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ABSTRACT A novel metaheuristic optimization algorithm, named supply-demand-based optimization
(SDO), is presented in this paper. SDO is a swarm-based optimizer motivated by the supply-demand
mechanism in economics. This algorithm mimics both the demand relation of consumers and supply relation
of producers. The proposed algorithm is compared with other state-of-the-art counterparts on 29 benchmark
test functions and six engineering optimization problems. The results on the unconstrained test functions
prove that SDO is able to provide very promising results in terms of exploration, exploitation, local optima
avoidance, and convergence rate. The results on the constrained engineering problems suggest that SDO
is considerately competitive in terms of computational expense, convergence rate, and solution accuracy.
The codes are available at https://www.mathworks.com/matlabcentral/fileexchange/71764-supply-demand-
based-optimization.

INDEX TERMS Supply-demand-based optimization, global optimization, engineering design, constrained

problems, optimization algorithm, particle swarm optimization, swarm intelligence.

I. INTRODUCTION

Optimization is to find optimal solutions with the most cost
effective form a given solution space under the given con-
straints, by either maximizing or minimizing its objective
function. Over the last few decades, the substantial increase
of optimization problems from different fields makes opti-
mization techniques become a major research area for the
scientific community. The conventional optimization tech-
niques, including steepest descent method [1] and Newton’s
method [2], are developed. However, owing to their inherent
drawbacks of the requirement of derivative and local search
stagnation, they tend to become less powerful when solving
complex nonlinear functions and constraints with multiple
peaks [3], [4]. So, some stochastic optimization methods have
emerged and have been widely applied in a wide range of
fields [5]-[9]. Stochastic optimization methods refer to that
random variables are used to generate to random objective
functions and constraint values. Their outstanding merit is
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randomness, which is able to help these methods easily
bypass local optima and explore the entire variable space.
Another merit of stochastic optimization methods is that they
treat considered problems as a black box, which means that
one only needs to lay emphasis on the input and output
of objective functions instead of their gradient information.
Additionally, stochastic optimization methods are highly ver-
satile and flexible, implying their extendibility and practica-
bility to different types of optimization problems.

General speaking, there are two different classification in
stochastic optimization methods. One classification is based
on the number of their random solutions over the course
of iterations, they are divided into single-solution-based and
swarm-based algorithms [10]. For the former, stochastic
algorithms randomly generate a single solution and update
it by introducing minor change in an iterative process. Sim-
ulate annealing (SA) [11] belongs to this kind of method.
For the latter, stochastic algorithms randomly initialize a set
of solutions rather than one solution and then manipulate
them at each stage. The major difference between single-
solution-based and swarm-based algorithms is that the later
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is able to share the solution information among the swarm
and improve the quality of solutions by introducing major
change in subsequent iterations. This assists swarm-based
algorithms explore the search space and avoid the local
optima. The other classification for stochastic optimization
methods is based on their inspirations and motivations, and
they are classified into evolutionary-based (EB) [12], swarm-
based (SB) [13], physics-based (PB) [14], and human-based
(HB) [15] algorithms.

EB is generic population-based metaheuristic that simu-
lates biological evolution i.e., selection, crossover, mutation,
recombination, and chemotaxis [16]. The most well-known
EB is genetic algorithm (GA) [17]. GA randomly initializes a
group of agents and computes their fitness values. The selec-
tion, crossover, and mutation operators are used to improve
each agent of a population. The agent with the best fitness
value is stored and employed to generate a new population
over the course of iterations. Another popular EB is dif-
ferential evolution (DE) [18]. Similar to GA, DE randomly
generates a population that iteratively undergoes mutation
and recombination as well as becomes subject to a selection
operator. Both GA and DE tend to evolve the population by
mimicking the survival of the fittest in nature, therefore, they
are always able to obtain high-quality solutions and avoid
local optima. Apart from these, some other well-known EB
techniques are evolution strategy (ES) [19], genetic program-
ming (GP) [20], selfish gene algorithm (SGA) [21], shuf-
fled frog leaping algorithm (SFLA) [22], biogeography-based
optimization (BBO) [23], and fruit fly optimization algorithm
(FOA) [24].

PB usually manipulates and improves a population by
physical lows in nature, including gravitational force, elec-
tromagnetic force, energy conservation, and momentum con-
servation. The general mechanism of PB is different from
the other techniques since agents communicate and exchange
information according to physical laws. SA [11] and gravita-
tional search algorithm (GSA) [25] are viewed as two repre-
sentatives in PB. SA is originated from a physical process in
which a material is heated and then its temperature is slowly
lowered to minimize the system energy. During this process,
SA searches solutions depending on a probability with a
scale proportional to the temperature. Namely, SA not only
retains all the new solutions improving their fitness values,
but also retains the new solutions lowering their fitness values
with a certain probability. By retaining these solutions low-
ering their fitness values, SA can avoid the local optima and
globally explore for more possible solutions. However, this
algorithm probably suffers from more computational expense
especially when the objective functions are very complex or
high-dimensional in nature. GSA is based on the Newton’s
famous law of gravity and the law of motion. Depending to
the law of motion, each agent attracts towards each other.
A lighter agent indicates a worse solution and a heavier
agent indicates a better solution. The higher agents always
attract towards the heavier ones by the gravity force, causing
a global movement. This particular movement mechanism
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gives GSA an advantage over some of the other algorithms
in terms of global search, local optima avoidance, and solu-
tion accuracy. However, this algorithm tends to suffer from
slow searching speed in the later iterations and a complex
operator [26]. Some other emerging PBs include big bang-big
crunch algorithm (BB-BC) [27], colliding bodies optimiza-
tion (CBO) [28], charged system search (CSS) [29], wind
driven optimization (WDO) [30], central force optimization
(CFO) [31], water evaporation optimization (WEO) [32],
galaxy-based search algorithm (GBSA) [33], electromag-
netic field optimization (EFO) [34], atom search optimization
(ASO) [35], artificial physics optimization (APO) [36], and
thermal exchange optimization(TEO) [37].

Different from EBs and PBs, SBs always stimulate collec-
tive behaviors of social creatures to offer the better solutions
to investigated problems. The inspiration of SBs generally
comes from natural colonies, flocks, and herds. Two of the
most classic SBs are particle swarm optimization (PSO) and
ant colony optimization (ACO).

In PSO, a swarm of particles perform a search for the opti-
mal solution and each of them iteratively updates its solution
using its personal and social information in the population.
The main merit of PSO is the faster convergence rate and less
computational cost. The major drawback of PSO is that it eas-
ily suffers from convergence prematurely and traps into the
local optima especially with complex multimodal functions

[38]. ACO is motivated from the social behavior of ants when
foraging. Each ant is subject to finding the shortest route
between nest and the source food via pheromone trails. ACO
is able to perform searching among a population parallel, so
it is very good at solving the salesman problem. However, the
major disadvantage behind this algorithm is that it has uncer-
tain convergence time and difficult theoretical analysis. The
other popular SBs are hunting search (HS) algorithm [39],
tree-seed algorithm (TSA) [40], whale optimization algo-
rithm (WOA) [41], cuckoo search (CS) [42], crow search
algorithm (CSA) [43], dolphin echolocation (DE) algorithm

[44], firefly algorithm (FA) [45], virus colony search (VCS)
[46], bird mating algorithm (BMO) [47], emperor penguin
optimizer (EPO) [48], and krill herd algorithm (KH) [49].

HBs are a new developed category in intelligence com-
puting recently, they mathematically stimulate social activi-
ties and ideology in humans to find near optimal solutions.
Society and civilization algorithm (SCA) [50] is a typical
representative of HBs. SCA imitates the intra and social inter-
actions within a formal society and the civilization model.
A society corresponds to a set of mutually interacting indi-
viduals and a civilization is a set of all such societies. All
individuals in each society interact with each other and make
improvements under the guidance of a leader belonging
to the same society. Meanwhile, each leader interacts with
leaders of other societies to migrate to a developed soci-
ety. This leader migration mechanism helps SCA globally
search promising regions in the variable space. Additionally,
SCA is advantageous in terms to dealing with constrained
optimization problems owing to the leader identification
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mechanism. Some of other HBs include league championship
algorithm (LCA) [51], social group optimization (SGO) [52],
social emotional optimization algorithm (SOA) [53], socio
evolution and learning optimization algorithm (SELO) [54],
ideology algorithm (IA) [55], and cultural evolution algo-
rithm (CEA) [56].

SBs have some advantages over the other three categories.
SBs are more able to control convergence and need less
computational cost owing to the less number of operators;
SBs are algorithmically simpler with less control parameters
and have a better convergence rate; SBs are able to restore and
share part or all of historical information about the population
more effectively, guiding all the individuals to perform a
global search.

For all the heuristic algorithms, it is very important to
effectively perform both exploration and exploitation. Explo-
ration refers to probing a much larger region of the search
space with the hope of finding other promising solutions
whereas exploitation refers to probing a promising region
of the search space with the hope of improving a promising
solution [57], [58]. But, it is challenging to properly balance
between exploration and exploitation in the development of
heuristic algorithms because of their stochastic nature. There-
fore, this is one fact that motivates us to develop an effective
optimizer to tackle real-world problems.

One might be asking why new optimization methods are
still raised despite of so many existing algorithms. The
answer can be found in the No Free Lunch Theorem of
Optimization [59], which states that an optimization algo-
rithm that can well solve a certain optimization problem does
not guarantee to successfully deal with the other different
optimization problems. Therefore, developing new and effec-
tive swarm-inspired optimizers to tackle specific real-world
problems also motivates this study.

Inspired by the supply-demand mechanism in economics,
this study proposes a new metaheuristic algorithm called
supply-demand-based optimization (SDO). SDO mathemat-
ically simulates the demand relation of consumers and the
supply relation of producers. The performance of SDO is
tested using both unconstrained benchmark functions and
constrained engineering problems.

The paper is organized as follows. Section II presents the
inspiration and SDO algorithm in detail. The experimental
results on 29 mathematical benchmark functions are analyzed
in Section III. In Section IV, the effectiveness of SDO in
solving 6 engineering problems is investigated. Section V
concludes the work and suggests several directions for future
work.

Il. SUPPLY-DEMAND-BASED OPTIMIZATION (SDO)
In this section, the inspiration of SDO is firstly introduced.
Then its mathematical model is provided in detail.

A. INSPIRATION
According to economic theory, the commodity price and
commodity quantity in a market might firstly be subject to
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periodic fluctuations and then gradually be stable onto their
respective equilibrium points [60]. This process generally
depends on both the supply relation of producers and demand
relation of consumers.

The supply-demand mechanism is an economic theory
of price determination in a market economy. According to this
theory, a commodity quantity in the next time g;41 depending
on its current price p; in a market is determined by the supply
relation of producers, that is g;+1 = f(p;), here f is a linear
supply function. When the current commodity price increases
in a market, the commodity quantity will increase in supply at
the next time, so f is an increasing function. The commodity
price p;+1 in the next time depending on its quantity g;1
in the same time is determined by the demand relation of
consumers, this is p;+1 = g(q;+1), here g is a linear demand
function. When the commodity quantity increases, its price
in a market will decrease, so g is a decreasing function.
With the oscillations, these two functions finally intersect at
a point P(xp, yo), which is called the equilibrium point. xq
and yg are the equilibrium price and equilibrium quantity of
a commodity, respectively.

The supply function f can be expressed as [61]

qr+1 — qo = a(p; — po) (D

The demand function g can be expressed as [61]

Pi+1 —po = —b(qr1+1 — q0) ()

where ¢t is the time, a and b are the linear coefficients.

Generally, the supply-demand mechanism has two modes.
One is the stability mode as shown in Fig. 1(A). When
lab|<1, the supply function f is steeper than the demand
function g, then the oscillations reduce in magnitude with
each time, so the curve of the commodity price and quantity
with respects to time tends to spiral inwards. After a cer-
tain time of iterations, the price and quantity converge to the
equilibrium point (xg, yo). The other is the instability mode
as shown in Fig. 1(B). When |ab|>1, the demand function
g is steeper than the supply function f, then the oscillations
increase in magnitude with each time, a curve of the price and
quantity with respects to time tends to spiral onwards. There-
fore, the price and quantity diverge from the equilibrium
point (xg, yo) more and more as time passes. Because these
spiral curves often look like a cobweb, this demand-supply
mechanism is named the cobweb model in economics [60].
The cobweb model is a very famous economic theory in
which the price fluctuation results in fluctuation in supply,
thus causing a periodic rising or falling in price. Therefore,
it is extensively used for studying the price fluctuation of
various products in certain types of markets.

B. SUPPLY-DEMAND-BASED OPTIMIZATION (SDO)

According to the supply-demand mechanism, the stabil-
ity mode can encourage both the commodity price and quan-
tity to exploit the neighborhood of the equilibrium point and
this exploiting process is oscillating in magnitude over time.
While the instability mode tends to force both the commodity
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FIGURE 1. Two modes of supply-demand mechanism: (A) stability mode
and (B) instability mode.

price and quantity to gradually explore new regions far away
from the equilibrium point. The stability mode gradually
decreasing oscillations in the supply-demand mechanism can
easily be introduced to SDO as exploitation to perform a local
search in a promising region. Similarly, the instability mode
can be borrowed to SDO as exploration to globally perform
a search in the search space. Fig. 2 shows the introduction
from the supply-demand mechanism in economic theory to
the proposed SDO algorithm.

For SDO algorithm, suppose there are n markets, each of
which has d kinds of different commodities, and each kind
of commodity has a certain quantity and price. The d com-
modity prices of a market represent a candidate solution as d
variables to the optimization problem, and the d commodity
quantities of a market are reviewed as a possible candidate
solution. If this possible candidate solution is better than the
candidate solution, the candidate solution is replaced with the
possible one. Because the proposed method is a swarm-based
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FIGURE 2. Introduction form supply-demand mechanism to SDO.

algorithm, the commodity price and the commodity quantity
are given in two matrixes, respectively.
The commodity price matrix of markets is given as

X1 )cl1 x12 e xfl
X2 le x% cee xg

X = =1|. . . 3)
Xn x,% x,2l cee xj

where d is the number of commodity prices (variables) in
each market, n is the number of markets (candidate solutions),
x/ (i = 1,...,n;j = l,..., d) is the jth commodity price in
the ith market, and x; (i = 1,..., n) is the ith commodity price
vector corresponding to a candidate solution.

The commodity quantity matrix of markets is given as

Vi yi ¥} yi;

y2 Yy X Yy
y=|_|=|7" "7 2 )

Vn oy ¥

where d is the number of commodity quantities in each
market, yi (i = 1,...,nj = 1,.., d) indicates the jth
commodity quantity in the ith market, and y; (i = 1,..., n) is
the ith commodity quantity vector corresponding to a possible
candidate solution.

The commodity price vector and quantity vector of each
market are evaluated using the fitness function, respectively.
The fitness value calculated by each price vector is stored as
the return value of the fitness function for each market. Yet the
fitness value calculated by each commodity quantity vector
is also stored and only used for the solution replacement of a
market according to its quality. For all the markets, an array
for storing the fitness values of commodity price vectors in n
markets is given

Fx =[Fx; Fx Fx,]" 5)

Another array for storing the function values of commodity
quantity vectors in n markets is given

Fy=[Fy, Fy Fyal" (©6)

where T signifies the transpose of the array.
Although the commodity price vector and quantity vector
in each market are viewed as both solutions, the ways that
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they are treated and updated are different during the iterations.
Meanwhile, the concepts of both the stability and instability
modes in the supply-demand theory are utilized to perform
exploration and exploitation in SDO, respectively.

The commodity equilibrium price x¢ and equilibrium
quantity yq are two important components in SDO, yet they
are not known a priori during the iterations, therefore, they
need to be firstly designated, respectively. From the above
section, it should be noted that the updating for both the
demand function and supply function of a commodity is
respectively based on both a fixed equilibrium price and
a fixed equilibrium quantity from beginning to end. How-
ever, this updating will make the algorithm trap into the
local extrema quickly and result in premature convergence.
To prevent them, the equilibrium price of each commodity
should be variable at each iteration, likewise with the equi-
librium quantity of each commodity. Specifically, for each
iteration, each market chooses a commodity quantity vector
from the quantity array as its quantity equilibrium vector by
means of its probability, and the better the fitness value of the
quantity vector in a market, the higher the probability of that
the quantity vector chosen is. Meanwhile, each market also
chooses either a price vector from the price array according
to its probability or the average of commodity price vectors
of all the markets as the equilibrium price vector to improve
exploration. The equilibrium quantity vector yy is represented
as follows

1 n
M=@ﬁ;;wi (7)
=
N
0=- 3
> Ni
i=1
Yo = Yk, k= RouletteWheelSelection(Q) 9)

The equilibrium price vector xg is represented as follows

1 n
M; = |Fxi — ~ ZFx,- (10)
i=1
M
P=— (11
> M,
i=1
n
DX
xo={r - if rand<0.5
n
Xxi, k= RouletteWheelSelection(P) if rand >0.5
(12)

where 7 is a random number in [0, 1]. According to (12),
SDO assumes that there is a probability of 50% to choose
either the average of commodity price vector or a price
vector depending to its probability in the price array as the
equilibrium price vector. With the definitions of both the
equilibrium price vector x¢ and equilibrium quantity vector
¥o, the supply function and demand function are proposed as
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FIGURE 3. (a) Stability mode and (b) instability mode of SDO algorithm.

follows, respectively

yilt + 1) = yo + o - (x;(t) — x0) (13)
xi(t+1)=x0— B @it +1)—yo) (14)

where xj(¢) is the ith commodity price vector at the time 7,
yi(t) is the ith commodity quantity vector at the time 7, and «
and B are the supply weight and demand weight, respectively.

From (13), the commodity quantity vector in each market
can be updated according to both the equilibrium quantity
vector and equilibrium price vector. Plugging (13) into (14)
the demand equation can be rewritten as

xi(t +1) =x0 — af - (x;(t) — x0) (15)

It can be found that from this equation, the commodity
price vector is updated with respect to its current price vector
according to the equilibrium price vector actually. Different
commodity price vectors can be obtained by adjusting the val-
ues of weights « and S. To perform exploration and exploita-
tion in SDO, both the supply weight o and demand weight 8
need to be appropriately presented. These two weights can be
formulated as

_2T-t+D ;’J“ D sinrr) (16)

B =2-cos2mr) (17

where T is the maximum number of iterations and r is
a random number or vector in [0, 1]. Let the variable
L equal the product of weights & and 8, we can get

4.(T—t+1)
T

where, |L| <1 corresponds to the stability mode as depicted
in Fig. 3(A), different commodity price vectors around the
equilibrium price x¢ can be obtained with respect to the cur-
rent price vector by adjusting the weights « and 8, and these
price vectors are possible to be randomly changed between
the current price vector and the equilibrium price vector by
the random number or vector . This is to say, the algorithm
allows each market to update its all commodity prices in the
neighborhood of the current commodity prices and mimic
the stability mode in Fig. 1(A). This mechanism emphasizes
exploitation and encourages SDO algorithm to search locally.
As depicted in Fig. 3(B), |[L| > 1 corresponds to the insta-
bility mode that allows the commodity price vector in any
market to move far away from the equilibrium price vector,

L=aof = -sin(2wr)cos2mr)  (18)
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this forces each market to search new promising regions in the
search space and simulate the instability mode in Fig. 1(B).
This mechanism concentrates on exploration and forces SDO
algorithm to search globally.

The values of the variable L over iterations are depicted
in Fig. 4 where the maximum number of iterations 7 is
set as 1000. As observed in this figure, in early iterations,
the values of L are greater than 1 or less than -1 with the high
probability. As the iterations increase, this high probability
begins to decrease, and there is an increasing probability that
the function values of L are in [-1, 1]. In later iterations,
the values of L are in [-1, 1] with the increasingly high
probability. Obviously, SDO gets high exploration in early
stage of iterations and smoothly switches to high exploitation
in later stage of iterations.

After updating both the commodity price and commodity
quantity vectors in each iteration, they need to be evaluated
by the fitness function and the results are stored in their
respective arrays. If the fitness value of the ith commodity
quantity vector is better than that of the i th commodity price
vector, the ith commodity price vector will be replaced with
this quantity vector as a candidate solution. Fig. 5 shows this
solution replacement mechanism.
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Initialize the market population and weights: the
commodity price vectors x;and commodity quantity
vectors yjare randomly initialized, calculate their fitness
values Fx;and Fy;, replace x;by y;if Fy; is better Fx; and
x5~ the best solution found so far. The weights aand f
are set.
While the stop criterion is not satisfied do
For each market (/=1,...,n)
Determine the equilibrium quantity yp by equations
7-9 and the equilibrium price xp by equations
10-12, respectively.
Update the commodity quantity vector y; by
equation 13.
Update the commodity price vector x;by equation
14.
Calculate their fitness values Fx;and Fy;.
If Fy; is better than Fx;,
replace x; by y;
End If.
End For.
Update the best solution found so far xp.g.
End While.

[Return the best solution found so far Xpe.

FIGURE 6. Pseudo code of SDO algorithm.

SDO starts the optimization by creating a set of markets
randomly. At each iteration, each commodity quantity of a
market is updated with respect to both the equilibrium price
and equilibrium quantity, and then each commodity price of
a market is updated with respect to the equilibrium price. The
equilibrium price vector can be randomly switched between a
chosen commodity price vector form the price array accord-
ing to its probability in the price array and the average of
commodity price vectors. The equilibrium quantity vector
is chosen from the quantity array according to its probabil-
ity. These updates for commodity prices and quantities are
achieved by adjusting the values of weights both « and 8. The
values of the variable L linearly decrease with random fluc-
tuation in order to perform either exploration or exploitation.
The commodity prices of a market is inclined to diverge from
the equilibrium price when |L| > 1 and converge towards the
equilibrium price when |L| < 1. Then the updated price vec-
tors and quantity vectors are evaluated by the fitness function.
For each market, if the fitness value of its commodity quanti-
ties is better than that of its commodity prices, its commodity
prices will be replaced with its commodity quantities as a can-
didate solution. Eventually, the best commodity price vector
of a market as the best solution found so far is returned when
the stop criterion is satisfied. Fig. 6 gives the pseudo code of
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lteration=3 lteration=12 Iteration=21 Iteration=30

FIGURE 7. Swarm search of SDO in a two-dimensional space. (a) Unimodel function (Rosenbrock).
(b) Multimodel function (Griewank).

SDO algorithm and Fig. 7 shows an effective swarm search of
SDO for both the unimodal and multimodal functions in a 2-D
space.

With the above formulation of SDO algorithm and the
observation of its optimization performance, the following
remarks are made.

(1) The SDO updates two different equations, one is the
supply equation updating the commodity quantity, and
the other is the demand equation updating the commod-
ity price.

(2) Ineach iteration, both the commodity equilibrium price
and equilibrium quantity need to be determined. The
equilibrium price vector is randomly chosen either the
average of commodity price vectors or a commodity
price vector according to its probability in the price
array. The equilibrium quantity vector is chosen from
the quantity array according to its probability.

(3) The commodity quantity vector is updated based on the
commodity price vector with respect to both the equi-
librium price vector and equilibrium quantity vector
by adjusting the supply weight. The commodity price
vector is updated based on the commodity price vector
with respect to both the equilibrium price vector and
equilibrium quantity vector by adjusting the demand
weight.

(4) SDO tends to force the commodity prices of a mar-
ket to diverge from the equilibrium quantities when
IL| > 1 and converge towards the equilibrium prices
when |L| < 1.

(5) The values of variable L assist SDO to smoothly transit
between exploration and exploitation.

(6) With the decrease of variable L, in early iterations, SDO
emphasizes exploration, yet in later iterations, SDO
focus on exploitation.
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(7) Ineachiteration, when the fitness value of a commodity
price vector is worse than that of its corresponding
commodity quantity vector, this commodity price vec-
tor will be replaced.

(8) SDO is very simple to implement and require few
parameters to be adjusted.

The time complexity of SDO depends on the number of
variables, number of markets, maximum number of itera-
tions, roulette wheel selection, replacement, and updates of
commodity price and quantity in each iteration. We utilize
the roulette wheel selection in both the demand function and
supply function, which is of O(n?) in the worst case, and
the replacement is performed for each market over iterations
and is of O(nd) in the worst case. Therefore, the overall time
complexity of this algorithm is given as

O(SDO)
= O(T (O(Roulettewheel in choosing equilibrium price)
+ O(Roulettewheel in choosing equilibrium quantity)
+ O(Price update)+O(Quantity update)
+ O(Replacement))) (19)
O(SDO)

= O(T(%nz +n® + nd + nd + nd))
= O(Tn?) + O(Tnd) (20)

where n is the number of markets, 7" is the maximum number
of iterations, and d is the number of commodities in each
market.

IIl. EXPERIMENTAL RESULTS AND DISCUSSION

A. BENCHMARK FUNCTIONS

A set of comprehensive benchmark functions with known
solutions are used to test the performance of algorithms.
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TABLE 1. Result comparisons of algorithms for unimodal functions.

Function Index SDO PSO GA DE CS GSA ABC
Mean  2.526E-162  0.000215 0.009247  3.636E-14  0.009675 2.195E-17  0.002363
/i) Std 7.555E-162  0.000225 0.003778  6.064E-14  0.004518 6.379E-18  0.001525
Mean 4.714E-68  0.000296 0.021264  4.385E-08 1.403794 2.283E-08 2.317E-04
S) Std 5.156E-68  0.000231 0.005609  2.530E-08 0.560948 3.490E-09 1.530E-04
Mean  7.192E-130 2.844E+03  1.053E+03  5.693864  4.725E+02  2.216E+02 9.562E+03
) Std 3.189E-130 1.343E+03  3.489E+02  3.909791 1.096E+02  70.667942 1.750E+03
i Mean 7.152E-77  17.363071 1.046239 9.171683 3.247527 3.451E-09 24.533250
S Std 2.495E-77  3.623843 0.289725 3.998583 0.854660 7.445E-10  2.284116
Mean 25.501782  94.730855  98.563643 3.000E+01  38.611217  26.694542 5.470E+02
Si) Std 0.302722  78.960299  58.445847 1.765E+01  10.287210 2.671336  2.099E+02
Mean 0 0.133333 0.000000 0.133333 0.000000 0.000000  0.000000
Jo) Std 0 0.434172 0.000000 0.434172 0.000000 0.000000  0.000000
Mean 1.435E-04  0.056438 0.044730 0.214589 0.030850 0.019135  0.095282
S Std 8.216E-05 0.020323 0.013553 0.072382 0.007932 0.006870  0.023852

We adopt 29 mathematical functions in literature [62]-[64]
for comparison. These functions are categorized into four
types: unimodal, multimodal, fixed-dimensional, and com-
posite. The unimodal functions (f;-f7) have only one global
optimum and no local optima, hence the convergence rate
and exploitation of algorithms can be examined. Yet mul-
timodal functions (fg-f13) have a considerable number of
local optima and low-dimensional functions (fi4-f>3) have
few local optima, so both are used to benchmark explo-
ration and local extrema avoidance of algorithms. Finally,
the composite functions (f>4-f29) are complex multimodal
functions combining shifted, rotated, expanded and biased
functions, and their detailed description in the CEC 2005 spe-
cial session is available in [65]. These composite functions
are more challenging than unimodal and multimodal func-
tions because they can shift the global optima from the spe-
cific position to random position before each iteration and
occasionally relocate the global optima on the boundary of
search space. Therefore, they are especially adapted to test the
balance between exploration and exploitation of algorithms.
All the employed benchmark functions are described in
Appendix A.

B. EXPERIMENT SETUP AND COMPARATIVE ALGORITHMS
In order to test the performance of the proposed SDO algo-
rithm, some classic and recently proposed stochastic algo-
rithms are employed for comparison: GA, PSO, DE, CS, ABC
and GSA. Although numerous variants of algorithms have
been developed, the comparisons of standard versions can
be used to interpret the results of larger groups. In this test,
the population size is set as 50 for all the tested algorithms.
In addition, every algorithm runs 30 times for each function
and implements 50,000 function evaluations (FEs) in each
run. The results are based on the average performance of
these runs. Two performance evaluation indexes are used to
quantitatively compare all the algorithms: the average and
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standard deviation of best-so-far solutions. The parameter
values of each algorithm are presented as follows.

PSO: Inertia coefficient linearly reduces from 0.9 to 0.2,
acceleration coefficients ¢y = 2 and ¢; = 2.

GA: Decreasing coefficient y 20, mutation rate
pm = 0.2, crossover rate p. = 0.8 and crossover adopts
roulette wheel method.

DE: Mutation factor ' = 0.5 and crossover rate C = 0.5.

CS: Mutation probability p, = 0.25.

GSA: Initial gravitational constant Gy = 100 and decreas-
ing coefficient a = 20.

ABC: Limit parameter = n - d.

C. ANALYSIS OF EXPLOITATION CAPABILITY

The optimization results offered by the employed optimizers
on unimodal functions are described in Table 1, in which
‘Mean’ indicates the mean of best-so-far solutions and ‘Std’
indicates the standard deviation of best-so-far solutions.
As shown in Table 1, SDO provides highly competitive solu-
tions in terms of the ‘Mean’ and ‘Std’ indexes than all other
competitors. These results discover that SDO is more effec-
tive than its competitors in finding the best optimal solutions,
demonstrating its superior search ability in terms of exploita-
tion. This merit results from the exploitation mechanism in
SDO previously discussed.

D. ANALYSIS OF EXPLORATION CAPABILITY

Differing from unimodal functions, both multimodal and
fixed-dimensional functions are able to used to evaluate
exploration of algorithms. The optimization results offered
by different optimizers on multimodal and fixed-dimensional
functions are reported in Tables 2 and 3, respectively. From
these tables, SDO can obtain the best results of all the inves-
tigated algorithms for all the functions but functions fi2, f13
and f>9. However, SDO ranks only second to GA on both
functions f1» and fi3, as well as performs better than PSO,
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TABLE 2. Result comparisons of algorithms for multimodal functions.

Function  Index SDO PSO GA DE CS GSA ABC
Mean -8.740E+03 -5.139E+03 -6.820E+03 -5.310E+03  -8.692E+03 -2.639E+03 -5.124E+03
) Std 6.856E+02 5.777E+02  5.769E+02  6.617E+02  2.352E+02 4.351E+02 4.607E+02
Mean 0 30.875576  12.400190  1.650E+02  83.232445  15.853010  1.578E+02
) Std 0 8.883905 2.874732 17.511476 13.099442 3.848434  21.302371
i Mean  8.882E-16 0.007599 0.020177 5.413E-08 4.152485 3.443E-09 0.053290
Jiol®) Std 0 0.008229 0.004771 2.618E-08 1.486545 5.587E-10 0.040472
Mean 0 0.014768 0.021579 0.002054 0.096258 4264E+00  0.163104
fu® Std 0 0.013605 0.010212 0.003888 0.041825 1.587503 0.115192
Mean  2.568E-04 0.375773 2.977E-05 0.006911 1.100793 0.033992 15.014029
fol®) Std 8.839E-06 0.725728 3.014E-05 0.026302 0.317227 0.053609 4.671204
Mean  8.455E-03 0.190921 6.310E-04  0.053060 0.134335 2.041E-18  36.258923
fiu®) Std 5.534E-03 0.387922  4.234E-04  0.288556 0.063100 5.131E-19  18.185925
TABLE 3. Result comparisons of algorithms for low-dimensional functions.
Function Index SDO PSO GA DE CS GSA ABC
Mean  0.998004 0.998004 3.854855 0.998004 0.998004 3.472815 0.998005
fil®) Std 0 0.000000 2.766177 0 0 2.529209 6.916E-06
Mean  3.075E-04 3.666E-04 0.001175 3.075E-04 3.075E-04 0.002358 5.097E-04
fis() Std 9.553E-20 1.908E-04 0.001501 1.420E-19 3.917E-08 0.001143 4.988E-05
Mean  -1.031628 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628
i) Std 2.278E-16 6.775E-16 4.277E-10 6.775E-16 6.775E-16 5.532E-16 6.649E-16
Mean  0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887
) Std 0 0 1.225E-08 0 0 0 6.751E-10
) Mean  3.000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000
Std 6.027E-16 2.188E-15 1.837E-07 2.030E-15 1.882E-15 1.690E-15 2.861E-11
Mean  -3.862782 -3.862782 -3.862782 -3.862782 -3.862782 -3.862782 -3.862782
fisl%) Std 2.278E-15 2.710E-15 1.454E-09 2.710E-15 2.710E-15 2.449E-15 1.668E-15
Mean  -3.31085 -3.254072 -3.298217 -3.286327 -3.321995 -3.321995 -3.321995
fl) Std 4.886E-16 0.060415 0.048370 0.055415 1.917E-13 1.355E-15 1.525E-15
Mean -10.153200  -6.131172 -6.993384 -9.984785 -1.015E+01 -6.975879  -10.110816
2 Std 3.645E-15 2.835887 3.699551 0.922443 3.803E-14 3.548979 0.168284
Mean -10.402941 -8.217934 -9.225009 -10.402941 -10.402941  -10.402941  -10.402941
() Std 2.967E-15 2.978914 2.686254 1.745E-15 2.795E-14 0.000000 3.529E-14
Mean -10.536410  -7.716923 -9.340499 -10.536410  -10.536410  -10.536410 -10.536410
(%) Std 1.954E-15 3.250563 2.731154 1.807E-15 4.200E-12 1.682E-15 8.095E-14

GA and DE on function f>9. The results reveal that SDO
shows a distinct advantage in terms of exploration. This is
owing to the fact that the exploration mechanism is integrated
into SDO.

E. ANALYSIS OF AVOIDANCE OF LOCAL OPTIMA

It is very difficult for algorithms to find the optimal solu-
tions of composite functions because they are required to
balance between exploration and exploitation. Therefore,
composite functions are very suitable for assessing local
optima avoidance which is able to well balance exploration
and exploitation. Table 4 shows the optimization results of
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above-mentioned algorithms on composite functions. These
results prove that SDO algorithm is significantly effective in
balancing exploration and exploitation. Such a merit origi-
nated from an adaptive mechanism is employed to the update
of search agents in SDO algorithm: the early iterations tend to
be dedicated to exploration (|[L| > 1) while the later iterations
to exploitation (|L| < 1).

F. ANALYSIS OF CONVERGENCE BEHAVIOR

Figs. 8-11 show the convergence curves of SDO and other
algorithms on different types of functions. Obviously, SDO
is very competitive with other metheuristic methods with
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TABLE 4. Result comparisons of algorithms for composition functions.

respect to convergence rate. SDO shows two different conver-
gence behaviors [41]. First, SDO is subject to be accelerated
quickly from the initial stage of iterations to the final stage
of iterations and then converges to the global optimum (i.e.,
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Function Index SDO PSO GA DE CS GSA ABC
£ Mean 8.699E-11 98.536796  80.000017  3.298E-04 0.322252 1.420E-17 16.358285
X,
24 Std 1.111E-10 101.571907 44.721368  0.0152988 0.577046 5.439E-18  35.404507
P Mean 6.362105 126.37533 199.33855  22.009693  10.208335 200 105.13300
hs(X) Std 4.069897 36.780146  90.539010  8.3230419 2.951655 47.140452  28.048742
- Mean 164.847875 327.81687 476.32103 184.88562  199.36633 17236085  281.55826
(%) Std 57.3911974 55.592703  91.317600 34.802273  39.637477  82.861637 48.081802
£ Mean 299.384752 438.28038  577.10983  349.45830  329.10352  333.620196 331.11361
X
g Std 34.203724 25.953010  43.893813  140.06337  13.329504  154.634938 20.376096
£ Mean 2.204867 60.922190 211.919849 12.579056  10.458422  225.066682 21.134341
X,
* Std 1.845317 37.765887 106.208138 3.4039261 1.953953 86.433716  12.409218
P Mean 500.150184 636.57241 822.50299  512.06662  505.75894  772.80849 527.71376
o(X) Std 0.194042 184.41463 179.61784  44.758834 1.274708 65.389633  24.504563
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fi, f2, f3). This is owing to that SDO can find the region
with the optimal solution in the early stage of iterations and
has an excellent local search ability. Second, SDO tends
to converges towards the optimal solution only in the later
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stage, this behavior probably results from that SDO fails
to find the promising region in the early stage while after
multiple attempts it finds the promising region with success
in the second half of iterations (i.e., f3, f12, f15, /24, 25, f27)-
These results denote that SDO has a good ability to explore
the global optimum and avoid the local optima. Evidently,
these convergence curves reveal that SDO tends to adopt an
adaptive search mechanism to different functions, demon-
strating its better success in converging to the global optima
for different mathematical problems.

G. ANALYSIS OF SCALABILITY
Since many optimization problems in the real world have a
considerable number of variables, it is very important for us
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to analyze the scalability of the algorithm. Both unimodal and
multimodal functions with a different number of dimensions
are employed in this experiment. The number of dimensions
is increased from 40 to 200 with the step of 10. Fig. 12 shows
the scalability comparisons of SDO and other algorithms on
these employed functions. It is obvious that SDO degrades
much more slowly than the other algorithms on most of the
scalable functions as the number of dimensions increases. For
function fg, although SDO degrades more quickly than GA
and DE when the number of dimensions is less than 120, how-
ever after that, this degradation of SDO is improved. These
figures discover that increasing the number of dimensions of
variable space has the least influence on the performance of
SDO.
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H. ANALYSIS OF STATISITICAL SIGNIFICANCE

Wilcoxon Signed-Rank Test (WSRT) can effectively evaluate
the overall performance of an algorithm. The test of WSRT
with 95% significance level (¢ = 0.05) on 29 benchmark
functions in 30 runs is implemented. The analysis for the test
results is listed in Tables 5 and 6, respectively, where ‘=’
indicates that there is no statistically significant difference
between SDO and the comparative algorithm, ‘+’ indicates
that the null hypothesis will be rejected and SDO performs
better than the comparative one and ‘-’ vice versa. The sum
of ‘“+’, - and ‘=" for each function in 30 runs is summarized
in Table 7. As we observe in these tables, the results show
that SDO has a much better performance at 95% signifi-
cance level than its competitors on these four types of test
functions.

IV. CONSTRAINT ENGINEERING PROBLEMS USING SDO

To further verify the performance of SDO algorithm, six con-
strained engineering problems are employed in this subsec-
tion. These constrained engineering cases are three-bar truss
design, cantilever beam design, tension/compression spring
design, rolling element bearing design, belleville spring
design, and hydrostatic thrust bearing design. They have
different constraints with different natures, thus a constraint
handling method needs to be utilized. There are different
constraint handling methods: static penalty, dynamic penalty,
adaptive penalty, annealing penalty, co-evolutionary penalty,
and death penalty. Of those, the most frequently used one
is the penalty function because of its simplicity and less
computational costs. Additionally, this method is not subject
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to making use of the information of infeasible solutions.
Therefore, SDO algorithm is equipped with the death penalty
function to handle constraints in these engineering problems.
The optimization formulations of these 6 engineering prob-
lems are given in Appendix B.

A. THREE-BAR TRUSS DESIGN

This case, taken from [66] depicted in Fig. 13, needs to
deal with a statically loaded three-bar truss with the mini-
mum weight. It has three constraints on stress, deflection,
and buckling and two variables (x; and x7) to adjust the
sectional areas. This case is very popular owing to its difficult
constrained variable space.

This case was employed by many scholars with some
metaheuristic methods in literature: SC [50], PSO-DE [67],
DEDS [68], HEAA [69], and CS [70]. Our method is com-
pared with these works and the comparisons of their results
are provided in Table 8. The results of these algorithms
report that SDO provides very competitive results in terms
of different indices with the same or less computational costs
compared to the other algorithms. The comparisons of the
best solutions offered by considered methods are provided
in Table 9. SDO is able to find the best optimal design of all
the considered optimizers. Also, it can be seen that although
the weights of three-bar truss offered by SDO, PSO-DE,
DEDS, and HEAA are equal, the obtained design variables
among them are different. Therefore, this suggests that our
algorithm can provide a new best optimal design for this
case. We give the function value and each constraint value
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TABLE 5. Statistical comparisons of WSRT for SDO vs GA, PSO, and DE.

SDO vs PSO SDO vs GA SDO vs DE
Function
p-value T- T+  Winner p-value T- T+ Winner  p-value T- T+ Winner

fi(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
() 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
fi(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
i) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
S50 473E-06 10 455 - 2.13E-06 2 463 - 1.73E-06 0 465 -
Je(x) 02552 0 465 = 1 0 465 = 1.22E-04 0 465 -
f1(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
f:(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 5.32E-03 368 97 +
fo(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
Sfio(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
Sfulx) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
fia(x) 1.73E-06 0 465 - 1.64E-05 23 442 - 1.73E-06 0 465 -
Si3(x) 9.71E-05 43 422 - 6.27E-02 323 142 = 4.53E-04 62 403 -
Sia(x) 1 0 465 = 1.22E-05 0 465 - 1.56E-02 0 465 -
fis(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
Sis(x) 1 0 465 = 1.25E-01 0 465 = 3.13E-02 0 465 -
fir) 1 0 465 = 3.91E-03 0 465 - 1 0 465 =
Sfis(x) 7.81E-03 62 403 - 1.99E-03 15 450 - 4.90E-02 84 381 -
Sro(x) 1 0 465 = 3.79E-06 0 465 - 1 0 465 =
Jro(x) 1.96E-04 0 465 - 1.73E-06 0 465 - 9.78E-05 0 465 -
Saux) 9.90E-06 0 465 - 3.71E-06 0 465 - 1.45E-07 0 465 -
Jox) 3.40E-04 4 461 - 1.73E-06 0 465 - 2.44E-04 0 465 -
fos(x) 2.37E-04 1.5 4635 - 1.71E-06 0 465 - 9.63E-07 0 465 -
Saa(x) 6.33E-04 0 465 - 7.52E-04 0 465 - 0.3125 0 465 -
frs(x) 1.96E-03 0 465 - 5.90E-03 0 465 - 8.39E-3 136 329 -
fre(x) 1.40E-03 4 461 - 2.83E-04 0 465 - 0.38526 260 205 =
Jr(x) 1.67E-02 28 437 - 6.28E-03 0 465 - 0.068231 145 320 =
fas(x) 6.32E-04 15 450 - 2.91E-04 0 465 - 0.55217 210 255 -
Sro(x) 0.06822 206 259 - 3.02E-02 124 341 - 0.1832 206 259 =

with respect to FEs in Fig. 14, in which SDO offers a good | / | / |

convergence rate for this problem. i | Ill I 1111

- Ny

B. CANTILEVER BEAM DESIGN

As illustrated in Fig. 15, the cantilever beam is composed

of 5 hollow square blocks with constant thickness [71]. The

beam is rigidly supported at the first block and there is vertical 1 %1 X A1

force acting at the free end of the fifth block. So the objective
of this case needs to minimize the weight of the beam and
meanwhile only meet the constraint requirement on an upper
limit on the vertical displacement of the free end. There are
five decision variables that are respectively lengths of the
different blocks.

This problem is attempted using our method and many
reported metaheuristics, including SOS [72], CS [70],
MMA [71], GCA-I [71], GCA-II [71] and MFO [73], and
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FIGURE 13. Three-bar truss design problem.

the comparisons of their results are provided in Table 10.
Overall, the results of SDO have an obvious advantage.
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TABLE 6. Statistical comparisons of WSRT for SDO vs CS, GSA, and ABC.

Function SDO vs CS SDO vs GSA SDO vs ABC
p-value T- T+  Winner p-value T- T+ Winner  p-value T- T+ Winner
£i(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
£(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
£(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
£(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
£(x) 1.73E-06 0 465 - 2.88E-06 5 460 - 1.73E-06 0 465 -
£(x) 1 0 465 = 1 0 465 = 1 0 465 =
£(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
F(x) 3.71E-01 189 276 = 1.73E-06 0 465 - 1.73E-06 0 465 -
F(x) 1.73E-06 0 465 - 1.72E-06 0 465 - 1.73E-06 0 465 -
£o(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
£i(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
fi(x) 1.73E-06 0 465 - 0.64416 210 255 = 1.73E-06 0 465 -
£i3(x) 1.64E-05 23 442 - 1.73E-06 465 0 + 1.73E-06 0 465 -
£i4(x) 1 0 465 = 2.56E-06 0 465 - 1.73E-06 0 465 -
fis(x) 1.73E-06 0 465 - 1.73E-06 0 465 - 1.73E-06 0 465 -
£io(x) 1 0 465 = 2.21E-05 0 465 - 5.00E-01 0 465 =
£i(x) 1 0 465 = 1 0 465 = 1.73E-06 0 465 -
£is(x) 445E-04 1345 3305 - 5.80E-06 1.5 463.5 - 1.73E-06 0 465 -
£io(x) 1 0 465 = 2.21E-05 0 465 - 599E-07 0 465 -
bo(x) 1.73E-06 0 465 - 5.00E-01 0 465 = 1.95E-03 0 465 -
£i(x) 9.57E-07 0 465 - 1.71E-06 0 465 - 1.71E-06 0 465 -
b(x) 4.54E-05 55 4595 - 2.44E-04 0 465 - 1.73E-06 0 465 -
b3(x) 1.68E-06 0 465 - 5.73E-07 0 465 - 1.73E-06 0 465 -
f4(x) 3.26E-03 0 465 - 8.27E-04 465 0 + 8.15E-05 0 465 -
bs(x) 5.82E-04 60 405 - 1.97E-03 0 465 - 3.17E-03 0 465 -
(%) 0.41853 244 221 = 5.11E-03 91 374 - 3.79E-05 6 459 -
£9(x) 0.41091 275 190 = 0.32628 221 244 = 0.12526 275 190 =
bs(x) 0.03271 156 309 - 2.65E-04 51 414 - 2.88E-06 5 460 -
Fo(x) 9.16E-02 146 319 = 3.51E-04 91 374 - 0.28162 190 275 =
TABLE 7. Statistical results of WSRT for SDO.
Function types SDO vs PSO SDO Vs GA SDO Vs DE SDO s CS SDO vs GSA SDO Vs ABC

(+/=/-) (+/=/-) (+/=/-) (+/=/-) (+/=/-) (+/=/-)

Unimodal 6/1/0 6/1/0 7/0/0 6/1/0 6/1/0 6/1/0

Multimodal 6/0/0 5/1/0 5/0/1 5/1/0 4/1/1 6/0/0

Fixed-dimensional 6/4/0 9/1/0 8/2/0 6/4/0 8/2/0 9/1/0

Composite 6/0/0 6/0/0 3/3/0 3/3/0 4/1/1 4/2/0

Total 24/5/0 26/3/0 23/5/1 20/9/0 22/512 25/4/0

In terms of the ‘Best’ index, SDO provides the best results
compared to the others. Meanwhile, the results provided by
SDO are very close to those provided by SOS in terms of the
‘Mean’ index. The comparisons of the best solutions offered
by reported algorithms are provided in Table 11. From this
table, the results reveal that SDO is able to obtain the best
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optimal design for this problem. Fig. 16 shows the function
value and constraint value with respect to FEs.

C. TENSION/COMPRESSION SPRING DESIGN

This problem, originated from [74], needs to minimize the
weight of a tension/compression spring with respect to the
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TABLE 8. Result comparisons in literature for three-bar truss design. “NA” stands for not available.

Methods Worst Mean Best Std FEs
SC 263.969756  263.903356  263.895846 1.3E-02 17,610
PSO-DE 263.895843  263.895843  263.895843 4.5E-10 17,600
DEDS 263.895849  263.895843  263.895843 9.7E-07 15,000
HEAA 263.896099  263.895865  263.895843 4.9E-05 15,000
CS NA 264.0669 263.97156 9.0E-05 15,000
SDO 2.63895847  2.63895845  263.895843 1.12E-06 15,000
TABLE 9. Comparisons of best solutions offered by reported optimizers for three-bar truss design.
SC PSO-DE DEDS HEAA CS SDO
X 0.788621 0.7886751 0.788675 0.788680 0.788670 0.788698
X2 0.408401 0.4082482 0.408248 0.408234 0.409020 0.408184
o NA -5.29E-11 -1.77E-08 NA -0.00029 -8.052E-10
@ NA -1.4637475 -1.464101 NA -0.26853 -1.464174
ped) NA -0.5362524 -0.535898 NA -0.73176 -0.535825
fi 263.895847  263.895843  263.895843  263.895843  263.971623  263.895843
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&) . T o o
0 35 70 105 140

FEs x102

FIGURE 14. Function value and constraint values versus FEs for three-bar
truss design.

s,

Constant thickness ——| |— X

FIGURE 15. Cantilever beam design problem.

constraints on shear stress, deflection, and surge frequency
shown in Fig. 17. The decision variables of this problem are
wire diameter (d), mean coil diameter (D), and number of
active coils (N).
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TABLE 10. Result comparisons in literature for cantilever beam design.

Methods Worst Mean Best Std FEs
SOS NA 1.33997 1.33996 1.1E-05 15,000
CS NA NA 1.33999 NA 125,000
MMA NA NA 1.3400 NA NA
GCA-I NA NA 1.3400 NA NA
GCA-II NA NA 1.3400 NA NA
MFO NA NA 3.399880 NA NA
SDO 1.340513 1.34009 1.339963  2.626E-05 15,000

TABLE 11. Comparisons of best solutions offered by reported optimizers
for cantilever beam design.

SOS €S MMA GCA-l GCA-Il MFO  SDO
x| 601878 6.0089 6.0100 6.0100 6.0100 5.984871 4021609
X, 530344 53049 53000 53000 53000 5316726 5294696
Xy 449587 45023 4.4900 44900 44900 4.497332 4500152
X, 349896 3.5077 3.4900 3.4900 3.4900 3.513616 3 505450
xs 2.15564 21504 2.1500 2.1500 2.1500 2.1616200 5 151367
@ NA NA NA NA NA  NA -1.547E9
£ 133996 133999 1.3400 13400 13400 1.339988 1.339963

This problem is tackled by our algorithm and some
other metaheuristic methods, such as GA2 [75], GA3 [76],
CA [77], CPSO [78], HPSO [79], PSO2 [80], QPSO [80],
UPSO [81], CDE [82], SSB [50], and (i« + A)ES [83]. The
comparisons of their best results are shown in Table 12.
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TABLE 12. Result comparisons in literature for tension/compression

spring design.

Methods ~ Worst Mean Best Std FEs
GA2  0.0128221 0.0127690 0.0127047 3.9390 E-05 900,000
GA3  0.0129730 0.0127420 0.0126810 5.9000 E-05 80,000
CA 0.0151156 0.0135681 0.0127210 8.4215E-04 50,000
CPSO  0.0129240 0.0127300 0.0126747 5.1985 E-04 200,000
HPSO 0.0127191 0.0127072 0.0126652 1.5824 E-05 75,000
PSO2  0.0718020 0.0195550 0.0128570 0.0116620 2000
QPSO  0.0181270 0.0138540 0.0126690 1.3410E-03 2000
UPSO  0.0503651 0.0229478 0.0131200 7.2057E-03 10,000
CDE  0.0127900 0.0127030 0.0126702 2.7000E-05 240,000
SSB  0.0167173 0.0129227 0.0126692 5.9000E-04 25,167

(W+M)ES NA 0.0131650 0.0126890 3.9000E-04 30,000
SDO  0.0126828 0.0126724 0.0126663 6.1899E-06 20,000

As shown in this table, SDO outperforms the others for find-
ing the best optimal solutions in terms of the ‘Worst’, ‘Mean’
and ‘Std’ indexes. The comparisons of the best solutions
offered by reported algorithms are provided in Table 13. It has
been noticed that SDO is able to find another promising
design for this problem. The function value and each con-
straint value with respect to FEs are depicted in Fig. 18.

D. ROLLING ELEMENT BEARING DESIGN
This problem [85], [86] is to maximize the dynamic load
carrying capacity of rolling element bearing as illustrated
in Fig. 19. The maximization process is subject to con-
straints on the geometry and kinematics. This problem has
ten decision variables: pitch diameter (D,,), ball diameter
(Dp), number of balls (Z), inner and outer raceway cur-
vature coefficients (f; and f,), and other internal geometry
parameters (Kpmin, KDbmax,€, €, and ¢) that only appear in
constraints.

The problem was attempted by GA4 [84], TLBO [86],
ABC [86], and MBA [87], the best results of these approaches
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FIGURE 17. Tension/compression spring design problem.
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FIGURE 18. Function value and constraint values versus FEs for
tension/compression spring.

and SDO are compared in Table 14. It can be seen that the
proposed method is able to find the best optimal solutions in
terms of the “Worst’, ‘Mean’, ‘Best’, ‘Std’ indexes over the
other algorithms. Although the number of function evalua-
tions of SDO is more than those of both ABC and TLBO,
the overall results show that the performance of SDO is
considerably better that of both algorithms for this problem.
Table 15 represents the comparisons of best optimal solutions
for the considered algorithms in terms of design decision
variables and function values. This table reveals that SDO
obtains a design with the maximum dynamic load carrying
capacity. Fig. 20 shows the function value and each constraint
value with respect to FEs.

E. BELLEVILLE SPRING DESIGN
The objective of this design [88], as shown in Fig. 21, is to
minimize the weight of belleville spring. These constraints
consist of compressive stress, deflection, height to deflection,
height to maximum height, outer diameter, inner diameter,
and slope. There are four decision variables to be optimized
such as thickness of the spring (¢), height (k) of the spring,
internal diameter of the spring (D;), and external diameter of
the spring (D).

The problem was solved by GAS [88], GeneAS [89], Sid-
dal [90], ABC [86] and TLBO [86], and the best solutions
of various methods for this case are provided in Table 16.
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TABLE 13. Comparisons of best solutions offered by reported optimizers for tension/compression spring design.

GA3 CA CPSO HPSO CDE (ut+M)ES SDO
x1(d) 0.051989 0.050000 0.051728 0.051706 0.051609 0.052836 0.0518977
x2(D) 0.363965 0.317395 0.357644 0.357126 0.354714 0.384942 0.3617523
x3(N) 10.890522 14.031795 11.244543 11.265083 11.410831 9.807729 10.7479462
g —0.000013 0 -8.25E-04 -3.06E-06 —0.000039 -0.000001 -2.435E-06
pes) —0.000021 -0.000075 -2.52E-05 -1.39E-06  --0.000183 0 -1.137E-05
ped) —4.061338 -3.967960 -4.051306 -4.054583 —4.048627 -4.106146 -4.0635417
P! —0.722698 -0.755070 -0.727085 -0.727445 —0.729118 -0.708148 -0.7242333
5 0.0126810 0.0127210 0.0126747 0.0126652 0.0126702 0.012689 0.0126663
D, TABLE 15. Comparison.r: of bes.t solutions offered by reported optimizers
L for rolling element bearing design.

w T,

FIGURE 19. Rolling element bearing design.

TABLE 14. Result comparisons in literature for rolling element bearing
design.

Methods Worst Mean Best Std FEs
GA4 NA NA 81843.3000 NA 225,000
ABC  78897.8100 81496.0000 81859.7416 NA 10,000
TLBO  80807.8551 81438.9870 81859.7400 NA 10,000
MBA  84440.1948 85321.4030 85535.9611 211.5200 15,100
SDO 85144.1639 85443.6665 8.5538.85468 112.2171 15,000

As shown in this table, SDO obtains the same results as both
methods in terms of the ‘Best’ index with less computational
efforts. However, the results provided by SDO are better than
those provided by ABC in terms of the ‘Worst’ and ‘Mean’
indexes. The comparisons of the best solutions offered by
reported algorithms are provided in Table 17. From this table,
SDO is able to offer a similar design compared to TLBO. This
is the best optimal solution obtained so far for this problem.
Fig. 22 shows the convergence rate of SDO for finding the
best optimal solution.

F. HYDROSTATIC THRUST BEARING DESIGN
The last utilized engineering problem [90], as shown
in Fig. 23, is the hydrostatic thrust bearing design problem.

73198

GA4 TLBO MBA SDO

X1(Dy) 125.7171  125.7191 125.7153  1.257E+02
X2(Dy) 21.423 21.42559  21.423300  21.424905
x3(2) 11 11 11.000 11.430211
x4(f) 0.515 0.515 0.515000 0.515002
x5(f5) 0.515 0.515 0.515000 0.519304
X6(Kpmin) 0.4159 0.424266 0.488805 0.487755
X7(Kpmax) 0.651 0.633948 0.627829 0.629992
X3 (€) 0.300043 0.3 0.300149 0.300039
Xo(e€) 0.0223 0.068858 0.097305  5.351E-02
x10(9) 0.751 0.799498 0.646095 0.665982
o 0.000821 0 0 1.107E-04
Jeo) 13.732999  13.15257 8.630183 8.706977
o 2.724000 1.5252 1.101429 1.249638
o 3.606000  0.719056 2.040448 14.094788
gs 0.717000  16.49544 0.715366  12.660371
s 4.857899 0 23.611002  0.717208
g7 0.003050 0 0.000480  6.393E-04
e 0.000007  2.559363 0 1.445455
2 0.000007 0 0 2.076E-06
g0 0.000005 0 0 4.304E-03

Ja 81843.3 81859.74  85535.9611 85538.85468

TABLE 16. Result comparisons in literature for belleville spring design.

Mean Best Std FEs
1.995475 1.979675 0.07 150,000
1.9796875 1.979675 NA 150,000
1.988263 1.979675  0.0032 50,000

The objective of this problem is to minimize the power loss
subject to seven constraints on load-carrying capacity, inlet
oil pressure, oil temperature rise, oil film thickness and some
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TABLE 17. Comparisons of best solutions offered by reported optimizers
for belleville spring design.

GA5  GeneAS Siddal TLBO SDO
t 0.208 0.205 0.204  0.204143 0.204143
h 0.2 0.201 0.2 0.2 0.200000
D;  8.751 9.534 10.030  10.03047 10.030473
D. 11.067 11.627 12.010 12.01  12.009999

g1 21454109 -10.3396 134.0816 1.77E-06 -4.075E-10

2 39.75018 2.8062 -12.5328 7.46E-08 -7.832E-04
e 0 0.0010 0 5.8E-11 -1.399E-09
& 1.592  1.5940  1.5960 1.595857 -1.595857
g5 0.943  0.3830 0 2.35E-09 -7.621E-07
Z 2316 2.0930 1.9800 1.979527 -1.979528
g;  0.21364 0.20397 0.19899 0.198966 -0.198966
£ 2.121964 2.01807 1.978715 1.979675 1.979675

physical requirements. The decision variables are bearing
step radius (R), recess radius (R,), oil viscosity (u), and flow

rate (Q).
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FIGURE 22. Convergence curve of SDO for cantilever beam design.

TABLE 18. Result comparisons in literature for hydrostatic thrust bearing
design.

Methods Worst Mean Best Std FEs
IPSO NA 1757.3768400 1632.2149  16.851024 90,000
GASO NA NA 1950.2860 NA 16,000

TLBO  2096.80127 1797.70798 1625.443 NA 50,000
ABC 2144.836 1861.554 1625.44276 NA 50,000
Gene AS NA NA 2161.6 NA NA
BGA NA NA 2295.1 NA NA
SDO  2012.862318 1753.643271 1626.62227 116.3291 50,000

| w

LR

P Ro!

-—

FIGURE 23. Hydrostatic thrust bearing design.

Table 13 provides the comparisons of the best results
obtained from SDO and other optimizers such as IPSO [91],
GASO [66], TLBO [86], ABC [86], GeneAS [89], and
BGA [89]. As we see in this table, SDO surpasses the
other optimizers for offering the best solutions in terms of
the ‘Worst’ and ‘Mean’ indexes with less or equal compu-
tational costs. Besides, SDO provides a competitive result
in terms of the ‘Best’ index compared to both TLBO and
ABC. The comparisons of the best solutions offered by
reported algorithms are provided in Table 19. This table
detailedly lists the best optimal variables and the best optimal

73199



IEEE Access

W. Zhao et al.: Supply-Demand-Based Optimization: A Novel Economics-Inspired Algorithm for Global Optimization

TABLE 19. Comparisons of best solutions offered by reported optimizers for hydrostatic thrust bearing design.

IPSO GASO GeneAS BGA TLBO SDO

R 5.956868685 6.271 6.778 7.7077  5.95578050261541  5.957853282295
R, 5389175395  12.901 6.234 6.549  5.38901305194167  5.391201948055
U 5.40213310 5.605 6.096 6.619 5.35869726E-06  5.361337511E-06
Q 2.30154678 2.938 3.809 4.849  2.26965597280973  2.273155235181
g 22.01094912 2126.86734 8329.7681 1440.6013 1.375E-04 6.80638998
2 0.00000000  68.0396  177.3527 297.1495 2.100E-08 0.684507284
& 0.58406092  3.705191 10.684543 17.353800 3.244E-04 0.0420416175
& 0.00033480  0.000559  0.000652 0.000891 0.566767 3.2530 E-04
g5 0.56769329  0.666000  0.544000 0.528000 9.964E-04 0.5666513
Z 0.00083138  0.000805 0.000717  0.000624 9.076E-06 -9.9635 E-04
2 7.61684431 849.718683 83.618221 467.686527 1.375E-04 0.516470143
1 1632.2149  1950.2860 2161.4215 2296.2119 1625.442764 1626.62227
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FIGURE 24. Convergence curve of SDO for hydrostatic thrust bearing
design.

power loss offered by the above methods. The results indi-
cate that SDO is superior to four of the optimizers and per-
forms almost as well as TLBO. Fig. 24 shows that SDO is
able to effectively converge to the global optimum for this
problem.

V. CONCLUSIONS

The above study discover that SDO has an advantage over
other metaheuristic methods. First, the results of uncon-
strained test functions show the effectiveness of SDO in
terms of exploration, exploitation, local optima avoidance,
and convergence rate. Second, the results of constrained engi-
neering problems indicate the competiveness of our algo-
rthm in terms of computational expense and covergence
rate. Eventually, the study on a set of engineering problems
suggests the application of SDO in challenging real-world
problems.

The results on unconstrained functions show SDO is highly
competitive with PSO, ABC, DE, GA, GSA, and CS from
different aspects. The results on the unimodal functions
reveal the high exploitation ability of SDO. The results on
multimodal and fixed-dimensional functions prove the supe-
rior exploration ability of SDO. The results on composite

73200

functions suggest the excellent local optima avoidance of
SDO. Despite, the good convergence rate of SDO is also
confirmed on all the unconstrained functions. Moreover,
the comprehensive results on constrained engineering prob-
lems evidence the success and effectiveness of SDO in solv-
ing real constrained problems.

There are several research directions for future work.
First, the binary and multi-objective versions of SDO may
be developed to solve complex discrete and multi-objective
problems, respectively. Second, SDO may be equipped with
some stochastic or evolutionary operators to enhance its opti-
mization capability. Additionally, the SDO may be hybridized
with other stochastic algorithms to improve its optimization
capability. Eventually, SDO, its variants, and its hybridized
versions may all be applied to optimization problems in dif-
ferent fields.

APPENDIX A
See Tables 20-23.

APPENDIX B
A. THREE-BAR TRUSS DESIGN
Consider variable X = [x1, x2].

Minimize fi(¥) = 2v2 x> + x2) x [.

- 2
Subject to g1(x) = —f X1+ X P—0o <0,
ﬁ x% + 2x7x1
- X2
2X)=—-——"P—-0=<0=<0,
g V2 x% + 2x7x1
- X2
g3(x)=—P—o0 <0.
x1++2x
where
[ =10cm, P =2KN/cm?, o =2KN /cm?.

Variable range 0 <x; < 1,0 <x < 1.
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TABLE 20. Unimodal test functions.

Name Function D Range Lot
Sphere f(x)= ZH:I )f 30 [-100,100]” 0
Schwefel 2.22 £(x)= Z’,}_l X +1_[':1 X 30 [-10,10) 0
Schwefel 1.2 £(x)= Z; (z;:1 Xj.)2 30 [-100,100]” 0
Schwefel 2.21 £(x)=max {|x],1< /< n} 30 [-100,100)° 0
-1
Rosenbrock £ =) (100(x,, — x)*)+(x—1)) 30 [-3030]7 0
Step £(x)= 2;7:1()(}+0.5)2 30 [-100,100])” 0
Quartic £(x)= Z; X! + random|0,1) 30 [-1.28,1.28]7 0
TABLE 21. Multimodal test functions.

Name Function D Range Lopt
Schnwefel £(x)==>" (xsin(, D) 30 [-500,500]°  -12569.5
Rastrigin 50 =2" (X —10cos(27x)+10)’ 30 [-5.12,5.12]° 0

Ackley 1 n 1 n D

£,(x)=—-20exp(-0.2 ;zle X) —exp(;ZH cos27x)+20+e 30 [-32,32] 0
Griewank 1 n n X —100
F£(D)=——Y" (x-100> =] 1" cos(= +1 30 -600,6001” 0
n (0 40002,:1(, )’ =] ] cos( 7 ) [ 1
Penalized -
£,(0="Z010sin*(z3)+ 3" (3~ D1 +10sin* (7 3, +1)]
n 30 [-50,501” 0
oy, =11+ Y. " u(x,10,100,4)
Penalized2 £,(0=01fsin’ Gzx)+ Y (x-1) Al +sin’ 3zx,,)] o Losop .

+(x, ~12[1+sin®Qzx)]} + > u(x,5,10,4)

B. CANTILEVER BEAM DESIGN
Consider variable ¥ = [x1, x].

Minimize f>(¥) = 0.0624(x; + x2 + x3 + x4 + x5).

. L 61 37 19 7 1
Subjectto gX\)= 5+ =5 +—5+—5+—5—-1<0,
Xl X2 x3 x4 XS

Variable range 0.01 < x; <100,i=1,---,5.

C. TENSION/COMPRESSION SPRING DESIGN
Consider variable X = [x1, x2, x3] = [d, D, N].

Minimize f3(X) = (x3 + 2)x2x12.

Subject to g1 (%) = 1 wn
uoject to X) = _
Jectio & 71785x) ~
2
B2 = 22 =0,
12566(xox; —x})  5108x7
. 140.45x,
g3(®) =1 - ——— _ g,
X5X3
a®="""_10

1.5 -
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Variable range 0.05 < x; < 2,025 < x < 13,

2<x3<15.

D. ROLLING ELEMENT BEARING DESIGN
Consider variable X = [Dy, Dy, Z, fi, f, Kpmin» Kpmax.

g, e ).

&) =f.2**D}? if Dp < 25.4mm
(X)) = 3.647£.Z*D}* if Dy > 25.4mm
¢0
2sin" (Dy/Dy)

22(X) = 2Dy, — Kpmin(D — d) = 0,
g3(3€) = Kpmax(D —d) — 2Dy, > 0,
g4(X) =Dy — (05— e)D+d) >0,
25(X) =(0.5+ e)(D +d) — Dy, > 0,
g26(X) =D, —0.5(D+d) > 0,

g,(X) = 0.5(D — Dy, — Dp) — Dy, > 0,
g3(X) = ¢By, — Dy <0,

g(X) = fi = 0.515,

g10(X) =fo = 0.515.

Maximize

Subject to g;(X) = —-Z+1=>0,
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TABLE 22. Low-dimensional multimodal test functions.

Name Function D Range Jopt
Foxholes -1
. 1 25 1
fi=| =4 2 [-65.536,65.536]°  0.998
300 ’ lj+2j:1(xf _a!/‘)6
Kowalik ) 2
x,(b” +bx
fis)=>" la, —21('—'2) 4 [-5, 5] 3.075%10°
= b +bx,+x,
Six Hump Camel ) PR ) 4
Sis(x) =4x, —2.1x, +§xl’ +x,x, —4x; +4x, 2 [-5,51° -1.0316
Branin 51 , 5 2 1
S (X)=(x,— - X +;x1 -6) +10(1—§)c0sx1 +10 2 [-5,10] x [0, 15] 0.398
GoldStein-Price Fis ) =[ 14 (x + 2, +1)° (19 - 14x, +3x7 —14x, + 6x,x, +3x7) | 220 .
x[30+(2x, +1-3x,)’ (18— 32x, +12x7 +48x, =36x,x, +27x7) | ’
Hartman 3 4 3 P
fo()==" exp[—zjzl a,(x;,—p,) J 3 [0, 11 3.86
Hartman 6 4 6
S ==>" exp[—zj:l a,(x; - py)z} 6 [0, 17° 3322
Shekel 5 5 T -1
L@ == |(x —a)(x,—a) +¢| 4 [0, 101° 101532
Shekel 7 7 -1
o fzz (x) = _Zi:1|(xi _ai)(xi _ai)T +Ci| 4 [0, 10)” -10.4028
Shekel 10 10 T -1
Jn(x)= —Zi:l |(xl. —a,)(x,—a,) + cl.| 4 [0, 101° -10.5363

where

E. BELLEVILLE SPRING DESIGN
Consider variable X = [t, h, D;, D,].

1 —y\ 172
Je=3791 [1 + {1-04 (m) Minimize: f5(¥) = 0.070757 (Dg — D,?) ‘.
4ES
10/3 —03 Subiect t D=9 _ max
. <fi(2fo — D\ wbjectto s10) =5 =y o
So2fi = 1) B
o L [ﬂ(h— II;’aX)_‘_yt]ZO’
5 (y“(l _ y)]'39) ( 2 >0.41 -
f4ps J\Mi—1 g2 = <1—;D2
Dy cosa ri 7 To (1= u?)aD;
= ) i= 5 Jo= 7 8
D Dy, Dy, |:(h — )(h—8)t+ z3)]>
¢0 = 27'[ — 200571 2 8=0max
(D —d)/2-3(T/4) ~Pmax 2 0,
x{ ’ (X) =081 —max =0
2{(D—d)/2—=3(T/4}{D/2 — (T/4) — Dp) g3(X) = 81 — 8max > 0,
D2 — (T/4) — Dy} — {d/2+ (T/4)) | g4X)=H—-h—1t20,
2{D—d)/2-3(T/H}{D/2—(T/4) — Dy} g5(X) = Dmax — D, > 0,
T'=D—d—2Ds, g6(¥) =D — D; > 0,
D =160, d =90, B,, =30, ri =r, = 11.033. ¢7(}) = 0.3 — >0
D, — D;
Variable range where
2
0.5(D+d) < Dy <0.6(D+d), oo O (K_‘1> ,
0.15(D—d) < Dy < 0.45(D—d), 4 < Z < 50, ”ng KKI
) ; .6, 0. . = —-1),
0.515 < f; <0.6,0.515 < f, < 0.6, B nan(an )
0.4 < Kpmin < 0.5,0.6 < Kpmax < 0.7, 6 [K—1
03<e<04,002<e<0.1,06<¢ <0.85. Y= K <—2 >
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TABLE 23. Compositiol

n test functions.

Name Function D Range Lot
£4(¥) fi, 6, £,..., fi=Sphere Function
) (61, 63, O3, G101 1,1, 1] 10 [-5,51° 0
[A1, A2y A3, A10]=[5/100,5/100,5/100,...,5/100]
£5(%) £, 6, £,..., fi;= GriewankOs Function
(CF2) (01, @ G- G0l[L L1, 1] 10 551 0
[A1, A2y A3, A10]=[5/100,5/100,5/100,...,5/100]
£o(¥) fi, 6, £,..., fi;= GriewankOs Function
(CF3) (01, @ G G0][L 11,1 10 551 0
[, A2, sy, Dio]=[1,1,1,..,1]
fi, £ = AckleyOs Function
£, £, = Rastrigin0Os Function
£1(x) £, f; = Weierstrass Function
((227F4) £, f; = GriewankOs Function 10 [-5,51° 0
&, fip = Sphere Function
[o1, 03, 03,..., G10]=[1,1,1,.. 1] [Ai, Ao, Aa,..., io]=
[5/32,5/32,1,1,5/0.5,5/0.5,5/100,5/100,5/100, 5/100]
1i, £ = RastriginOs Function
£, f; = Weierstrass Function
5, 5 = GriewankOs Function
£s() £, f; = Gri kOs F i
(é*F 5) £, £ = AckleyOs Function 10 [-5,5]° 0
&, fip = Sphere Function
[o1, 33, 03,..., G10)=[1,1,1,...,1] [Ai, Ao, s, Aio]=
[1/5,1/5, 5/0.5,5/0.5,5/100,5/100,5/32,5/32,5/100, 5/100]
f;, £ = Rastrigin0Os Function
£, f; = Weierstrass Function
£, f; = GriewankOs Function
bo(X) £, = AckleyOs Function 10 [-5.51 0
(CFo) £, £y = Sphere Function e

[ai, 03, G3,..., 010]7[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]
[A1, 22y Zs,..., Aio]=
[0.1X1/5,0.2X1/5, 0.3 X5/0.5,0.4X5/0.5,0. 5X5/100,0. 6 X 5/100,0. 7 X

TABLE 24. Variation of f(a) with a.

85(X) =R—R, > 0,

26 = 0001 — V- (—2 ) >0,
a <14 1.5 1.6 1.7 1.8 1.9 2 2.1 gP,, 27 Rh
fa) 1 0.85 0.77 0.71 0.66 0.63 0.6 0.58 g7(5€) — 5000 — - - >0
a 22 23 24 25 26 27 >28 7(R* —R})
fla) 056 055 053 052 051 051 05 where
_ 7P, R* —R]
. . 2 In(R/R,)’
Prax = 5400Ib,  Smax = 0.2 in, S = 200000Psi, 6,40
E =30x10°si, =03, H=2in, Po = —5 In(R/Ro).  Er =9336Qy CAT
Dmax = 12.01in, K =D,/D;, 8 =f (a) h, AT = 2107 = 560),
a = hjt. p _ logiolog;p(8.122 x 104 +0.8) — Cy
Values of f(a) vary as shown in Table 24. 4 " 4
Variable range 0.01 < 7 < 6,0.05 < h < 05,5 < D; < h— (2’6T_ON)227£_’*(RI _ %), y = 0.0307, C = 0.5,
r

15,5 <D, < 15.

F. HYDROSTATIC THRUST BEARING DESIGN
Consider variable X = [R, R,, i, O].

P,

07 + Ef.

Subjectto g1(X) =W — W, >0,
82(X) = Pmax — P, > 0,
83(X) = ATmax — AT >0,
g4(X) = h — hiin > 0,

Minimize fg(X) =

VOLUME 7, 2019

n=—3.55 Cy = 10.04, W, = 101000,
Puax = 1000, Apin = 0.001, ATpax = 50,
g =386.4,N = 750.
Variable range ]| <R < 16,1 <R, < 16,
10°<u<16x107° 1<Q<1l6.
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