
rized recommendations on daily dose of selenium from
official and/or nonofficial organizations in various regions,
which was adopted from a recent review by Kieliszek and
Blazejak [134]. Optimal dose of selenium intake in
patients with metabolic diseases is difficult to estimate,
but from several studies we retrieved in this review, it
seems that daily supplementation of 31.5–200μg Se is
beneficial. There are not much literature for reference,
since the limited amount of studies with inconsistent data
quality, though most of these studies indicated patients
with metabolic disorders, might need to take higher dose
of selenium than the healthy population (82.4–200μg).

5.3. Proposed Mechanism of Action.Metabolic disorders are a
series of diseases resulting from breakdown of internal
homeostasis of the human body, which involves an infinite
cycle of energy synthesis and waste production. Major
metabolic dysregulation including hyperglycaemia, hyperlip-
idaemia, and hyperphenylalaninemia causes illness in
multiple organs including the livers, kidney, and heart, lead-
ing to a series of diseases such as obesity, diabetes, phenylke-
tonuria, and atherosclerosis. To further understand the
molecular function of selenium, we retrieved genes related
to multiple disorders (Table S1). Hyperphenylalaninemia
seems to be caused by independent mechanism, while

hyperglycaemia and hyperlipidaemia share a series of related
genes (Figure 1, Table S2). By searching stitch 4.0 and
STRING database, we found that selenium interacts with a
series of selenoproteins, which secondarily interact with a
series of proteins (Table S3). Particularly, it was noticed that
xanthine dehydrogenase (XDH) is the interacting protein
that connects the pathogenesis with molecular action of
selenium. As superoxide-producing enzyme XDH and its
converted form xanthine oxidase (XO) have been found
increased in metabolic diseases [135, 136]. Although there
has not been direct evidence showing that selenium treat-
ment suppresses XDH and XO, a previous study showing
the inverse correlation between selenium-associated GPX
enzyme level with XDH level in diabetic rats [65] sug-
gested that selenium may be related to the activity of
xanthine metabolism. Future original study may focus on
the role of XDH/XO system in the therapeutic role of
selenium in metabolic disorders via GPX system.

5.4. Future Direction. Selenium has been proposed to be
beneficial supplements for human health. Although high
dose of selenium can definitely cause toxicity, the rational
intake of selenium shall be safe and useful to not only healthy
population but also patients with metabolic diseases. Efforts
have been made to understand the action of selenium in
metabolic diseases, and more clinical-relevant studies in the
future are highly expected. The dose and form of selenium
given to metabolic patients shall be standardised by official
guidelines. Efficacy and safety of selenium supplementation
in improving metabolic disorders shall be proven by long-
term follow-up in patients. In addition, the mechanism
underlying the action of selenium, which may be dependent

Table 1: Allowable Se level in aquatic systems∗

Organization Criteria

United States Environmental Protection
Agency

Se(IV)≤ 257 μg/L; Se(VI)≤ 417 μg/L

The French Institute of Industrial
Environment and Risks

0.88μg/L as probable no effect concentration (PNEC) for direct chronic effect; 0.97μg/L as no
observable effect concentration

British Columbia PNEC= 2μg/L for freshwaters and marine environment

Environment Canada PNEC= 1μg/L for freshwaters

∗Adopted from a review by Sharma et al. [117].

Table 2: Recommendations on daily dose of selenium∗

Counties/regions Recommendations

Czech Republic 10–25μg/day

China 7–4990μg/day

Venezuela 200–350μg/day

Poland 30–40μg/day

Austria 48 μg/day

Great Britain 34 μg/day

USA 40–70μg/day for men; 45–55μg/day for women

∗Adopted from a recent review by Kieliszek and Blazejak [134].
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or independent to internal antioxidant defence system, shall
be studied by more experimental investigations.

In conclusion, we systemically reviewed the role of
selenium as an antioxidant in various metabolic disorders.
Selenium deficiency is observed in multiple metabolic
diseases, including hyperglycaemia, hyperlipidaemia, and
hyperphenylalaninemia. Supplementation of selenium may
improve atherosclerosis, hypercholesterolemia, type 1 diabe-
tes mellitus, and phenylketonuria, but its action remains
controversial for type 2 diabetes mellitus. While regulation
of hyperphenylalaninemia may go through an independent
mechanism, hyperglycaemia and hyperlipidaemia may have
shared mechanisms with a series of common genes involved.
Toxicity of selenium was highlighted, and the window of sele-
niumbetweenbeneficial and toxicdoses shall bepaid attention
to recommend a proper dose of administration. The antioxi-
dant role of selenium inmetabolic diseasesmay be highlighted
with the prediction that selenium-related proteins may inter-
act with xanthine metabolism and superoxide-producing
enzymes in metabolic diseases. Our study indicates the thera-
peutic potential of selenium supplementation as an antioxi-
dant in the treatment of metabolic disorders.
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