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Abstract

Billions of dollars are being allocated for influenza pandemic preparedness, and vaccination is a
primary weapon for fighting influenza outbreaks. The influenza vaccine supply chain has characteristics
thatresemble the news vendor problem, but possesses several characteristics that distinguish it from typical
supply chains. Differences include a nonlinear value of sales (caused by the nonlinear health benefits of
vaccination due to infection dynamics) and vaccine production yield issues. We show that production
risks, taken currently by the vaccine manufacturer, lead to insufficient supply of vaccine. Unfortunately,
several supply contracts that coordinate buyer (governmental public health service) and supplier (vaccine
manufacturer) incentives in industrial supply chains can not fully coordinate the influenza vaccine supply
chain. We design a variant of the cost sharing contract and show that it provides incentives to both parties
so that the supply chain achieves global optimization and hence gurantees sufficient supply of vaccine.
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1 Influenza: Overview, Control and Operational Challenges

Influenza is an acute respiratory iliness that spreads rapidly in seasonal epidemics. Globally, annual influenza
outbreaks result in 250,000 to 500,000 deaths. The World Health Organization reports that costs in terms of
health care, lost days of work and education, and social disruption have been estimated to vary between $1
million and $6 million per 100,000 inhabitants yearly in industrialized countries. A moderate, new influenza
pandemic could increase those losses by an order of magniid©{2005).

This paper provides background about influenza and vaccination, a key tool for controlling influenza
outbreaks, then highlights some operational challenges for delivering those vaccines. One challenge is the
design of contracts to coordinate the incentives of actors in a supply chain that crosses the boundary between

the public sector (health care service systems) and private sector (vaccine manufacturers).

Some experts suggest the U.S. government should promise to purchase a fixed amount of flu
vaccine—despite the cost and the likelihood that some of the money would end up being wasted.
Canada, for instance, has contracts with vaccine makers to cover most of its population. ...That
takes much of the risk out of the company’s business, but still lets it manufacture additional
doses for the private market...(W88ysocki and Lueck2006)

| recently met with leaders of the vaccine industry. They assured me that they will work with
the federal government to expand the vaccine industry, so that our country is better prepared for
any pandemic. ... I'm requesting a total of $7.1 billion in emergency funding from the United
States Congress...(George 'Bush 2005

We then present a model of a government’s decision of purchase quantities of vaccines, which balances
the public health benefits of vaccination and the cost of procuring and administering those vaccines, and a
manufacturer’s choice of production volume. We characterize the optimal decisions of each in both selfish
and system-oriented play, then assess whether several contracts can align their incentives. Due to special
features of the influenza value chain, wholesale price and pay back contracts are shown to be unable to fully
coordinate decisions. We conclude by demonstrating a variation of a cost sharing contract that can coordinate

concerns for both public health outcomes and production economics.
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1.1 Influenza and Influenza Transmission

Influenza is characterized by fever, chills, cough, sore throat, headache, muscle aches and loss of appetite.
It is most often a mild viral infection transmitted by respiratory secretions through sneezing or coughing.
Complications of influenza include pneumonia due to secondary bacterial infection, which is more common
in children and the elderly (e.g., sb#p://www.cdc.gov/flu , orJaneway et aR2007).

The various strains of influenza experience slight mutations in their genome through time (antigenic
drift). This allows for annual outbreaks, as previously acquired adaptive immunity may not cover emerging
strains. Every few decades, a highly virulent strain may emerge that causes a global pandemic with high
mortality rates. This may be caused by a larger genomic mutation (antigenic shift).

The three pandemics that occurred in the twentieth century came from strains of avian flu. The “Spanish
flu” (HIN1) of 1918 killed 20—40 million people worldwid®\(HO, 2005, far more than died in World War
I. Milder pandemics occurred in 1957 (H2N2) and 1968 (H3N2). The H5N1 virus is the most likely potential

culprit for a future pandemichgtp://www.who.int/csr/disease/influenza/ ).

1.2 Vaccination as a Control Tool

Vaccines can reduce the risk of infection to exposed individuals that are susceptible to infection, and can
reduce the probability of transmission from a vaccinated individual that is infected with influemagiri
et al, 11978 'Smith et al, 1984 [Longini et al, 200Q [Chick et al, 2883). Vaccines therefore act on the
basic reproduction numbeR, the mean number of new infections from a single infected in an otherwise
susceptible populatioDietz, [1993. If Ry can be reduced below 1, then the dynamics of a large outbreak
can be averted. Let? be the so-called critical vaccination fraction, the minimum fraction of the population
to vaccinate to reduce the reproduction number tHill &nd Longini, 2003).

Vaccination is seen as a principal means of preventing influenza. Although vaccination policies may vary

from country to country, particular attention is typically those those aged 65 or more, health care workers, and

p. 2


http://www.cdc.gov/flu�
http://www.who.int/csr/disease/influenza/�

with antiviral therapy.
Vaccination is cost effectivéNichol et al.(1994) found that immunization in the elderly saved $117 per
person in medical cost¥Veycker et al(2005 argue for the systematic vaccination of children, not only the

elderly, as a means to obtain a significant population-wide benefit for vaccination.

1.3 Operational Challenges in the Influenza Vaccine Supply Chain

Gerdil(2003) overviews the highly challenging and time-constrained vaccine production and delivery process.
We focus on the predominant method, inactivated virus vaccine production. For the northern hemisphere,
the WHO analyzes global surveillance data and in February announces the selection of three virus strains for
the fall vaccination program. Samples of the strains are provided to manufacturers. High-volume production
of vaccine for each of the three strains then proceeds separately. Production takes place in eleven day old
embryonated eggs, so the number of eggs needed must be anticipated well in advance of the production
cycle. Blending and clinical trials begin in May-June. Filling and packaging occur in July and August.
Governmental certification may be required at various steps for different countries. Shipping occurs in
September for vaccination in October-November. Immunity is conferred two weeks after vaccination. The
southern hemisphere uses a separate 6-month cycle. Within two 6-month production cycles, almost 250
million doses are delivered to over 100 countries per year. Figprevides a graphic summaraluzzo
and Lacroix-Gerdi(2006) provide additional information, particularly with respect to avian flu preparedness.

There are several key operational challenges that are presented by the influenza vaccine value chain.

A challenge at the start of the value chain is antigenic drift, which requires that influenza vaccines be
reformulated each year. Influenza vaccines are one-time news-vendor products, as opposed to all other
vaccines, which closely resemble (perishable) EOQ-type products. Not only are production volumes hard to

predict, but the selection of the target strains is a challeeet al.(2005 develop an optimization model
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Figure 1:Influenza vaccine time line.

of antigenic changes. Their results suggest that the current selection policy is reasonably effective. They
also identify heuristic policies that may improve the selection process.

Another challenge occurs toward the end of the value chain, after vaccines are produced. That involves
the allocation of vaccines to various subpopulations, and the logistics of transhipment to insure appropriate
delivery. Hill and Longini (2003 describe a mathematical model to optimally allocate vaccines to several
supbopulations with potentially heterogeneously mixing individudfsycker et al(2005 use a different,
stochastic simulation model to illustrate the benefits of vaccinating certain subpopulations (children). Those
articles do not discuss the logistics of deliveYadav and Williamg2005) propose an information clearing-
house for vaccine supply and demand to provide a market overview and help to eliminate order gaming and
price gouging, as well as demand forecasting tools, and regional vaccine redistribution pools to shift supplies
from areas with surpluses to areas experiencing shortages.

This paper is concerned with a challenge in the middle of the value chain: the design of contracts that
align manufacturer choices for production volume and the need for profitability, and governmental choices
that balance the costs and public health benefits of vaccination programs. Special characteristics of the
influenza vaccine supply chain that differentiate it from many other supply chains include a nonlinear value

of a sale (the value of averting an infection by vaccination depends upon nonlinear infection dynamics), and
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a dependence of production yields on the virus strains selected for the vaccine.

Current production technology for inactivated virus vaccines, market forces, and business practices also
combine to limit the ability to stockpile vaccines, limit production capacity, and slow the ability to respond to
outbreaks. Governmental and industry partnerships may help to improve responsiéere 2004 Bush
2005 Wysocki and Lueck200€). The ideal way to structure those partnerships is an open question. This
paper addresses one dimension of that multi-faceted question.

Section2 presents a model to assess contractual mechanisms that align manufacturer risks and incentives
with governmental health care policy objectives for influenza vaccination. S&:taod Sectioi® analyze
the model. A variant of the cost sharing contract, which we show can align incentives for public health
benefits and production costs, also increases production volumes. Increased production volumes for annual
vaccination are consistent with the recommendations of the Pandemic Influenza Platuds tizept. of

Health and Human Servic€2005. Sectiors discusses implications and limitations of the analysis.

2 Joint Epidemic and Supply Chain Model

The work here unites two previously separate streams of literature. The epidemic literature provides epi-
demic models and cost benefit analysis for interventions such as vaccinktanuéz1996 Diekmann and
Heesterbeek200q Hill and Longini, 2003, but does not address logistical and manufacturing concerns.
The supply chain literature addresses logistical and manufacturing concerns in general, but does not address
the special characteristics of the influenza vaccine supply chain highlighted above.

We use simplified epidemic and supply chain models to focus on contractual issues between a single
government and a single manufacturer. The single governmentis intended to represent centralized aggregate
planning decisions for vaccination policy. The government initially announces a frgatife population of
N individuals to vaccinate. Given the demand by the government, the manufacturer then decides how much

to produce. Production volume decisions are indexed by the number ofgggscritical factor in influenza
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vaccine production. Production costs agger egg. The actual amount producegd/[/, is a random variable

that is indexed by a yield/. We assume that the yield has a continuous probability density function
fu(u) with meany and variance. This assumption means that the yield is affected by the specific strain
of the virus, and may vary from year to year, more so than from one statistically independent batch to the
next within a given production campaign.

The manufacturer then sells whatever vaccine is produced, up to the amount initially requested by the
government (a maximum aV fd doses, wheréV is the population size, andlis the number of doses per
individual). Unmet demand is lost, and excess vaccines are discarded (due to antigenic shift).

When acting separately, the government seeks to minimize the variable cost of propuriangd ad-
ministering,p,, each dose, plus the total social cost of the outbr&Bkf), whereT'( f) is the total number
of infected individuals by the end of the outbreak, &nd the average direct and indirect cost of influenza
infection per outbrealWeycker et al.2005 provides estimates of such costs). Deffrte be the maximum
fraction of the population for which the net benefit of administering more vaccine is positive, and fiefine

similarly with respect to both vaccine procurement and administration costs,

s
I

sup{f : bT'(f) + poNd < 0, for f such thatl”(f) exists (1)

i
1

sup{f : ¥T'(f) + (pa + pr)Nd < 0, for f such thatl”(f) existg. (2)

The epidemic model determines the number of individu&lsf), that are infected by the end of the
outbreak. While vaccine effects and health outcomes may vary by subpopulation, and vaccination programs
can take advantage of that favéycker et al.2005), we simplify the model in order to focus on contract
issues for production volume, rather than including details about optimal allocation of a given volume. We use
a deterministic compartmental modelfhomogeneous and randomly mixing individudlsdkmann and
Heesterbegl000), of which a fractionS of the population is initially Susceptible. A fractidpis Infected

and infectious (an initial seeding due to exposure from exogenous sources). After recovery, individuals are
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Table 1:Summary of Notation.
Supply Chain
ng  Number of eggs input into vaccine production by the manufacturer
U  Random variable for the yield per egg, with pdfff(«), meanu, and variance?
d Doses of vaccine needed per person
c Unit cost of production for manufacturer, per egg input
pr  Revenue to the manufacturer from government, per dose of vaccine
pe  Cost per dose for government to administer vaccine
b Average total social cost per infected individual (direct + indirect costs)
Z Number of doses sold from manufacturer to government
W Number of doses administered by government to susceptible population
Outbreak
N  Total number of people in the population
Ry Basic reproduction number, or expected number of secondary infections caused by one
infected in an otherwise susceptible, unvaccinated population
fraction of the population to vaccinate announced by government to manufacturer
) Total number infected during the infection season, a function of the fraction vaccinated
The initial fraction of infected people introduced to the population
The initial fraction of susceptible people in the population
Vaccine effects on transmission, including susceptibility and infectiousness effects
Linear approximation to number of direct and indirect infections averted by a vaccination
The critical vaccination fraction (fraction of population to vaccinate to halt outbreak)
The maximum fraction for which (free) vaccine can be cost-effectively administered
The maximum fraction for which vaccine can be cost-effectively procured and administered
Relates vaccination fractions and vaccine production inmﬁs,fn—]\g

TR e e RS-

Removed and no longer infectious. This so-called SIR epidemic model is consistent with the natural history
of infection of influenza. Tabl& summarizes the notation.

We assume that vaccination removes some fragtiofindividuals from the pool of susceptibles, where
¢ is interpreted as a combination of vaccine effectsSglf= 1 — Iy — ¢f, thenT'(f) = Np, where the

so-called attack rate (Longini et al, 1978 satisfies

I
p="So(1+g —e ). (3)

The critical vaccination fraction ig® = (Ry — 1)/(Ro¢) whenRy > 1 (Hill and Longini, 2003.
Rather than deriving results via such an implicit characterization from the epidemic model, we derive
results for a nonincreasirg(f) > 0 with specific general characteristics. AppenBixlescribes why it is

reasonable to consider two functional forms: a piecewise lih€gy, or a strictly conveX’(f). This removes
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the details of an implicit solution for an epidemic model from the supply chain analysis. S@8dtardles
the piecewise linear case. Sectidiandles the convex case. Any further characteristics of the epidemic

model that are needed below are compatible Wihgini et al.(1978), specialized to one subpopulation.

2.1 Game setting

The epidemic and supply chain models above define a sequential game. The government announces a fraction
f of the population for which it will purchase vaccines. The manufacturer then decides on a production
guantity, indexed byt z, in order to maximize expected profits (minimize expected costs), subject to potential

yield losses and market capacity constraints. maaufacturer problem is:

min MF =E[eng —p,Z] (net manufacturer costs)

ng

s.t. Z =min{ngU, fNd} (doses sol& yield and demand) 4)

ng >0 (nonnegative production volume)

So that the optimal production level is not zeng, > 0, we assume:
Assumption 1 The expected revenue exceeds the cost pepeggs ¢, So vaccines can be profitable.

Given that assumption, we characterize the optimal production quantity.

Proposition 1 For any random egg vyield/, with pdf fi;(u), and given the order quantitp = fNd by

government, the optimal production level for the manufacturer is

fNd
/nE ufy(u)du = ‘. (5)
0 Pr

Claims that are not justified in the main text are proven in Appe#lix

A useful corollary follows directly.

Corollary 1 If ¢, p,, fu(u), N andd are held constant, then the relationship between the fraction of people
to be vaccinatedf, and optimum production levetg, is linear. That is, there is a fixed constaht, such

thatk®np = fNd.
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Thegovernment problemis to select a fractiorf that indexes demand, knowing that the manufacturer
will behave optimally, as ird), and may deliver less, in expectation, than what is ordered due to yield losses.
The government may order some excess (gvenf), in order to account for potential yield losses. In this
base model, we assume that the government purchases up to the amount it announced, but will administer

only those doses that have a nonnegative cost-health benefit.

mfin GF =E[bT(35) + poW +p-Z ] (net government costs)

s.t. Z =min{ngU, fNd} (doses bought yield and demand)
W = min{ngU, fNd, fNd} (doses giver< doses bought, cost effective level) -
Ow wfy(u)du = p% (manufacturer acts optimally)
0<f<1 (fraction of population)
ng >0 (nonnegative production volume)

Such a two-actor game has a Nash equilibrilNagh 19517), which we identify below.

2.2 System setting

The system setting assesses whether the manufacturer and government can collaborate via procurement
contracts to reduce the sum of their expected financial and health costs, to a level that is below the sum of
those costs if each player acts individually as in Se@idn System costs do not include monetary transfers

from government to manufacturer. Formally, #ystem problemis

min SF = E [bT(15) +p.W + cng] (total system costs)

fine
s.t. W =min{ngU, fNd, fNd} (doses giverx yield, demand, cost effective level)
0<f<1 (fraction of population)
ng >0 (nonnegative production volume).

This formulation does not explicitly link andn g together, since we seek system optimal behavior rather

than local profit-maximizing behavior.
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3 Piecewise Linear Number of Infected

Figure2 plots the attack rate, which is directly proportional to the total number infecté&dy ), as a function
of the fraction of initially exposed individualdy and reasonable values &% for influenza transmission
(Gani et al,2005. If there are few that are initially infected due to exogenous exposure (&val), then

AppendixBljustifies the following piecewise linear approximation foff).

M—Nyf, 0<f<f0
T(f) = (8)

0, fo<r<a,

wherey is interpreted here as the marginal number of infections averted per additional vaccination.

0.8 0.9

T T T T
— lo=0 — l0=0

— lo=0.005 — lo=0.005
07k~ - - lo=0.01 | 081\ - - 1lo=0.01 [
lo=0.05 3 lo=0.05
- -lo=01 - -lo=01
0.7
0.6
0.6
05
2 £ 05
s g
504 3
s 8
< T 04
0.3
0.3
0.2
~ 0.2
01 B 01 Tl
0 | L f — 0 I I I I L ===
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 [¢] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
fraction vaccinated fraction vaccinated
(a) Ro =1.67 (b) Ro =20

Figure 2: Attack rate versug for different values ofy and Ry

We seek structural results to compare the values of the game equilibrium and system optimum. With this
approximation forI'( f), the maximum cost-effective number of individuals to vaccinate equals the critical

vaccination fractionf = f°. The government’s objective function from Proble) i6
w
GF=E bmax{M—wF,O}—kpaW—l—prZ . (9)

The manufacturer problem is the same.
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The system’s objective function from Problem) {s

SF = E[bmaX{M—w%,O}—kpaW—kan]. (10)

3.1 Optimal solutions for game and system settings

This section describes the equilibria of the game setting and the optimal system solution for the manufacturer
and government. It assumes that the parameters of the model in SZat®given. A series of assumptions

and results are developed to show that the optional system solution requires a higher vaccine production level
than in the game setting. SectiBr? uses those results to design contracts that create a new game, to get
individual actors to behave in a system optimal way.

If the following assumption were not valid, then even free vaccines would not be cost effective.

Assumption 2 The expected health benefit of vaccination exceeds the administratiop&esp,d > 0.

Proposition 2 Let £, n% be optima for the system setting with objective functiori8). (If Assumptior
holds, then (1)f° could be any value betwegt and1; and (2) n% satisfies

fONd
C
pb

"B ufy (u)du =
0 “d " Pa

(11)
The next assumption implies that vaccination is cost effective from the government’s point of view.

Assumption 3 The expected health benefit of vaccination exceeds the cost of administering and procuring

the dosesyb — (p, + pr)d > 0.

Observe that if Assumptic8 does not hold, then vaccines at market costs are not cost effective. To see

this, setf = min{f, f°}. Thenforallo < f <1,
fNd

GF(fnp) = b [ " (M= "2
0
INd

Hoa+pin [ ufuldn s pa+p) (PN [ fuwdu

)olw)du+ b0 = Nof) [ gl

0
fNd 00
v fu(u)du.

"E

= M g (et p)d = 08) [ ufu(ducs PN (-t pr)d = o)
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If b — (pg + pr)d < 0,thenGF(f,ng) > bM forall f,ng > 0, andf¢ = n¥ = 0 would be optimal.

Given Assumptioi8 and Propositior2, we can compare the values 8j @nd £.1) to obtain Corollan2.

Corollary 2 Let f,n% be optimal values of the system problem and défine- %. Letf¢, n% denote

optimal values of the game setting and defifie= £°Y¢_ |f Assumptior8 holds, therkS < kC.

g

The concepk = J;—]\I;d that relates vaccination fractions to vaccine production volumes is useful below.
Proposition2 characterized the optimal vaccine fraction and production level for the system setting. We
now assess optimal behavior in the game settify.indicates that it suffices to characterize the optimal

vaccine fraction, which then determines the optimal production level in the game setting.

Proposition 3 Let f¢, n% be optimal solutions for the game setting, andisét= %. If Assumptior8
holds, thenf& > f9. Furthermore,f¢ = f° if and only if
wb kG o 00
(—7 + pa + pr) ufy(u)du + ppk fu(u)du > 0. (12)
0 kG

Although it may seem, at first glance, that Conditi&g)(depends orf¢ throughk®, this is not true. Given
the problem data, the value &f' is determined by8), independently of the values ¢gf* andn%. The
condition in this claim is therefore verifiable by having the initial data of the problem.
Intuitively, the inequality in the second part of Proposii8)Condition &2), shows that it is sufficiently
higher than the other costs, then the game pushes the government to order a higher amount of vaccine than
the amount specified by the critical vaccine fractigh,
Theoreml uses our results on the optimal production level in the system setting, Prop&siéind the
game setting, Propositi@) to prove the main result of this section: optimal production volumes are higher

in the system setting than in the game setting.
Theorem 1 Given AssumptioB and the setup above;. > ng.

The intuition behind Theorerbis that the manufacturer bears all the risk of uncertain production yields

in the game setting and hence is not willing to produce enough.
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3.2 Coordinating Contracts

The objective of this section is to design contracts that will align governmental and manufacturer incentives.
We show that wholesale or pay back contracts can not coordinate this supply chain. We then demonstrate a

cost sharing contract that is able to do so.

3.2.1 Wholesale price contracts

In wholesale price contract, the supplier and government negotiate appridénfortunately, the system

optimum can not be fully achieved just by adjusting the valug,.of

Proposition 4 There does not exist a wholesale price contract which satisfies the condition in AssuBnption

and coordinates the supply chain.

3.2.2 Pay back contracts

In a pay back contract, the government agrees to buy any excess production, beyond the desired volume, for
a discounted pricg. (with 0 < p. < p,) from the manufacturer. This shifts some risk of excess production
from the manufacturer to the government, and would typically increase production.

We show that the pay back contract does not provide sufficient incentive to coordinate the influenza supply
chain, unlike typical supply chains, for any reasonable valyg.oAssumptiord defines a reasonabte as

one that precludes the manufacturer from producing an infinite volume for an infinite profit.
Assumption 4 The average revenue per egg at the discounted price is less than itp gost,c.

The pay back contract increases the manufacturer’s profit by adding the revenue associated/with
min{ngU, f Nd} doses of excess production. This changes the manufacturer problem from Pidjiem (
min MF = E[an —prZ —pe(ngU — Z)
ng

s.t. Z =min{ngU, fNd}

ng > 0.
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By adapting the argument of Propositidnthe optimal production level}, can be shown to satisfy

fNd

"y fy(u)du = S P (13)
0 DPr — Pc

The effect of this contract on the government problem in Prob@nsto change the objective to

W’ .
GF = [bmax{M — Y= 0} 4+ paW 4+ Z + pelnsl — Z)} ,
and to change the “manufacturer acts optimally” constraint, which determines the optimal production input
quantityng as a function off, from (5) to (13).

Denote the optimal values of this pay back contract problenfibyny. Setk? = %.

Proposition 5 If Assumptiond, 2 and/4 hold, then there does not exist a pay back contract which could
coordinate this supply chain. In fact, under any pay back contract, the resulting production level is less than

the optimal system production levely < n73.

Propositiorb suggests that compensating the manufacturer for having excess inventory is not enough to
achieve global optimization. Indeed, a pay back contract does not compensate the manufacturer when the
production volumen g, is high while the yieldngU is low. The cost sharing agreement described below is

designed to address this issue.

3.2.3 Cost sharing contracts

In a cost sharing contract, the government pays proportional to the production velym@iea rate ofp.
per each egg. Such an agreement decreases the manufacturer’s risk of excess production, and provides
an incentive to increase production. Here, we describe a contract that increases production to the system

optimum, f%, n3.
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With the cost sharing contract, the manufacturer problem is:

min MF = E[(c — De)nE — prZ]
ng
s.t. Z =min{ngU, fNd}
ng > 0

The optimality condition fon g given f follows immediately, as for the original problem,

INd
; B ufy(u)du = ¢ 5 Pe. (14)

Cost sharing increases the governments costs, changing its objective function to:
w
GF = E [b max{M — =, 0} + WV +prZ + penE] : (15)

and resulting in the following optimization problem.

mfin GF =E [bmaX{M — w%, 0} + poW + pr2Z +penE}
st.  Z =min{ngU, fNd}

W = min{ngU, fNd, f'Nd}

fNd

e ufy(u)du = € Pe
0 Dr
0<f<1
ng >0
: . : °Nd
Denote the optimal solutions of this problem J§, n%,, and se&® = fn% :

For any giverp,, choosep. > 0 so that% = ﬂ,ip . Such ap, exists sincey, < % — pa. If peis
d a

chosen this way, thekf = k°. Further, ifp, satisfies Assumptic8, such g, not only moves:® to k°, but

it aligns the vaccination fractions and production volumes, as in The@rem

Theorem 2 If Assumptiot8 holds andp, is chosen so tha&;T’”E = ﬁ, then the optimal valugsf®, n%,)
77 a

for Problem (L5) equal(f*, n%), so this cost sharing contract will coordinate the supply chain.
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The cost sharing contract can coordinate incentives, unlike the pay back contract, because the manufac-
turer’s risk of both excess and insufficient yield can be handled by the contract’s balance between paying for

outputs (viap,-) and for effort (viap,).

4  Strictly Convex Number of Infected

This section presumes th@Y f) is strictly convex. WhileT'(f) may not be convex for all choices of the
parameters of the infection model, it is strictly convex for sufficiently lakgand values ofR, that are
representative of influenza (see Appenié)x This corresponds to a larger initial exposure to members of the
population, such as may occur in an initial pandemic wave.

Below we explore the game equilibrium and the optimal system solution; we then show that a variation

of the cost sharing contract can coordinate the supply chain.

4.1 Optimal solutions for game and system settings

The solution to the manufacturer problem in Probl@nwith convexT'( f) remains the same as above, as
the manufacturer’s objective function does not depend dpgh). The analysis of the government problem
in Problem6) and the system problem in Problei#) {s somewhat more complicated whéxyf) is strictly
convex, but the general ideas are similar to those in the linear model.

For the system setting, the following analog of Proposifidrolds.

Proposition 6 If T'(f) is strictly convex,f is the solution of %), and the optimum values of the system

problem in Problem) are denoted by, n%, then (a)f° could be any value betwegrand1; and (b)n3,
FNd

. . . . n3 n%u
is the solution of the following equatlor/ B
0

b .
[mT (27) + pa| ufu(u)du + c = 0.

The following analog of Propositio8 for convexT'( f) characterizes the set of the game equilibria.
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Proposition 7 Let f¢,n¢ denote the game solution, let' = fngYd and sethp = %. If T(f) is strictly
E

kG
convex, then (ay ufy(u)du = i; and (b) f¢ < fifand only if
0 Dr
/

TheorenB, the main result of this section, shows that, as in the linear case, the system optimal production

kG _ o0
b .., NEu G
> 0.
{ dT ( Nd )+ pa|ufu(uw)du + ¢+ prk /kG fu(uw)du >0 (16)

level exceeds that of the game equilibrium. The proof requires the following three lemmas.

Lemmal If n¢ > n3, thenf < f.

Lemma 2 Let f be the solution ofT”(f) + (pa + pr)Nd = 0. ThenfC > 7.

Lemma 3 Letk® = %. Then for allk > 0,
E

/ks [bT/(Tl%IL)+ f ( )d </k [bT/(Tl%u)_|_ f ( )d
o INagT Vg TPejtIuE = [ NG Vivg ) T et U
Theorem 3 Let n% and n% denote the production level under the system optimum and game equilibrium,

respectively. For all nonincreasing strictly convexf), we haveny, > n¢.

Thus, the theorem suggests that the production level set by the manufaegyrer below the amount

required by the system. Hence, the need for effective contracts.

4.2 Coordinating Contracts

This section constructs a contract which can coordinate this supply chain. Unfortunately, the cost sharing
contract of SectioB3.2.3 defined by the paiv,., p., does not coordinate the supply chain. Observe that in the
piecewise linear case, the government orders enoughf¥:e> f9, even without the contract. This is not
the case for the convex case, where without the contf&ctaybe smaller thayi < f, see Propositiof
and PropositiofY.

Thus, the contract should provide incentive for the government to vaccinate a higher fraction of the

population, and provide a manufacturer incentive to produce enough. Sdcidrshows that this goal
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can be achieved using a whole-unit discount for the vaccine purchased by the government. In return, the
government will pay the manufacturer a portion of the production cost. The relation between the whole-unit
discount and the cost sharing portion is such that the more people the government plans to vaccinate, the

greater the discount they get and the higher its participation in the production cost.

4.2.1 Whole-unit discount/cost sharing contract

Consider a contract where the vaccine price depends on the fraction of the population the government plans
to vaccinate, that is, the government pays the manufagty(é¢) per dose. The cost sharing component of
the contract is such that the government pays proportional to the productionigvel,he per unit price
paid by the governmeng, () depends ory.

This section first constructs a specific class of pricing policies. It then shows how the original game is
modified by the pricing policy. The section concludes with a proof that the given pricing policies indeed
align incentives.

The following two assumptions constrain the set of pricing policies of interest.
Assumption 5 The pricep,(f) > 0 has the following characteristics:
1. There is a whole-unit discount, i.e/,(f) < 0.

2. The total vaccine cospf(f) f Nd) is nondecreasing irf,

@ (pr(f)fNAY = pl(f)fNd +po(f)Nd > Oforall 0 < f < f.

() p.(f)fNd+ p(f)Nd = 0,
3. The total cost to the government excluding the cost sharing component is corfyex in

@) bT"(f) + P/ (f)fNd+2p,.(f)Nd > 0forall 0 < f < f.

4. There are no further volume discounts beyond a certain thresppld) = p,.(f) forall f < f < 1.
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If the derivativep!.(f) does not exist af = £, then use the left derivative in Assumptibn

k.S
Assumption 6 Givenp,(f), letp.(f) >0 satisfy% = / ufy(u)duforall f € [0,1].
0

pr(f)

In Assumptior6, k° = de is the same as before, wheﬁenE are the solutions for the system setting.
Before proceeding, we show first that the set of the conditions in Assum S:amdS results in a feasible
set. We give an example that satisfies the conditions in Assunittben modify it to obtain functions that

satisfy all of the conditions in both assumptions. Consider the following pricing strategy,

b _ _
k——— [ =T T TO)], 0<f<
) — de[ (H+T'(f)f +T(0)] f<f )

pT(f)a f < f S 1
Claim 1 If 0 < k < 1, then the pricing strategy introduced ifhd) gives a nonnegative price for arfyand

satisfies all the conditions in Assumptign

Now we show that for some, (17) satisfies Assumptidf. It suffices to show thai.(f) > 0 for all f,
so the goal is to choose a pricing strategy suchhgft) fo ufy(u)du < c. Sincep,(f) is nonincreasing

in f, it suffices to show that, (0 fo ufy(u)du < c. For anyp,(f) that satisfiesX7),

po(0) = lim (1) =l s [ =70 + 1)1 + 7(0)]

bz T(f) —T(0)
= g [ 707~ iy (P2 T

b e /
= o[ T(F) = T'(0)]

Observe thay"oks wfy(u)du < p. It suffices to haveaﬁ[ T'(f) — T'(0)]u < cin order to insure that

Assumptior6 holds. This justifies Clain2: pricing strategies exist that satisfy both assumptions.

Claim 2 If 0 < ¥ < min{1, ﬁ}, then the pricing strategy, (f) in (17) satisfies Assumptiof&s

and6.
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All the ingredients are in place to build a coordinating contract. The key idea is to keep the relationship
between the optimal production level and order quantity linear. Assum@tacnomplishes this. To see this,

observe that this contract changes the manufacturer objective, for afgiten

1N .
MF(ng) = (e = pelNns =P | ™ uflu)du=pe(NING [, fowi
"E
By taking the derivatives, we have:
fNd
OMF(n N
UL e =) [
ng 0
2MF(ng) fNd fNd.. fNd
o S e
fillfd
Therefore, thisM F is convex inng, and the optimah, satisfies[,"” wfy(u)du = c;f(c}{). Together

fNd
with Assumptior, this implies thatf,"? wfy (u)du = foks ufy(u)du. So for any givenf, the optimal

production level for the manufacturer is linearfinwith

 fNd

Therefore this contract changes the government objective to
min GF = E[6T(37) +paWV +p(£)Z + pel i . (19)

and changes the manufacturing constraint%éé% = k°. This restatement of the game setting for the

whole-unit discout/cost sharing contract permits the statement of the main result of this section.

Theorem 4 For any p.(f), p-(f) that satisfy Assumptiorts and'6, the optimal values of Probleri9),

denoted by f¢, n$,), are equal to( f, n%,). That s, this cost sharing contract coordinates the supply chain.

Proof: In order to analyze Problerd ), we again split it into two separate subproblems.
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Case 1( < f < f): In this case the optimization problem would be:

fNd fNd
win G = [b [ " TCED fuwdu+ 7S / fotwdu+pons [ ufu(wda
0 0

fNd
n

+pade/:d fo(u)du + pe(f)ng +pr(f)nE/ " ufy (u)du

0

= cng(by Assumptiorb)

NN [ fotwyaa]

"E

subject to the constraintgNd = k%ng; 0 < f < f; andng > 0. Substituting the constraint; = L{¢

into the objective function gives
min GF = [bfo T(Lew) fur(w)du + BT(F) 22 fu (u)du + pa X [5° uf(
Nd
—I—pade/ fulu du+cfks +pr(f)de/S fU(u)du}
k
st. 0<f<f

We show that in this case the optimum value isfatFor this purpose, it is enough to analyze the first

derivative of G F}.

OGF' b kS / Nd kS
(9f1 = [k’s/ T/( / wufu(u)du + 0T (f / fu(u)du + pq k:S/ ufy(u)du
Nd , 0
+paNd/ fU du+ck.5' +pr(f)Nd/kS fU(u)dU‘Fpr(f)de/kS fU(u)du:|
Nd b f
= l?g( /0 [mT(ﬁU) +pa]ufU(U)du+C) (20)

FLOT() 4 paN 4 e N+ (NG [ fortu)

We show that each of the two components28)(is negative, making the derivative 6fF} negative for all
0 < f < f. To see this, first note that the functidiff) = fo is ) + pa]ufu(u)du is an increasing

function of f, asJ'(f fo [l T (Fsw)lu fu(u) > 0. HencelJ(f) < J(f), Vf < f. However,

using fNd = nzk", we getJ(f fo Ni) + palufu(u) = —c (by Propositior6). As a result

J(f)+c¢<0,s0

kS
/O [%T%kf u)+ palufu(u)du+c<0;  YO<f<F

p. 21



This shows that the first parenthesis 28 is negative. To show that the second term of the derivative of
GF} is also negative, we consider the teW{ ( f) + po Nd + p,.(f)Nd + pl.(f) f Nd. The derivative of this

expression isT” (f)+pl/(f)fNd+2p.(f)Nd, which is positive using the third part of Assumpti&nThis

means thabT"(f) + poNd + p,(f)Nd + pl.(f) fNd < bT'(f) + paNd + p,(f)Nd + p.(f) fNd for all

0 < f < f. Note thatT’(f) + p.Nd = 0 by the definition off, and that,(f)Nd + pL.(f)fNd = 0 by

the second part of Assumptidi This suggests
T'(f) +paNd + pr(f)Nd +pi.(f)fNd <0, VYOS [f<f

which shows the second term of the derivativeCif; is also negative. By the strict convexity ®f f),
equality occurs only af. Hence 20) implies thatGFy (f) < 0forall0 < f < f meaning that the minimum
of GF is attained aff. The corresponding production valueftas n% (using18). So in this case, the only
candidate for optimality is the system optimal solution.

Case 2 < f < 1): Inthis case, using the definition pf(f), p.(f) = p.(f), and hence.(f) = p.(f)

forall f > f. As a result, the government objective becomes:

GF, = [b/o v T(Nid)fy(u)du—l—bT(f) /f,f“ fU(u)du+panE/0 " ufy(u)du

fNd

+pade/de fo(w)du + pe(fng +pr(f)nE/0nE ufu(u)du

= cnp(by Assumptiorb)

(DN [ fulu)du]

fNd

ng
subject to the constraingNd = kng; f < f < 1;andng > 0. Substituting the constraifftNd = kSng
to removef from the objective gives:

fNd fNd
n

GF = b /0 (S fu(w)du + bT(f) /fN fu(w)du + pans /0 " ufy(u)du

+pade/ fu(u)du + cng +pr(f)nEk:S/ fU(u)du}
INd 1S

ng
with the constrainf < f replaced by the constraint; > n?E
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We show the derivative of the objective function in this case is positive and i@&hgaes minimized

when that constraint is tight, i.eiz = n% Consider,

FNd

88(2};2 — /0 " [%T'(%) + palufo(u)du + ¢ + pr(f)E° ]: Jo(u)du (21)

The first term above is exactly the functiéh(nz) introduced in the proof of Propositiof) and by using

its nondecreasing property, we gé{ng) > H(n3) for all ng > n?,. However, Propositio suggests
INd

H(nS) = [,"% [T ("EY) + paJufu(u)du = —c. This implies that

fNd

|7 T e + piufuwdu+e = 0 Vg > o

By using this result withZ1), we obtain the desired result,

fNd

:/OnE [%T/(%)+Pa]UfU(u)du+c+pr(f)kS ]: Jo(u)du

0GF,
8nE

> (8 [ fuluidu = 0

In both case 1 and case 2, the optimum values for the game settiyfg@e O

4.2.2 Coordinating Contract: Numerical Application

This section uses the idea behind Thea#dngether with estimates of parameters from the influenza literature
in order to develop a contract that can coordinate the supply chain empirically, even though th& gttual
may make a slight deviation from strict convexity.

Hilland Longini (2003 suggesRy = 1.87 andWeycker et al(2005) argue thaty = 0.90 is a reasonable
value for vaccine effects. We use the data fiMMeycker et al(2005) to estimate the direct costs (not indirect)
of each infected individual, with tb = $95 on average over the different groups. The vaccine price is set to
pr = $12 (CDC, 2005. For vaccine administration costs, there are no explicit data, so wepyseds40
as a base case, as dideniger et al(199§ for pediatric vaccines, being roughly the cost of doctor visit.
We usedd = 1 dose of vaccine, the usual value, per adult vaccinated. We are not aware of literature to

define the variance of vaccine production yields, so we assumet! thas a gamma distribution with mean
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w =1 (Palese2006 and standard deviation = 1/5 = 0.2, so thatU ~ Gammd25, 1/25). We assumed
a population ofV = 107 individuals and a production cost of= $6 (not necessarily the actual number).
Figure3 depicts the optimal contract, governmental costs and manufacturer profits, for the special case
of T'(f) that is based upon the above parameters and a large initial epidemic wavel(usirigl). While
T'(f) inthis case is not precisely convex (slight nonconvexity rfear(.08), a strict application of the prices
implied by (17) and Assumptio® leads to a whole-unit discount prigg,( f) (scale on left-hand af-axis of
3(a)), and cost sharing prige( f) (scale on right-hand side gfaxis), that empirically coordinates incentives.
The particular choice of = 0.215 for Figure3insures that the government overall vaccine procurement and
health benefit costs are reduced by the contract #8281/ to $527M; that the government orders more (up
from f& = 0.65 to f = 0.68); that the manufacturer is willing to produce mofrg;(increases fron6.31/
to 7M); and that the manufacturer’s profits increase (f&82.8 M to $33.7M).
For sensitivity analysis, we ran the contract under different administration pgsts§$20, approximately
the value irPisan®006for Medicare reimbursement, apg = $60]; and different values for health benefits
[b = $275, a value fromGessne2000converted into 2000 dollars, ahd= $450, the combined direct and
indirect costs calculated using data fraffeycker et al2005. For values ofb > $250, we foundf = 1
due to the high benefit of vaccination compared with the cost of administraction. In general, a spadler

higherb will increasef, and increasing, or decreasing will decreasef.

5 Discussion and Model Limitations

This work derived the equilibrium state of an interaction between a government and a manufacturer, with the
realistic feature of a manufacturer that bears the risk of uncertain production yields. The model shaws that
rational manufacturer will always underproduce influenza vaccindbat setting, relative to the levels that
provide an optimal system-wide cost-benefit tradeoff.

When the levels of exogenous introduction of influenza into a population are small, leading to the
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piecewise linear approximation f@K( f) in Sectiori3, a relatively simple cost sharing contract can coordinate
the incentives of the actors to obtain a system optimal solution.

When the levels of exogenous introduction of influenza into a population are somewhat large, as in
a large-wave pandemic situation, the analysis of Seiiamay be appropriate. The simple cost sharing
contract must be modified to account for the nonlinear population-level health benefits that are provided
by influenza vaccination programs. It is therefore not surprising that the whole-unit discount/cost sharing
contracts that can align incentives depend on the expected number of infections averted by a given magnitude
of the vaccination program effort.

There are several limitations of this model. Some of the limitations can be handled with existing methods.
Other limitations could lead to interesting future work, but do not limit the value of insights above regarding
contract design for governmental/industry collaboration for influenza outbreak preparedness.

One, an epidemic model with homogeneous and homogeneously mixing populations ignores the potential
to target specific critical subpopulations, such as children or the elderly. In the short run, the contractual
designs here that determine production volumes could be accompanied in a second stage analysis with
other work (e.g.Hill and Longini, 2003 that can optimally allocate vaccines to different subpopulations.

The generality of the analysis for piecewise linear or coriiéx) allows some flexibility in adapting the
incentive alignment results here to more complex epidemic models that account for the prioritization of
certain subgroups.

Two, the analysis above assumes that the per person bieartitthe cost to administey, are constant.

The results may generalize nicely to the case of variable marginal benefits of vaccinéfipras long
asb(f)T(f) is convex. Terms likebT'(f) in the definition of f, for example, would be replaced with
ONHT) =V (HT(f)+b(f)T'(f). Similarly, a convex increasing administration cggt,f), might be
appropriate too. The net effect of these two changes is expected to decrease the optimal vaccination fraction.

Three, the model assumes that health consequences can be quantified by direct and indirect monetary
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costs, but a multi-attribute approach might be desired to more fully examine issues like the number of deaths
or hospitalizations. These features can be modeled indirectly with the present work by assessing the number
infected and applying the relevant morbidity and mortality rates.

Four, the model assumes that the government can precisely specify the number of individuals to vaccinate.
This is potential drawback of the other epidemic models mentioned in this paper, too. The inclusion of
individual’s choice to become vaccinated would also require much additional complexity.

Five, the model currently examines a single manufacturer and a single government, and assumes that
all parameters are known to all parties. The cost per dose and yield distributions are not likely to be public
information, and there are several providers and many purchasers. Nevertheless the equilibrium still might
still be modeled as an outcome of interactions between two rational actors of the model. Multiple buyers
and suppliers would be an interesting extension. Contracts in the presence of multiple manufacturers and/or

suppliers could be complicated, to avoid collusion on the part of a subset of the players.

6 Conclusion

This work developed the first integrated supply-chain/health economics model of two key players in the
influenza vaccine supply chain: a government that purchase and administer vaccines in order to achieve
an efficient cost-benefit tradeoff, and a manufacturer that optimizes production input levels to achieve cost-
effective delivery of vaccines in the presence of yield uncertainty. The model indicates a lack of coordination
for contracts that leave the manufacturer with the production yield risks. That lack of coordination results in
vaccine production shortfalls.

We show that a global social optimum cannot be fully attained by changing the vaccine price alone, or by
reducing the risk of production yields by having the government contractually pay a reduced rate for doses
that are produced in excess of the original demand. A variation of the cost sharing contract is one option that

can align incentives to achieve a social optimum.
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Online Appendix

A Appendix: Proofs of mathematical results

Propositionk. Proof: The expected cost function for the manufacturer is

MF(ng) = cng—p,E[min{ngU, fNd}]

= cnp— prnEE[mln{U de]
FNd

= CnE_prnE(/O " UfU(U)du+[cN MfU( )du)
% ngE

— g =g [ ufoldu—pfNd [ folu)du

"E

So to get the minimum af/ F' we need to see the behavior of its derivative:

OMF o fNd., fNd. fNd fNd. fNd
G = e | | wfuwdn—png [(C DT 5D] < epva - st 50
— emp [ upplurducs p LD g (LN ) UNDT SN
Om ’I’LE ng ’I’LE ng

= C—Dr ufU(u)du
0

Note thatagng = pr [( )fU( )] > 0 so the first order optimality condition is sufficient. Hence the
E

optimum production quantity, is solution of the following equation:

fNd
n* C
" ufy(u)du = —
0 Dr

Corollary 2. Proof: Immediate upon inspection of the values of the parametefs.

Proposition2. Proof: To show these results, we analyg& in two different regionsf < f°andf > f°.
Let SFy(f,ng) denotes the value &f F whenf < f°, and likewiseSFy(f, ng) is the value ofSF where

f > f° Note thatiff < fOthenW = Z = min{ngU, fNd}, and the value of F is

fNd

SFifng) =b [ O =02 fy(ydu+ 000 - N) [ fulwda

0
. o 22)
dpans [ wfy@dut po(ING) [ fotidusens (1< 1)
0 g
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For f > f9, giventhatM — Ny f = M — N f° = 0, the value ofSF is

1ONd 1ONd
n nru n
© =" fy )du g [ ufuwdn

SFy(f,ng) =b
2(f,nE) / ;

° (23)

FplONG) [, fodutens (2 1),

"E

The limits of integration in the right hand side @3) usef°, not f. In order to get the overall optimal values

for f5,n%, we solve the following two subproblems.

SF1l= min SF; SF2= min SF,
st. 0<f<fO st. f0<f<1
ng >0 ng >0

Optimality conditions for subproblem SF1: The KKT conditions, iff < f°, are,

— Nb /W fu(u)du + paNd /W fo(w)du+ € — 6y =0

fNd fNd
Yb g

7 /OnEufU(u)du—i—pa/nE ufy(u)du+c—¢ =0

0

Ef=f0)=6bof=pnpg=0 ; &6,¢p>0,

where the first equation is obtained by taking the derivative with respettated the second equation is
obtained by taking the derivative with respect tothe Moreoverg, 8y, ¢ are KKT multipliers of constraints
f<f9% f>0, ng >0, respectively. Note that if Assumpticwere not valid, then the second equation
of KKT conditions would requirg> > 0, and the third equation would imply that, = 0.

We are interested in the case where > 0, f > 0 which is a conclusion of Assumptich This implies

thatfy = ¢ = 0, and the KKT conditions simplify:

[ — Nob + poNd] /fiod fo(wdu+€&=0

INd
b nE

- = o d =0

[ d—i—p]/o ufy(u)du + ¢

Ef=r%=0 ; £€=0
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In the first equation above, Assumpti2suggests that > 0. If £ > 0, the last of the KKT conditions would
give rise tof* = f0. SoSF; will always get its minimum at the extrem@. The optimalnz in this case

can be obtained from the second equation of the KKT conditions and using the fagt that’, and

fONd

"By for(u)du = ——S— (24)
0 “‘d ~ Pa

Optimality conditions for the problem SE2: If f > f°, thenSF, does not depend ofi (the vaccine
fraction declared by the government does not change the value of objective function). It follows that all
valuesf® < f < 1 are optimum and so the first part of the claim is proved.

Now S F3 is a function ofn i only and the derivative off F' with respect tov is

fONd
b

OSF. m
2 = ( d+pa)/ F ufy(u)du + c.
0

ong

2 0 0 0 . . . .
Note that%? = (¥ - pa)(fngd)(fngd)f(](fngd), which is nonnegative by Assumptic hence
SFy(ng) is a convex function omg and the first order optimality condition is sufficient. By getting
the root of the derivative of I, above, we can see that the optimum for S F; is the same as the solution

of (24). So the optimum value fovz% satisfies the same equation in both case§]

Proposition3. Proof: If we defineGF;, GF1 like SF;, SF1 for the case wher¢ < f°, thenGF; is:

G
k negu

GR(fme) = b [ (=" fudu+ 01 = No) [ fowdu

k 00
utpone | ufoldut o+ ) (UND) [ fuldn

kG 00
= bM — zilbnE/O k:fU(u)du—waf/kG fu(u)du
+(pa +pr)ng /0 ufo(u)du+ (pa +pr) fNd /k L fodu (fg" fo(u)du = 1)
b k¢ nekG [
= bM — ‘i’inE/O ufy (uw)du — b Ed fo(uw)du
kG 00
+(pa +pr)nE/O ufU(u)du + (pa + pr)nEkG /kG fU(U)dU (de = nEkG)

B _@ kG o 00
= s [ [ ufotidu K [ ot
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By Assumptior3, the coefficient of g in the last equality is negative, so the optimum valuerifgrin G F;
lies on the upper boundary, whefe= f°. This proves the first part of the claim.
For the second part, similarly defildeF,, G F'2 to represent the government objective functions for the

casesf < fCandf > f°, respectively. Using the fact th@l( f) = 0 for all f > f°, and the constraint In

. . kG
the second equation above= &7,

fONd fONd

GEy(f.np) = b /0 (M — 0" i (wu + pans /O £

kG
UfU(U)dUerrnE/O ufu(u)du

EalNa) [ fuldu+ () [ gt

fONd _— fO9Nd o
_ L "B 0
— /0 (M — ™) fo () + panis /0 wfiy (u)du + pa( fONd) /fN fir(w)du
kG [e%)
+pen] / wfo(wydu+ K [ fo(u)du]
0 kG
OGF b o kS o0
8nE2 = (—% —I-pa)/o ufU(u)du+pr/0 ufU(u)du+kaG /kG fu(u)du
O*GF, b fONd FONd
T = (g el

for f > 9. Note that%];fd < kG, By Assumptior2, 38G2F2 > 0, SoGFy is aconvex function of . To find

the minimum it suffices to look at the sign of its first derivative. If Conditi&8) (holds, then Assumptic2
implies that%GTl;2 > 0onf > f° so that the minimum ofiF; for f € [f°,1] is obtained atf®. The
optimum for bothG F; andG F;, lead to the claimed optimum, namef§f = f°.

If Condition (12) does not hold (i. e( —l—pa +pr) fo wfy (w)du 4 p k€ fkoé fu(u)du < 0); then

because of the convexity of functi@nf; onng (non-decreasing derivative), there are two cases:

8GF2 _

Case 1:dng; 57

= 0. In this case clearly the optimum values for the:; are the following:né = i,
¢ = ang/Nd.

Case 2:If ng(1) denotes the maximumg corresponding tg =1 (i.e. ng(1) = 1Nd) and still 6GF2 <0
thenf® =1, n% = np(1).

Combined, the two cases complete the proof.]
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Theorem. Proof: Proposition2 shows thatf® > f°. We consider the two cas¢§ = f° and f& > f°
separately, and prove that both cases lead to the rebaﬁon ng

Case 1:f¢ = f9. Using the inequality in Corollarg (i.e. k5 < k) and using the definitions &, k5
it immediately follows that?, > n%, as desired.

Case 2:f¢ > 0. (proof by contradiction) Assume to the contrary thgt < n%. First of all we obtain

the sign of[aGfﬂ o As in the proof of PropositioB, there are two cases fm@E. If the condition in case
ng

1 of Propositiori3 holds, then[dG?] . = 0. If case 2 holds, therﬁaGlﬂ . < 0. In either case, the
n nE

following relation is true:

<0 (25)

On the other hand,

fONd

(g = )

87”LE B

kG 00
wfotwdutpe [ ufotidu+pk® [ futua

fONd

b o
> (_% +pa)/0 g

wb
= (- d+pa)(wb p)+c+pr /fU

kG 0o
ufy(u)du + pr/o wfu(u)du + p kC /kG fu(u)du

0
= prkG G fU(u)du> 0

The inequality in the second line comes from the assumptjpr< ¢, and with Assumptior2. The third

line is valid by 5) and Propositior2. But the last inequality contradict®3), son$ > n3 is false. O

Proposition'4. Proof: The proof of Theoreni shows that there does not exist a wholesale contract which
coordinate this supply chain. That proof proceeded in two cases. The first case reéuhsezsg. For full
coordination, we require;, = ng for somep,.. In case 2p3; = nf for somep, implies that3t | g >0,

which would not be true for the optimizer 6fF. O
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Theorem2. Proof: First we show thay® > fY by showing that optimum value f&¥ F; for f € [0, f°] is

always obtained af®. By replacingf = ’“JeJLdE we getG F; to be only a function ofiz:

o)

HES nek fu(u)du

.
GR(ng) = b [ (0 =050 fy(uydu+ 01 ~ N [

ke o)
+@ﬁmmmA wfo(u)du+ o+ ) (Kng) [ folu)dut pon

Now by taking the derivative ofr F'; with respect tovx we obtain that:

OGF, w)/’f b, [
onn 7/ ufy(u)du dk ; fu(u)du

k¢ oo
w0 [ ufotudus ot ok [ fotwdu+ o

kS ke
_ (7% +pa)/(; ufU(u)du+pT/0 wfy (u)du (26)
+(_% + Da +pr)ke e fU(u)du"’pe
- —c+(c—pe)+(—%b + Pa + pr)k° ; fu(uw)du + pe (27)
b o0
= et [ ot (29)

in which (26) is obtained becauge = k°, and @7) is obtained using Propositichand f14). On the other

hand 28) is negative by AssumptidB, so thatGF; is decreasing for all eligiblez. Hencef® and the

. . 0 0
correspondinguz; (i.e. np = 54 = L4

kS

) are optimal in this case. Stf > f°. Because&® = k°, it
immediately follows that$, > n73..
Now we show that the optimum @ Fy, for f € [f°, 1], also occurs af®, completing the proof. Note

thatf > f0 andk® = k° imply thatng > n?%. ConsiderG F,.

fONd fONd

GFy(ng) = b /0 M = ) fy(w)du + pans /0 " ufu(wdutpof™Nd [,

o0

fu(u)du

"E

ke [e%s)
+pen / wfo(w)du+ pe(kng) | fo(u)du + peng
0 ke
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The derivative is nonnegative,

fONd

OGF b S5 M >
an; = (—% +pa)/0 UfU(U)du+pr/o u fu (w)du + prk* /k fu(w)du + pe
fONd oS
= (—% +pa)/ " ufy(wdu e+ ke | folu)du (29)
0 ke
fONd 00
> (—% + Pa) / " ufy(udut e+ pokt [ fu(u)du (30)
0 ke
= pk [ fu(w)du>0 (31)

k.e
(29) comes from(14). As before,[B0) comes from Assumptio2 and the fact thatp > n% Finally, (31) is
true by Propositio2. The last inequality shows that the optimum value@ar, occurs atf® hencef® = f°

and because of the fact thet = k°, we obtaim$, = n3.. O

Proposition6. Proof: The proof resembles the proof of Proposit2yrexcept for the change in role ¢f
to f, and the definitions 0§ F'1, SF; andSE2, SF,. We first show that the optimum value 8 always
occurs at the border, i.¢* = f, by examining the KKT condition fo§ F; :
/ —
(1) [, Fotudu+puNd [ futwdu+ € =0
nE nE

INd INd

—]\Z;Cl/O"E T'(%)ufU(u)du+pa/()"E ufy(u)du+c=0
§f=0=0 5 €£€>0

If f < £, then by the convexity of (f) and the definition in¥), we conclude thabT’(f) + p,Nd < 0.

So the first equation forces> 0, then by the third equation we obtajfii = f. So the optimum value for

SFy occurs at the border which j& SinceSF does not change gévaries in[f, 1], we have shown the

first part of the claim. The optimum value far; in this case can be obtained using the second equation

of the KKT conditions and the fact thgt = f. Namely, the optimurmm  solves the following equation:

fNd
B nwhHu .
/O e [N—dT’(NLd) + pa] ufy(u)du + ¢ = 0, as claimed.
It is now enough to show that in the second case wliferef, the same relation holds for the optimum

production level. To show this, note that first of #lIf, is a function ofn g only, hence to get the optimum
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it suffices to find the root of its derivative:

OSF, _/’W;[ b
0

By setting this equation to zero we will end up by the same type of relatiom;favhich we obtained before
FNd

from SFy, hence alwaygo"‘sé [NidT’(Ni) + pa} ufy(u)du+c=0. O

Proposition5.  Proof: Note thathkN wfy(u)du = ;T p”j By rewriting theG F' in terms of values of , ng

and by replacing’ = "E we have:
ONd fONd 00
GF(ng) = b/ (M - ¢@)ﬁ]( )du +panE/ " ufy(u)du + pa(fON) /fONd fu(u)du
0 0 I Nd
EN [e9) )
+(pr — pe)nE / ufy(u)du + (pr — pe) (k" np) i fu(u)du + pepng
0

By Assumptior2, 2GF2 — (b _ ) ) P)Vd U(fogd) > 0, SOGF is a convex function onz. The optimal
E

= 82 n

value of GF' can therefore be found by setting its derivative to zero:

OGF b i
a "E
vl (== +Pa) ; ufu(u)du + pep
kN 00
+(pr —Pc){/ UfU(U)du+kN/ fU(U)dU}
0 kN
b fONd o
a n
= ) [ widut et (= pk™ [ ol
0

The last inequality comes frorid®). The last term indicates implicitly that} < n%. To see this, plug

OGF

nE into the last terms, use Propositi@iand using the fact that, > p., to obtain T

= (pr_

”E

¢)kN [ox fu(u)du > 0. Thatimplies that}y < n3. O

Proposition/7.  Proof: The first part of this claim is just the optimality condition for the manufacturer. As
above, this does not depend on the shap&(gf) so this relation remains the same. The fractibnis

therefore determined by the valuescgp,- and the egg yield variability, and are assumed to be known.
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k‘G
To prove the second part, note thafif [LT’(HEU)era]ufU( Ydu+c+pk / fu(u)du < 0,
o LNd" ‘“Nd
then by replacing’ = Nd , as follows:
G o
GFi(np)= b / ”E“ o(w)du+ 50("EM Y [ wydu
Nd kG

+(pa +pr)nE/ wfy(u)du + (po + pr)(npk®) /kc fu(u)du
0
GFi(ng) is a convex function ofp so the first derivative shows the behavior of this function completely:

8GF1 N /kG [ b T(TZEU
ong  Jy LNd Nd

kG

HmJWM)m+m[;umwmu

k k o0 o0
oo [P (R 4 paNd / fo(uw)du + p.kC / for(w)du

= /Okc[]\?dT(%;)*-pa}u,fU( )du + ¢+ prk /fU
kG

- ! Ek
+Nd {bT( Nd

However, note that the functi@iF is a convex function so clearly for evefy< f or equivalentiynp < ng

8GF1 {8GF1
<
ong —

(32)

)+ palNd /k Sy

we have:

} . On the other hand if we plugg into (32) we have:
anE Np=ng

kG

[aai?}ww = /0 []\lf)dT,(?\?;) +Pa} wfy(w)du + ¢ + p kS /kzo fu(u)du
ﬂ%l [bT’(ni,]; )+paNd /OO fu(u)du
= /Ok []\I;d (T;?;L)‘f’pa}ufU( Ydu + ¢ + p ok / fu(u)du

in which the last equality comes from the fact that = fk]\éd, and recalling®). Note that the last expression

is less than zero by assumption, so the optimui@Bf occurs at its borderf* = f. Because the inequality
is strict, optimum ofG'F; also is greater thafi, so f& > f.

To show the reverse direction, we first show that the function

H(np) =/Of$ [T ) o+ i wfur(w)d

is a nondecreasing function org.
fNd

OH  [Sm g b nEu b, FNd . fNd FNd
one = | [T G ot fotwndus [l £ 5 s (<259

FNd
B b i VEW
B /o [(Nd)2T (S| w fo(wydu > 0
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The second equation follows from the definitionfofand the last inequality is due to the convexityrdff)

in f. Hence we havél (ng) > H(ng) for all ng > ng. By replacingH (ng) with its definition,

fNd fNd

ng [ b nEu g [ b nNEU _
> Vg >
17 [ Gen +vdusotian= [ [r Qe +pufotide ng = ns (39
If we assume/kc [ b r (nEu) +pa} wfy(u)du + ¢+ pok / fo(uw)du > 0 we will show that
. Na' “Na

¢ < £, which is the reverse direction of part 2 of the claim.

Because this is the game settirfgcan be replaced b%ﬁ and

{LNd nEU npk® 0 K
GRme) = b [ TN fotwdu ("5 [ fodutpns [ afu(de (39
0 0
s pa
pr(npkY) / fo(uw)du + pang / ® iy (w)du+ pa(FND) [ fo(u)du
k‘G 0 de
"lE
fNd G
OGF,  [we b, npu ] g a [™
s~ _mT (M)+pa_UfU(u)dU+Pr/() ufy(u)du + prk /kG fu(u)du
e o
o ng _7 nEu G
= N (Nd)—i—pa ufy(u)du+ ¢+ prk . Ju(u)du (35)

ﬁ_ b ,ﬁEU T G/OO
> —T'(—— o d vk du >0
> /0 N (Nd)—i—p_ufU(u)u—s—c—i—p y Ju(u)du

The second equality fo%f‘% comes from®). If f > f thenng > 7g, so the inequality in the third line
is justified by 83). Finally the last inequality comes by assumption, and implies that for ef/eryf the
functionGF>» is nondecreasing under the stated assumptions, so the optfintonG F; can be obtained at

f* = f. Hencef® < f, completing the proof. [

Lemmal. Proof: To proof this lemma we show that the functi6iF; obtains its minimum at its border
(f). We use the functior (nx) that was defined in the proof of Propositi@nwhich was shown to be

nondecreasing, and? > n?3, to conclude that

N

IS

INd G S

[ [ar )+ vusetwiez [ [ +nlusetuin

p. 40



Online Appendix

By pluggingn¥ into the derivative function of: F in (35), and using the above relation,

[8GF2}

ong ¢ /Ong [&T(?d)ﬂa]“ﬁf( )d“+C+Pr’<G/ fo(u)du

ngp=ng

> [T [ uso@duct e [ ot

= pk© /k:G fu(u)du >0

The equality in the third line comes frorg)( The last inequality shows that the derivative of the function
GF, at the optimum poinhg is strictly positive, which is not possible unlesg is at its lower extreme,

n¥ = np, whereng introduced earlier. O

Lemma 2. Proof: By the definitions off and f, and strict convexity of'(f), we havef < f. Let

ng =5 Becausg? < f, we examine the government subprobléR'1 to analyze the pai(rf, ng).

O0GFy . K¢ b nEu
k ’ nlgk 0
+N—d [bT( Nd )+paNd+prNd] /kG fu(u)dus

k‘G
b nEu
= “*jﬁ a r
/0 [Nd (Nd)+p +p}ufU(u)du<O

The second equality is true because the second term in the derivative is zero, by the defi[j:’l,t:mpj.oThe
last inequality comes from the strict convexity®ff), soT’(f) < T’(f); forall f < f The derivative of
GF} is negative af. By the convexity ofl’(f), it follows that the optimum o&7F} is attained for a point

biggerthanf: (sincef < f), and sof¢ > f O

k

Lemma3. Proof: To prove the lemma, we show thatk) = NidT’(??;) + pa} ufy(u)du attains
0
its minimum att* = k¥. The derivative of (k) is % = [ T’(”E ) + pa| kfu (k). Note that fork < k%,

ESng

we havek”E < “y#£ = f, and so by the definition of, the derivative ofl (k) is negative. Sd (k) is

decreasing fok < k°. If k > k°, then k”E > f so gi > 0, andI (k) is increasing. Thereforg(k) attains

its minimum atk®. O
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Theorem3. Proof: The proof is by contradiction, namely let's assume thigt> n?. First of all by

Lemmad, we havef¢ < f. We consider two cases:

Case 1: f¢ < f,n% > n3. Inthis case, the optimum solutidif®, n&) would occur in the middle of

8GF1}

the region forGFy, so that[ 3
ng

.. = 0. By pluggingn{ into (32), we have
ng=nfg

k‘G
0 :/ [ ( d)+pa}ufU(u)du—|—c
0
+kG[bT’( ng)+ Nd + Nd} ~ o (u)du
Nd Nd DPa Pr G U

kG b nGu
- {WT’( D) 4 paufuludu + ¢

[bT’( ) + paNd + p,Nd / fu(u)du ; (because oh$kY = fENd)

Nd
> /kc[ b T(n%u)Jr } fu(u)du + ; (Lemma2 and convexity ofl'(f))  (36)
. va “Na Pa|ufu(u)au +c ; 2 y

On the other hand note that the functidfn ) = fo [NdT’( 1)+ pa | ufu (u)du is an increasing function

of ng. This is becauselL fo [ =" ("D | u? fu(u)du > 0, asT(f) is a convex function. So

n& > n3, means thaﬂ(ng) > J(n3). By the definition ofJ(ng), and fork = k¢,

kC G jxe g
[ e s pusvtiin> [ R st @D

/ nE K b / ng‘u . .
If T ) + pa]ufu(u)du > [NdT (=L Nd ) 4 pa]ufu(u)du, then B7) implies
0

/ [bT<”g“>+ Juufor(w)du+ >/ks[bT<”$E“> Juf(w)d
; Nd palufulu)du +c > ; + po|ufulu)du + ¢

Nd Nd " Nd
= 0 ; (by Propositiorb),
which contradicts36). So we should have:
kG S kS S
b ., npu b ., npu
/0 [NdT(Nd)+pa]ufU(u)du</0 [NdT(Nd)+pa]ufU(u)du

but this inequality also contradicts Lemi8aSo case 1 results in a contradiction.
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Case 2: f¢ = f,n% >n%. Inthis case, the production level would b§ = np = %. As (f,np)is

the optimum pair folGF7, we should have[aGFl}n

. < 0 or equivalently:
0 > /kc[bT(”E“H [t (udu+c+ / fo(w)du
= ) Nd Nd DPa|UjUlU)aU pr vl\u
kG

+373 [bT’(

TLEk
Nd

)+ o] [ oty
= [ [ nuote ek [ i

g /okc []\I;dT(T]l\?g)era}ufU( Ydu + ¢

On the other hand, the last expression can be written as:

{Nd

/O"E []\l;dT(qj\?;)+pa}ufU( Ydu+ ¢ <0 (38)

Note however thati; = n% > n?,. By the monotonicity of the functiof (n) from Propositiori7,

FNd fNd

ig [ b, NEu Wb, n%
> R -
/0 [NdT(Nde“]“fU(“)d““ = /0 [NdT(Nde“}“fU(“)d““ 0,

which contradicts38). Since both cases lead to a contradiction, the claim is proven.

Claim L. Proof: First we show thap,(f) > 0. Note that the functior-7'(f) + T"(f)f + T(0) is an
increasing function of on [0, f], as its derivative-7"(f) + T'(f) exceeds) for all f < f becausd’(f)
is strictly convex. Further, its value is zerofat= 0, so—T(f) + T'(f)f + T/(0) is a nonnegative function
over|0, f]. Thereforep,(f) > 0for f € [0, f]. Forf € (f < f], itis clear thap,.(f) = p.(f) >0

We show that thig, ( f) satisfies all the conditions in assumption in the reverse order. Multiphyifit)
by f N d and taking the second derivative impligs (f) fNd)" = —xbT" (f). SObT"(f)+ (p-(f) fNd)" =
(1 — K)OT"(f). ButbT"(f) + (p(f)fNd)" is the left hand side of the third condition in Assumptfin

By the strict convexity of/'( f),

b
BT'(f) + P ()IND + 20 ()N = ST'() 2 05 V0

IN
—
IN
|
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Forall f < f < 1we havebT”(f) + p!/(f)fNd+ 2p.(f) = bT"(f) > 0.

To prove validity of the second part of assumption, by taking the derivati\(emj‘) N d) we have:
(p-(f)fNd)" = &b[ — T'(f) + T'(f)] which is nonnegative fob < f < f (by convexity ofT'(f)) and is
zeroforf = f. Forf < f <1; (pT(f)de)/ = p.(f)Nd > 0.

Finally to show the first part we take the derivativeppf f) for0 < f < f:

P _ [T =T +TO)
of Iz

The numerator in the bracket is positive due to convexit§ @f) indicating the desired resultfor< f < f.

Finally, for f < f < 1we havepl.(f) =0. O

B Appendix: Justification why linear and convexT'(f) are of interest

Figures2 and4 show the shape df'( f) with respect to different values dfy and Ry. The four graphs
correspond tdRy = 1.67, 2.0, 2.5, 3.0, which are the range fag, for the different flu pandemic&ani et al,
2005. In each graph7’(f) is drawn forl, = 0,0.005,0.01,0.05,0.1. The graphs look like a piecewise
linear function ad, moves towards smaller values (thick blue curve)llfs sufficiently large, thef’( f)

looks strictly convex. This section formalizes those statements.

Piecewise linear. If the initial fraction of the population that is infected due to exogenous expoggire (

close to 0), then we can repla&g/ Sy by zero in B) and conclude:

p

m:sozl—qﬁf (39)

Note that the functionl% looks like a linear function ifRy is not very large, which is the case for
influenza. So the relationship betwegmandp is almost linear.

By replacing—Z2— with its Taylor series expansion around zero we have

1—e—Fop

~

—— X 11
1 — e—Rop po—0

P - Po [1 — (1 + Ropo)efiopo

] + lim (o Fow]? ](p—O).

1— e_ROPO po—0
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Figure 4: Attack rate versug for different values ofly and

In order to find the limits we use the Taylor approximation Rp for e~foP around zero. Substitute this

approximation into the Taylor series expansion above to obtain

» _ Do 11— (1+ Ropo)(1 — Ropo)
T o~ 1 _— B
1 — e—Rop polino [1 —1- Ropo] poino [ (1 =1— Ropo)? =0)
1
= R p.

Hence by plugging this last equation insteadrﬁe’jofTop into (39) we have the following linear relationship

between attack rate and vaccination fraction:

1
= 1 _—— —_
p=( Ro) of
Note that the above line has a zero intercepf at 1%)0;1, which is exactly the critical vaccine fraction in

the case of homogeneous populatibtiliand Longini, 2003. So clearlyp remains zero for the case where
f is greater than the critical vaccination fraction as the attack rate is a nonnegative parameigr, Jaisd
approximated by

N(1—1/Ry) —Nof, 0< f<f°
T(f) = (40)

0, ff<r<1
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While this equation has an epidemiologically attractive interpretation, it estimates the Agiyigdoorly
due to the Taylor series approximations. However, thandp-axis intercepts of the roughly linear plot
whenIj =~ 0 can be more accurately modeled by replacvig — 1/Ry) with M = Npg, wherep, solves
(39) when f = 0; and by replacing the usual individual-level vaccine effect paramgterith the marginal
population-level benefit of infections avertagd, by additional vaccinations. (The two are not necessarily

the same, due to nonlinear infection dynamics.)

Convex case. We now derive some of the propertiesiiff) to argue that itis convex whdp is sufficiently

large. Recalld) for the attack rate, and s8f = 1 — Iy — ¢ f to obtain

p— 1o

(42) gives rise to the relatiop > Iy, as1l — Iy — ¢f = Sy > 0. This is expected. If the initial infected
population isly then the fraction that is ultimately infected should be at Iéast
Our goal is to show thai is a convex function of . Notice thatin'41) p is an implicit function off and

to find its second derivative we will use the following lemma from calculus.

Lemma4 If y = f(x) then

Pf Ny 1 9f(x)
Oy (a f(z) )3 Ox2
ox

We rearrange4l) in terms of f to obtain

_1 p—[g
e e |

Using the above lemma for= f andz = p it turns out: f(p) = é[l —Ip— 2] So

1—e—For

11— e for _e=Rop(p — [)

f/(p) = ¢[ (1 — e—Rop)2 ]
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First of all we show thatf’(p) < 0. To prove this notice tha#4{) suggests we can replage— I, by

(1 — e~ RoP)(1 — Iy — ¢f) in the above relation. So by extending the numeratgf {p):

1— e for —e=Ror(p — [g) = 1 e for _e=Rop(y — e=Fopy(1 — [y — )
> 1 — e flor _ o~for(] _ o~Hory(1 — )
= (1—e RoP)(1— (1 - Iy)e Tor)

> (1 —e For)(1 — e BoP)y >0

The last inequality together with the definition #{p) suggests that’(p) < 0.

The second piece of the puzzle is to find the relationshigf¢p) or the sign of it.

1| =(Ro+ D)e For(1 — e RoP)2 4 Ry(p — Ip)e” FoP(1 — efor) (1 4 eflor)
¢ (1 — e for)d

f'(p) =~

Note that if the second derivative ¢fp) were nonnegative, then by the nonpositivityf6fp) and using the
lemma, we would havgjc—é’ > 0, which is the desired result in this part.

We will show thatf”(p) is not always positive, but that’(p) > 0 for values ofI, far enough from
zero. To show this, we evaluate the sign of fiép)’s numerator,—(Rg + 1)e=5oP(1 — e=RoP)2 1+ Ry(p —
Ip)e Fop(1 — eftor) (1 4 efop) = e~ Fop(1 — eFor)[ — (Ry 4+ 1)(1 — efoP) + Ry(p — Ip) (1 + e~ FoP)]. So it

is enough to find the sign of (Rg + 1)(1 — efoP) + Ry(p — 1) (1 4+ e~ RoP) which is hoped to be negative.

—(Ro+1)(1 — efP) + Ro(p — Ip) (1 + e FP) < —(Ry + 1)(1 — e™P) + Ro(1 — Ip)(1 + e~ HoP)
< —(Ro+1)(1 =€)+ Ro(p — I)(1 + e 10™0)
The firstinequality is obtained becayse& 1. The second inequality is obtained because the right hand side
of the first inequality is a decreasing functiongodnd obtains its maximum dg (asp > I).

The last statement in the above relation is a decreasing functidg aihd forl, = 0 it is positive,

however it is negative for all, > 0.1, for the range ofR, that we are considering 6 < Ry < 3). For
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those values ofy, Ry, this shows that-(Ro +1)(1 — efoP) + Ro(p — Iy) (1 + e~ foP) is negative. Therefore

1" (p) is positive in this range, showing the desired convexity resulffas- 0.
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