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Abstract: Blood service operations are a key component of the healthcare system all over

the world and yet the modeling and the analysis of such systems from a complete supply

chain network optimization perspective have been lacking due to their associated unique

challenges.

In this paper, we develop a generalized network optimization model for the complex supply

chain of human blood, which is a life-saving, perishable product. In particular, we consider

a regionalized blood banking system consisting of collection sites, testing and processing

facilities, storage facilities, distribution centers, as well as points of demand, which, typically,

include hospitals. Our multicriteria system-optimization approach on generalized networks

with arc multipliers captures many of the critical issues associated with blood supply chains

such as the determination of the optimal allocations, and the induced supply-side risk, as

well as the induced cost of discarding the waste, while satisfying the uncertain demands as

closely as possible.

The framework that we present is also applicable, with appropriate modifications, to the

optimization of other supply chains of perishable products.

Keywords: Supply chains, perishable products, blood banking, healthcare, medical waste,

network optimization, cost minimization, risk minimization, multicriteria decision-making,

generalized networks, variational inequalities
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1. Introduction

In today’s world, supply chains are more complex than ever before. Consumers’ demand

for new products as well as the still-critical economic situation require that companies, as

well as organizations, be more innovative while also becoming more cost-effective in the

procurement and production of their products and services as well as in their delivery. How-

ever, despite numerous significant achievements, the discipline of supply chain management

(SCM) is still incapable of satisfactorily addressing many practical, real-world challenges

(Georgiadis, Vlachos, and Iakovou (2005)).

Supply chains for time-sensitive products and, in particular, for perishable products,

pose specific and unique challenges. By definition, a perishable product has a limited lifetime

during which it can be used, after which it should be discarded (Federgruen, Prastacos, and

Zipkin (1986)). Examples of perishable goods include food and food products, medicines

and vaccines, cut flowers, etc. (see, e.g., Hsu, Hung, and Li (2007), Zanoni and Zavanella

(2007), Osvald and Stirn (2008), and Ahumada and Villalobos (2009)). Clearly, not all

perishable products are alike and, notably, in some cases, such as that of medicines and

vaccines, the quality of a product, or lack thereof, may result in a matter of “life or death”

for its consumers.

In this paper, we focus on a specific perishable product – that of human blood – and

the optimization of a blood banking network system. Nahmias (1982) claimed that: “The

interest among researchers in perishable inventory problems has been sparked primarily

by problems of blood bank management. Some of the possible reasons for this interest

might be that blood bank research has been supported by public funds.” Prastacos (1984),

subsequently, provided a review, to that date, of blood inventory management, from both

theoretical and practical perspectives. Whether or not Nahmias’ statement is still valid

– considering all the recent concerns about the safety of perishable products, blood bank

management from a supply chain network perspective merits a fresh and updated approach.

This topic is especially timely today, since it has been reported that the number of disasters

and the number of people affected by disasters has been growing over the past decade and

blood is certainly a life-saving product (cf. Nagurney and Qiang (2009)).

Blood service operations are a key component of the healthcare system all over the world.

According to the American Red Cross, over 39,000 donations are needed everyday in the

United States, alone, and the blood supply is frequently reported to be just 2 days away

from running out. Of 1,700 hospitals participating in a survey in 2007, a total of 492 reported

cancellations of elective surgeries on one or more days due to blood shortages. While for
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many hospitals, the reported number of blood-related delays was not significant, hospitals

with as many days of surgical delays as 50 or even 120 have been observed. Furthermore,

in 2006, the national estimate for the number of units of whole blood and all components

outdated by blood centers and hospitals was 1,276,000 out of 15,688,000 units (Whitaker et

al. (2007)). Considering also the ever-increasing hospital cost of a unit of red blood cells with

a 6.4% increase from 2005 to 2007 further highlights the criticality of this perishable, life-

saving product. In the US, this criticality has become more of an issue in the Northeastern

and Southwestern states since this cost is meaningfully higher compared to that of the

Southeastern and Central states. Moreover, hospitals were responsible for approximately

90% of the outdates, with this volume of medical waste imposing discarding costs to the

already financially-stressed hospitals (The New York Times (2010)).

Several authors have applied integer optimization models such as facility location, set

covering, allocation, and routing to address the optimization / design of supply chains of

blood or other perishable critical products (see Jacobs, Silan, and Clemson (1996), Pierskalla

(2004), Yang (2006), Sahin, Sural, and Meral (2007), Sivakumar, Ganesh, and Parthiban

(2008), Cetin and Sarul (2009), and Ghandforoush and Sen (2010)). In addition, inventory

management methods (cf. Cohen and Pierskalla (1979), Karaesmen, Scheller-Wolf, and

Deniz (2011), and the references therein), Markov models (Boppana and Chalasani (2007))

as well as simulation techniques (Rytila and Spens (2006), Katsaliaki and Brailsford (2007),

and Mustafee, Katsaliaki, and Brailsford (2009)) have been used to handle blood banking

systems. Yegul (2007), in his dissertation, which has extensive references on the subject

of blood supply chains, also utilized simulation for a blood supply chain with a focus on

Turkey. He noted that there were few studies which consider multiple echelons (as the

model in our paper does). Haijema, van der Wal, and van Dijk (2007) used a Markov

dynamic programming and simulation approach with data from a Dutch blood bank (see

also the dissertation of Haijema (2008)).

In this paper, we develop a multicriteria system-optimization framework for a regionalized

blood supply chain network, such as that of the American Red Cross. In the US, the

American Red Cross (ARC) is the major supplier of blood products to hospitals and medical

centers satisfying over 45% of the demand for blood components nationally (Walker (2010)).

A system-optimization approach is believed to be mandated for critical supplies (Nagurney,

Yu, and Qiang (2011)) in that the demand for such products must be satisfied as closely as

possible at minimal total cost. The use of a profit maximization criterion, as in Nagurney

(2010a, c), is not appropriate for an organization such as the American Red Cross, due to

its non-profit status.
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Unlike many other supply chain models that assume a fixed lifetime for a perishable

good (see, e.g., Hwang and Hahn (2000), Omosigho (2002), and Zhou and Yang (2003)), our

system-optimization approach for supply chain network management, as we shall demon-

strate, captures the perishability/waste that occurs over the relevant links associated with

various activities of the supply chain, similar to the spatial price equilibrium model in Nagur-

ney and Aronson (1989). However, in contrast to the latter model, here we also take into

account the discarding cost of the waste over the relevant links as well as the discarding

cost of outdated product at the demand points due to the possible excess supply delivered.

Furthermore, we capture in the model the uncertainty of the demand and the associated

shortage penalties at the demand points. System-optimization models have been developed

to capture various issues of supply chain management including that of mergers and acquisi-

tion as well as network design (cf. Nagurney (2009, 2010b, c), Nagurney and Woolley (2010),

Nagurney, Yu, and Qiang (2011), and Nagurney and Nagurney (2010)).

This paper is organized as follows. In Section 2, we describe, in detail, the structure of

a regionalized blood banking system. We develop the supply chain network model for the

blood banking system problem, and establish that the multicriteria optimization problem is

equivalent to a variational inequality problem, with nice features for computations. We also

present simple numerical examples and conduct sensitivity analysis. Our model has several

novel features:

1. it captures perishability of this life-saving product through the use of arc multipliers;

2. it contains discarding costs associated with waste/disposal;

3. it handles uncertainty associated with demand points;

4. it assesses costs associated with shortages/surpluses at the demand points, and

5. it quantifies the supply-side risk associated with procurement.

In Section 3, we propose an algorithm which, when applied, yields the optimal level of

blood product flows. We then apply the algorithm to compute the solution to a larger-

scale numerical example using data motivated by a real-world application in order to further

illustrate the modeling and computational framework for blood banking supply chain network

management. In Section 4, we summarize the results and present our conclusions.
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2. The Supply Chain Network Model of a Regionalized Blood Banking System

In this Section, we develop the supply chain network model for regionalized blood banks.

It is necessary to mention that our model for blood banking management is applicable to

many perishable products, with minor modifications, but with the same foundations. Also,

it is worth noting that although the structure of the network for a blood banking system,

or the way that the modules of the supply chain are called, may be slightly different from

country to country, or from one region to another, our network framework is sufficiently

general to address any blood supply chain network.

2.1 The Components of a Regionalized Blood Banking System

In most parts of the world, blood banking operations systems conduct procurement and

distribution in a regionalized manner. In other words, there exists a Regional Blood Center in

each geographic area which is in charge of coordination and administration of its lower-level

units. Nevertheless, despite advances in storage and distribution technologies, hospitals may

need to acquire blood products from suppliers that are located in other regions, sometimes

even hundreds of miles away.

In the US, for example, the regional divisions of the American Red Cross oversee the entire

operation of their corresponding regions. Other suppliers of blood are hospitals - typically

the larger ones with blood collection programs - which, however, account for less than 5% of

the market share (Whitaker et al. (2007)). There also exist private blood suppliers across

the country.

Since 1960, the Red Cross has been reimbursed by the hospitals for the costs associated

with providing blood to hospital patients. The Red Cross does not charge for the blood

itself; it only recovers the costs associated with the recruitment and screening of potential

donors, the collection of blood by trained staff, the processing and testing of each unit of

blood in state-of-the-art laboratories, and the labeling, storage, and distribution of blood

components.

Figure 1 depicts a network topology of a regionalized blood banking system as for the

ARC in the US. In this network, the top level (origin) node represents the ARC regional

division. Every other node in the network denotes a component/facility in the system. A

path connecting the origin node to a destination node, corresponding to a demand point,

consists of a sequence of directed links which correspond to supply chain network activities

that ensure that the blood is collected, processed, and, ultimately, distributed to the demand

point. We assume that in the supply chain network topology there exists at least one path
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Figure 1: Supply Chain Network Topology for a Regionalized Blood Bank

joining node 1 with each destination node. This assumption guarantees that the demand

at each demand point will be met as closely as possible, given that we will be considering

uncertain demand for blood at each demand point. The solution of the model yields the

optimal flows of blood at minimum total cost and risk, as we shall demonstrate.

In the network in Figure 1, we assume that the division is considering nC blood collection

sites constituting the second tier of the network. Many of these collection sites are mobile

or temporary locations while others are permanent sites. In the case of drastic shortages;

i.e., natural or man-made disasters, the regional divisions are likely to need to import blood

products from other regions or even other countries, an aspect that is excluded from this

model. In the current topology, the first set of the links connecting the origin node to

the second tier corresponds to the process of “blood collection.” These collection sites are

denoted by: CS1, CS2, . . . , CSnCS
.

The next set of nodes, located in the third tier, are the blood centers. There exist nBC

of these facilities in one region, denoted by BC1, BC2, . . . , BCnBC
, to which the whole blood

(WB) is shipped after being collected at the collection sites. Thus, the next set of links

connecting tiers two and three of the network topology represents the “shipment of collected

blood.”
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The fourth tier of the network is composed of processing facilities, commonly referred to

as component labs. The number of these facilities in one region is assumed to be nCL. These

facilities are denoted by CL1, . . . , CLnCL
, respectively, and are typically located within the

blood center locations. At these labs, the collected blood is separated into parts, i.e., red

blood cells and plasma, since most recipients need only a specific component for transfusions.

Every unit of donated whole blood - 450 to 500 milliliters on average - can provide one unit

of red blood cells (RBC) and one unit of plasma. What we refer to as the flow of product

is the amount of whole blood (WB) on the first three sets of links. Likewise, the flow on

the links thereafter denotes the number of units of red blood cells (RBC) processed at the

component labs which are, ultimately, delivered to the hospitals.

We exclude plasma and other side derivatives from our model for several reasons. First of

all, although plasma can be derived from donated whole blood, in practice, plasma is mainly

produced in a different process called apheresis. Apheresis is a blood donation method where

the blood is passed through an apparatus that separates out one particular constituent -

plasma - and returns the remainder - red blood cells - to the donor. Secondly, plasma can

be stored frozen for an extended period of time, typically one year, which is not comparable

to the approximately 5 week lifetime of red blood cells. Most important of all, whole blood

and red blood cells account for the major part of donations and transfusions rather than

plasma and other components (Whitaker et al. (2007)).

The safety of the blood supply is considered to be the most important issue in blood

services. In the US, federal law mandates that every single unit of donated blood be tested

before being transfused, regardless of the number of the times one donor has donated blood

in the past. The National Testing Laboratories of the American Red Cross are in charge of

this vital task, testing blood for multiple infectious disease markers, including but not limited

to HIV, hepatitis, and the West Nile Virus (Redcrossblood.org (2010)). These facilities are

owned and operated by the ARC, and require heavy investments for specialized equipment.

Presently, only 5 testing labs are operating across the US, and these labs are shared among

36 blood regions. Only a small sample of every donated blood unit is sent to the testing

labs, overnight, and these samples are discarded regardless of the results of the tests. Due

to the high perishability of many of the blood products, the two processes of testing and

separating take place concurrently yet sometimes hundreds of miles away. If the result of

a test for a specific unit of donated blood at the testing lab turns out to be positive, the

remainder of that unit will be later discarded at the corresponding storage facility. In our

model, the set of the links connecting the component labs to storage facilities corresponds

to “testing and processing,” and the cost on these links represents the operational cost of
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testing and processing combined. The fraction of the flow lost during or as a result of the

testing process is also taken care of in our model.

The fifth set of nodes denotes the short-term storage facilities. There are nSF of such

nodes in the network, denoted by SF1, SF2, . . . , SFnSF
, which are usually located in the

same place as the component labs. The links connecting the upper level nodes to the storage

facilities denote the procedure of “storage” of the tested and processed blood before it is

shipped to be distributed.

The next set of nodes in the network represents the distribution centers, denoted by

DC1, DC2, . . . , DCnDC
, where nDC is the total number of such facilities in the region. Distri-

bution centers act as transshipment nodes, and are in charge of facilitating the distribution of

blood to the ultimate destinations. The links connecting the storage tier to the distribution

centers are of “shipment” link type.

The last set of links joining the bottom two tiers of the network are “distribution” links,

ending in nR demand points. Hospitals and surgical medical centers are the predominant

users of blood. The actual but uncertain demands of the demand points R1, R2, . . . , RnR
are

denoted by: dR1 , dR2 , . . . , dRnR
, respectively.

It is necessary to mention that specific components of the system may physically coincide

with some others; however, this network topology is process-based rather than location-

based, which is compatible with our blood banking problem. Moreover, as mentioned earlier,

in general cases of perishable product supply chains, these facilities may be located far apart

which can be nicely addressed using our presented model.

The supply chain network topology is represented by G = [N, L], where N and L denote

the sets of nodes and links, respectively. The ultimate solution of the complete model will

yield the optimal flow on the various links of the network.

2.2 The Formulation

Our formulation is of a single-period type, where the time horizon spans the various activ-

ities of procurements, processing, and distribution. Since whole blood is highly perishable,

all modules of the blood supply chain network tend to avoid long term storage (except for

plasma, which is excluded from our model). Hence, the assumption of a single-period time

horizon is realistic with the focus of this paper being on operations management, rather than

on inventory management. Nevertheless, our model takes into account the potential short-

age associated with the uncertain demand at the demand points, that is, the lost “sales.”
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In addition, the surplus penalty can address additional relevant costs, whether in terms of

excess supply or even if short-term inventory holding cost is included.

Associated with each link of the network is a unit operational cost function that reflects

the cost of operating the particular supply chain activity, that is, the collection of blood at

blood drive sites, the shipment of collected blood, the testing and processing, the storage,

and the distribution. We denote these links by a, b, etc. The unit operational cost on link

a is denoted by ca and is a function of flow on that link, fa. The total operational cost on

link a is denoted by ĉa, and is constructed as:

ĉa(fa) = fa × ca(fa), ∀a ∈ L. (1)

The link total cost functions are assumed to be convex and continuously differentiable.

The origin/destination (O/D) nodes consist of the pairs of nodes (1, Rk); 1, . . . , nR,

where Pk denotes the set of paths, which represent alternative associated possible supply

chain network processes, joining (1, Rk). P denotes the set of all paths joining node 1 to the

destination nodes, and nP denotes the number of paths.

Let vk denote the projected demand for blood at the demand point Rk; k = 1, . . . , nR.

We assume that the demand at each demand point is uncertain with a known probability

distribution. Recall that dk denotes the actual demand at demand point Rk; k = 1, . . . , nR,

and is a random variable with probability density function given by Fk(t). Let Pk be the

probability distribution function of dk, that is, Pk(Dk) = Prob(dk ≤ Dk) =
∫ Dk

0
Fk(t)d(t).

Therefore,

∆−
k ≡ max{0, dk − vk}, k = 1, . . . , nR, (2)

∆+
k ≡ max{0, vk − dk}, k = 1, . . . , nR, (3)

where ∆−
k and ∆+

k represent the shortage and surplus of blood at demand point Rk, respec-

tively.

The expected values of the shortage (∆−
k ) and the surplus (∆+

k ) are given by:

E(∆−
k ) =

∫ ∞

vk

(t− vk)Fk(t)d(t), k = 1, . . . , nR, (4)

E(∆+
k ) =

∫ vk

0

(vk − t)Fk(t)d(t), k = 1, . . . , nR. (5)

Due to the vitalness of the availability of blood at the demand points, a relatively large

penalty of λ−k is associated with the shortage of a unit of blood at demand point Rk, where
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λ−k corresponds to the social cost of a death or a severe injury of a patient, due to a blood

shortage. Also, since blood is extremely perishable and will be outdated if not used over a

certain period after being delivered, the outdating penalty of λ+
k is assigned to the unit of a

possible supply surplus. Note that, in our formulation, this surplus penalty is charged to the

organization even though the ARC is not directly responsible for the outdated blood at the

hospitals once it is delivered to them. This is because human blood is scarce, and the ARC

aims to minimize the amount of outdated blood at demand points, which actually dominates

the amount of blood waste during the other activities of blood banking within the ARC

network (Rios (2010)). Hence, λ+
k , in the case of blood (as for other perishable products),

includes the cost of short-term inventory holding (cold storage), and, possibly, the discarding

cost of the outdated product. It is necessary to mention that having excessive supplies

outdated at the demand points not only imposes a discarding cost on the already financially

stressed healthcare institutions such as hospitals, but also leads to further environmental

damage. Similar examples of penalty costs, due to excessive supplies, as well as to shortages,

can be found in the literature (see, e.g., Dong, Zhang, and Nagurney (2004), and Nagurney,

Yu, and Qiang (2011)). These penalties can be assessed by the authority who is contracting

with the organization to deliver the blood.

Thus, the expected total penalty at demand point k; k = 1, . . . , nR, is:

E(λ−k ∆−
k + λ+

k ∆+
k ) = λ−k E(∆−

k ) + λ+
k E(∆+

k ). (6)

Nevertheless, the demand points (such as hospitals) are not the only modules of the

blood supply chain in which the perishability of the collected blood occurs. Throughout the

processes of blood collection, shipment, testing and processing, storage, and distribution,

a fraction of the collected blood may deteriorate, be lost, or be wasted. The fraction of

the lost product depends on the type of the activity since various processes of collection,

testing, storage, etc., lead to different amounts of waste. This fraction, in general, can also

be different among the various facilities at the same tier of the network, depending upon the

technology used, the efficiency of the staff personnel, and so forth.

Hence, we associate with every link a in the network, a multiplier αa, which, for all

activities of the blood supply chain, lies in the range of (0,1] where αa = 1 means that

αa× 100% of the initial flow on link a reaches the successor node of that link, reflecting that

there is no waste/loss on link a. The average percentage of loss due to the testing process

was reported to be 1.7% (Sullivan et al. (2007)); consequently, the corresponding multiplier,

αa, would be equal to 1− 0.017 = 0.983.

As mentioned earlier, fa denotes the (initial) flow on link a. Let f ′a denote the final flow
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on that link; i.e., the flow that reaches the successor node of the link. Therefore,

f ′a = αafa, ∀a ∈ L. (7)

Thus, the waste/loss on link a, denoted by wa, is equal to:

wa = fa − f ′a = (1− αa)fa, ∀a ∈ L. (8)

The organization such as ARC is responsible for discarding this waste which is potentially

hazardous. Contractors are typically employed to remove and dispose of the waste. The

corresponding discarding cost, ya, is a function of the waste, wa, which is charged to the

organization:

ya(wa) = ya(fa − f ′a) = ya

(
(1− αa)fa

)
, ∀a ∈ L. (9a)

Since αa is constant, and known a priori, a new total discarding cost function, ẑa, can

be defined accordingly, which is a function of the flow, fa, and is assumed to be convex and

continuously differentiable:

ẑa = ẑa(fa), ∀a ∈ L. (9b)

Also, let xp represent the (initial) flow of blood (or a general perishable product) on path

p joining the origin node with a destination node. The path flows must be nonnegative, that

is,

xp ≥ 0, ∀p ∈ P , (10)

since the product will be collected, shipped, etc., in nonnegative quantities.

Let µp denote the multiplier corresponding to the throughput on path p, which is defined

as the product of all link multipliers on links comprising that path, that is,

µp ≡
∏
a∈p

αa, ∀p ∈ P . (11)

The projected demand at demand point Rk, vk, is the sum of all the final flows on paths

joining (1, Rk):

vk ≡
∑
p∈Pk

xpµp, k = 1, . . . , nR. (12)

Indeed, although the amount of blood that originates on a path p is xp, the amount (due to

perishability) that actually arrives at the destination of this path is xpµp.

We also define the multiplier, αap, which is the product of the multipliers of the links on

path p that precede link a in that path. This multiplier can be expressed as:
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αap ≡


δap

∏
a′<a

αa′ , if {a′ < a} 6= Ø,

δap, if {a′ < a} = Ø,

(13)

where {a′ < a} denotes the set of the links preceding link a in path p, δap is defined as equal

to 1 if link a is contained in path p, and 0, otherwise, and Ø denotes the null set. Hence,

αap is equal to the product of all link multipliers preceding link a in path p. If link a is not

contained in path p, then αap is set to zero. If a belongs to the first set of links, the blood

collection links, this multiplier is equal to 1. The relationship between the link flow, fa, and

the path flows is as follows:

fa =
∑
p∈P

xp αap, ∀a ∈ L. (14)

Similar examples of multipliers corresponding to the loss/waste on links or paths can be

found in the literature (see, e.g., Nagurney and Aronson (1989)).

We group the path flows into the vector x. Also, the link flows, and the projected demands

are grouped into the respective vectors f and v.

The total cost minimization objective faced by the organization includes the total cost

of operating the various links, the total discarding cost of waste/loss over the links, and the

expected total blood supply shortage cost as well as the total discarding cost of outdated

blood at the demand points. This optimization problem can be expressed as:

Minimize
∑
a∈L

ĉa(fa) +
∑
a∈L

ẑa(fa) +

nR∑
k=1

(
λ−k E(∆−

k ) + λ+
k E(∆+

k )
)

(15)

subject to: constraints (10), (12), and (14).

As mentioned earlier, the minimization of total costs is not the only objective of suppliers

of perishable goods. One of the most significant challenges for the ARC, for example, is

to capture the risk associated with different activities in the blood supply chain network.

Unlike the demand which can be projected according to the historical data, albeit with

some uncertainty involved, the amount of donated blood at the collection sites has been

observed to be highly stochastic. Even though the ARC encourages blood donors to make

appointments beforehand, donors may miss their appointments due to inclement weather

situations, traffic, personal issues, etc.

Interestingly, disasters, such as the 2010 earthquake in Haiti, may stimulate people’s

sympathy and dramatically increase the number of blood donors. As in Nagurney et al.
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(2005), we introduce a total risk function r̂a corresponding to link a for every blood collection

link. This function is assumed to be convex and continuously differentiable, and a function of

the flow, that is, the amount of collected blood, on its corresponding link. The organization

attempts to minimize the total risk over all links connecting the first two tiers of the network,

denoted by L1 ⊂ L. The remainder of the links in the network, i.e., the shipment of collected

blood, the processing, the storage, shipment, and the distribution links, comprise the set LC
1 .

The subset L1 and its complement LC
1 partition the entire set of links L, that is, L1∪LC

1 = L.

Thus, the risk minimization objective function for the organization can be expressed as:

Minimize
∑
a∈L1

r̂a(fa), (16)

where r̂a = r̂a(fa) is the total risk function on link a.

The supply chain network optimization problem for a regionalized blood banking system

can be expressed as a multicriteria decision-making problem. The organization seeks to

determine the optimal levels of blood processed on each supply chain network link subject to

the minimization of the total cost (operational and discarding) as well as the minimization of

the total supply risk. We associate with the total supply risk objective, (16), a risk aversion

factor θ, which is assigned by the decision-maker. Thus, the multicriteria optimization

problem is:

Minimize
∑
a∈L

ĉa(fa) +
∑
a∈L

ẑa(fa) +

nR∑
k=1

(
λ−k E(∆−

k ) + λ+
k E(∆+

k )
)

+ θ
∑
a∈L1

r̂a(fa) (17)

subject to: constraints (10), (12), and (14).

The above optimization problem is in terms of link flows. It can also be expressed in

terms of path flows:

Minimize
∑
p∈P

(
Ĉp(x) + Ẑp(x)

)
+

nR∑
k=1

(
λ−k E(∆−

k ) + λ+
k E(∆+

k )
)

+ θ
∑
p∈P

R̂p(x) (18)

subject to: constraints (10) and (12), where the total operational cost, Ĉp(x), the total

discarding cost, Ẑp(x), and the total risk, R̂p(x), corresponding to path p are, respectively,

derived from Cp(x), Zp(x), and Rp(x) as follows:

Ĉp(x) = xp × Cp(x), ∀p ∈ P , (19a)

Ẑp(x) = xp × Zp(x), ∀p ∈ P , (19b)

R̂p(x) = xp ×Rp(x), ∀p ∈ P , (19c)
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with the unit cost functions on path p, i.e., Cp(x), Zp(x), and Rp(x), in turn,as below:

Cp(x) ≡
∑
a∈L

ca(fa)αap, ∀p ∈ P , (20a)

Zp(x) ≡
∑
a∈L

za(fa)αap, ∀p ∈ P , (20b)

Rp(x) ≡
∑
a∈L1

ra(fa)αap, ∀p ∈ P . (20c)

Next, we present some preliminaries that enable us to express the partial derivatives of

the expected total shortage and discarding costs of outdated blood at the demand points

solely in terms of path flow variables. Observe that, for each O/D pair wk:

∂E(∆−
k )

∂xp

=
∂E(∆−

k )

∂vk

× ∂vk

∂xp

, ∀p ∈ Pk; k = 1, . . . , nR. (21)

By Leibniz’s integral rule, we have:

∂E(∆−
k )

∂vk

=
∂

∂vk

(∫ ∞

vk

(t− vk)Fk(t)d(t)

)
=

∫ ∞

vk

∂

∂vk

(t− vk)Fk(t)d(t)

= Pk(vk)− 1, k = 1, . . . , nR. (22a)

Therefore,

∂E(∆−
k )

∂vk

= Pk

(∑
p∈Pk

xpµp

)
− 1, k = 1, . . . , nR. (22b)

On the other hand, we have:

∂vk

∂xp

=
∂

∂xp

∑
p∈Pk

xpµp = µp, ∀p ∈ Pk; k = 1, . . . , nR. (23)

The above is correct since the µp’s are constant values. Therefore, from (22b) and (23), we

conclude that

∂E(∆−
k )

∂xp

= µp

[
Pk

(∑
p∈Pk

xpµp

)
− 1

]
, ∀p ∈ Pk; k = 1, . . . , nR. (24)

Similarly, for the surplus, we have:

∂E(∆+
k )

∂xp

=
∂E(∆+

k )

∂vk

× ∂vk

∂xp

, ∀p ∈ Pk; k = 1, . . . , nR, (25)

∂E(∆+
k )

∂vk

=
∂

∂vk

(∫ vk

0

(vk − t)Fk(t)d(t)

)
=

∫ vk

0

∂

∂vk

(vk − t)Fk(t)d(t)
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= Pk(vk), k = 1, . . . , nR. (26a)

Thus,

∂E(∆+
k )

∂vk

= Pk

(∑
p∈Pk

xpµp

)
, k = 1, . . . , nR. (26b)

From (26b) and (23) we have:

∂E(∆+
k )

∂xp

= µpPk

(∑
p∈Pk

xpµp

)
, ∀p ∈ Pk; k = 1, . . . , nR. (27)

Let K denote the feasible set such that:

K ≡ {x|x ∈ RnP
+ }. (28)

Before deriving the variational inequality formulation of the problem, we establish a

lemma that formalizes the construction of the partial derivatives of the path total operational

cost, the total discarding cost, and the total risk with respect to a path flow.

Lemma 1

The partial derivatives of the total operational cost, the total discarding cost, and the total

risk with respect to the corresponding path flow are, respectively, given by:

∂(
∑

q∈P Ĉq(x))

∂xp

=
∑
a∈L

∂ĉa(fa)

∂fa

αap, ∀p ∈ P , (29a)

∂(
∑

q∈P Ẑq(x))

∂xp

=
∑
a∈L

∂ẑa(fa)

∂fa

αap, ∀p ∈ P , (29b)

∂(
∑

q∈P R̂q(x))

∂xp

=
∑
a∈L1

∂r̂a(fa)

∂fa

αap, ∀p ∈ P . (29c)

Proof : We establish the equivalence for (29a); the equivalences (29b) and (29c) can be

obtained in a similar fashion. The partial derivative of the total operational cost with

respect to the flow on path p is first defined as:

∂(
∑

q∈P Ĉq)

∂xp

=
∑
q∈P

∂Ĉq

∂xp

, ∀p ∈ P , (30a)

15



which, based on the total path cost (19a), can be rewritten as:

∂(
∑

q∈P Ĉq)

∂xp

=
∑
q∈P

∂(Cqxq)

∂xp

= Cp +
∑
q∈P

xq
∂Cq

∂xp

, ∀p ∈ P . (30b)

According to the definition of Cq(x) in (20a), we have:

∂Cq

∂xp

=

∂
∑
a∈L

caαaq

∂xp

=
∑
a∈L

∂ca

∂xp

αaq =
∑
a∈L

∂ca

∂fa

∂fa

∂xp

αaq, ∀p, q ∈ P . (31)

On the other hand, by referring to (14), yields:

∂fa

∂xp

= αap, ∀a ∈ L, ∀p ∈ P . (32)

From (31) and (32), we obtain:

∂Cq

∂xp

=
∑
a∈L

∂ca

∂fa

αapαaq, ∀p, q ∈ P . (33)

Substituting (33) into (30b) yields:

∂(
∑

q∈P Ĉq)

∂xp

= Cp +
∑
q∈P

xq

∑
a∈L

∂ca

∂fa

αapαaq = Cp +
∑
a∈L

∑
q∈P

xq
∂ca

∂fa

αapαaq.

Thus,
∂(
∑

q∈P Ĉq)

∂xp

= Cp +
∑
a∈L

∂ca

∂fa

αap

∑
q∈P

xqαaq, ∀p ∈ P . (34)

By substituting proper equivalences from (14) and (20a) into (34), we have:

∂(
∑

q∈P Ĉq)

∂xp

=
∑
a∈L

caαap +
∑
a∈L

∂ca

∂fa

αapfa =
∑
a∈L

(ca +
∂ca

∂fa

fa)αap, ∀p ∈ P . (35)

On the other hand, from (1):

∂ĉa

∂fa

= ca +
∂ca

∂fa

fa, ∀a ∈ L. (36)

From (35) and (36), we conclude that:

∂(
∑

q∈P Ĉq)

∂xp

=
∑
a∈L

∂ĉa(fa)

∂fa

αap, ∀p ∈ P . (37)
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Thus, (29a) has been established. 2

We now derive the variational inequality formulation of the blood supply chain network

optimization problem in terms of path flows and link flows.

Theorem 1

The vector x∗ is an optimal solution to the multicriteria optimization problem (18), subject to

(10) and (12), if and only if it is a solution to the variational inequality problem: determine

the vector of optimal path flows x∗ ∈ K, such that:

nR∑
k=1

∑
p∈Pk

[
∂(
∑

q∈P Ĉq(x
∗))

∂xp

+
∂(
∑

q∈P Ẑq(x
∗))

∂xp

+ λ+
k µpPk

(∑
p∈Pk

x∗pµp

)
−λ−k µp

(
1− Pk

(∑
p∈Pk

x∗pµp

))

+ θ
∂(
∑

q∈P R̂q(x
∗))

∂xp

]
× [xp − x∗p] ≥ 0, ∀x ∈ K. (38)

The variational inequality (38), in turn, can be rewritten in terms of link flows as:

determine the vector of optimal link flows, and the vector of optimal projected demands

(f ∗, v∗) ∈ K1, such that:∑
a∈L1

[
∂ĉa(f

∗
a )

∂fa

+
∂ẑa(f

∗
a )

∂fa

+ θ
∂r̂a(f

∗
a )

∂fa

]
× [fa − f ∗a ] +

∑
a∈LC

1

[
∂ĉa(f

∗
a )

∂fa

+
∂ẑa(f

∗
a )

∂fa

]
× [fa − f ∗a ]

+

nR∑
k=1

[
λ+

k Pk(v
∗
k)− λ−k (1− Pk(v

∗
k))
]
× [vk − v∗k] ≥ 0, ∀(f, v) ∈ K1, (39)

where K1 denotes the feasible set as defined below:

K1 ≡ {(f, v)|∃x ≥ 0, (10), (12), and (14) hold}.

Proof : First, we prove the result for path flows (cf. (38)).

The convexity of Ĉp, Ẑp, and R̂p for all paths p holds since ĉa, ẑa, and r̂a were assumed

to be convex for all links a. We need to verify that λ−k E(∆−
k )+λ+

k E(∆+
k ) is also convex. We

have:

∂2

∂xp
2

[
λ−k E(∆−

k ) + λ+
k E(∆+

k )
]

= λ−k
∂2E(∆−

k )

∂xp
2

+ λ+
k

∂2E(∆+
k )

∂xp
2

, ∀p ∈ Pk; k = 1, . . . , nR.

(40a)
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Substituting the first order derivatives from (24) and (27) into (40a) yields:

∂2

∂xp
2

[
λ−k E(∆−

k ) + λ+
k E(∆+

k )
]

= λ−k
∂

∂xp

µp

[
Pk

(∑
p∈Pk

xpµp

)
− 1

]
+ λ+

k

∂

∂xp

µpPk

(∑
p∈Pk

xpµp

)

= (λ−k + λ+
k )(µp)

2Fk

(∑
p∈Pk

xpµp

)
> 0, ∀p ∈ Pk; k = 1, . . . , nR. (40b)

The above inequality holds provided that (λ−k +λ+
k ), i.e., the sum of shortage and surplus

penalties, is assumed to be positive. Hence, λ−k E(∆−
k ) + λ+

k E(∆+
k ), and, as a consequence,

the multicriteria objective function in (18) is also convex.

Since the objective function (18) is convex and the feasible set K is closed and convex,

the variational inequality (38) follows from the standard theory of variational inequalities

(see Nagurney (1999)).

As for the proof of the variational inequality (39), now that (38) is established, we can

apply Lemma 1. Also, from (12) and (14), we can rewrite the formulation in terms of link

flows and projected demands rather than path flows. Thus, the second part of Theorem 1,

that is, the variational inequality in link flows (39), holds. 2

Note that variational inequality (38) can be put into standard form (see Nagurney (1999))

as follows: determine X∗ ∈ K such that:

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (41)

where 〈·, ·〉 denotes the inner product in n-dimensional Euclidean space, X ∈ Rn, and F (X)

is an n-dimensional function from K to Rn, with F (X) being continuous and the feasible set

K being closed and convex.

Indeed, if we define the feasible set K ≡ K, and the column vector X ≡ x, and F (X),

such that:

F (X) ≡


∂
∑
q∈P

Ĉq(x)

∂xp

+

∂
∑
q∈P

Ẑq(x)

∂xp

+ λ+
k µpPk

(∑
p∈Pk

xpµp

)

−λ−k µp

(
1− Pk

(∑
p∈Pk

xpµp

))
+ θ

∂
∑
q∈P

R̂q(x)

∂xp

; p ∈ Pk; k = 1, . . . , nR

 , (42)

then the variational inequality (38) can be reexpressed in standard form (41).
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We will utilize variational inequality (38) in path flows for our computations since our

proposed computational procedure will yield closed form expressions at each iteration. Once

we have solved problem (38), by using (14), which relates the links flows to the path flows,

we can obtain the solution f ∗ that minimizes the total cost as well as the total supply risk

(cf. (17)) associated with the optimization of the supply chain network of a regionalized

blood banking system.

2.3 Illustrative Blood Supply Chain Network Numerical Examples

In order to further illustrate the above model, we now present several simple examples.

Consider the blood supply chain network topology in Figure 2 in which the organization

has a single blood collection site, a single blood center, one component lab, one storage

facility, a single distribution center and is to serve a single demand point. The links are

labeled as in Figure 2, that is, a, b, c, d, e, and f .

Organization

1j
a

?
CS1

j
?
b

BC1
j
c

?

d

CL1
j
?jSF1

?je
?

DC1

fjR1

Demand Point

Figure 2: Supply Chain Network Topology for Numerical Examples 1 and 2

Example 1

The total cost functions on the links were:

ĉa(fa) = f 2
a + 6fa, ĉb(fb) = 2f 2

b + 7fb, ĉc(fc) = f 2
c + 11fc, ĉd(fd) = 3f 2

d + 11fd,
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ĉe(fe) = f 2
e + 2fe, ĉf (ff ) = f 2

f + ff .

We assumed that there was no waste so that αa = 1 for all links in Figure 2. Hence, all

the functions ẑa were set equal to 0 for all the links a, . . . , f .

The total risk cost function on the blood collection link a was: r̂a = 2f 2
a , and the risk

aversion factor, θ, was assumed to be 1.

There is only a single path p1 which was defined as: p1 = (a, b, c, d, e, f) with µp1 = 1.

We assumed that the demand for the product followed a uniform distribution on the

interval [0, 5] so that: P1(xp1) =
xp1

5
.

The penalties were: λ−1 = 100, λ+
1 = 0.

Substitution of the values of λ+
1 , λ−1 , µp1 , and θ into (38), yields:[

∂Ĉp1(x
∗)

∂xp1

− 100(1− P1(x
∗
p1

)) +
∂R̂p1(x

∗)

∂xp1

]
× [xp1 − x∗p1

] ≥ 0, ∀x ∈ K. (43)

Under the assumption that x∗p1
> 0, the left-hand side of inequality (43) must be equal

to zero, that is:
∂Ĉp1(x

∗)

∂xp1

− 100(1− P1(x
∗
p1

)) +
∂R̂p1(x

∗)

∂xp1

= 0. (44)

It follows from Lemma 1 that:

∂Ĉp1(x
∗)

∂xp1

=
∂ĉa(f

∗
a )

∂fa

αap1+
∂ĉb(f

∗
b )

∂fb

αbp1+
∂ĉc(f

∗
c )

∂fc

αcp1+
∂ĉd(f

∗
d )

∂fd

αdp1+
∂ĉe(f

∗
e )

∂fe

αep1+
∂ĉf (f

∗
f )

∂ff

αfp1 .

(45)

Since αap1 = αbp1 = αcp1 = αdp1 = αep1 = αfp1 = 1, and f ∗a = f ∗b = f ∗c = f ∗d = f ∗e = f ∗f =

x∗p1
, with substitution into (45), gives us:

∂Ĉp1(x
∗)

∂xp1

= (2f ∗a +6)+(4f ∗b +7)+(2f ∗c +11)+(6f ∗d +11)+(2f ∗e +2)+(2f ∗f +1) = 18x∗p1
+38.

(46)

Similarly:
∂R̂p1(x

∗)

∂xp1

=
∂r̂a(f

∗
a )

∂fa

αap1 = 4f ∗a = 4x∗p1
. (47)

Therefore, using the above relationships, (44) may be reexpressed as:

18x∗p1
+ 38− 100(1−

x∗p1

5
) + 4x∗p1

= 0, (48)
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whose solution yields the optimal path flow: x∗p1
= 1.48, and the corresponding optimal link

flow pattern: f ∗a = f ∗b = f ∗c = f ∗d = f ∗e = f ∗f = 1.48. Following (12), the projected demand is

equal to: v∗1 = x∗p1
= 1.48.

Example 2

Example 2 had the same data as Example 1 except that now there was a loss associated

with the testing and processing link with αc = .8. Hence, we now set (cf. (9a, b)) ẑc = .5f 2
c

and µp1 = αc = .8.

Similar to the solution procedure used for Example 1, from variational inequality formula-

tion (38), under the assumption that x∗p1
> 0, the following equation must hold for Example

2:
∂Ĉp1(x

∗)

∂xp1

+
∂Ẑp1(x

∗)

∂xp1

− 100× 0.8(1− P1(0.8× x∗p1
)) +

∂R̂p1(x
∗)

∂xp1

= 0. (49)

Since in this example, αap1 = αbp1 = αcp1 = 1, αdp1 = αep1 = αfp1 = 0.8, f ∗a = f ∗b = f ∗c =

x∗p1
, and f ∗d = f ∗e = f ∗f = 0.8x∗p1

, therefore:

∂Ĉp1(x
∗)

∂xp1

= (2f ∗a + 6) + (4f ∗b + 7) + (2f ∗c + 11) + 0.8(6f ∗d + 11) + 0.8(2f ∗e + 2) + 0.8(2f ∗f + 1)

= 8x∗p1
+ 24 + 0.8(10× 0.8x∗p1

+ 14) = 14.4x∗p1
+ 35.2. (50)

Also,
∂Ẑp1(x

∗)

∂xp1

=
∂ẑc(f

∗
c )

∂fc

αcp1 = f ∗c = x∗p1
. (51)

The partial derivative of the total risk function was equal to that of Example 1:

∂R̂p1(x
∗)

∂xp1

=
∂r̂a(f

∗
a )

∂fa

αap1 = 4f ∗a = 4x∗p1
. (52)

However, now we have

P1(0.8x
∗
p1

) =
0.8x∗p1

5
. (53)

Therefore, the following equation needs to be solved:

14.4x∗p1
+ 35.2 + x∗p1

− 80(1−
0.8x∗p1

5
) + 4x∗p1

= 0. (54)

The new optimal path flow solution was: x∗p1
= 1.39, which corresponds to the optimal

link flow pattern: f ∗a = f ∗b = f ∗c = 1.39, and f ∗d = f ∗e = f ∗f = 1.11. The projected
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demand was: v∗1 = x∗p1
µp1 = 1.11. Comparing the results of Examples 1 and 2 reveals the

fact that when perishability is taken into consideration, with αc = .8 and the above data,

the organization chooses to produce/ship slightly smaller quantities so as to minimize the

discarding cost of the waste, despite the shortage penalty of λ−1 .

Note that when λ−1 = 200, the optimal path flow solution becomes: x∗p1
= 2.77, and the

corresponding optimal link flow pattern: f ∗a = f ∗b = f ∗c = 2.77, and f ∗d = f ∗e = f ∗f = 2.22,

with a projected demand of: v∗1 = x∗p1
µp1 = 2.22.

In fact, using equation (49), with λ−1 substituted for 100, we can derive the optimal path

flow x∗p1
as a function of λ−1 , that is:

x∗p1
=

100(λ−1 − 44)

16λ−1 + 2425
. (55)

Therefore, an appropriate increase in the unit shortage penalty cost λ−1 results in the

organization processing larger volumes of the blood product, even exceeding the optimal flow

in Example 1, which makes sense intuitively. Furthermore. for λ−1 ≤ 44, the organization

acquires and, hence, processes and distributes, zero units of the blood product.

Sensitivity Analysis

We conducted additional sensitivity analysis by varying the loss associated with the testing

and processing activity, αc, and the unit shortage penalty cost, λ−1 , respectively. The com-

puted optimal path flows x∗p1
and the optimal values of the objective function (OF) (18) are

reported in Table 1.

It is interesting to note from Table 1 that, under a specific unit penalty cost, the path

flow will be reduced when the loss of testing and processing, (1−αc), increases within some

specific range. For instance, when λ−1 is 200 and the loss, 1−αc, increases from 0.4 to 0.8, the

optimal path flow decreases from 2.83 to 0.88. However, the optimal value of the objective

function always keeps on increasing. Table 1 also illustrates, under the same loss associated

with testing and processing, the optimal path flow rises with an increase in the unit shortage

penalty cost, λ−1 .

Furthermore, the optimal path flow in Example 2, assuming a nonnegative value, as a

function of the link multiplier and the shortage penalty simultaneously can be expressed as

follows:

x∗p1
=

5αc(λ
−
1 − 14)− 120

α2
c(λ

−
1 + 50) + 65

. (56)
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Table 1: Computed Optimal Path Flows x∗p1
and Optimal Values of the Objective Function

as αc and λ−1 Vary

H
HHH

HHλ−1

αc .2 .4 .6 .8 1

100 x∗p1
0.00 0.58 1.16 1.39 1.48

OF 250.00 246.96 234.00 218.83 204.24
200 x∗p1

0.88 2.40 2.83 2.77 2.61
OF 494.19 439.52 376.23 326.94 288.35

300 x∗p1
2.10 3.74 3.86 3.54 3.20

OF 715.12 581.15 464.85 387.17 331.44
400 x∗p1

3.20 4.76 4.57 4.03 3.55
OF 914.75 689.71 525.36 425.56 357.63

500 x∗p1
4.20 5.57 5.09 4.37 3.79

OF 1096.03 775.55 569.30 452.16 375.23
1000 x∗p1

8.09 7.95 6.41 5.19 4.33
OF 1799.11 1027.94 681.89 515.88 415.67

2000 x∗p1
12.69 9.80 7.27 5.68 4.65

OF 2631.32 1224.45 755.64 554.47 439.05
3000 x∗p1

15.33 10.58 7.60 5.86 4.76
OF 3107.51 1307.25 783.73 568.57 447.39

4000 x∗p1
17.03 11.01 7.77 5.96 4.82

OF 3415.88 1352.89 798.54 575.88 451.68
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3. The Algorithm and an Additional Numerical Example

In this Section, we recall the Euler method, which is induced by the general iterative

scheme of Dupuis and Nagurney (1993). Its realization for the solution of the blood bank

supply chain management problem governed by variational inequality (38) (see also (41))

induces subproblems that can be solved explicitly and in closed form.

Specifically, at an iteration τ of the Euler method (see also Nagurney and Zhang (1996))

one computes:

Xτ+1 = PK(Xτ − aτF (Xτ )), (57)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (41).

As shown in Dupuis and Nagurney (1993); see also Nagurney and Zhang (1996), for

convergence of the general iterative scheme, which induces the Euler method, among other

methods, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞.

Specific conditions for convergence of this scheme can be found for a variety of network-

based problems, similar to those constructed here, in Nagurney and Zhang (1996) and the

references therein. Applications of this Euler method to the solution of oligopolistic supply

chain network design problems can be found in Nagurney (2010a).

Explicit Formulae for the Euler Method Applied to the Blood Supply Chain

Network Variational Inequality (38)

The elegance of this procedure for the computation of solutions to the blood supply chain

network operations management problem modeled in Section 2 can be seen in the follow-

ing explicit formulae. In particular, (57) for the blood supply chain network management

problem governed by variational inequality problem (38) yields the following closed form

expressions for the blood product path flows:

xτ+1
p = max{0, xτ

p + aτ (λ
−
k µp(1− Pk(

∑
p∈Pk

xτ
pµp))− λ+

k µpPk(
∑
p∈Pk

xτ
pµp)

−

∂
∑
q∈P

Ĉq(x
τ )

∂xp

−

∂
∑
q∈P

Ẑq(x
τ )

∂xp

− θ

∂
∑
q∈P

R̂q(x
τ )

∂xp

)}, ∀p ∈ Pwk
; k = 1, . . . , nR. (58)

This closed form expression was applied to calculate the updated product flow during the

steps of the Euler Method for our blood banking optimization problem.
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Figure 3: Supply Chain Network Topology for Numerical Example 3

Example 3

We now apply the Euler method to compute solutions to a larger-scale numerical blood

supply chain network problem. The numerical example consisted of two blood collection

sites, two blood centers, two component labs, two storage facilities, two distribution centers,

and three demand points, as depicted in Figure 3.

We assumed that R1 was a small surgical center while R2 and R3 were large hospitals with

higher demand for red blood cells. The demands at these demand points followed uniform

probability distribution on the intervals [5,10], [40,50], and [25,40], respectively. Hence,

P1

(∑
p∈P1

µpxp

)
=

∑
p∈P1

µpxp − 5

5
, P2(

∑
p∈P2

µpxp) =

∑
p∈P2

µpxp − 40

10
,

P3(
∑
p∈P3

µpxp) =

∑
p∈P3

µpxp − 25

15
,

where The first O/D pair of nodes is (1, R1), the second is (1, R2), and the third is (1, R3).

The shortage and outdating penalties for each of the three demand points were:

λ−1 = 2200, λ+
1 = 50,
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λ−2 = 3000, λ+
2 = 60,

λ−3 = 3000, λ+
3 = 50.

The total risk functions corresponding to the blood collection links were:

r̂1(f1) = 2f 2
1 , and r̂2(f2) = 1.5f 2

2 ,

and the risk aversion factor, θ, was 0.7.

The multipliers corresponding to the links, the total cost functions, and the total discard-

ing cost functions were as reported in Table 2. These numbers have been selected based on

the average historical data for the American Red Cross Northeast Division Blood Services

(Rios (2010)).

The Euler method (cf. (58)) for the solution of variational inequality (38) was imple-

mented in Matlab. A Microsoft Windows System with a Dell PC at the University of

Massachusetts Amherst was used for all the computations. We set the sequence aτ =

.1(1, 1
2
, 1

2
, · · · ), and the convergence tolerance was ε = 10−6, that is, the absolute value

of the difference between each path flow in two successive iterations was less than or equal to

this ε. The algorithm was initialized by setting the projected demand at each demand point

and all other variables equal to zero. Table 2 also provides the computed optimal solutions.

Thus, under the given demand probability distributions for our three demand points,

the amounts of optimal product flow on each link were as reported above. These numbers

clearly demonstrate the effect of the waste throughout the network, and are subject to the

mentioned link multipliers as well as the various costs associated with those links, as formerly

stated.

The computed amounts of projected demand for each of the three demand points were:

v∗1 = 6.06, v∗2 = 44.05, and v∗3 = 30.99.

It is interesting to note that, between the two blood collection links, although link 1 has a

higher waste/loss rate, and higher total risk and discarding costs, it has a higher optimal flow

of blood product as compared to link 2 due to its lower total cost function. Furthermore, for

the small surgical center, R1, the value of projected demand, v∗1 = 6.06, is closer to the lower

bound of its uniform probability distribution due to the relatively smaller shortage penalty

cost. In contrast, the values of projected demand for the larger hospitals, R2 and R3, are

closer to the respective upper bounds of their uniform distributions.
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Table 2: Total Cost and Total Discarding Cost Functions and Solution for Numerical Ex-
ample 3

Link a αa ĉa(fa) ẑa(fa) f ∗a
1 .97 6f 2

1 + 15f1 .8f 2
1 54.72

2 .99 9f 2
2 + 11f2 .7f 2

2 43.90
3 1.00 .7f 2

3 + f3 .6f 2
3 30.13

4 .99 1.2f 2
4 + f4 .8f 2

4 22.42
5 1.00 f 2

5 + 3f5 .6f 2
5 19.57

6 1.00 .8f 2
6 + 2f6 .8f 2

6 23.46
7 .92 2.5f 2

7 + 2f7 .5f 2
7 49.39

8 .96 3f 2
8 + 5f8 .8f 2

8 42.00
9 .98 .8f 2

9 + 6f9 .4f 2
9 43.63

10 1.00 .5f 2
10 + 3f10 .7f 2

10 39.51
11 1.00 .3f 2

11 + f11 .3f 2
11 29.68

12 1.00 .5f 2
12 + 2f12 .4f 2

12 13.08
13 1.00 .4f 2

13 + 2f13 .3f 2
13 26.20

14 1.00 .6f 2
14 + f14 .4f 2

14 13.31
15 1.00 1.3f 2

15 + 3f15 .7f 2
15 5.78

16 1.00 .8f 2
16 + 2f16 .4f 2

16 25.78
17 .98 .5f 2

17 + 3f17 .5f 2
17 24.32

18 1.00 .7f 2
18 + 2f18 .7f 2

18 .29
19 1.00 .6f 2

19 + 4f19 .4f 2
19 18.28

20 .98 1.1f 2
20 + 5f20 .5f 2

20 7.29

4. Summary and Conclusions

In this paper, we developed a supply chain network optimization model for the manage-

ment of the procurement, testing and processing, and distribution of a perishable product –

that of human blood.

The original contributions in the paper, include the blood supply chain network model

operations management model, which has the notable features that it captures perishability

of this life-saving product through the use of arc multipliers; it contains discarding costs

associated with waste/disposal; it handles uncertainty associated with demand points; it

assesses costs associated with shortages/surpluses at the demand points, and it also quantifies

the supply-side risk associated with procurement.

For the sake of generality, and the establishment of the foundations that will enable further

extensions and applications, we used a variational inequality approach for model formulation

and solution. We illustrated the model through transparent numerical examples, which
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vividly demonstrate the flexibility and generality of our supply chain network optimization

model.

The framework developed here can be applied, with appropriate adaptation, to other

perishable products, such as medicines and vaccines, as well as to agricultural products,

including food.
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