
Supply Chain Management with Online Customer Selection

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Elmachtoub, Adam N. and Levi, Retsef. “Supply Chain Management
with Online Customer Selection.” Operations Research 64, no. 2
(April 2016): 458–473.

As Published http://dx.doi.org/10.1287/opre.2015.1472

Publisher Institute for Operations Research and the Management Sciences
(INFORMS)

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/109087

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/109087
http://creativecommons.org/licenses/by-nc-sa/4.0/

Submitted to Operations Research

manuscript (Please, provide the mansucript number!)

Supply Chain Management with Online Customer
Selection

Adam N. Elmachtoub
Department of Industrial Engineering and Operations Research, Columbia University, New York, NY, 10027,

adam@ieor.columbia.edu

Retsef Levi
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, 02139, retsef@mit.edu

We consider new online variants of supply chain management models, where in addition to production deci-

sions, one also has to actively decide on which customers to serve. Specifically, customers arrive sequentially

during a selection phase, and one has to decide whether to accept or reject each customer upon arrival. If a

customer is rejected, then a lost-sales cost is incurred. Once the selection decisions are all made, one has to

satisfy all the accepted customers with minimum possible production cost. The goal is to minimize the total

cost of lost sales and production. A key feature of the model is that customers arrive in an online manner,

and the decision maker does not require any information about future arrivals.

We provide two novel algorithms for online customer selection problems which are based on repeatedly

solving offline subproblems that ignore previously made decisions. For many important settings, our algo-

rithms achieve small constant competitive ratio guarantees. That is, for any sequence of arriving customers,

the cost incurred by the online algorithm is within a fixed constant factor of the cost incurred by the respec-

tive optimal solution that has full knowledge upfront on the sequence of arriving customers. Finally, we

provide a computational study on the performance of these algorithms when applied to the economic lot

sizing and joint replenishment problems with online customer selection.

Key words : supply chain management; online optimization; customer selection

History : Received April 2012; revisions received August 2013, March 2015;

1. Introduction

Supply chain management theory provides many streamlined optimization models where the goal is

to satisfy an exogenous deterministic or stochastic sequence of customers over a specified planning

horizon at minimum cost (for example, see Muckstadt and Sapra (2010)). More recent practice and

research trends in supply chain management have led to broader models that consider decisions on

the supply side as well as on the demand side. More specifically, the customers to which the supply

chain should respond and commit to are not entirely exogenous parameters, but may be influenced

by endogenous decisions, such as pricing, promotions, and other strategic marketing-based factors.

In particular, a supplier should strive to optimally match demand to the supply chain’s production

capabilities. A fundamental aspect of this issue is the choice of customers to which the supplier

commits to serving, and how these customers are implicitly, or explicitly, chosen. These decisions

1

Elmachtoub and Levi: Online Customer Selection

2 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

regarding which customers to serve often depend on the customer’s associated revenue as well as

the marginal costs expected to be incurred if the customer is satisfied.

We study a broad class of supply chain models that capture situations in which customers arrive

to the supply chain sequentially, each with specific requirements and an associated revenue. Our

core model has decisions that are made in two phases. First, there is a selection phase, where the

decision maker has to decide in real-time which customers to accept and which ones to reject,

without assuming any knowledge of future customer arrivals. We refer to this process as online

customer selection. After the selection decisions are made, there is a production phase where the

decision maker must serve all of the accepted customers with minimum production cost. Each of

the rejected customers incurs a rejection cost that can be associated with either lost revenue, a fee

paid to a third-party supplier, or the cost of satisfying the customer from a spot market. The goal

is to minimize the total rejection cost plus the production cost of satisfying the accepted customers.

The online customer selection models studied in this work attempt to capture real-life operational

situations of a make-to-order supplier or service provider. Typically, decisions are broken up into

phases (weeks, quarters, years). In each phase, the supplier receives customer orders (requests) due

in some time period in future phases, and needs to immediately (or by the end of the current phase)

decide which customers to serve as their requests arrive. During the same phase, the supplier is

also serving the customers that were accepted in previous phases with minimum production cost.

In many of these settings, it is often extremely challenging to form a reliable demand distribution

due to issues such as market volatility, lack of reliable data, and the fact that customers may have

very different needs for customized products (or services). Thus, the assumption that the supplier

has minimal knowledge about future customer arrivals could lead to more robust policies.

1.1. Contributions

The major contributions in this work are two-fold. First, we introduce a general class of models for

online customer selection problems that captures several important settings. Similar to the concept

of yield management, the decision maker aims to select an optimal set of customers to maximize

profitability. In most yield management models, there is a finite amount of inventory (capacity)

available that is used to generate as much revenue as possible, while the costs are assumed to be

sunk. Unlike yield management models, in the setting studied in this paper there are no sunk costs

nor finite capacities, but the cost structure has economies of scale. Therefore, as more customers are

accepted in our setting, the conditions for accepting future customers become softer whereas the

opposite effect occurs in yield management since inventory becomes more scarce as more customers

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 3

are accepted. In the presence of economies of scale, determining the ‘marginal’ cost of a single

customer is highly dependent on the other customers that are selected, and therefore selection

decisions are also dependent on previously accepted customers.

Another notable difference compared to yield management is that the models we propose aim

to minimize costs, which are composed of production and rejection costs. In applications where

the rejection costs correspond to a spot market or third-party fees, the total incoming revenue is

fixed and the objective is a true minimization of the total production and rejection costs. When

the rejection costs correspond to lost sales costs, we still focus on minimizing the total production

and rejection costs, rather than maximizing profit. Although the two objectives result in equivalent

problems, finding an optimal solution to either is typically intractable. Moreover, finding a near-

optimal solution to maximize profit, even in an offline setting, is a hopeless endeavor from a

theoretical perspective (due to the mixed sign objective). On the contrary, we are able to find

solutions that approximate the cost objective well with strong provable guarantees. In particular,

we next describe algorithms to generate such solutions in an online manner.

The second set of contributions includes two novel online algorithms for making decisions in

general online customer selection models. The performance of the proposed online algorithms is

evaluated using the well-known competitive ratio framework, which is widely used in many opti-

mization settings (see Albers (2003)). In particular, the online policies are compared to the optimal

offline solution that can be obtained if one has upfront knowledge on the specific customer arrivals

and their demands. Moreover, the assumption is that the customer arrivals can be generated by a

worst-case adversary, who aims to maximize the ratio between the cost of the online and optimal

offline solutions. Under realistic assumptions, the online policies obtain small constant competitive

ratios for a broad array of supply chain models with online customer selection. That is, the cost

of the online policies is guaranteed to be within a constant factor of the optimal offline policy

for any sequence of customers and their demands. Furthermore, we provide compelling computa-

tional evidence that suggests the proposed policies typically behave significantly better than their

theoretical guarantees, and are near-optimal even under conservative experiments.

The two newly proposed online algorithms, Copycat and StablePair, are based on a new appli-

cation of repeated re-optimization. A very common heuristic frequently used to make decisions in

practice is to re-optimize in every period based on the current state of the system and the decisions

made so far. Empirically, these types of heuristics perform well in certain settings and poorly in

others. In contrast to this approach, Copycat and StablePair re-optimize assuming that previously

made decisions can be changed, and use the resulting outcome to guide the online decisions in the

Elmachtoub and Levi: Online Customer Selection

4 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

current period. (As we shall show, the resulting online policy is still feasible.) Specifically, these

algorithms make decisions for the online customer selection problem based on solving a problem

with offline customer selection defined with respect to all the customers that arrived thus far and

assuming that no selection decisions have yet been made. The resulting offline solution is then used

to make a decision regarding the selection (rejection) of the customer that just arrived. Although

these re-optimization heuristics ignore previously made decisions, the accept/reject decisions that

have been made cannot be reversed. Both algorithms have small constant competitive ratios and

perform well in computational experiments for a variety of online customer selection problems.

To demonstrate some of the main ideas of our work, we briefly discuss the Economic Lot Sizing

(ELS) problem with Online Customer Selection. In the traditional ELS problem, one has to satisfy

a pre-specified sequence of demands over a given discrete planning horizon with a sequence of

production orders over that horizon. Each order incurs a fixed setup cost K, regardless of the

quantity being produced. Each demand is then served from the latest order prior to its due date.

Demands incurs a per unit, per period holding cost h if they are served before their due dates. This

problem was first introduced and solved by dynamic programming in the seminal paper of Wagner

and Whitin (1958). If the supplier can reject customers at a per unit cost r, then this becomes

the ELS problem with offline customer selection that can also be solved efficiently using dynamic

programming (Geunes et al. (2006)). However, we focus on the ELS problem with online customer

selection, where there is a selection phase, in which customers arrive one at a time, each specifying

a demand quantity and a due date for some time in a future phase. One must make a decision

whether to accept or reject customers immediately upon arrival (or at some later point before the

production phase begins) without any knowledge of the future arrivals. After all customers arrive,

one has to satisfy all of the selected customers. This is reduced to solving the traditional ELS

problem with respect to the selected customers and their demands.

The first online algorithm proposed in this paper is a re-optimization framework called the

Copycat Algorithm. Upon each customer arrival, an ELS problem with offline customer selection

defined only for customers that have already been observed thus far is solved. Then the current

customer that just arrived is accepted if and only if it is accepted in the optimal offline solution

that was computed. It can be shown that the Copycat Algorithm has cost no more than three times

the optimal offline cost, and therefore has a competitive ratio of three. The analysis is shown to

be tight by an appropriately designed bad example. In addition, we consider the extension where

the customer selection and production phases can overlap, i.e., one has to make selection and

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 5

production decisions simultaneously, but customers’ due dates are monotone in their arrival time.

We show that the competitive ratio of 3 is maintained.

Similar results for the Copycat Algorithm also apply to online customer selection variants of

offline supply chain models, such as the multi-item Joint Replenishment (JR) problem (Levi et al.

(2006)) and Facility Location (FL) problem (Shmoys et al. (1997)). Specifically, we provide a

competitive ratio of four to both of these problems. However, solving JR and FL problems with

offline customer selection is NP-hard (Arkin et al. (1989), Cornuéjols et al. (1990)). Motivated by

this difficulty, we adapt the Copycat Algorithm to obtain a second algorithm called the StablePair

Algorithm that can be implemented efficiently, runs in time polynomial in the input size, and no

longer has to solve the full offline problem to make each selection decision. Moreover, the StablePair

Algorithm achieves improved competitive ratios of three each for both the JR and FL problems

with online customer selection. In fact, for FL the StablePair Algorithm with a cost scaling heuristic

obtains a competitive ratio of 2.41.

The Copycat and StablePair Algorithms can also be applied effectively to an additional class of

important problems. Consider any problem in which the production cost is nonnegative, nonde-

creasing, and submodular with respect to the set of accepted customers. These problems arise when

there are economies of scale such as in network routing and continuous replenishment problems

(see Deering and Cheriton (1990), Federgruen and Zheng (1992), and Lovász (1983)). For submod-

ular problems with online customer selection, our algorithms have a competitive ratio of two. We

note that the ELS, JR, and FL problems do not belong to the class of submodular production

problems (Goemans and Skutella (2000)). Finally, we provide a universal lower bound of two on

the competitive ratio of any deterministic online algorithm for the submodular, ELS, JR, and FL

problems with online customer selection.

1.2. Literature Review

Supply chain models with customer selection have recently gained interest (for a broader literature

on order acceptance problems, see the survey of Slotnick (2011)). Xu et al. (2011) considers a

stochastic periodic-review inventory model with lead time and the possibility of sales rejection.

Bhaskaran et al. (2010) considers an inventory model with convex cost structure and the ability

to backlog or refuse demand. Charikar et al. (2001) provide an approximation algorithm for the

facility location problem with offline customer selection. Some models considered offline market

selection, where a market is a sequence or collection of demands requested by a customer over time

(or in multiple locations) that must be either fully accepted or rejected. Van den Heuvel et al.

Elmachtoub and Levi: Online Customer Selection

6 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

(2012) show that it is NP-hard to approximate the profit maximization variants of these models

within any constant. This motivates the focus on cost minimization variants that we and others

have studied. Geunes et al. (2011) develop a general linear programming rounding framework to

approximately solve several supply chain problems with offline market selection and stochastic

demand. Their framework gives constant factor approximations to the ELS, JR, and FL problems

with offline market selection. In contrast, in this paper we consider markets that consist only of a

single period (or location), but the market/customer selection decisions are made online with no

information about the future. Earlier work on the offline prize-collecting traveling salesman problem

and the prize-collecting Steiner tree problem studied by Bienstock et al. (1993) and Goemans and

Williamson (1995), respectively, also falls into our customer selection framework.

There has also been a stream of literature on customer selection in the context of admission

control problems. For example, Carr and Duenyas (2000) and Caldentey and Wein (2006) both

consider a make-to-stock queue that is committed to serving long term contracts, but also has

a spot market from which it needs to accept and reject orders. In Plambeck et al. (2001) and

Gallien et al. (2004), there is a queue that admits customers based on their revenue and amount

of capacity available for their order. The major difference between this literature and our work is

that we are not inherently limited by a capacity, which is the major factor for rejecting customers

in these models. Instead, in our work customers are linked together due to the economies of scale

in production, and a customer may be rejected based on his own projected cost.

Only recently has the concept of online optimization been used to study models in operations

management, although thus far only to problems without market selection. In Van den Heuvel and

Wagelmans (2010), the competitive ratio of the online economic lot sizing problem is shown to

have a lower bound of two, matching the best known guarantee achieved in Axsater (1982). More

general single item models are considered in Wagner (2010). In Buchbinder et al. (2014), an online

primal-dual algorithm is proposed for a make-to-order variant of the online joint replenishment

problem which has a competitive ratio of three. Fotakis (2008) provides a lower and matching upper

bound depending on the number of customers for the online facility location problem. In revenue

management, Ball and Queyranne (2009) finds booking policies with small competitive ratios, and

Golrezaei et al. (2014) finds online algorithms for dynamic assortment optimization. In Keskinocak

et al. (2001), online algorithms are developed for scheduling problems with lead time quotations.

Finally, Jaillet and Lu (2013) propose algorithms for the online traveling salesman problem with

online customer selection. The ideas used in all these papers are very different than the ones used

in this work.

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 7

2. General Model

The models studied in this paper involve decisions that are made in two phases, a selection phase

and a production phase. Next we describe the details of the core model, and discuss different

extensions and applications in Section 2.1. First, there is a selection phase in which customers

arrive sequentially in an online manner. In stage k of the selection phase, customer k arrives

with requirements Ik and rejection cost rk. Requirements (information) Ik may include demand

quantities, due dates, and locations needed by the customer. After customer k arrives, the supplier

needs to decide whether to accept or reject customer k using only the information regarding the

first k customers. If customer k is accepted, then he must be served according to his requirements

during the production phase. If customer k is rejected, a cost of rk is incurred, which may represent

lost revenue, a price paid to a third-party supplier, or the cost of satisfying the customer from a

spot market. The rejection cost rk is typically related to the requirements Ik, i.e., proportional

to the demand quantity. Since the cost of each customer is not necessarily separable due to the

economies of scale in production, evaluating the marginal cost of a customer a priori is challenging

and thus makes the selection problem nontrivial. The selection phase completes when the supplier

stops observing new customers. At this point the customers that arrived have been partitioned

into accepted and rejected sets denoted by A and R, respectively.
The second phase is the production phase, where the accepted customers are served accordingly

to meet their requirements. Let Q be the set of production options that are available to the supplier.

The production options may represent potential order dates, locations of facilities, or just a single

production setting. For a nonempty set of production options Q ⊆ Q and a set of customers T ,

P (Q,T) denotes the minimum possible production cost to serve the customers in T using only

the production options in Q. The function P (Q,T) typically represents the cost of an optimal

solution to a minimization problem. The production cost for the accepted set of customers A is

then denoted by P (Q,A), which implies that the supplier could potentially use all options available

to serve the accepted customers. We make the natural assumptions that P (Q, T) is nondecreasing
in T and P (Q,∅) = 0. The overall goal is to minimize the total production costs of the accepted

customers plus the rejection costs of the rejected customers. This two phase problem is generally

referred to as an online customer selection problem. In Sections 4, 5, 6, and 7 we will describe

specific applications of the model by specifying definitions for Ik, rk, Q, and P (·, ·).
We now outline convenient notation used throughout the paper. Let N be the number of cus-

tomers that arrived (unknown a priori), U be the full set of customers {1, . . . ,N} and Uk be the first

k customers {1, . . . , k}, implying that U = UN . When referring to the final stage N , the subscript

Elmachtoub and Levi: Online Customer Selection

8 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

may be dropped for simplicity. The rejection cost of a subset of customers T ⊆ U is defined as

R(T), i.e., R(T) =
∑

k∈T rk. The notation Ak and Rk denote the customers that were accepted and

rejected, respectively, by the online algorithm through the first k stages. Note that Ak ∪Rk =Uk,

Ak ∩Rk = ∅, Ak−1 ⊆Ak, and Rk−1 ⊆Rk for all k.

If all information I1, . . . , IN and r1, . . . , rN is known upfront, then the offline customer selection

problem is defined as OPT(Q,U) =minA⊆U P (Q,A)+R(U\A). Let A∗
k and R∗

k denote an optimal

pair of accepted and rejected sets in the offline problem OPT(Q,Uk). Note that A∗
k ∪R∗

k =Uk and

A∗
k ∩ R∗

k = ∅ for all k, but monotonicity does not necessarily hold since an offline solution may

change its selection decisions as the stages progress. If there are multiple optimal solutions, we

will assume that A∗
k is a maximal one, which means it is not contained in another optimal set of

accepted customers.

The optimal offline cost through stage k is denoted by C∗(Uk), which can be expressed as

C∗(Uk) = P (Q,A∗
k) +R(R∗

k). The value C(Uk) denotes the total cost incurred by the online algo-

rithm through stage k, i.e., C(Uk) = P (Q,Ak) + R(Rk). Using these definitions, it follows that

for any online algorithm and any stage k, C∗(Uk) ≤ C(Uk). Finally, we will sometimes drop the

production options input from P and OPT which implies that we are using the entire set Q, i.e.,
P (Q, ·) = P (·) and OPT(Q, ·) =OPT(·).
The performance of an online algorithm is evaluated using the notion of competitive ratio. An

algorithm has a competitive ratio of α and is called α-competitive if C(U) ≤ αC∗(U) for any

online sequence of customers U and their respective characteristics. In other words, the cost of

the algorithm is guaranteed to be at most α times the cost of an optimal offline solution for any

customer sequence.

2.1. Model Applications

For clarity purposes, the core model described above only has two phases. However, the model

and results can be easily extended to the scenario where there are multiple consecutive phases of

selection and production, as long as the customer orders corresponding to a certain production

phase arrive before that phase begins. For example, if each month is considered to be a distinct

production phase, the corresponding selection phase is any time before that month begins. If

customers request due dates that are at least a month away, which is very common in many

applications, then when every month begins the exact demand is known and a minimum cost

production plan can be created for that month. In addition, if we can defer selection decisions or if

customers arrive in batches, then this actually provides greater flexibility and information for the

decision maker. The algorithms we propose in Section 3 can be naturally adapted to these settings.

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 9

Specifically, the core model described above captures various settings, in which (i) customer

order selection is a common practice or suppliers have the flexibility to satisfy customer orders

from either internal resources or spot markets/third parties; (ii) customer ‘patience’ is short (not

necessarily immediate) relative to the typical requested/acceptable lead time to satisfy customer

requests; and (iii) the underlying supply/production cost structure is characterized by economies

of scale that make the selection decisions for different customer orders highly dependent. Under

this type of cost structure, production is typically planned well in advance.

The steel, glass, and construction industries are examples that fit the characteristics described

above (Hintsches et al. (2010)). For example, consider a supplier that sells construction materials.

When customers, i.e., contractors, request products with specific due dates, the supplier may decide

that the quantity ordered does not cover the costs of materials and delivery. Note that this decision

might depend on the requests of previous customers since their orders might have already covered

some fixed costs. Since the contractors have deadlines to complete their projects, an instantaneous,

i.e., ‘online’, decision is typically required to allow them to plan accordingly. Typically the supplier

will communicate to the customer that they are out of stock as a way to reject the customer if

necessary. The production cost functions for this type of application can be modeled by submodular

or inventory control problems which we discuss in Sections 4, 5, and 6. In particular, in Section 5.2,

we discuss scenarios where the supplier can only serve customer demands in multiples of a fixed

quantity, a situation that arises frequently due to truckload capacities and/or batch processes.

The model also captures typical scenarios in the service industry (Zeithaml et al. (2001)). For

example, consider a service provider that serves customers through a physical infrastructure. Typi-

cally, customers will request service from the provider and the provider will need to decide whether

to serve each customer or not. In order to serve a customer, the proper infrastructure or facility

must be setup near the customer. If the infrastructure needs to be improved or expanded at a

relatively large cost for the customer to receive service, then he might be rejected by the provider

(“out of network”). Otherwise, the customer is accepted and incurs a cost corresponding to his

usage of the service. The production cost function in this setting could be modeled with the facility

location problem or network design problem with submodular cost structure in Sections 4 and 7.

Other scenarios that can be captured by our models are when the ‘rejection’ cost represents a

fee paid to a third-party supplier/logistics company or the use of spot markets (versus internal

capacity) to satisfy the customer order. This situation can arise when the cost of serving customers

using external resources is sometimes cost effective. For example, a local company may prefer to do

Elmachtoub and Levi: Online Customer Selection

10 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

some bulk shipping of their own but may rely on national companies to ship smaller or more long-

distance packages. The use of third party logistics (3PL) is becoming increasingly commonplace

and operationally advantageous (Lieb and Bentz (2005)).

The model can also be used as a tool to enhance available-to-promise strategies, in which com-

panies interact with customers regarding their desired orders and delivery dates. Our model can

be used as a support tool for negotiating with customers. For example, rather than rejecting a

customer outright, a supplier may ask the customer to modify his requirements in order to create

a mutually beneficial deal that will be accepted by the algorithm. This may include increasing the

demand quantity, being more flexible with the due date, and/or reducing the variety of the order.

Specifically, one could increase the demand quantity until the customer selection algorithm accepts

the order in order to find a new deal to counteroffer to the customer. Alternatively, given the

demand information of the customer, one can find all the due dates for which the customer selection

algorithm would lead to accepting that order, and then present these options to the customer.

In other important settings, where the lead time of customers is short relative to the produc-

tion phase, the selection phase and the corresponding production phase could overlap. The online

customer selection model can easily be applied to these situations, but one would need to use, in

addition to the online selection algorithm, an online production algorithm to solve the production

problem since not all the accepted customers are known in advance. Although these problems are

important, they are also much more complex. In fact, for many of the models discussed in this

paper, just the online production problem with no customer selection is hard in the sense that there

is no online algorithm with a constant competitive ratio. In contrast, in Section 5.3, we discuss an

interesting special case where such an algorithm is available, and show how it could be incorporated

into our selection algorithms to obtain a fully online selection and production algorithm.

3. Algorithms

3.1. Copycat Algorithm

We now provide a framework to solve problems with online customer selection which we call the

Copycat Algorithm. Simply put, for every customer arrival k, the offline problem OPT(Uk) is solved

to obtain an optimal offline solution A∗
k. Then the arriving customer k is accepted if and only if

customer k is accepted in the respective optimal solution (i.e., k ∈ A∗
k). Otherwise, k ∈ R∗

k and

customer k is rejected. This is called the Copycat Algorithm because it simply copies the optimal

offline solution’s decision at each customer arrival.

Copycat Algorithm: Accept current customer k if and only if k ∈A∗
k.

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 11

Although Copycat appears naive, it can be shown that it performs well for the class of problems

considered in this paper. Note that fixing our previously made decisions when we re-optimize will

result in most customers getting rejected and an overall poor performance. See Example 3 in the

Online Appendix for a detailed example. We next show a surprising property of this algorithm

that only requires the monotonicity of P (·). Specifically, the next lemma asserts that the rejection

cost for Copycat will never be too large for any problem with online customer selection.

Lemma 1. Assume that P (·) is nondecreasing. Then the total rejection costs of the Copycat Algo-

rithm at each stage k is at most the respective optimal offline cost, i.e., R(Rk)≤R(R∗
k)+P (A∗

k) =

C∗(Uk) for all k. Specifically, the final rejection cost R(R)≤C∗(U).

Proof. The proof is by induction. Start with the base case k= 1, where

R(R1) =R(R∗
1)≤R(R∗

1)+P (A∗
1) =C∗(U1).

The first equality follows from the fact that R1 =R∗
1 since the selection decision made by OPT(U1)

is copied. The inequality follows from the nonnegativity of P (·). The last equality follows directly

from the definition of C∗(·).
Now assume the inductive hypothesis that R(Rk−1)≤C∗(Uk−1). Consider the following two cases

depending on whether customer k was accepted or rejected in the solution of OPT(Uk).

Case 1) If customer k is accepted in the solution of OPT(Uk) (i.e., k ∈A∗
k), then

R(Rk) =R(Rk−1)≤C∗(Uk−1)≤C∗(Uk).

The first equality holds because k ∈A∗
k which implies that Copycat accepted k, and thusRk =Rk−1.

The inequality follows from the inductive hypothesis. The last inequality follows from the fact that

any solution to OPT(Uk) induces a solution to OPT(Uk−1) with cost at least C∗(Uk−1).

Case 2) If customer k is rejected in the solution of OPT(Uk) (i.e., k ∈R∗
k), then

R(Rk) =R(Rk−1)+ rk ≤C∗(Uk−1)+ rk =C∗(Uk).

The first equality holds since k ∈ R∗
k which implies that Copycat also rejected k. The inequality

follows from the inductive hypothesis. The last equality holds by the linearity of R(·) and the fact

that there is an optimal solution to OPT(Uk) that rejected customer k. �

Using Lemma 1, it is clear that if the production costs of Copycat are no more than β times

the optimal offline cost, a competitive ratio of β + 1 is obtained. This is stated precisely in the

following theorem.

Elmachtoub and Levi: Online Customer Selection

12 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Theorem 1. Let A be all the customers that the Copycat Algorithm accepts and let β be a positive

scalar. If P (A)≤ βC∗(U), then Copycat is (β+1)-competitive.

Interestingly, we can also show that the Copycat Algorithm works well if the sequence of optimal

solutions satisfies a certain property. Specifically, if satisfying ∪k
i=1A∗

i has cost at most βC∗(Uk),

then the same holds for satisfying A since A ⊆ ∪k
i=1A∗

i by definition of the Copycat Algorithm.

Combining this fact with Lemma 1, we obtain the following lemma.

Lemma 2. If P (∪k
i=1A∗

i)≤ βC∗(Uk), then the Copycat Algorithm is (β+1)-competitive.

In the subsequent Sections 4-7, we shall show how to obtain bounds like the one in Theorem

1 above for several interesting problems and cases. However, one potential major flaw with the

Copycat Algorithm is that it requires an exact solution to the offline problem in each stage. Even

worse, the offline problem may sometimes be NP-hard such as in the JR and FL applications

described in Sections 6 and 7, respectively. Motivated by these issues, we present another algorithm

in the next subsection that is efficiently computable for all the applications we consider.

3.2. StablePair Algorithm

We now provide another algorithm for online customer selection called the StablePair Algorithm.

For a nonempty subset of production options Q⊆Q and customers T ⊆U , we call (Q,T) a stable

pair if there exists an optimal solution to the respective offline customer selection problem defined

on Q and T , denoted by OPT(Q,T), that accepts all of the customers in T . The StablePair

Algorithm accepts a given customer k if and only if there exists a stable pair (Q,T)⊆ (Q,Uk), such

that k ∈ T .

StablePair Algorithm:
Accept current customer k if and only if there exists a stable pair (Q,T)⊆ (Q,Uk) such
that k ∈ T .

As we shall show, the StablePair Algorithm has two main benefits. First, a stronger bound on the

rejection costs can be obtained, and second, the selection phase can be implemented in polynomial

time for many interesting problems that we consider. The stability name arises from the fact that

if a customer was accepted by StablePair, then he would also be accepted if he had arrived at a

later date. (This is not necessarily true for the Copycat Algorithm.) Moreover, in Lemma 3 below

(proof in Online Appendix), it is shown that the StablePair Algorithm is less conservative than the

Copycat Algorithm in that each customer accepted by Copycat is also accepted by StablePair. (We

let the superscripts C and S refer to the Copycat and StablePair Algorithms decisions, respectively.)

Lemma 3. The accepted set of customers by StablePair is at least that of Copycat, i.e., AC ⊆AS.

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 13

We now give another useful way of characterizing a stable pair which follows immediately from

the definition. The pair (Q,T) is stable if and only if

R(S)≥ P (Q,T)−P (Q,T\S) ∀S ⊆ T. (1)

Note that (1) above is equivalent to not having any solution to the offline problem defined on

Q and T that is strictly better than accepting T . As already mentioned, the StablePair Algorithm

achieves a stronger bound for the rejection costs R(R). Specifically, compared to Lemma 1, in

Lemma 4 below the term R(A∩R∗) is no longer needed in the bound, which will later lead to

better overall competitive ratios than Copycat.

Lemma 4. Assume that P (·) is nondecreasing. The StablePair Algorithm for online customer selec-

tion problems has rejection cost R(R) ≤ R(R∩R∗) + P (R∩A∗) ≤ R(R∩R∗) + P (A∗), for any

offline optimal solution (A∗,R∗).

Proof. We first show that for all X ⊆R, R(X)≤ P (X). Let X ⊆R and assume for contradiction

R(X)>P (Q,X) = P (X). (2)

Let k be the last arriving customer in X. Since k was rejected by StablePair, it follows that (Q,X)

is not a stable pair for customer k. Thus, by Eq. (1) there exists a set S ⊆X such that

R(S)<P (Q,X)−P (Q,X\S) = P (X)−P (X\S). (3)

Note that S 6= ∅ or else 0< 0. Subtracting (3) from (2) yields

R(X\S)>P (X\S). (4)

Now reset X←X\S and repeat the analysis above until X = ∅. This will eventually give a contra-

diction that 0> 0. Now let (A∗,R∗) be any optimal offline solution and let X =R∩A∗. From the

previous argument, it follows that

R(R∩A∗)≤ P (R∩A∗). (5)

Adding R(R∩R∗) to both sides of (5) completes the proof. �

Copycat and StablePair are different in at least three ways. First, Example 4 in the Online

Appendix demonstrates that the Copycat Algorithm is indeed strictly weaker with respect to

bounding the rejection costs. Second, Example 5 in the Online Appendix shows that Copycat

can “regret” accepting customers, where as StablePair never has regret since once a customer is

Elmachtoub and Levi: Online Customer Selection

14 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

accepted, there is always a stable pair (i.e., the original one) that would accept him later on.

Finally, Example 6 in the Online Appendix shows that StablePair can accept customers that would

never be accepted by A∗
k for any k.

Using Lemma 4 (which holds for any optimal solution), it is clear that if we can obtain a bound

on the production costs of StablePair, then we can obtain strong competitive ratios that can be

strictly better than Copycat. This is made precise in the following theorem.

Theorem 2. Let A be all the customers that the StablePair Algorithm accepts and let β and γ

be positive scalars. If there exists an optimal offline solution (A∗,R∗) such that P (A)≤ βP (A∗)+

γR(R∗)+R(A∩R∗), then StablePair is max(β+1, γ+1)-competitive.

Since Theorem 2 can be used by showing the bound for just one optimal solution, for the rest

of the paper we will always assume that we are using a solution A∗
k that is maximal. This means

that no optimal set of accepted customers to OPT(Uk) is a strict superset of A∗
k.

Although the online customer selection decisions can be done efficiently with StablePair, the

decision maker still needs to calculate P (A) in the production phase, which might be NP-hard

to solve. In most practical settings, P (A) can be calculated via integer programming or other

methods. Indeed, if one desires to solve the production phase using a c-approximation algorithm (an

algorithm that finds a solution in polynomial time that is no more than c times the optimal cost),

then the theoretical competitive ratio would simply increase multiplicatively with c. The following

theorem makes this statement precise and follows directly from the definition of an approximation

algorithm and Lemma 4.

Theorem 3. Let A be the customers that StablePair accepted and let β,γ, and c > 1 be positive

scalars. Assume there exists an optimal offline solution (A∗,R∗) such that the optimal cost of

serving A is P (A)≤ βP (A∗)+ γR(R∗)+R(A∩R∗). Then the StablePair Algorithm is max(cβ+

1, c(γ+1))-competitive when a c-approximation algorithm for P (·) is used to serve A.

Note that the previous theorem also holds if we use a c-competitive online algorithm for solving

P (A). This may be useful if one wishes to merge the online customer selection and production

phases together, which we do in Section 5.3. The remainder of this paper focuses on how to

implement the StablePair Algorithm efficiently and how to bound the production costs of StablePair

for several inventory and logistics problems. Since AC ⊆AS and P (·) is nondecreasing, then these

production bounds will hold for the Copycat Algorithm as well. Not surprisingly, the production

bounds we obtain are highly dependent on the combinatorial structure of the production problems.

For example, the best bounds are obtained for the submodular cost production problem which is

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 15

the simplest application we consider, and the highest bounds are for the JR production problem

which is informally the most difficult problem we consider.

4. Submodular Cost Problems with Online Customer Selection

In this section, we consider the case where the production cost function is submodular and there

is only one production option, i.e. |Q| = 1. Furthermore, the rejection cost for each customer k,

denoted by rk, can be an arbitrary nonnegative number independent of his requirements, Ik. A

function P (·) is submodular if for all S ⊆ T ⊆U and i /∈ T , P (S ∪{i})−P (S)≥ P (T ∪{i})−P (T).

Equivalently, a function P (·) is submodular if for all S,T ⊆U , P (S)+P (T)≥ P (S∩T)+P (S∪T).
Submodular functions with online customer selection are simply online customer selection prob-

lems where the production cost function P (·) is submodular. Nondecreasing submodular functions

arise naturally in many applications where there are economies of scale. We provide several exam-

ples below, all of which naturally have |Q|= 1.

Example 1 (To Build or Not to Build). Consider the function P (T) = K if |T | > 0, and

P (∅) = 0. This function essentially builds or implements a project if there is any customer that

needs to be served. When a customer k arrives online, his willingness to pay, rk, is revealed. Due

to the simplicity of P (·), Ik has no particular meaning. �

Example 2 (Multicast Routing). Consider a tree T with root v. Each edge ej ∈ T has a cost

cj ≥ 0. Let T be a subset of nodes and P (T) be the cost of connecting the nodes in T to the root

v using only edges in T . Then P (T) is clearly nondecreasing and submodular and is referred to as

the multicast routing problem (Deering and Cheriton (1990)). The information Ik for customer k

would be his node location, and rk is his willingness to pay for service from that node. �

Example 7 in the Online Appendix describes another application regarding polymatroid opti-

mization and a continuous inventory replenishment problem.

4.1. Bounding Production Costs

The following theorem bounds the production costs incurred by StablePair for all submodular

problems with online customer selection. From Lemma 3, this bound holds for Copycat as well.

Lemma 5. If the StablePair (or Copycat) Algorithm is used for submodular problems with online

customer selection, then P (Ak)≤ P (A∗
k) for all k.

Proof. By the monotonicity of P (·), it is sufficient to show that Ak ⊆A∗
k, for each k. Therefore,

it is now sufficient to prove that the StablePair Algorithm accepts k if and only if k ∈A∗
k.

Elmachtoub and Levi: Online Customer Selection

16 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Clearly if k ∈A∗
k, then (Q,A∗

k) is a stable pair that StablePair can use to accept k. Now assume

that k was accepted by the StablePair Algorithm, and let (Q, T) be the stable pair that accepted

k. Then

R(T\A∗
k)≥ P (T)−P (T ∩A∗

k)≥ P (T ∪A∗
k)−P (A∗

k).

The first inequality follows from (1) which is a property of a stable pair. The second inequality

follows from the submodularity of P (·). This implies that accepting A∗
k ∪T is at least as cheap as

only accepting A∗
k and rejecting T\A∗

k. Since we chose A∗
k to be a maximal optimal solution, this

implies that T ⊆A∗
k and thus k ∈A∗

k. �

Combining Theorems 1 and 2 and Lemma 5 obtains the following main result.

Theorem 4. The Copycat and StablePair Algorithms for submodular problems with online cus-

tomer selection is 2-competitive.

Note that the proof of Lemma 5 implies that the Copycat and StablePair Algorithms are identical

if Copycat always outputs the maximal optimal solution. This trivially happens if there is always a

unique optimal solution, which can be achieved via a random perturbation. Interestingly enough,

it turns out that the Copycat Algorithm can be implemented efficiently for submodular production

problems with online customer selection. For any set of customers T ,

OPT(T) =min
A⊆T

P (A)+R(T\A) =min
A⊆T

P (A)+R(T)−R(A) =min
A⊆T

P (A)−R(A)

Since R(·) is modular, then P (·)−R(·) is also submodular. Therefore, OPT(T) is just the solution to

a submodular minimization problem, which can be solved in polynomial time (McCormick (2006)).

Thus Copycat (and StablePair) can be implemented efficiently. In Theorem 5 below, proved in

Online Appendix, we show that the competitive ratio for any deterministic online algorithm is at

least two, and thus Copycat and StablePair achieve the best possible result. This result also holds

for the ELS, FL, and JR applications that we consider in later sections.

Theorem 5. The competitive ratio for any deterministic algorithm used to solve submodular, ELS,

FL, or JR problems with online customer selection is at least 2.

5. Economic Lot Sizing Problem with Online Customer Selection

The Economic Lot Sizing (ELS) problem is a single item, discrete time inventory model. There is a

set of customers, each with a due date and demand quantity, that need to be served by a sequence

of production orders over a planning horizon of a fixed number of periods. Each order incurs a

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 17

setup cost K. Each customer can only be served by an order prior to his due date. If a customer

with due date t and demand d is satisfied by an order at time s < t, then a per unit holding cost

h> 0 is incurred for every period and every unit of demand carried in inventory from period s to t.

Without loss of generality we can assume that each customer is served from the latest order prior

to his due date. The objective is to minimize the total setup ordering cost plus holding cost. The

ELS problem can be solved efficiently via dynamic programming (Wagner and Whitin (1958)).

If the supplier has an option to not serve customers, or to subcontract customers to a third

party, then we say the supplier can reject customers (or select only some of the customers). Let

r be the per unit rejection cost. (For convenience, we assume r is an integer multiple of h.) In

this full information model, the goal is to decide which customers to select and how to serve these

customers. The objective is to minimize the rejection cost of the rejected customers plus the ELS

setup and holding costs to satisfy the selected customers. This is called the Economic Lot Sizing

problem with Offline Customer Selection, which can be solved efficiently (Geunes et al. (2006)).

We will focus on the Economic Lot Sizing problem with Online Customer Selection. Customers

arrive in an online manner and the supplier needs to make an immediate selection decision before

new customers arrive. When a customer k arrives, he specifies Ik = (dk, tk), where dk is the quantity

and tk is the due date. The rejection cost of customer k is then rk = rdk. The set of production

options Q is the set of possible order dates. The production cost P (Q,T) is then the optimal cost

of the ELS problem on a subset of customers T using only the potential order dates Q⊆Q. Note

that we assume the per unit rejection cost is uniform among customers. In Elmachtoub and Levi

(2014), it is shown that if there are customer-specific rejection costs per unit, then no deterministic

nor randomized online algorithm can have a constant competitive ratio.

5.1. Bounding Production Costs

In this section, we provide a bound on the total production costs incurred by the StablePair

Algorithm when applied to the ELS problem with online customer selection. It is well known that

the optimal solution for the ELS problem has a zero inventory ordering (ZIO) property (Wagner

and Whitin (1958)). This means that orders are placed only when the on-hand inventory level is

zero. This implies that each order covers all demands with due dates between the order date and

the due date of the last customer served by the order. We refer to this range of due dates as the

respective setup interval of the order. We now prove two simple lemmas, proved in the Online

Appendix, regarding the structure of an optimal offline solution.

Elmachtoub and Levi: Online Customer Selection

18 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Figure 1 Demands near an optimal order sj .

sj sj + r/h sj + 2 r/h sj - r/h

Note. The triangles denote optimal orders and the circles denote due dates of customers. The first two customers

will be served by the extra order placed at sj − r/h. The next two customers are in A
∗ and are served by the order

at sj . The last customer will also be served by the order at sj with holding cost at most 2r per unit.

Lemma 6. Let (Q,T)⊆ (Q,U) be a stable pair. Each setup interval induced by the ELS solution

to P (Q,T) must have a length of at most r/h periods.

Lemma 7. Let (Q,T) ⊆ (Q,U) be a stable pair and let [a, b] be a setup interval from the ELS

solution for P (Q,T). Then the interval [a, b] must contain the due date of a customer in A∗.

Therefore, [a, b] must intersect a setup interval from the ELS solution for P (A∗).

Using Lemmas 6 and 7, it is next shown that the StablePair Algorithm incurs production cost

at most twice the optimal offline cost. From Lemma 3, this also holds for the Copycat Algorithm.

Lemma 8. The production cost incurred by StablePair (Copycat) Algorithm for the ELS problem

is within twice the optimal offline cost, specifically, P (A)≤ 2P (A∗)+ 2R(A∩R∗)≤ 2C∗(U).

Proof. We will explicitly construct a feasible production plan that serves all of the customers in

A and show that its cost is at most twice the optimal offline cost C∗(U). This will also clearly hold

for the optimal (minimum cost) production plan to serve the customers in A. Let s1, . . . , sm denote

the order periods in the ELS solution to P (A∗), i.e., the optimal production plan for customers

accepted by the optimal offline solution. Let K∗ and H∗ represent the setup costs and holding

costs, respectively, induced by P (A∗). Consider a production plan that places orders at times

s1, . . . , sm as well as s1−r/h, . . . , sm−r/h. The total cost of these orders is exactly 2K∗. Now serve

all customers in A∩A∗ by the same order that they were served in the ELS solution for P (A∗).

The resulting total holding costs for these customers is at most H∗. The only customers left to be

served are those in A∩R∗.

Next, consider each customer k ∈A∩R∗, i.e., a customer accepted by StablePair but not by the

optimal offline solution. The claim is that there exists some optimal order sj such that customer

k’s due date tk ∈ [sj− r/h, sj +2r/h]. (See Figure 1 for an example of the accepted customers near

an optimal order sj.) Now consider the stable pair (Q,T) that made StablePair accept customer

k. Lemma 7 implies that the setup interval within the production plan for P (Q,T) that contained

k also contains some customer k′ ∈A∗. Let sj be the order from which customer k′ is served in the

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 19

production plan for P (Q,A∗). By Lemma 6, the lengths of the setup intervals in any ELS solution

are at most r/h. It then follows that tk ∈ [sj − r/h, sj +2r/h]. In the construction, customer k is

served from the order sj − r/h if tk ∈ [sj − r/h, sj) and from sj if tk ∈ [sj, sj +2r/h]. In either one

of these cases, the per unit holding cost incurred by k is at most 2r. However, customer k was

rejected by the optimal offline solution and incurred a cost r. It follows that the total holding cost

incurred by customers in A ∩R∗ is at most 2R(A ∩R∗). Summing up all the production costs

yields an upper bound on P (A) of 2K∗+H∗+2R(A∩R∗)≤ 2P (A∗)+2R(A∩R∗)≤ 2C∗(U). �

Combining Theorems 1 and 2 with Lemma 8, we obtain the following main result.

Theorem 6. The Copycat and StablePair Algorithms for the Economic Lot Sizing Problem with

Online Customer Selection are both 3-competitive.

Example 8 in the Online Appendix demonstrates that the analysis above is tight for both algo-

rithms. We note that the analysis of the Copycat and StablePair Algorithms can be extended easily

for non-decreasing setup costs Kt and more general holding cost structure. Specifically, if the cost

of holding a unit from period s to t is hst, then the analysis holds if hst is subadditive (for any

s≤ u≤ t, hst ≤ hsu +hut).

5.2. Including Soft Capacities

One interesting extension of the ELS problem is when there are soft capacities on the number of

units produced in every order. Specifically, at most c units can be produced in an order, but there

is no limit on the number orders placed in a given time period. Thus, capacity is soft in the sense

that more customers can always be served if necessary, although no more than c units of demand

can be served from a particular order. In this setting, every order placed still incurs a cost K, and

the total ordering cost in a period is K times the number of orders. Theorem 7 below, proved in

the Online Appendix, shows that our algorithms still perform well under this setting, albeit at an

increased competitive ratio of 4.

Theorem 7. The Copycat and StablePair Algorithms for the Economic Lot Sizing Problem with

Soft Capacities and Online Customer Selection are both 4-competitive.

5.3. Including Online Production

Another extension of the ELS problem with online customer selection is when the online customer

selection phase and production phase overlap. In this scenario, the supplier learns about each

customer k at their arrival time ek, which may be after the due dates of other customers. The

Elmachtoub and Levi: Online Customer Selection

20 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

information for each customer k is now Ik = (ek, dk, tk), where dk and tk are the respective demand

quantity and due date for customer k. If customer k is accepted, he must be satisfied by an order in

the time window [ek, tk]. Naturally we assume that ek ≤ tk and the arrival dates are chronological.

The ELS problem with online customer selection and online production is more difficult, and in

fact, Example 9 in the Online Appendix demonstrates that we cannot obtain a constant competitive

ratio for this problem, even when the optimal offline solution must also respect the arrival times.

However, if the due dates of the customers are in chronological order, then we can obtain a

positive result as stated in the following theorem which is proved in the Online Appendix.

Theorem 8. Consider the Economic Lot Sizing Problem with Online Customer Selection and

Online Production. Assume that the due dates for the customers are in chronological order, i.e.,

t1 ≤ t2 ≤ . . .≤ tN . Then the Copycat Algorithm combined with a 2-competitive heuristic of Axsater

(1982) for the online ELS problem obtains an overall competitive ratio of 3.

5.4. StablePair Implementation

Although the Copycat Algorithm for the ELS problem with online customer selection can be

implemented in polynomial time by using dynamic programming, we describe the StablePair imple-

mentation since it is faster and also serves as a foundation for how to implement StablePair for

the JR variant in Section 6.2. Lemma 9 below, proved in the Online Appendix, describes an exact

method for implementing the StablePair Algorithm. The idea is that one can reduce the search

space for stable pairs by only considering those with one production option (order date).

Lemma 9. The StablePair Algorithm accepts customer k if and only if there exists a stable pair

(Q,T) with k ∈ T such that

1. Q consists of one order date, i.e. Q= {t} for some time t.

2. T includes exactly all customers that can be served from t with at most r per unit in holding

cost, i.e. T = {j ∈Uk|tj ∈ [t, t+ r/h]}.
3. The rejection costs of T exceed the production costs of serving T from an order at t, i.e.

R(T)≥K +
∑

j∈T h(tj − t)dj.

Note that without loss of generality, one only needs to consider the potential order dates that

correspond to due dates of Uk (since ZIO policies are optimal). Thus, the maximum number of

candidate stable pairs is at most N . Since checking stability of each pair takes O(N) time, then

this characterization of the StablePair Algorithm provides an efficient implementation.

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 21

6. Joint Replenishment Problem with Online Customer Selection

The Joint Replenishment (JR) problem is a natural extension of the ELS problem with multiple

item types, indexed 1, . . . ,M . The goal is to serve a set of customers, each with a quantity, due

date, and item type, by a sequence of production orders over a planning horizon of a fixed number

of periods. Each order incurs a joint setup cost of K0. In addition, for each item type i ordered, an

item setup cost of Ki is incurred. Each customer can only be served by orders that contain his item

type and are before his due date. As with the ELS problem, there is also a per unit holding cost

h. The objective is to minimize the total setup ordering cost plus holding cost. This problem was

shown to be NP-hard in Arkin et al. (1989), and admits a current best approximation guarantee

of 1.80 due to Levi et al. (2008). More general JR problems are considered in Cheung et al. (2013).

When the supplier does not have to serve all the customers, but can now reject customers at a

per unit cost r, then the problem becomes even more complex. (For convenience, we assume r is

an integer multiple of h.) The supplier must now decide on the optimal set of customers to select

and decide how to serve them. Specifically, the goal is to minimize the total rejection costs plus the

cost of the JR problem on the accepted customers. This is called the Joint Replenishment Problem

with Offline Customer Selection. This problem was first studied in Geunes et al. (2011) who gave

a 2.35-approximation for the market selection variant.

In this work, we focus on the Joint Replenishment Problem with Online Customer Selection.

Like the previous models, customers arrive one after the other and must be either accepted or

rejected immediately. Specifically, when a customer k arrives, his requirements Ik = (dk, tk, ik) are

observed, where dk specifies the quantity, tk specifies the due date, and ik specifies the item type.

The rejection cost is then rk = rdk. We again define the set of production options Q as the set

of potential order dates. The production cost function P (Q,T) is now the optimal cost of the JR

problem with production options Q and customers T .

6.1. Bounding Production Costs

In this subsection, we shall bound the production costs incurred by the StablePair Algorithm for

the JR problem with online customer selection. For now, assume that there exists a black box to

run the StablePair Algorithm. In Section 6.2 we describe an efficient implementation of StablePair.

Again the setup interval of an order is defined as the range of due dates that the order serves,

regardless of item type. Lemmas 6 and 7 both still hold with the same proofs for the JR problem

with online customer selection. The following lemma describes the worst-case production costs that

will be incurred.

Elmachtoub and Levi: Online Customer Selection

22 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Figure 2 Constructing the set T i.

 r/h r/h r/h

Note. The six squares represent the order dates that make up T̂ i. The solid squares represent the order dates that

make up T i and the hollow squares represent the dates that were pruned. By default, the first square must be solid.

Then all squares within r/h are pruned and the process is repeated.

Lemma 10. If the StablePair (Copycat) Algorithm is used for the JR problem with online customer

selection, then P (A)≤ 2P (A∗)+R(R∗)+ 2R(A∩R∗)≤ 3C∗(U).

Proof. The proof is similar in spirit to the proof of Lemma 8, but requires a more involved

construction and analysis. Let s1, . . . , sm denote the times of the orders in the optimal production

plan for P (A∗). The cost of the optimal production plan can be decomposed into the total setup

costs, K∗, and the total holding costs, H∗. Let Ai simply denote the customers with item type i

that are in A. For each customer k ∈ Ai, let ak be the order date that serves customer k in the

stable pair solution that StablePair used to accept customer k, and let T̂ i denote the set of these

order dates sorted from earliest to latest. Construct T i ⊆ T̂ i by processing T̂ i in order from earliest

to latest, and remove any order date that is within r/h periods of the previous order date that

was not removed. (See Figure 2 for an example of this construction.) Now consider the following

two sets, X i and Y i. The set X i is defined to be the set of all type i customers that have due date

within [t, t+ r/h] for some t∈ T i. Note that X i is not necessarily contained in the set Ai. The set

Y i is then defined to be Ai\X i.

To construct a solution that serves all the customers in A, we first create the same sequence of

orders as in P (A∗) in periods s1, . . . , sm and incur setups costs of K∗. Note that the item orders are

replicated as well. All the customers in A∩A∗ are then served in the same way as in the production

plan for P (A∗), and thereby incur holding costs of at most H∗. Now we create a sequence of

duplicate orders shifted back by time r/h, i.e. at periods s1− r/h, . . . , sm− r/h, and incur another

K∗.

Next, consider each item type i separately. Assume for now that for each order date t ∈ T i,

there exists an order sj in the production plan for P (A∗), such that either sj ∈ [t − r/h, t] or

sj − r/h ∈ [t− r/h, t]. Moreover, order sj (or sj − r/h) includes item i. Assuming this property

holds, one can bound the holding costs for the customers in Ai ∩R∗. Specifically, the property

ensures that all type i customers with due dates in [t, t+ r/h] can be served with holding cost at

most 2r per unit. By definition of X i, this means that the customers in X i∩Ai∩R∗ will be served

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 23

Figure 3 Serving the customers in A
i.

sj sj - r/h

i

 r/h

sj+1 – r/h

i i

sj+1

 r/h

Note. In this figure, the triangles are orders, the circles are due dates for customers in A
i, the solid squares are times

in T i, and the hollow squares are times in T̂ i that were pruned. In this picture, only the orders with an i written

contain an order of type i. The first pair of orders is associated with Case 2 and the second pair of orders is associated

with Case 1. The first two demands are in Xi
∩A

i
∩R

∗. The next two demands are in k ∈ Y i
∩R

∗. The last demand

is in A
∗.

with total holding costs at most 2r per unit. The remaining customers left to be served are those

in Y i ∩R∗. Consider customer k ∈ Y i ∩R∗. By construction of T i, it follows that there exists a

t∈ T i such that t≤ ak ≤ t+ r/h≤ ak + r/h. In addition, from the definition of ak and Lemma 6, it

follows that tk ∈ [ak, ak + r/h]. By the property assumed above, there exists an order that includes

item type i within r/h before t. The holding cost from that order to t, t to ak, and ak to tk are

each at most r per unit. Thus, customer k can be served with a holding cost of at most 3r per

unit. (See Figure 3 for an example.)

It is now sufficient to ensure that indeed for each t∈ T i, there exists an order of type i within r/h

time periods earlier than t. To achieve this, extra item orders will be added to the construction.

From Lemma 7, it follows that the setup interval corresponding to t intersected some optimal setup

interval starting at sj. (If there is a choice of intersections, choose sj that contains an item order

of type i if one exists.) From Lemma 6, it follows that sj − r/h≤ t≤ sj + r/h. We now consider

two cases and show how to enforce the property in each case.

Case 1: There is a type i customer in A∗ with due date in [t, t+ r/h]. By construction,

this implies that there are type i orders at sj and sj − r/h, respectively.

Case 2: There is no type i customer in A∗ with due date in [t, t+r/h]. If sj−r/h≤ t < sj,

then we place an extra item order of type i at the joint order located at time sj − r/h. Otherwise,

sj ≤ t≤ sj +r/h and we place the extra order of type i at sj. Since t corresponds to a setup interval

from a stable pair solution, it follows from (1) that there exists a set of customers with due dates

in [t, t+ r/h] whose rejection costs are greater than Ki. Under the case assumption, the type i

demands with due dates in [t, t+ r/h] are all in R∗. Furthermore, all customers with due dates in

[t, t+ r/h] are in X i. Thus, the extra item orders have cost at most R(X i ∩R∗). Each customer in

X i ∩R∗ can be used at most once to pay for an extra item order by the spacing of the times we

enforced in the construction of T i.

Elmachtoub and Levi: Online Customer Selection

24 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

The total cost incurred by the construction is K∗+H∗+K∗+
∑M

i=1(R(X i∩R∗)+2R(X i∩Ai∩
R∗)+ 3R(Y i ∩R∗))≤ 2P (A∗)+R(R∗)+ 2R(A∩R∗) which completes the proof. �

Combining Theorems 1 and 2 with Lemma 10 obtains the following main result.

Theorem 9. The Copycat and StablePair Algorithms for the Joint Replenishment problem with

Online Customer Selection are 4-competitive and 3-competitive, respectively.

Note that the analysis is tight for the StablePair Algorithm by Example 8 in the Online Appendix

since JR is a generalization of ELS. In Section 6.2, we describe how to implement StablePair

efficiently. Theorem 10 below, proved in the Online Appendix, gives a slightly weaker result for the

case when each item type i has a specific per unit rejection cost ri and a specific per unit holding

cost hi.

Theorem 10. The Copycat and StablePair Algorithms for the JR problem with Online Customer

Selection and item-specific holding and rejection costs are (3+ maxir
i/hi

minir
i/hi)-competitive and (2+

maxir
i/hi

minir
i/hi)-competitive, respectively.

6.2. StablePair Implementation

Implementing Copycat problem for the JR problem with online customer selection requires solving

an NP-hard problem. However, StablePair can be implemented efficiently in time polynomial in

the number of customers and items. Lemma 11 below, proved in the Online Appendix, shows that

a stable pair exists if and only if there is a stable pair using only one order date that satisfies the

properties below.

Lemma 11. The StablePair Algorithm accepts customer k if and only if there exists a stable pair

(Q,T) with k ∈ T such that

1. Q consists of one order date, i.e. Q= {t} for some time t.

2. If T contains customers of type i, then it contains exactly all type i customers with due dates

in [t, t+ r/h]. Let T i = {j ∈Uk|tj ∈ [t, t+ r/h] and ij = i} and let I be a subset of item types. This

property is equivalent to the property that T =∪i∈IT
i.

3. The set of item types in T are those who can pay for their item ordering cost plus the holding

costs, i.e. I = {i|R(T i)≥Ki +
∑

j∈T i h(tj − t)dj}.
4. The total rejection costs of T are at least the production costs of serving T from t, i.e. R(T)≥

K0 +
∑

i∈I

(

Ki +
∑

j∈T i h(tj − t)dj

)

.

This lemma provides an efficient implementation of StablePair since the set of potential stable

pairs is at most N , and checking the four properties for each pair takes O(MN) time.

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 25

7. Facility Location Problem with Online Customer Selection

The metric Facility Location (FL) problem is a well studied NP-hard problem. The goal is to

serve a set of customers, each with a specified demand quantity and location, by opening a set of

facilities. There are M potential facilities, indexed by j = 1, . . . ,M . The opening cost of facility j

is fj. Each customer k is served by the nearest open facility, and pays a service cost c(j, k) per

unit if served by facility j. The assumption is that c(·, ·) induces a metric (symmetric and satisfies

triangle inequality) over the facilities and customers. The goal is to serve all the customers so

as to minimize the total facility costs plus service costs. The first constant factor approximation

algorithm was given by Shmoys et al. (1997), and the current best result is 1.488 due to Li (2011).

When the supplier does not have to serve all the customers, but can now reject customers at a

per unit cost r, then the problem becomes even more complex. The supplier must now decide on

the optimal set of customers to accept and decide how to serve them. Specifically, the goal is to

minimize the total rejection costs plus the cost of the FL problem on the accepted customers. This

is called the Facility Location Problem with Offline Customer Selection. The first approximation

algorithm was given by Charikar et al. (2001) (who call this FL with outliers), and the current

best approximation factor of 1.85 is due to Xu and Xu (2009).

Here we focus on the Facility Location Problem with Online Customer Selection. When a cus-

tomer k arrives online, we observe Ik = (dk, lk), where dk specifies the quantity and lk specifies

the location. The rejection cost is then rk = rdk. Let Q denote the potential set of facilities. The

production cost function P (Q,T) is now the optimal cost of the FL problem for a given set of

customers T that can only use the facilities in Q.

7.1. Bounding Production Costs

Now we will bound the production costs incurred by the StablePair Algorithm for the FL problem

with online customer selection. This will require the two following lemmas which are proved in the

Online Appendix and are similar in spirit to Lemmas 6 and 7.

Lemma 12. Let (Q,T) be a stable pair. For each customer k ∈ T , the per unit service cost incurred

by the FL solution to P (Q,T) is at most r.

For each customer k ∈A accepted by the StablePair Algorithm, define (Qk, Tk) to be the stable

pair used by StablePair to accept k. Let Sk ⊆ Tk be the set of customers served by the same facility

as k in P (Qk, Tk) and let qk denote this shared facility.

Lemma 13. For each k ∈A, the set Sk ∩A∗ is nonempty.

Elmachtoub and Levi: Online Customer Selection

26 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Figure 4 Serving the customers in A.

Note. In this figure, the squares represent facilities and the circles represent locations for customers in A. The solid

squares represent open facilities and the hollow squares are closed facilities. The circle around each facility represents

the service area where the service cost per unit is at most r from the respective facility. The customers in the circles

corresponding to open facilities are in A∩A
∗. The remaining customers in the circles corresponding to closed facilities

are in A∩R
∗ and are no more than 3r away from an open facility.

We now proceed to bound the production costs of StablePair and therefore Copycat.

Lemma 14. If the StablePair (Copycat) Algorithm is used for the FL problem with online customer

selection, then P (A)≤ P (A∗)+ 3R(A∩R∗)≤ 3C∗(U).

Proof. We will construct a feasible solution to serve the customers in A with cost at most three

times the optimal offline cost C∗(U). We simply open all the facilities in the FL solution to P (A∗)

and serve all the customers in A by the nearest facility.

By construction, the facility costs plus the service costs for A∩A∗ is bounded by P (A∗). Now

consider a customer k ∈ A ∩ R∗. From Lemma 13, it follows that there exists a customer l ∈
Sk ∩A∗. Let q∗l denote the facility from which customer l is served in P (A∗). Lemma 12 implies

that c(k, qk), c(qk, l), and c(l, q∗l) are all at most r. Since c is a metric, it follows that c(k, q∗l) ≤
c(k, qk) + c(qk, l) + c(l, q∗l) ≤ 3r. Thus, the per unit service cost for customer k is at most 3r.

(See Figure 4 for an example.) This completes the proof since the construction has cost at most

P (A)≤ P (A∗)+ 3R(A∩R∗)≤ 3C∗(U). �

Combining Theorems 1 and 2 with Lemma 14 obtains the following main result.

Theorem 11. The Copycat and StablePair Algorithms for the Facility Location problem with

Online Customer Selection are 4-competitive and 3-competitive, respectively.

7.2. Improving Bounds via Scaling

The results for FL with online customer selection can be improved via a scaling technique to get a

competitive ratio of 1+
√
2. In particular, the rejection costs are scaled by a factor α> 0, and then

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 27

the StablePair Algorithm is applied to the scaled input. The purpose of this idea is to “hedge”

against the future by giving a different weighting to the rejection costs. Drop the superscript S

and denote Aα and Rα as StablePair’s decisions under the scaled input. In Lemma 15 below, we

obtain a new bound for the rejection costs. The proof is in the Online Appendix.

Lemma 15. The StablePair Algorithm with the rejection costs scaled by a parameter α has total

rejection cost R(Rα)≤R(Rα ∩R∗)+ 1
α
P (Rα ∩A∗).

Note that the bound on production costs in Lemma 14 is unbalanced. By scaling down the

rejection costs by a factor α< 1, we obtain Lemma 16 which we prove in the Online Appendix.

Lemma 16. The StablePair Algorithm with scaling for the FL problem with online customer selec-

tion has production costs P (Aα)≤ P (A∗)+ (2α+1)R(Aα ∩R∗) when α< 1.

Combining Lemmas 15 and 16 obtains the following theorem, whose analysis is tight according

Example 10 in the Online Appendix.

Theorem 12. The StablePair Algorithm with scaling for the Facility Location problem with online

customer selection is (1+
√
2)-competitive when α= 1√

2
.

7.3. StablePair Implementation

Using the Copycat Algorithm for the FL problem with online customer selection will be inefficient

since solving the offline problem is NP-hard. Implementing the StablePair Algorithm, however, can

be implemented efficiently in time polynomial in the number of customers and facilities. Lemma

17 below, proved in the Online Appendix, shows that a stable pair exists if and only if there is a

stable pair with one facility with the properties below.

Lemma 17. The StablePair Algorithm accepts customer k if and only if there exists a stable pair

(Q,T) containing k such that

1. Q consists of one facility location, i.e. Q= {j} for some facility j.

2. T are all customers that can be served from j using at most r in service cost per unit, i.e.

T = {i∈Uk|c(i, j)≤ r}.
3. The rejection costs of T exceed the production costs of serving T from facility j, i.e. R(T)≥

fj +
∑

i∈T c(i, j)di

Since the number of possible stable pairs is at most M , and checking the conditions takes at most

O(N), then clearly this lemma provides an efficient way to implement the StablePair Algorithm.

Elmachtoub and Levi: Online Customer Selection

28 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

8. Computational Results

We now present the results of computational experiments that test the typical empirical perfor-

mance of our algorithms on the Economic Lot Sizing Problem with Online Customer Selection. We

carried out three different scenarios of the same experiment. The parameters for each scenario were

K = 100, h= 1, and r = 5. The time horizon was for one month with periods from 1 to 30. There

were N = 300 customer arrivals simulated for each scenario. Copycat, StablePair, and StablePair

with scaling factor of two (the rejection cost of each customer is weighted double the true value)

were each tested for the same sequence of customer arrivals. After every customer k, the perfor-

mance ratio, C(Uk)/C
∗(Uk), was calculated. Note that we are comparing ourselves to the optimal

offline solution, which is a benchmark that is impossible to achieve. For all three scenarios, the due

dates of the customers were drawn uniformly at random across the time horizon. We believe this

distribution is the worst case for the supplier since she can never make a meaningful estimate of

where the next customer’s due date will be. In the first scenario, ‘Conservative’, the demands of

each customer comprise of one unit (dk = 1). In the second scenario, ‘More Demands’, the demand

quantity is drawn uniformly at random from 1 to 10. Finally, in the third scenario, ‘Large Orders

First’, the customers also have a random demand quantity between 1 and 10 but the first two

orders are very large orders placed on the first and fifteenth, i.e. at times 1 and 15, representing the

realistic situation where the supplier has at least one major routine customer. For each scenario,

the results were averaged over 100 different customer sequences. The results are in Figure 5.

Based on these experiments, we see that even in the ‘Conservative’ scenario, the costs of Copycat

and StablePair are at most 1.5 times larger than the optimal offline cost (which is not achievable in

practice). The upper bound of 1.5 held up in all 25 runs of the scenario. Note that the performance

ratios are much lower than the theoretical guarantee of 3. The ‘Conservative’ graph in Figure 5

indicates that Copycat and StablePair start out perfect since both OPT and the algorithms are

rejecting everything because there are not enough customers to warrant production. Then around

125 customer arrivals OPT begins accepting some customers while Copycat and StablePair do the

same and therefore begin incurring lots of fixed costs on top of the rejection costs. Eventually, as

the number of customers gets very large, OPT, Copycat, and StablePair begin to accept everything

and the performance ratios stabilize. (Note that C∗(Uk) converges to 30K while the costs of the

algorithms are 30K plus some initial rejection costs.) Since StablePair accepts a superset of what

Copycat accepts, then StablePair outperforms Copycat as the number of customers gets large.

StablePair with scaling does poorly in the beginning since it accepts customers before OPT does,

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 29

Figure 5 Experimental Results.

0 50 100 150 200 250 300
1

1.2

1.4

1.6

1.8

Number of Customers
P

e
rf

o
rm

a
n

c
e

 R
a

ti
o

Conservative Scenario

Copycat

StablePair

StablePair with Scaling

0 50 100 150 200 250 300
1

1.1

1.2

1.3

1.4

1.5

Number of Customers

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o

More Demands Scenario

Copycat

StablePair

StablePair with Scaling

0 50 100 150 200 250 300
1

1.05

1.1

1.15

1.2

Number of Customers

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o

Large Orders First Scenario

Copycat

StablePair

StablePair with Scaling

Note. Three experiments detailing the actual performance ratio of three algorithms on the ELS problem with online

customer selection.

but later on it significantly outperforms the other algorithms. Moreover, StablePair is about 40

times faster than Copycat, making it computationally appealing as well.

Similar observations hold for the ‘More Demands’ and ‘Large Orders First’ graphs in Figures

5, except that the benefits of scaling are not as significant since more customers were accepted

early on which makes it more difficult to make errors. Specifically, Copycat/StablePair accept

more customers when they come in larger batches, so as the number of customers gets large this

improves the performance ratio significantly. If there is some information known about the customer

process, this can help decide on a reasonable choice for the scaling factor. The more customers

one anticipates, the larger the scaling factor should be. Also note that in addition to StablePair

being computationally much faster than Copycat, it typically outperforms Copycat. In the Online

Appendix, Tables 1, 2, 3 describe the performance of our algorithms for the same scenarios but

with different values of r. As r increases, all the algorithms perform better, while the previous

insights still hold.

Finally, we tested our algorithms on the JR problem with online customer selection. Specifically,

we chose a problem with three item types, and customer arrivals had due dates and item types

Elmachtoub and Levi: Online Customer Selection

30 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

chosen uniformly at random. The parameters were N = 300, M = 3, K0 = 100, K1 =K2 =K3 = 20,

r= 10, and h= 1, with a time horizon of 30 days. We simulated the same three scenarios described

previously and found that similar insights still hold. However, for this problem, StablePair was over

1,000 times faster than Copycat, since Copycat required solving an integer program. In the Online

Appendix, Figure 6 and Table 4 summarize the results for the JR problem with Online Customer

Selection under the different scenarios.

Acknowledgments

The authors thank the AE and the anonymous referees for many comments and suggestions that ultimately

improved the quality of the manuscript. The research of the first author was conducted while at the Oper-

ations Research Center at Massachusetts Institute of Technology and was funded with government support

under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineer-

ing Graduate (NDSEG) Fellowship, 32 CFR 168a. The research of the second author was partially supported

by NSF grant CMMI-0846554 (CAREER Award), AFOSR awards FA9550-11-1-0150 and FA9550-08-1-0369,

an SMA grant and the Buschbaum Research Fund of MIT.

References

Albers, S. 2003. Online algorithms: A survey. Mathematical Programming B 97(1) 3–26.

Arkin, E., D. Joneja, R. Roundy. 1989. Computational complexity of uncapacitated multi-echelon production

planning problems. Oper. Res. Lett. 8(2) 61–66.

Axsater, S. 1982. Worst case performance for lot sizing heuristics. EJOR 9(4) 339–343.

Ball, M.O., M. Queyranne. 2009. Toward robust revenue management: Competitive analysis of online book-

ing. Oper. Res. 57(4) 950–963.

Bhaskaran, S., K. Ramachandran, J. Semple. 2010. A dynamic inventory model with the right of refusal.

Management Science 56(12) 2265–2281.

Bienstock, D., M.X. Goemans, D. Simchi-Levi, D. Williamson. 1993. A note on the prize collecting traveling

salesman problem. Mathematical Programming 59(1) 413–420.

Buchbinder, N., T. Kimbrelt, R. Levi, K. Makarychev, M. Sviridenko. 2014. Online make-to-order joint

replenishment model: primal dual competitive algorithms. Oper. Res. Forthcoming.

Caldentey, R., L. M. Wein. 2006. Revenue management of a make-to-stock queue. Oper. Res. 54(5) 859–875.

Carr, S., I. Duenyas. 2000. Optimal admission control and sequencing in a make-to-stock/make-to-order

production system. Oper. Res. 48(5) 709–720.

Charikar, M., S. Khuller, D.M. Mount, G. Narasimhan. 2001. Algorithms for facility location problems with

outliers. Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms. Society for

Industrial and Applied Mathematics, 642–651.

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 31

Cheung, M., A.N. Elmachtoub, R. Levi, D.B. Shmoys. 2013. The submodular joint replenishment problem.

Unpublished Manuscript .

Cornuéjols, G., G.L. Nemhauser, L.A. Wolsey. 1990. The uncapacitated facility location problem. P. Mir-

chandani, R. Francis, eds., Discrete location theory , vol. 23. Wiley-Interscience, 119–171.

Deering, S.E., D.R. Cheriton. 1990. Multicast routing in datagram internetworks and extended LANs. ACM

Transactions on Computer Systems (TOCS) 8(2) 85–110.

Elmachtoub, A.N., R. Levi. 2014. From cost sharing mechanisms to online selection problems. Mathematics

of Opeartions Research Forthcoming.

Federgruen, A., Y.S. Zheng. 1992. The joint replenishment problem with general joint cost structures. Oper.

Res. 40(2) 384–403.

Fotakis, D. 2008. On the competitive ratio for online facility location. Algorithmica 50(1) 1–57.

Gallien, J., Y. Le Tallec, T. Schoenmeyr. 2004. A model for make-to-order revenue management. Tech. rep.,

Citeseer.

Geunes, J., R. Levi, H.E. Romeijn, D.B. Shmoys. 2011. Approximation algorithms for supply chain planning

and logistics problems with market choice. Mathematical programming 130(1) 85–106.

Geunes, J., H.E. Romeijn, K. Taaffe. 2006. Requirements planning with pricing and order selection flexibility.

Oper. Res. 54(2) 394.

Goemans, M.X., M. Skutella. 2000. Cooperative facility location games. Proceedings of the eleventh annual

ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 76–85.

Goemans, M.X., D.P. Williamson. 1995. A general approximation technique for constrained forest problems.

SIAM Journal on Computing 24(2) 296–317.

Golrezaei, Negin, Hamid Nazerzadeh, Paat Rusmevichientong. 2014. Real-time optimization of personalized

assortments. Management Science 60(6) 1532–1551.

He, S., J. Zhang, S. Zhang. 2012. Polymatroid optimization, submodularity, and joint replenishment games.

Operations Research 60(1) 128–137.

Hintsches, A., T. Spengler, T. Volling, K.i Wittek, G. Priegnitz. 2010. Revenue management in make-to-order

manufacturing: case study of capacity control at thyssenkrupp vdm. BuR Business Research Journal

3(2).

Jaillet, P., X. Lu. 2013. Online traveling salesman problems with rejection options. Tech. rep., Working

paper, Operations Research Center, Massachusetts Institute of Technology.

Keskinocak, P., R. Ravi, S. Tayur. 2001. Scheduling and reliable lead-time quotation for orders with avail-

ability intervals and lead-time sensitive revenues. Management Science 47(2) 264–279.

Levi, R., R. Roundy, D. Shmoys, M. Sviridenko. 2008. A constant approximation algorithm for the one-

warehouse multiretailer problem. Management Science 54(4) 763–776.

Elmachtoub and Levi: Online Customer Selection

32 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Levi, R., R.O. Roundy, D.B. Shmoys. 2006. Primal-Dual Algorithms for Deterministic Inventory Problems.

Math. Oper. Res. 31(2) 267–284.

Li, S. 2011. A 1.488 approximation algorithm for the uncapacitated facility location problem. Automata,

Languages and Programming 77–88.

Lieb, R., B. A. Bentz. 2005. The use of third-party logistics services by large american manufacturers: the

2004 survey. Transportation Journal 5–15.

Lovász, L. 1983. Submodular functions and convexity. Mathematical Programming The State of the Art .

Springer, 235–257.

McCormick, S.T. 2006. Submodular function minimization. K. Aardal, G.L. Nemhauser, R. Weismantel, eds.,

Handbooks in Operations Research and Management Science: Discrete Optimization, vol. 12. Elsevier,

321–391.

Muckstadt, JA, A. Sapra. 2010. Principles of Inventory Management: When You are Down to Four, Order

More. Springer.

Plambeck, E., S. Kumar, J. M.l Harrison. 2001. A multiclass queue in heavy traffic with throughput time

constraints: Asymptotically optimal dynamic controls. Queueing Systems 39(1) 23–54.

Shmoys, D.B., É. Tardos, K. Aardal. 1997. Approximation algorithms for facility location problems. Pro-

ceedings of the twenty-ninth annual ACM Symposium on Theory of Computing . ACM, 265–274.

Slotnick, S. A. 2011. Order acceptance and scheduling: a taxonomy and review. European Journal of

Operational Research 212(1) 1–11.

Van den Heuvel, W., O.E. Kundakcioglu, J. Geunes, H.E. Romeijn, T.C. Sharkey, A.P.M. Wagelmans. 2012.

Integrated market selection and production planning: complexity and solution approaches. Mathemat-

ical programming 134(2) 395–424.

Van den Heuvel, W., A.P.M. Wagelmans. 2010. Worst-case analysis for a general class of online lot-sizing

heuristics. Operations research 58(1) 59–67.

Wagner, H.M., T.M. Whitin. 1958. Dynamic Version of the Economic Lot Size Model. Management Science

5(1) 89–96.

Wagner, M.R. 2010. Fully distribution-free profit maximization: the inventory management case. Math. of

Oper. Res. 35(4) 728–741.

Xu, G., J. Xu. 2009. An improved approximation algorithm for uncapacitated facility location problem with

penalties. Journal of combinatorial optimization 17(4) 424–436.

Xu, Y., A. Bisi, M. Dada. 2011. A periodic-review base-stock inventory system with sales rejection. Operations

research 59(3) 742–753.

Zeithaml, V. A., R. T. Rust, K. N. Lemon. 2001. The customer pyramid: creating and serving profitable

customers. California Management Review 43(4) 118–142.

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 33

Appendix. E-companion.

A. Examples

Example 3. Consider the online algorithm where we solve the offline optimal solution with respect

to the first k customers, and the decisions for the first k− 1 customers are fixed, i.e., they cannot

be changed from what we have already decided. Then this will result in most customers being

rejected if each customer on his own is not enough to warrant production.

For example, consider the To Build or Not To Build problem as explained in Example 1. If the

rejection cost of each customer is less than K, then clearly the algorithm we just described will

reject everyone in an online fashion. The competitive ratio will be R(U)/K which can be arbitrarily

poor. �

Example 4. Consider the ELS problem with online customer selection from Section 5. Let h=

1,K = 11, and r = 10. Consider the input sequence I1 = (1,8), I2 = (1,14), I3 = (1,1), and I4 =

(100,1), where each tuple represents demand quantity and due date, respectively. Let the set of

potential order dates be Q = {1,2, . . . ,15}. One can easily show that A∗ = {1,3,4}, P (A∗) = 19,

R∗ = {2}, and R(R∗) = 10. The Copycat Algorithm will lead to RC = {1,3} with R(RC) = 20.

StablePair will only have RS = {1} with R(RS) = 10. Note that RC ∩R∗ =RS ∩R∗ = ∅. Thus,

R(RS)<P (A∗)+R(RC ∩R∗)<R(RC)<P (A∗)+R(R∗)

This demonstrates that there are cases in which StablePair can be strictly less conservative than

Copycat in that it accepts customers that were rejected by Copycat. �

Example 5. Consider the ELS problem with online customer selection from Section 5. Let h=

1,K = 11, and r= 10. Let the set of potential order dates be Q= {1,2, . . . ,15}. Consider the input
sequence I1 = (2,4), I2 = (1,11), and I3 = (100,1), where each tuple represents demand quantity

and due date, respectively. One can easily see that A∗
1 = {1}, A∗

2 = {1,2}, and A∗
3 = {1,3}. This

implies that AC
3 = {1,2,3}. Here we see that Copycat “regrets” accepting customer 2 after stage 3

since the optimal offline solution in stage 3 rejects customer 2. �

Example 6. Consider the ELS problem with online customer selection from Section 5. Let h=

1,K = 11, and r = 10. Let the set of potential order dates be Q = {1,2, . . . ,10}. Consider the

input sequence I1 = (2,10) and I2 = (1,3), where each tuple represents demand quantity and due

date, respectively. Clearly A∗
1 =A∗

2 = {1} and the optimal offline cost is C∗({1,2}) = 11+10= 21.

However, AS
2 = {1,2}. StablePair accepts customer 1 with stable pair (Q,{1}), where Q represents

Elmachtoub and Levi: Online Customer Selection

34 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

all possible time periods to create a setup. However, unlike the optimal offline solution, StablePair

also accepts customer 2 with stable pair ({3},{1,2}). If we can only create an order at time 3, then

the optimal strategy is to accept both customers 1 and 2. If we can order at any time, then we

would only order at time 10 and reject customer 2. �

Example 7 (Polymatroid Optimization). Let U be a ground set and f(·) be a rank function,

i.e., a nondecreasing submodular function with f(∅) = 0. Then the polyhedron F (U,f) = {x∈R|U | :
∑

i∈T xi ≤ f(T), T ⊆ U, x≥ 0} is referred to as a polymatroid. Now for each i ∈ U , let gi : R→ R

be a concave function. Then for any set T ⊆U the production cost function is defined as

P (T) =max
∑

i∈T

gi(xi) s.t. x∈ F (T, f).

He et al. (2012) showed that P (T) is indeed nondecreasing and submodular.

An application of this result, as shown in He et al. (2012), is the stationary joint replenishment

problem. In this problem the “customers” are actually products. Each product k arrives with

Ik = {dk, hk} where dk is the stationary continuous demand rate and hk is the holding cost rate.

The rejection cost rk is the revenue rate generated by producing product k. Demand for accepted

products is satisfied by a sequence of orders, where an order for the item types in T ⊆U has fixed

costs K(T). K(·) is assumed to be a rank function. All demands are served by their nearest setup

and also incur the appropriate holding costs. In Federgruen and Zheng (1992) it was shown that the

optimal policy for the stationary JRP can be approximated well by only considering “power-of-two”

(Po2) polices. Indeed, the problem of finding the best Po2 policy then reduces to a polymatroid

maximization problem with a separable concave objective. The best of such Po2 policies is at most

2% suboptimal. He et al. (2012) also shows a similar result for the continuous one-warehouse multi-

retailer problem. In our online customer selection model, products arrive online to a supplier, who

decides whether to accept or reject them, and then computes the best Po2 policy to serve them.

�

Example 8. Let h = 1, r = 2M, and K = 2M 2 + 1. Let the set of potential order dates be Q =

{1,2}. Let S = {1,2,3} and I1 = (M,2), I2 = (1,1), and I3 = (100K,2), where the tuples represent

quantity and due date, respectively. Observe that OPT(U1) will reject customer 1 since the setup

cost is greater than the rejection cost of 2M 2. Then OPT(U2) will accept both customers 1 and

2, and the total cost will be 2M 2 + 1 +M , which is less than rejecting both customers at cost

2M 2 + 2M . Finally, OPT(U3) will clearly accept customers 1 and 3, while rejecting customer 2.

The optimal offline cost will be C∗(U) = P ({1∪3})+R({2}) = 2M 2+1+2M . The cost of Copycat

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 35

and StablePair will both be C(U) = P ({2 ∪ 3}) +R({1}) = 2(2M 2 + 1) + 2M 2 = 6M 2 + 2. Thus,

the competitive ratio is asymptotically close to 3 as M goes to ∞. �

Example 9. Let h = 0 and dk = 1 for all customers. Let I1 = (0,1, T). Clearly a good online

algorithm must reject customer 1 or else the competitive ratio would be K/r after the first arrival.

Now we repeat the following algorithm to generate a worst case adversary.

0. Initialize s := 0, t := T/2, u= T , and k= 2. Let I1 = (0,1, T).

1. Let Ik = (s,1, t− ǫ).

2. If online algorithm accepts k, then go to Step 3. Else, go to Step 4.

3. Set s := t, t := s+(u− s)/2, and u := u. Go to Step 1.

4. Set s := s, t := s+(u− s)/4, and u := s+(u− s)/2. Go to Step 1.

Let this adversary generate N arrivals and let n be the number of customers that the algorithm

accepts. From the construction, it is clear that the algorithm must satisfy each customer with

separate orders. Thus, the cost incurred by the algorithm is nK+(N−n)r. A good feasible solution

to the sequence would be the exact opposite of what the algorithm did. By construction, all the

customers that the algorithm rejected (at least one since it must reject customer 1) can be satisfied

by one order. Thus the cost of this feasible solution is K + nr. The competitive ratio is then at

least

nK +(N −n)r

K +nr
≥min{Nr

K
,
K − r

r
}.

For a given K and r, if we take N to be large enough, then the competitive ratio is at least

K/r − 1 which is not a constant. One can extend the proof to discrete time by making T large

enough.

Example 10. Consider a single facility with cost f . Let r=
√
2f − ǫ. Let the first customer that

arrives request 1 unit at the facility, so the service cost would be 0. Then StablePair with scaling

factor α= 1√
2
rejects customer 1. Let the second customer be identical to the first, and so StablePair

with scaling accepts customer 2. Clearly the optimal solution is to serve both customers and incur

cost f , while StablePair incurs a cost of (1 +
√
2)f − ǫ. Therefore, the competitive ratio can be

arbitrarily close to 1+
√
2 as ǫ goes to 0. �

B. Proofs

Proof of Lemma 3. Consider a customer k ∈ AC and let A∗
k be the optimal solution induced

by OPT(Q,Uk). Since k was accepted by the Copycat Algorithm, then k ∈A∗
k. This implies that

(Q,A∗
k) is a stable pair for k since there is a solution to OPT(Q,A∗

k) that accepts all of A∗
k.

Therefore k ∈AS and AC ⊆AS. �

Elmachtoub and Levi: Online Customer Selection

36 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Proof of Theorem 5. Consider the To Build or Not to Build problem with online customer selec-

tion, as explained in Example 1. Let K = 1 and assume that the rejection cost for each customers

k is rk = ǫ for some ǫ > 0. It can be seen that this is a special case of a submodular, ELS, JR, or FL

problem with online customer selection. Any nontrivial deterministic algorithm for this problem

simply specifies how many arrivals have to occur before it starts accepting customers. We denote

ALGq as the algorithm which rejects the first q− 1 customers and then accepts all remaining cus-

tomers starting with customer q. Thus, all algorithms can be parameterized by q ∈Z+∪{∞}. Now

focus on the worst-case adversary strategy given a fixed q.

Case 1 If q > 2/ǫ, then the adversary generates 2/ǫ arrivals. Thus ALGq will reject all q customers

and incur a total cost of 2, while the optimal offline cost is clearly 1.

Case 2 If 1/ǫ < q ≤ 2/ǫ, then the adversary generates exactly q arrivals. Thus ALGq incurs a

cost of 1+ (q− 1)ǫ, while the optimal offline cost is just 1.

Case 3 If q ≤ 1/ǫ, then the adversary generates exactly q arrivals. Thus ALGq incurs a cost of

1+ (q− 1)ǫ, while the optimal offline cost is qǫ≤ 1.

The competitive ratio in all three cases is at least 2 or arbitrarily close to 2 as ǫ approaches 0. �

Proof of Lemma 6. Assume there is a setup interval [a, b] in the solution to P (Q,T) such that

b−a> r/h. By the ZIO property, there must be an order at a. This means there exists a customer

k with due date at time b that pays a per unit holding cost greater than r. This implies that the

optimal solution of OPT(Q,T) is better off rejecting k and keeping everything else the same, which

is a contradiction to the stability of (Q,T). �

Proof of Lemma 7. Assume that [a, b] does not contain the due date of any customers in A∗. By

the stability of (Q,T), the rejection cost of the customers served by the order at a are greater than

the production costs incurred in the interval [a, b]. This implies that A∗ could be augmented to

include all customers having due dates in [a, b] without increasing the overall cost. Since we chose

A∗ to be maximal, then this is a contradiction. �

Proof of Theorem 7. We prove below that the production cost incurred by StablePair (Copycat)

Algorithm is at most P (A)< 3P (A∗)+3R(A∩R∗)<= 3C∗(U). Combining Theorems 1 and 2 with

this bound yields the desired result. Note that Lemmas 6 and 7 still apply in this setting with soft

capacities.

Similar to the analysis of the ELS case in Lemma 8, let s1 < s2 < .< sm denote the times where

orders were placed in the ELS with soft capacities solution to P (A∗). Based on the analysis of

Lemma 8, we know that all customers in A have due dates within ∪m
j=1[sj − r/h, sj + 2r/h]. We

now focus on the customers in A with due dates in one particular interval, [sj − r/h, sj + 2r/h],

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 37

which we denote by Aj. To serve the customers in Aj ∩A∗, we simply serve them from sj using the

same number of orders at sj that were in the solution to P (A∗). Summing over all j, this implies

that P (A∩A∗)≤K∗ +H∗.

Let Aj′ be the customers in Aj ∩R∗ with due dates in [sj−r/h, sj). Now let Lc+ l, with L being

an integer, be the total demand for customers in Aj′ . We serve all the customers in Aj′ from L+1

orders at sj − r/h. This will result in a holding cost of at most R(Aj′ ∩R∗). We will pay for one

order using the order at sj. Finally, we will pay for the other L orders using R(Aj′ ∩R∗). This is

due to the fact that, without loss of generality, rc≥K. (If this were not the case, then no orders

would ever be placed.) Now let Aj′′ be the customers in Aj ∩R∗ with due dates in [sj − r/h, sj).

Using a similar analysis, we can serve all the customers in Aj′′ ∩R∗ from additional orders at sj.

The additional orders will have a cost at most K +R(Aj′′ ∩R∗), and the holding costs will be at

most 2R(Aj′′ ∩R∗). Therefore, the total cost of serving Aj ∩R∗ is at most 2K + 3R(Aj ∩R∗).

Summing over all j, P (A∩R∗)≤ 2K∗ +3R(A∩R∗). Combining this with the previous bound we

obtain that P (A)< 3P (A∗)+ 3R(A∩R∗). �

Proof of Theorem 8. We will show that AC ⊆ A∗ and thus P (AC) ≤ P (A∗). Since we will be

using the 2-competitive heuristic of Axsater (1982) for the online ELS problem, then the production

costs will be at most 2P (AC)≤ 2P (A∗). From Theorem 3, this gives a 3-competitive algorithm.

In fact, we will show that there is a sequence of solutions such that A∗
1 ⊆ . . .⊆A∗

N which implies

AC ⊆ A∗. Consider a customer k in A∗
k. Let k′ ≥ k be the first k′ such that k /∈ A∗

k′ . Then the

our production horizon can be partitioned into T1 = [t1, tk] and T2 = (tk, t
′
k]. No customers with

due dates in T2 are served by an order in T1 since customer k was rejected and the rejection cost

per unit is the same for all customers. Therefore, the offline optimal solution can be decoupled to

solving the respective problems for the customers with due dates in T1 and T2 and then merging

the solutions together. Since the due dates of the customers are chronological, then the customers

corresponding to T1 are exactly Uk. Therefore, we know there is an optimal offline solution for Uk

that accepts k, and thus we can use that to find an optimal solution to OPT(Uk′) that accepts k.

�

Proof of Lemma 9. Let (Qk, Tk) be the stable pair that accepted customer k. Consider the order

that serves customer k in the ELS production plan for P (Qk, Tk), and call this order date t. Define

Q= {t} and T ′ to be all the customers that are served by the order at time t in P (Qk, Tk). Clearly

(Q,T ′) ⊆ (Qk, Tk) and k ∈ T ′. The first property holds by construction. Note that (Q,T ′) is a

stable pair since (Qk, Tk) is stable. The stability property from (1) directly implies that R(T ′)≥
K +

∑

j∈T ′ h(tj − t)dj. Now let T = {j ∈Uk|tj ∈ [t, t+ r/h]}, which is exactly the second property.

Elmachtoub and Levi: Online Customer Selection

38 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Lemma 6 implies that T ′ ⊆ T . It follows that for all j ∈ T , rdj ≥ h(tj− t)dj. Therefore, the rejection

costs of T are also greater than the production costs P (Q,T), i.e. R(T)≥K +
∑

j∈T h(tj − t)dj,

which is the third property. Properties 1, 2, and 3 are sufficient conditions for (Q,T) to be a stable

pair. Thus (Q,T) is a stable pair with k ∈ T that satisfies all three properties. The other direction

is trivial. �

Proof of Theorem 10. The proof is very similar to the proof of Lemma 10, but requires a more

involved construction and analysis. Let s1, . . . , sm denote the times of the orders in the optimal

production plan for P (A∗). The cost of the optimal production plan can be decomposed into the

total setup costs, K∗, and the total holding costs, H∗. Let Ai simply denote the customers with

item type i that are in A. For each customer k ∈Ai, let ak be the order date that serves customer

k in the stable pair solution that StablePair used to accept customer k, and let T̂ i denote the set of

these order dates sorted from earliest to latest. Construct T i ⊆ T̂ i by processing T̂ i in order from

earliest to latest, and remove any order date that is within ri/hi periods of the previous order date

that was not removed. Now consider the following two sets, X i and Y i. The set X i is defined to be

the set of all type i customers that have due date within [t, t+ ri/hi] for some t∈ T i. Note that X i

is not necessarily contained in the set Ai. The set Y i is then defined to be Ai\X i. For convenience,

let us define ∆=maxir
i/hi and δ=minir

i/hi.

To construct a solution that serves all the customers in A, we first create the same sequence of

orders as in P (A∗) in periods s1, . . . , sm and incur setups costs of K∗. Note that the item orders are

replicated as well. All the customers in A∩A∗ are then served in the same way as in the production

plan for P (A∗), and thereby incur holding costs of at most H∗. Now we create a sequence of

duplicate orders shifted back by time ∆, i.e. at periods s1−∆, . . . , sm−∆, and incur another K∗.

Next, consider each item type i separately. Assume for now that for each order date t∈ T i, there

exists an order sj in the production plan for P (A∗), such that either sj ∈ [t−∆, t] or sj −∆ ∈
[t−∆, t]. Moreover, order sj (or sj −∆) includes item i. Assuming this property holds, one can

bound the holding costs for the customers in Ai∩R∗. Specifically, the property ensures that all type

i customers with due dates in [t, t+ ri/hi] can be served with holding cost at most (∆+ ri/hi)hi

per unit. By definition of X i, this means that the customers in X i ∩Ai ∩R∗ will be served with

total holding costs at most (∆/δ+1)R(X i ∩Ai ∩R∗). The remaining customers left to be served

are those in Y i ∩R∗. Consider customer k ∈ Y i ∩R∗. By construction of T i, it follows that there

exists a t ∈ T i such that t≤ ak ≤ t+ ri/hi ≤ ak + ri/hi. In addition, from the definition of ak and

Lemma 6, it follows that tk ∈ [ak, ak+ ri/hi]. By the property assumed above, there exists an order

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 39

that includes item type i within ∆ before t. The total holding cost from that order to t, t to ak,

and ak to tk is at most (∆+2ri/hi)hi per unit.

It is now sufficient to ensure that indeed for each t∈ T i, there exists an order of type i within ∆

time periods earlier than t. To achieve this, extra item orders will be added to the construction.

From Lemma 7, it then follows that the setup interval corresponding to t intersected some optimal

setup interval starting at sj. (If there is a choice of intersections, choose sj that contains an item

order of type i if one exists.) From Lemma 6, it follows that sj −∆≤ t≤ sj +∆. We now consider

two cases and show how to enforce the property in each case.

Case 1: There is a type i customer in A∗ with due date in [t, t+ri/hi]. By construction,

this implies that there are type i orders at sj and sj −∆, respectively.

Case 2: There is no type i customer in A∗ with due date in [t, t+ri/hi]. If sj−∆≤ t < sj,

then we place an extra item order of type i at the joint order located at time sj −∆. Otherwise,

sj ≤ t≤ sj +∆ and we place the extra order of type i at sj. Since t corresponds to a setup interval

from a stable pair solution, it follows from (1) that there exists a set of customers with due dates

in [t, t+ ri/hi] whose rejection costs are greater than Ki. Under the case assumption, the type i

demands with due dates in [t, t+ ri/hi] are all in R∗. Furthermore, all customers with due dates in

[t, t+ ri/hi] are in X i. Thus, the extra item orders have cost at most R(X i ∩R∗). Each customer

in X i∩R∗ can be used at most once to pay for an extra item order by the spacing of the times we

enforced in the construction of T i.

The total cost incurred by the construction is K∗ + H∗ + K∗ +
∑M

i=1(R(X i ∩ R∗) + (∆/δ +

1)R(X i ∩Ai ∩R∗) + (∆/δ+2)R(Y i ∩R∗))≤ 2P (A∗) +R(R∗) + (∆/δ+1)R(A∩R∗). Combining

Theorems 1 and 2 with this bound completes the proof. �

Proof of Lemma 11. The proof is analogous to the proof of Lemma 9. Let (Qk, Tk) be the stable

pair that the StablePair Algorithm used to accept customer k. Let t be the order that serves

customer k in the JR solution of P (Qk, Tk). Define Q= {t}, T ′ to be all the customers served by

the order at t, and I ′ to be the set of items ordered at t in the solution of P (Qk, Tk). Note that

(Q,T ′) must be stable pair with k ∈ T ′. Define T i, I, and T according to Properties 1, 2, and 3.

Note that T ′ ⊆ T by Lemma 6 and Property 2. Since R(T ′) ≥K0 +
∑

i∈I′ Ki +
∑

j∈T ′ h(tj − t)dj

by (1), then it is easy to see that R(T)≥K0 +
∑

i∈I Ki +
∑

j∈T h(tj − t)dj, satisfying Property 4.

Therefore, (Q,T) is a stable pair with k ∈ T that satisfies all four properties. The other direction

is trivial. �

Proof of Lemma 12. If there is a customer paying more than r, then the solution OPT(Q,T)

can be improved by rejecting that customer and keeping everything else the same. This would

contradict the stability of (Q,T). �

Elmachtoub and Levi: Online Customer Selection

40 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Proof of Lemma 13. Assume that Sk∩A∗ = ∅. This means that the solution to OPT(U) rejected

the entire set of customers in Sk. However, by stability of (Qk, Tk) and (1) it follows that

P ({qk}, Sk)≤R(Sk). Therefore, adding the customers in Sk to A∗ will not increase the total cost.

This is a contradiction since we chose A∗ to be a maximal solution. �

Proof of Lemma 15. As in Lemma 4, we can show that αR(Rα ∩ A∗) ≤ P (Rα ∩ A∗). Adding

αR(Rα ∩R∗) and dividing by α completes the proof. �

Proof of Lemma 16. We use the same notation defined in Section 7.1. Lemma 12 now holds for

αr. Lemma 13 still holds because the rejection costs are scaled down, so (qk, Sk) must be a stable

pair under the original rejection costs as well.

Similar to Lemma 14, we will construct a solution with bounded costs. Specifically, open all

of the facilities in the production plan for P (A∗) and serve each customer in Aα by the nearest

facility to its location. Consider customer k ∈ Aα ∩ R∗. By the stability of (qk, Sk) under the

scaling and Lemma 12, it follows that c(k, qk) and c(qk, l) are both at most αr. It also follows that

c(l, q∗l)≤ r by stability of the optimal solution and using Lemma 12 with the unscaled costs. Thus,

c(k, q∗l)≤ (2α+1)r, which completes the proof. �

Proof of Lemma 17. Assume k was accepted by StablePair, and let j be the facility that served

k in the corresponding production plan. Now define Q and T as described in the lemma. The rest

of the proof is almost identical to the proof of Lemma 9 and thus we omit it. �

C. Figures and Tables

Conservative Scenario
Maximum performance ratio Final performance ratio

r Copycat StablePair StablePair(2) Copycat StablePair StablePair(2)
1 1.00 1.00 1.00 1.00 1.00 1.00
5 1.51 1.47 1.85 1.44 1.41 1.11
10 1.53 1.49 2.29 1.29 1.25 1.06

Table 1 For each value of r, we do 100 experiments of the ’Conservative’ scenario, each with N = 500 customer

arrivals (K = 100 and h= 1). We report the maximum performance ratio observed over all experiments

and customer arrivals. We also report the average final performance ratio after the final customer has

arrived. StablePair(2) denotes the StablePair Algorithm with a scaling factor of 2.

Elmachtoub and Levi: Online Customer Selection

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 41

More Demands Scenario
Maximum performance ratio Final performance ratio

r Copycat StablePair StablePair(2) Copycat StablePair StablePair(2)
1 1.37 1.37 1.76 1.27 1.27 1.23
5 1.54 1.54 2.40 1.23 1.19 1.03
10 1.90 1.90 2.33 1.09 1.06 1.01

Table 2 For each value of r, we do 100 experiments of the ’More Demands’ scenario, each with N = 500 customer

arrivals (K = 100 and h= 1). We report the maximum performance ratio observed over all experiments

and customer arrivals. We also report the average final performance ratio after the final customer has

arrived. StablePair(2) denotes the StablePair Algorithm with a scaling factor of 2.

Large Orders First Scenario
Maximum performance ratio Final performance ratio

r Copycat StablePair StablePair(2) Copycat StablePair StablePair(2)
1 1.29 1.29 1.56 1.20 1.20 1.15
5 1.26 1.24 1.22 1.11 1.07 1.00
10 1.09 1.05 1.05 1.01 1.00 1.00

Table 3 For each value of r, we do 100 experiments of the ’Large Orders First’ scenario, each with N = 500

customer arrivals (K = 100 and h = 1). We report the maximum performance ratio observed over all

experiments and customer arrivals. We also report the average final performance ratio after the final

customer has arrived. StablePair(2) denotes the StablePair Algorithm with a scaling factor of 2.

JR Problem Simulation Results
Maximum performance ratio Final performance ratio

Scenario Copycat StablePair StablePair(2) Copycat StablePair StablePair(2)
Conservative 1.54 1.57 2.71 1.40 1.36 1.09

More Demands 1.75 1.75 3.00 1.15 1.11 1.01
Large Orders First 1.34 1.44 1.55 1.07 1.02 1.00

Table 4 We simulate the three scenarios over 100 experiments, with N = 300, M = 3, K0 = 100, K1 =K2 =K3 =

20, r = 10, and h = 1. We report the maximum performance ratio observed over all experiments and

customer arrivals. We also report the average final performance ratio after the final customer has arrived.

StablePair(2) denotes the StablePair Algorithm with a scaling factor of 2.

Elmachtoub and Levi: Online Customer Selection

42 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Figure 6 Experimental Results.

0 50 100 150 200 250 300
1

1.5

2

2.5

Number of Customers
P

e
rf

o
rm

a
n

c
e

 R
a

ti
o

More Demands Scenario

Copycat

StablePair

StablePair with Scaling

0 50 100 150 200 250 300
1

1.1

1.2

1.3

1.4

Number of Customers

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o

Conservative Scenario

Copycat

StablePair

StablePair with Scaling

0 50 100 150 200 250 300
1

1.05

1.1

1.15

Number of Customers

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o

Large Orders First Scenario

Copycat

StablePair

StablePair with Scaling

Note. Three experiments detailing the actual performance ratio of three algorithms on the JR problem with online

customer selection.

