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ABSTRACT A novel metaheuristic optimization algorithm, named supply-demand-based optimization

(SDO), is presented in this paper. SDO is a swarm-based optimizer motivated by the supply-demand

mechanism in economics. This algorithmmimics both the demand relation of consumers and supply relation

of producers. The proposed algorithm is compared with other state-of-the-art counterparts on 29 benchmark

test functions and six engineering optimization problems. The results on the unconstrained test functions

prove that SDO is able to provide very promising results in terms of exploration, exploitation, local optima

avoidance, and convergence rate. The results on the constrained engineering problems suggest that SDO

is considerately competitive in terms of computational expense, convergence rate, and solution accuracy.

The codes are available at https://www.mathworks.com/matlabcentral/fileexchange/71764-supply-demand-

based-optimization.

INDEX TERMS Supply-demand-based optimization, global optimization, engineering design, constrained

problems, optimization algorithm, particle swarm optimization, swarm intelligence.

I. INTRODUCTION

Optimization is to find optimal solutions with the most cost

effective form a given solution space under the given con-

straints, by either maximizing or minimizing its objective

function. Over the last few decades, the substantial increase

of optimization problems from different fields makes opti-

mization techniques become a major research area for the

scientific community. The conventional optimization tech-

niques, including steepest descent method [1] and Newton’s

method [2], are developed. However, owing to their inherent

drawbacks of the requirement of derivative and local search

stagnation, they tend to become less powerful when solving

complex nonlinear functions and constraints with multiple

peaks [3], [4]. So, some stochastic optimizationmethods have

emerged and have been widely applied in a wide range of

fields [5]–[9]. Stochastic optimization methods refer to that

random variables are used to generate to random objective

functions and constraint values. Their outstanding merit is
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randomness, which is able to help these methods easily

bypass local optima and explore the entire variable space.

Another merit of stochastic optimization methods is that they

treat considered problems as a black box, which means that

one only needs to lay emphasis on the input and output

of objective functions instead of their gradient information.

Additionally, stochastic optimization methods are highly ver-

satile and flexible, implying their extendibility and practica-

bility to different types of optimization problems.

General speaking, there are two different classification in

stochastic optimization methods. One classification is based

on the number of their random solutions over the course

of iterations, they are divided into single-solution-based and

swarm-based algorithms [10]. For the former, stochastic

algorithms randomly generate a single solution and update

it by introducing minor change in an iterative process. Sim-

ulate annealing (SA) [11] belongs to this kind of method.

For the latter, stochastic algorithms randomly initialize a set

of solutions rather than one solution and then manipulate

them at each stage. The major difference between single-

solution-based and swarm-based algorithms is that the later
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is able to share the solution information among the swarm

and improve the quality of solutions by introducing major

change in subsequent iterations. This assists swarm-based

algorithms explore the search space and avoid the local

optima. The other classification for stochastic optimization

methods is based on their inspirations and motivations, and

they are classified into evolutionary-based (EB) [12], swarm-

based (SB) [13], physics-based (PB) [14], and human-based

(HB) [15] algorithms.

EB is generic population-based metaheuristic that simu-

lates biological evolution i.e., selection, crossover, mutation,

recombination, and chemotaxis [16]. The most well-known

EB is genetic algorithm (GA) [17]. GA randomly initializes a

group of agents and computes their fitness values. The selec-

tion, crossover, and mutation operators are used to improve

each agent of a population. The agent with the best fitness

value is stored and employed to generate a new population

over the course of iterations. Another popular EB is dif-

ferential evolution (DE) [18]. Similar to GA, DE randomly

generates a population that iteratively undergoes mutation

and recombination as well as becomes subject to a selection

operator. Both GA and DE tend to evolve the population by

mimicking the survival of the fittest in nature, therefore, they

are always able to obtain high-quality solutions and avoid

local optima. Apart from these, some other well-known EB

techniques are evolution strategy (ES) [19], genetic program-

ming (GP) [20], selfish gene algorithm (SGA) [21], shuf-

fled frog leaping algorithm (SFLA) [22], biogeography-based

optimization (BBO) [23], and fruit fly optimization algorithm

(FOA) [24].

PB usually manipulates and improves a population by

physical lows in nature, including gravitational force, elec-

tromagnetic force, energy conservation, and momentum con-

servation. The general mechanism of PB is different from

the other techniques since agents communicate and exchange

information according to physical laws. SA [11] and gravita-

tional search algorithm (GSA) [25] are viewed as two repre-

sentatives in PB. SA is originated from a physical process in

which a material is heated and then its temperature is slowly

lowered to minimize the system energy. During this process,

SA searches solutions depending on a probability with a

scale proportional to the temperature. Namely, SA not only

retains all the new solutions improving their fitness values,

but also retains the new solutions lowering their fitness values

with a certain probability. By retaining these solutions low-

ering their fitness values, SA can avoid the local optima and

globally explore for more possible solutions. However, this

algorithm probably suffers frommore computational expense

especially when the objective functions are very complex or

high-dimensional in nature. GSA is based on the Newton’s

famous law of gravity and the law of motion. Depending to

the law of motion, each agent attracts towards each other.

A lighter agent indicates a worse solution and a heavier

agent indicates a better solution. The higher agents always

attract towards the heavier ones by the gravity force, causing

a global movement. This particular movement mechanism

gives GSA an advantage over some of the other algorithms

in terms of global search, local optima avoidance, and solu-

tion accuracy. However, this algorithm tends to suffer from

slow searching speed in the later iterations and a complex

operator [26]. Some other emerging PBs include big bang-big

crunch algorithm (BB-BC) [27], colliding bodies optimiza-

tion (CBO) [28], charged system search (CSS) [29], wind

driven optimization (WDO) [30], central force optimization

(CFO) [31], water evaporation optimization (WEO) [32],

galaxy-based search algorithm (GBSA) [33], electromag-

netic field optimization (EFO) [34], atom search optimization

(ASO) [35], artificial physics optimization (APO) [36], and

thermal exchange optimization(TEO) [37].

Different from EBs and PBs, SBs always stimulate collec-

tive behaviors of social creatures to offer the better solutions

to investigated problems. The inspiration of SBs generally

comes from natural colonies, flocks, and herds. Two of the

most classic SBs are particle swarm optimization (PSO) and

ant colony optimization (ACO).

In PSO, a swarm of particles perform a search for the opti-

mal solution and each of them iteratively updates its solution

using its personal and social information in the population.

The main merit of PSO is the faster convergence rate and less

computational cost. Themajor drawback of PSO is that it eas-

ily suffers from convergence prematurely and traps into the

local optima especially with complex multimodal functions

[38]. ACO ismotivated from the social behavior of ants when

foraging. Each ant is subject to finding the shortest route

between nest and the source food via pheromone trails. ACO

is able to perform searching among a population parallel, so

it is very good at solving the salesman problem. However, the

major disadvantage behind this algorithm is that it has uncer-

tain convergence time and difficult theoretical analysis. The

other popular SBs are hunting search (HS) algorithm [39],

tree-seed algorithm (TSA) [40], whale optimization algo-

rithm (WOA) [41], cuckoo search (CS) [42], crow search

algorithm (CSA) [43], dolphin echolocation (DE) algorithm

[44], firefly algorithm (FA) [45], virus colony search (VCS)

[46], bird mating algorithm (BMO) [47], emperor penguin

optimizer (EPO) [48], and krill herd algorithm (KH) [49].

HBs are a new developed category in intelligence com-

puting recently, they mathematically stimulate social activi-

ties and ideology in humans to find near optimal solutions.

Society and civilization algorithm (SCA) [50] is a typical

representative of HBs. SCA imitates the intra and social inter-

actions within a formal society and the civilization model.

A society corresponds to a set of mutually interacting indi-

viduals and a civilization is a set of all such societies. All

individuals in each society interact with each other and make

improvements under the guidance of a leader belonging

to the same society. Meanwhile, each leader interacts with

leaders of other societies to migrate to a developed soci-

ety. This leader migration mechanism helps SCA globally

search promising regions in the variable space. Additionally,

SCA is advantageous in terms to dealing with constrained

optimization problems owing to the leader identification
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mechanism. Some of other HBs include league championship

algorithm (LCA) [51], social group optimization (SGO) [52],

social emotional optimization algorithm (SOA) [53], socio

evolution and learning optimization algorithm (SELO) [54],

ideology algorithm (IA) [55], and cultural evolution algo-

rithm (CEA) [56].

SBs have some advantages over the other three categories.

SBs are more able to control convergence and need less

computational cost owing to the less number of operators;

SBs are algorithmically simpler with less control parameters

and have a better convergence rate; SBs are able to restore and

share part or all of historical information about the population

more effectively, guiding all the individuals to perform a

global search.

For all the heuristic algorithms, it is very important to

effectively perform both exploration and exploitation. Explo-

ration refers to probing a much larger region of the search

space with the hope of finding other promising solutions

whereas exploitation refers to probing a promising region

of the search space with the hope of improving a promising

solution [57], [58]. But, it is challenging to properly balance

between exploration and exploitation in the development of

heuristic algorithms because of their stochastic nature. There-

fore, this is one fact that motivates us to develop an effective

optimizer to tackle real-world problems.

One might be asking why new optimization methods are

still raised despite of so many existing algorithms. The

answer can be found in the No Free Lunch Theorem of

Optimization [59], which states that an optimization algo-

rithm that can well solve a certain optimization problem does

not guarantee to successfully deal with the other different

optimization problems. Therefore, developing new and effec-

tive swarm-inspired optimizers to tackle specific real-world

problems also motivates this study.

Inspired by the supply-demand mechanism in economics,

this study proposes a new metaheuristic algorithm called

supply-demand-based optimization (SDO). SDO mathemat-

ically simulates the demand relation of consumers and the

supply relation of producers. The performance of SDO is

tested using both unconstrained benchmark functions and

constrained engineering problems.

The paper is organized as follows. Section II presents the

inspiration and SDO algorithm in detail. The experimental

results on 29mathematical benchmark functions are analyzed

in Section III. In Section IV, the effectiveness of SDO in

solving 6 engineering problems is investigated. Section V

concludes the work and suggests several directions for future

work.

II. SUPPLY-DEMAND-BASED OPTIMIZATION (SDO)

In this section, the inspiration of SDO is firstly introduced.

Then its mathematical model is provided in detail.

A. INSPIRATION

According to economic theory, the commodity price and

commodity quantity in a market might firstly be subject to

periodic fluctuations and then gradually be stable onto their

respective equilibrium points [60]. This process generally

depends on both the supply relation of producers and demand

relation of consumers.

The supply-demand mechanism is an economic theory

of price determination in amarket economy. According to this

theory, a commodity quantity in the next time qt+1 depending

on its current price pt in a market is determined by the supply

relation of producers, that is qt+1 = f (pt ), here f is a linear

supply function.When the current commodity price increases

in a market, the commodity quantity will increase in supply at

the next time, so f is an increasing function. The commodity

price pt+1 in the next time depending on its quantity qt+1

in the same time is determined by the demand relation of

consumers, this is pt+1 = g(qt+1), here g is a linear demand

function. When the commodity quantity increases, its price

in a market will decrease, so g is a decreasing function.

With the oscillations, these two functions finally intersect at

a point P(x0, y0), which is called the equilibrium point. x0
and y0 are the equilibrium price and equilibrium quantity of

a commodity, respectively.

The supply function f can be expressed as [61]

qt+1 − q0 = a(pt − p0) (1)

The demand function g can be expressed as [61]

pt+1 − p0 = −b(qt+1 − q0) (2)

where t is the time, a and b are the linear coefficients.

Generally, the supply-demand mechanism has two modes.

One is the stability mode as shown in Fig. 1(A). When

|ab|<1, the supply function f is steeper than the demand

function g, then the oscillations reduce in magnitude with

each time, so the curve of the commodity price and quantity

with respects to time tends to spiral inwards. After a cer-

tain time of iterations, the price and quantity converge to the

equilibrium point (x0, y0). The other is the instability mode

as shown in Fig. 1(B). When |ab|>1, the demand function

g is steeper than the supply function f , then the oscillations

increase in magnitude with each time, a curve of the price and

quantity with respects to time tends to spiral onwards. There-

fore, the price and quantity diverge from the equilibrium

point (x0, y0) more and more as time passes. Because these

spiral curves often look like a cobweb, this demand-supply

mechanism is named the cobweb model in economics [60].

The cobweb model is a very famous economic theory in

which the price fluctuation results in fluctuation in supply,

thus causing a periodic rising or falling in price. Therefore,

it is extensively used for studying the price fluctuation of

various products in certain types of markets.

B. SUPPLY-DEMAND-BASED OPTIMIZATION (SDO)

According to the supply-demand mechanism, the stabil-

ity mode can encourage both the commodity price and quan-

tity to exploit the neighborhood of the equilibrium point and

this exploiting process is oscillating in magnitude over time.

While the instability mode tends to force both the commodity
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FIGURE 1. Two modes of supply-demand mechanism: (A) stability mode
and (B) instability mode.

price and quantity to gradually explore new regions far away

from the equilibrium point. The stability mode gradually

decreasing oscillations in the supply-demand mechanism can

easily be introduced to SDO as exploitation to perform a local

search in a promising region. Similarly, the instability mode

can be borrowed to SDO as exploration to globally perform

a search in the search space. Fig. 2 shows the introduction

from the supply-demand mechanism in economic theory to

the proposed SDO algorithm.

For SDO algorithm, suppose there are n markets, each of

which has d kinds of different commodities, and each kind

of commodity has a certain quantity and price. The d com-

modity prices of a market represent a candidate solution as d

variables to the optimization problem, and the d commodity

quantities of a market are reviewed as a possible candidate

solution. If this possible candidate solution is better than the

candidate solution, the candidate solution is replaced with the

possible one. Because the proposed method is a swarm-based

FIGURE 2. Introduction form supply-demand mechanism to SDO.

algorithm, the commodity price and the commodity quantity

are given in two matrixes, respectively.

The commodity price matrix of markets is given as

X =











x1
x2
...

xn











=











x11 x21 · · · xd1
x12 x22 · · · xd2
...

...
...

...

x1n x2n · · · xdn











(3)

where d is the number of commodity prices (variables) in

eachmarket, n is the number ofmarkets (candidate solutions),

x
j
i (i = 1,. . . , n; j = 1,. . . , d) is the jth commodity price in

the ith market, and xi (i = 1,. . . , n) is the ith commodity price

vector corresponding to a candidate solution.

The commodity quantity matrix of markets is given as

Y =











y1
y2
...

yn











=











y11 y21 · · · yd1
y12 x22 · · · yd2
...

...
...

...

y1n y2n · · · ydn











(4)

where d is the number of commodity quantities in each

market, y
j
i (i = 1,. . . , n; j = 1,. . . , d) indicates the jth

commodity quantity in the ith market, and yi (i = 1,. . . , n) is

the ith commodity quantity vector corresponding to a possible

candidate solution.

The commodity price vector and quantity vector of each

market are evaluated using the fitness function, respectively.

The fitness value calculated by each price vector is stored as

the return value of the fitness function for eachmarket. Yet the

fitness value calculated by each commodity quantity vector

is also stored and only used for the solution replacement of a

market according to its quality. For all the markets, an array

for storing the fitness values of commodity price vectors in n

markets is given

Fx = [Fx1 Fx2 · · · Fxn]
T (5)

Another array for storing the function values of commodity

quantity vectors in n markets is given

Fy = [Fy1 Fy2 · · · Fyn]
T (6)

where T signifies the transpose of the array.

Although the commodity price vector and quantity vector

in each market are viewed as both solutions, the ways that
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they are treated and updated are different during the iterations.

Meanwhile, the concepts of both the stability and instability

modes in the supply-demand theory are utilized to perform

exploration and exploitation in SDO, respectively.

The commodity equilibrium price x0 and equilibrium

quantity y0 are two important components in SDO, yet they

are not known a priori during the iterations, therefore, they

need to be firstly designated, respectively. From the above

section, it should be noted that the updating for both the

demand function and supply function of a commodity is

respectively based on both a fixed equilibrium price and

a fixed equilibrium quantity from beginning to end. How-

ever, this updating will make the algorithm trap into the

local extrema quickly and result in premature convergence.

To prevent them, the equilibrium price of each commodity

should be variable at each iteration, likewise with the equi-

librium quantity of each commodity. Specifically, for each

iteration, each market chooses a commodity quantity vector

from the quantity array as its quantity equilibrium vector by

means of its probability, and the better the fitness value of the

quantity vector in a market, the higher the probability of that

the quantity vector chosen is. Meanwhile, each market also

chooses either a price vector from the price array according

to its probability or the average of commodity price vectors

of all the markets as the equilibrium price vector to improve

exploration. The equilibrium quantity vector y0 is represented

as follows

Ni =
∣

∣

∣

∣

∣

Fyi −
1

n

n
∑

i=1

Fyi

∣

∣

∣

∣

∣

(7)

Q = N
n
∑

i=1

Ni

(8)

y0 = yk , k= RouletteWheelSelection(Q) (9)

The equilibrium price vector x0 is represented as follows

Mi =
∣

∣

∣

∣

∣

Fxi −
1

n

n
∑

i=1

Fxi

∣

∣

∣

∣

∣

(10)

P = M
n
∑

i=1

Mi

(11)

x0 =















r1 ·

n
∑

1

xi

n
if rand<0.5

xk , k= RouletteWheelSelection(P) if rand≥0.5
(12)

where r1 is a random number in [0, 1]. According to (12),

SDO assumes that there is a probability of 50% to choose

either the average of commodity price vector or a price

vector depending to its probability in the price array as the

equilibrium price vector. With the definitions of both the

equilibrium price vector x0 and equilibrium quantity vector

y0, the supply function and demand function are proposed as

FIGURE 3. (a) Stability mode and (b) instability mode of SDO algorithm.

follows, respectively

yi(t + 1) = y0 + α · (xi(t) − x0) (13)

xi(t + 1) = x0 − β · (yi(t + 1) − y0) (14)

where xi(t) is the ith commodity price vector at the time t ,

yi(t) is the ith commodity quantity vector at the time t , and α

and β are the supply weight and demand weight, respectively.

From (13), the commodity quantity vector in each market

can be updated according to both the equilibrium quantity

vector and equilibrium price vector. Plugging (13) into (14)

the demand equation can be rewritten as

xi(t + 1) = x0 − αβ · (xi(t) − x0) (15)

It can be found that from this equation, the commodity

price vector is updated with respect to its current price vector

according to the equilibrium price vector actually. Different

commodity price vectors can be obtained by adjusting the val-

ues of weights α and β. To perform exploration and exploita-

tion in SDO, both the supply weight α and demand weight β

need to be appropriately presented. These two weights can be

formulated as

α = 2 · (T − t + 1)

T
· sin(2πr) (16)

β = 2 · cos(2πr) (17)

where T is the maximum number of iterations and r is

a random number or vector in [0, 1]. Let the variable

L equal the product of weights α and β, we can get

L = αβ = 4 · (T − t + 1)

T
· sin(2πr) cos(2πr) (18)

where, |L| <1 corresponds to the stability mode as depicted

in Fig. 3(A), different commodity price vectors around the

equilibrium price x0 can be obtained with respect to the cur-

rent price vector by adjusting the weights α and β, and these

price vectors are possible to be randomly changed between

the current price vector and the equilibrium price vector by

the random number or vector r . This is to say, the algorithm

allows each market to update its all commodity prices in the

neighborhood of the current commodity prices and mimic

the stability mode in Fig. 1(A). This mechanism emphasizes

exploitation and encourages SDO algorithm to search locally.

As depicted in Fig. 3(B), |L| > 1 corresponds to the insta-

bility mode that allows the commodity price vector in any

market to move far away from the equilibrium price vector,
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FIGURE 4. Values of variable L over iterations.

FIGURE 5. Solution replacement mechanism.

this forces eachmarket to search new promising regions in the

search space and simulate the instability mode in Fig. 1(B).

This mechanism concentrates on exploration and forces SDO

algorithm to search globally.

The values of the variable L over iterations are depicted

in Fig. 4 where the maximum number of iterations T is

set as 1000. As observed in this figure, in early iterations,

the values of L are greater than 1 or less than -1 with the high

probability. As the iterations increase, this high probability

begins to decrease, and there is an increasing probability that

the function values of L are in [-1, 1]. In later iterations,

the values of L are in [-1, 1] with the increasingly high

probability. Obviously, SDO gets high exploration in early

stage of iterations and smoothly switches to high exploitation

in later stage of iterations.

After updating both the commodity price and commodity

quantity vectors in each iteration, they need to be evaluated

by the fitness function and the results are stored in their

respective arrays. If the fitness value of the ith commodity

quantity vector is better than that of the i th commodity price

vector, the ith commodity price vector will be replaced with

this quantity vector as a candidate solution. Fig. 5 shows this

solution replacement mechanism.

FIGURE 6. Pseudo code of SDO algorithm.

SDO starts the optimization by creating a set of markets

randomly. At each iteration, each commodity quantity of a

market is updated with respect to both the equilibrium price

and equilibrium quantity, and then each commodity price of

a market is updated with respect to the equilibrium price. The

equilibrium price vector can be randomly switched between a

chosen commodity price vector form the price array accord-

ing to its probability in the price array and the average of

commodity price vectors. The equilibrium quantity vector

is chosen from the quantity array according to its probabil-

ity. These updates for commodity prices and quantities are

achieved by adjusting the values of weights both α and β. The

values of the variable L linearly decrease with random fluc-

tuation in order to perform either exploration or exploitation.

The commodity prices of a market is inclined to diverge from

the equilibrium price when |L| > 1 and converge towards the

equilibrium price when |L| < 1. Then the updated price vec-

tors and quantity vectors are evaluated by the fitness function.

For each market, if the fitness value of its commodity quanti-

ties is better than that of its commodity prices, its commodity

prices will be replacedwith its commodity quantities as a can-

didate solution. Eventually, the best commodity price vector

of a market as the best solution found so far is returned when

the stop criterion is satisfied. Fig. 6 gives the pseudo code of
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FIGURE 7. Swarm search of SDO in a two-dimensional space. (a) Unimodel function (Rosenbrock).
(b) Multimodel function (Griewank).

SDO algorithm and Fig. 7 shows an effective swarm search of

SDO for both the unimodal andmultimodal functions in a 2-D

space.

With the above formulation of SDO algorithm and the

observation of its optimization performance, the following

remarks are made.

(1) The SDO updates two different equations, one is the

supply equation updating the commodity quantity, and

the other is the demand equation updating the commod-

ity price.

(2) In each iteration, both the commodity equilibrium price

and equilibrium quantity need to be determined. The

equilibrium price vector is randomly chosen either the

average of commodity price vectors or a commodity

price vector according to its probability in the price

array. The equilibrium quantity vector is chosen from

the quantity array according to its probability.

(3) The commodity quantity vector is updated based on the

commodity price vector with respect to both the equi-

librium price vector and equilibrium quantity vector

by adjusting the supply weight. The commodity price

vector is updated based on the commodity price vector

with respect to both the equilibrium price vector and

equilibrium quantity vector by adjusting the demand

weight.

(4) SDO tends to force the commodity prices of a mar-

ket to diverge from the equilibrium quantities when

|L| > 1 and converge towards the equilibrium prices

when |L| < 1.

(5) The values of variable L assist SDO to smoothly transit

between exploration and exploitation.

(6) With the decrease of variableL, in early iterations, SDO

emphasizes exploration, yet in later iterations, SDO

focus on exploitation.

(7) In each iteration, when the fitness value of a commodity

price vector is worse than that of its corresponding

commodity quantity vector, this commodity price vec-

tor will be replaced.

(8) SDO is very simple to implement and require few

parameters to be adjusted.

The time complexity of SDO depends on the number of

variables, number of markets, maximum number of itera-

tions, roulette wheel selection, replacement, and updates of

commodity price and quantity in each iteration. We utilize

the roulette wheel selection in both the demand function and

supply function, which is of O(n2) in the worst case, and

the replacement is performed for each market over iterations

and is of O(nd) in the worst case. Therefore, the overall time

complexity of this algorithm is given as

O(SDO)

=O(T (O(Roulettewheel in choosing equilibrium price)

+O(Roulettewheel in choosing equilibrium quantity)

+O(Price update)+O(Quantity update)

+O(Replacement))) (19)

O(SDO)

= O(T (
1

2
n2 + n2 + nd + nd + nd))

= O(Tn2) + O(Tnd) (20)

where n is the number of markets, T is the maximum number

of iterations, and d is the number of commodities in each

market.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. BENCHMARK FUNCTIONS

A set of comprehensive benchmark functions with known

solutions are used to test the performance of algorithms.
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TABLE 1. Result comparisons of algorithms for unimodal functions.

We adopt 29 mathematical functions in literature [62]–[64]

for comparison. These functions are categorized into four

types: unimodal, multimodal, fixed-dimensional, and com-

posite. The unimodal functions (f1-f7) have only one global

optimum and no local optima, hence the convergence rate

and exploitation of algorithms can be examined. Yet mul-

timodal functions (f8-f13) have a considerable number of

local optima and low-dimensional functions (f14-f23) have

few local optima, so both are used to benchmark explo-

ration and local extrema avoidance of algorithms. Finally,

the composite functions (f24-f29) are complex multimodal

functions combining shifted, rotated, expanded and biased

functions, and their detailed description in the CEC 2005 spe-

cial session is available in [65]. These composite functions

are more challenging than unimodal and multimodal func-

tions because they can shift the global optima from the spe-

cific position to random position before each iteration and

occasionally relocate the global optima on the boundary of

search space. Therefore, they are especially adapted to test the

balance between exploration and exploitation of algorithms.

All the employed benchmark functions are described in

Appendix A.

B. EXPERIMENT SETUP AND COMPARATIVE ALGORITHMS

In order to test the performance of the proposed SDO algo-

rithm, some classic and recently proposed stochastic algo-

rithms are employed for comparison: GA, PSO,DE, CS,ABC

and GSA. Although numerous variants of algorithms have

been developed, the comparisons of standard versions can

be used to interpret the results of larger groups. In this test,

the population size is set as 50 for all the tested algorithms.

In addition, every algorithm runs 30 times for each function

and implements 50,000 function evaluations (FEs) in each

run. The results are based on the average performance of

these runs. Two performance evaluation indexes are used to

quantitatively compare all the algorithms: the average and

standard deviation of best-so-far solutions. The parameter

values of each algorithm are presented as follows.

PSO: Inertia coefficient linearly reduces from 0.9 to 0.2,

acceleration coefficients c1 = 2 and c2 = 2.

GA: Decreasing coefficient γ = 20, mutation rate

pm = 0.2, crossover rate pc = 0.8 and crossover adopts

roulette wheel method.

DE: Mutation factor F = 0.5 and crossover rate C = 0.5.

CS: Mutation probability pa = 0.25.

GSA: Initial gravitational constant G0 = 100 and decreas-

ing coefficient a = 20.

ABC: Limit parameter = n · d .

C. ANALYSIS OF EXPLOITATION CAPABILITY

The optimization results offered by the employed optimizers

on unimodal functions are described in Table 1, in which

‘Mean’ indicates the mean of best-so-far solutions and ‘Std’

indicates the standard deviation of best-so-far solutions.

As shown in Table 1, SDO provides highly competitive solu-

tions in terms of the ‘Mean’ and ‘Std’ indexes than all other

competitors. These results discover that SDO is more effec-

tive than its competitors in finding the best optimal solutions,

demonstrating its superior search ability in terms of exploita-

tion. This merit results from the exploitation mechanism in

SDO previously discussed.

D. ANALYSIS OF EXPLORATION CAPABILITY

Differing from unimodal functions, both multimodal and

fixed-dimensional functions are able to used to evaluate

exploration of algorithms. The optimization results offered

by different optimizers on multimodal and fixed-dimensional

functions are reported in Tables 2 and 3, respectively. From

these tables, SDO can obtain the best results of all the inves-

tigated algorithms for all the functions but functions f12, f13
and f20. However, SDO ranks only second to GA on both

functions f12 and f13, as well as performs better than PSO,
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TABLE 2. Result comparisons of algorithms for multimodal functions.

TABLE 3. Result comparisons of algorithms for low-dimensional functions.

GA and DE on function f20. The results reveal that SDO

shows a distinct advantage in terms of exploration. This is

owing to the fact that the exploration mechanism is integrated

into SDO.

E. ANALYSIS OF AVOIDANCE OF LOCAL OPTIMA

It is very difficult for algorithms to find the optimal solu-

tions of composite functions because they are required to

balance between exploration and exploitation. Therefore,

composite functions are very suitable for assessing local

optima avoidance which is able to well balance exploration

and exploitation. Table 4 shows the optimization results of

above-mentioned algorithms on composite functions. These

results prove that SDO algorithm is significantly effective in

balancing exploration and exploitation. Such a merit origi-

nated from an adaptive mechanism is employed to the update

of search agents in SDO algorithm: the early iterations tend to

be dedicated to exploration (|L| > 1) while the later iterations

to exploitation (|L| < 1).

F. ANALYSIS OF CONVERGENCE BEHAVIOR

Figs. 8-11 show the convergence curves of SDO and other

algorithms on different types of functions. Obviously, SDO

is very competitive with other metheuristic methods with
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TABLE 4. Result comparisons of algorithms for composition functions.

FIGURE 8. Convergence comparisons of algorithms for unimodal functions.

FIGURE 9. Convergence comparisons of algorithms for multimodal functions.

respect to convergence rate. SDO shows two different conver-

gence behaviors [41]. First, SDO is subject to be accelerated

quickly from the initial stage of iterations to the final stage

of iterations and then converges to the global optimum (i.e.,

f1, f2, f3). This is owing to that SDO can find the region

with the optimal solution in the early stage of iterations and

has an excellent local search ability. Second, SDO tends

to converges towards the optimal solution only in the later
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FIGURE 10. Convergence comparisons of algorithms for low-dimensional functions.

FIGURE 11. Convergence comparisons of algorithms for composite functions.

stage, this behavior probably results from that SDO fails

to find the promising region in the early stage while after

multiple attempts it finds the promising region with success

in the second half of iterations (i.e., f8, f12, f15, f24, f25, f27).

These results denote that SDO has a good ability to explore

the global optimum and avoid the local optima. Evidently,

these convergence curves reveal that SDO tends to adopt an

adaptive search mechanism to different functions, demon-

strating its better success in converging to the global optima

for different mathematical problems.

G. ANALYSIS OF SCALABILITY

Since many optimization problems in the real world have a

considerable number of variables, it is very important for us

to analyze the scalability of the algorithm. Both unimodal and

multimodal functions with a different number of dimensions

are employed in this experiment. The number of dimensions

is increased from 40 to 200 with the step of 10. Fig. 12 shows

the scalability comparisons of SDO and other algorithms on

these employed functions. It is obvious that SDO degrades

much more slowly than the other algorithms on most of the

scalable functions as the number of dimensions increases. For

function f8, although SDO degrades more quickly than GA

andDEwhen the number of dimensions is less than 120, how-

ever after that, this degradation of SDO is improved. These

figures discover that increasing the number of dimensions of

variable space has the least influence on the performance of

SDO.
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FIGURE 12. Scalability comparisons of algorithms for unimodal and multimodal functions.

H. ANALYSIS OF STATISITICAL SIGNIFICANCE

Wilcoxon Signed-Rank Test (WSRT) can effectively evaluate

the overall performance of an algorithm. The test of WSRT

with 95% significance level (a = 0.05) on 29 benchmark

functions in 30 runs is implemented. The analysis for the test

results is listed in Tables 5 and 6, respectively, where ‘=’

indicates that there is no statistically significant difference

between SDO and the comparative algorithm, ‘+’ indicates

that the null hypothesis will be rejected and SDO performs

better than the comparative one and ‘-’ vice versa. The sum

of ‘+’, ‘-’ and ‘=’ for each function in 30 runs is summarized

in Table 7. As we observe in these tables, the results show

that SDO has a much better performance at 95% signifi-

cance level than its competitors on these four types of test

functions.

IV. CONSTRAINT ENGINEERING PROBLEMS USING SDO

To further verify the performance of SDO algorithm, six con-

strained engineering problems are employed in this subsec-

tion. These constrained engineering cases are three-bar truss

design, cantilever beam design, tension/compression spring

design, rolling element bearing design, belleville spring

design, and hydrostatic thrust bearing design. They have

different constraints with different natures, thus a constraint

handling method needs to be utilized. There are different

constraint handling methods: static penalty, dynamic penalty,

adaptive penalty, annealing penalty, co-evolutionary penalty,

and death penalty. Of those, the most frequently used one

is the penalty function because of its simplicity and less

computational costs. Additionally, this method is not subject

to making use of the information of infeasible solutions.

Therefore, SDO algorithm is equipped with the death penalty

function to handle constraints in these engineering problems.

The optimization formulations of these 6 engineering prob-

lems are given in Appendix B.

A. THREE-BAR TRUSS DESIGN

This case, taken from [66] depicted in Fig. 13, needs to

deal with a statically loaded three-bar truss with the mini-

mum weight. It has three constraints on stress, deflection,

and buckling and two variables (x1 and x2) to adjust the

sectional areas. This case is very popular owing to its difficult

constrained variable space.

This case was employed by many scholars with some

metaheuristic methods in literature: SC [50], PSO-DE [67],

DEDS [68], HEAA [69], and CS [70]. Our method is com-

pared with these works and the comparisons of their results

are provided in Table 8. The results of these algorithms

report that SDO provides very competitive results in terms

of different indices with the same or less computational costs

compared to the other algorithms. The comparisons of the

best solutions offered by considered methods are provided

in Table 9. SDO is able to find the best optimal design of all

the considered optimizers. Also, it can be seen that although

the weights of three-bar truss offered by SDO, PSO-DE,

DEDS, and HEAA are equal, the obtained design variables

among them are different. Therefore, this suggests that our

algorithm can provide a new best optimal design for this

case. We give the function value and each constraint value
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TABLE 5. Statistical comparisons of WSRT for SDO vs GA, PSO, and DE.

with respect to FEs in Fig. 14, in which SDO offers a good

convergence rate for this problem.

B. CANTILEVER BEAM DESIGN

As illustrated in Fig. 15, the cantilever beam is composed

of 5 hollow square blocks with constant thickness [71]. The

beam is rigidly supported at the first block and there is vertical

force acting at the free end of the fifth block. So the objective

of this case needs to minimize the weight of the beam and

meanwhile only meet the constraint requirement on an upper

limit on the vertical displacement of the free end. There are

five decision variables that are respectively lengths of the

different blocks.

This problem is attempted using our method and many

reported metaheuristics, including SOS [72], CS [70],

MMA [71], GCA-I [71], GCA-II [71] and MFO [73], and

FIGURE 13. Three-bar truss design problem.

the comparisons of their results are provided in Table 10.

Overall, the results of SDO have an obvious advantage.
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TABLE 6. Statistical comparisons of WSRT for SDO vs CS, GSA, and ABC.

TABLE 7. Statistical results of WSRT for SDO.

In terms of the ‘Best’ index, SDO provides the best results

compared to the others. Meanwhile, the results provided by

SDO are very close to those provided by SOS in terms of the

‘Mean’ index. The comparisons of the best solutions offered

by reported algorithms are provided in Table 11. From this

table, the results reveal that SDO is able to obtain the best

optimal design for this problem. Fig. 16 shows the function

value and constraint value with respect to FEs.

C. TENSION/COMPRESSION SPRING DESIGN

This problem, originated from [74], needs to minimize the

weight of a tension/compression spring with respect to the
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TABLE 8. Result comparisons in literature for three-bar truss design. ‘‘NA’’ stands for not available.

TABLE 9. Comparisons of best solutions offered by reported optimizers for three-bar truss design.

FIGURE 14. Function value and constraint values versus FEs for three-bar
truss design.

FIGURE 15. Cantilever beam design problem.

constraints on shear stress, deflection, and surge frequency

shown in Fig. 17. The decision variables of this problem are

wire diameter (d), mean coil diameter (D), and number of

active coils (N ).

TABLE 10. Result comparisons in literature for cantilever beam design.

TABLE 11. Comparisons of best solutions offered by reported optimizers
for cantilever beam design.

This problem is tackled by our algorithm and some

other metaheuristic methods, such as GA2 [75], GA3 [76],

CA [77], CPSO [78], HPSO [79], PSO2 [80], QPSO [80],

UPSO [81], CDE [82], SSB [50], and (µ + λ)ES [83]. The

comparisons of their best results are shown in Table 12.
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FIGURE 16. Function value and constraint value versus FEs for cantilever
beam design.

TABLE 12. Result comparisons in literature for tension/compression
spring design.

As shown in this table, SDO outperforms the others for find-

ing the best optimal solutions in terms of the ‘Worst’, ‘Mean’

and ‘Std’ indexes. The comparisons of the best solutions

offered by reported algorithms are provided in Table 13. It has

been noticed that SDO is able to find another promising

design for this problem. The function value and each con-

straint value with respect to FEs are depicted in Fig. 18.

D. ROLLING ELEMENT BEARING DESIGN

This problem [85], [86] is to maximize the dynamic load

carrying capacity of rolling element bearing as illustrated

in Fig. 19. The maximization process is subject to con-

straints on the geometry and kinematics. This problem has

ten decision variables: pitch diameter (Dm), ball diameter

(Db), number of balls (Z ), inner and outer raceway cur-

vature coefficients (fi and fo), and other internal geometry

parameters (KDmin, KDmax,ε, e, and ζ ) that only appear in

constraints.

The problem was attempted by GA4 [84], TLBO [86],

ABC [86], andMBA [87], the best results of these approaches

FIGURE 17. Tension/compression spring design problem.

FIGURE 18. Function value and constraint values versus FEs for
tension/compression spring.

and SDO are compared in Table 14. It can be seen that the

proposed method is able to find the best optimal solutions in

terms of the ‘Worst’, ‘Mean’, ‘Best’, ‘Std’ indexes over the

other algorithms. Although the number of function evalua-

tions of SDO is more than those of both ABC and TLBO,

the overall results show that the performance of SDO is

considerably better that of both algorithms for this problem.

Table 15 represents the comparisons of best optimal solutions

for the considered algorithms in terms of design decision

variables and function values. This table reveals that SDO

obtains a design with the maximum dynamic load carrying

capacity. Fig. 20 shows the function value and each constraint

value with respect to FEs.

E. BELLEVILLE SPRING DESIGN

The objective of this design [88], as shown in Fig. 21, is to

minimize the weight of belleville spring. These constraints

consist of compressive stress, deflection, height to deflection,

height to maximum height, outer diameter, inner diameter,

and slope. There are four decision variables to be optimized

such as thickness of the spring (t), height (h) of the spring,

internal diameter of the spring (Di), and external diameter of

the spring (De).

The problem was solved by GA5 [88], GeneAS [89], Sid-

dal [90], ABC [86] and TLBO [86], and the best solutions

of various methods for this case are provided in Table 16.
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TABLE 13. Comparisons of best solutions offered by reported optimizers for tension/compression spring design.

FIGURE 19. Rolling element bearing design.

TABLE 14. Result comparisons in literature for rolling element bearing
design.

As shown in this table, SDO obtains the same results as both

methods in terms of the ‘Best’ index with less computational

efforts. However, the results provided by SDO are better than

those provided by ABC in terms of the ‘Worst’ and ‘Mean’

indexes. The comparisons of the best solutions offered by

reported algorithms are provided in Table 17. From this table,

SDO is able to offer a similar design compared to TLBO. This

is the best optimal solution obtained so far for this problem.

Fig. 22 shows the convergence rate of SDO for finding the

best optimal solution.

F. HYDROSTATIC THRUST BEARING DESIGN

The last utilized engineering problem [90], as shown

in Fig. 23, is the hydrostatic thrust bearing design problem.

TABLE 15. Comparisons of best solutions offered by reported optimizers
for rolling element bearing design.

TABLE 16. Result comparisons in literature for belleville spring design.

The objective of this problem is to minimize the power loss

subject to seven constraints on load-carrying capacity, inlet

oil pressure, oil temperature rise, oil film thickness and some
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FIGURE 20. Function value and constraint values versus FEs for rolling
element bearing design.

FIGURE 21. Belleville spring design.

TABLE 17. Comparisons of best solutions offered by reported optimizers
for belleville spring design.

physical requirements. The decision variables are bearing

step radius (R), recess radius (Ro), oil viscosity (µ), and flow

rate (Q).

FIGURE 22. Convergence curve of SDO for cantilever beam design.

TABLE 18. Result comparisons in literature for hydrostatic thrust bearing
design.

FIGURE 23. Hydrostatic thrust bearing design.

Table 13 provides the comparisons of the best results

obtained from SDO and other optimizers such as IPSO [91],

GASO [66], TLBO [86], ABC [86], GeneAS [89], and

BGA [89]. As we see in this table, SDO surpasses the

other optimizers for offering the best solutions in terms of

the ‘Worst’ and ‘Mean’ indexes with less or equal compu-

tational costs. Besides, SDO provides a competitive result

in terms of the ‘Best’ index compared to both TLBO and

ABC. The comparisons of the best solutions offered by

reported algorithms are provided in Table 19. This table

detailedly lists the best optimal variables and the best optimal
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TABLE 19. Comparisons of best solutions offered by reported optimizers for hydrostatic thrust bearing design.

FIGURE 24. Convergence curve of SDO for hydrostatic thrust bearing
design.

power loss offered by the above methods. The results indi-

cate that SDO is superior to four of the optimizers and per-

forms almost as well as TLBO. Fig. 24 shows that SDO is

able to effectively converge to the global optimum for this

problem.

V. CONCLUSIONS

The above study discover that SDO has an advantage over

other metaheuristic methods. First, the results of uncon-

strained test functions show the effectiveness of SDO in

terms of exploration, exploitation, local optima avoidance,

and convergence rate. Second, the results of constrained engi-

neering problems indicate the competiveness of our algo-

rthm in terms of computational expense and covergence

rate. Eventually, the study on a set of engineering problems

suggests the application of SDO in challenging real-world

problems.

The results on unconstrained functions show SDO is highly

competitive with PSO, ABC, DE, GA, GSA, and CS from

different aspects. The results on the unimodal functions

reveal the high exploitation ability of SDO. The results on

multimodal and fixed-dimensional functions prove the supe-

rior exploration ability of SDO. The results on composite

functions suggest the excellent local optima avoidance of

SDO. Despite, the good convergence rate of SDO is also

confirmed on all the unconstrained functions. Moreover,

the comprehensive results on constrained engineering prob-

lems evidence the success and effectiveness of SDO in solv-

ing real constrained problems.

There are several research directions for future work.

First, the binary and multi-objective versions of SDO may

be developed to solve complex discrete and multi-objective

problems, respectively. Second, SDO may be equipped with

some stochastic or evolutionary operators to enhance its opti-

mization capability. Additionally, the SDOmay be hybridized

with other stochastic algorithms to improve its optimization

capability. Eventually, SDO, its variants, and its hybridized

versions may all be applied to optimization problems in dif-

ferent fields.

APPENDIX A

See Tables 20–23.

APPENDIX B
A. THREE-BAR TRUSS DESIGN

Consider variable Ex = [x1, x2].

Minimize f1(Ex) = (2
√
2 x2 + x2) × l.

Subject to g1(Ex) =
√
2 x1 + x2√

2 x21 + 2x2x1
P− σ ≤ 0,

g2(Ex) = x2√
2 x21 + 2x2x1

P− σ ≤ 0 ≤ 0,

g3(Ex) = x2

x1 +
√
2 x2

P− σ ≤ 0.

where

l = 10cm, P = 2KN/cm2, σ = 2KN/cm2.

Variable range 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

73200 VOLUME 7, 2019



W. Zhao et al.: Supply-Demand-Based Optimization: A Novel Economics-Inspired Algorithm for Global Optimization

TABLE 20. Unimodal test functions.

TABLE 21. Multimodal test functions.

B. CANTILEVER BEAM DESIGN

Consider variable Ex = [x1, x2].

Minimize f2(Ex) = 0.0624(x1 + x2 + x3 + x4 + x5).

Subject to g1(Ex) = 61

x31
+ 37

x32
+ 19

x33
+ 7

x34
+ 1

x35
− 1 ≤ 0,

Variable range 0.01 ≤ xi ≤ 100, i = 1, · · · , 5.

C. TENSION/COMPRESSION SPRING DESIGN

Consider variable Ex = [x1, x2, x3] = [d,D,N ].

Minimize f3(Ex) = (x3 + 2)x2x
2
1 .

Subject to g1(Ex) = 1 − x3x
3
2

71785x41
≤ 0,

g2(Ex)=
4x22−x1x2

12566(x2x
3
1−x41 )

+ 1

5108x21
− 1≤0,

g3(Ex) = 1 − 140.45x1

x22x3
≤ 0,

g4(Ex) = x1 + x2

1.5
− 1 ≤ 0.

Variable range 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3,

2 ≤ x3 ≤ 15.

D. ROLLING ELEMENT BEARING DESIGN
Consider variable Ex = [Dm,Db,Z , fi, fo,KDmin,KDmax,

ε, e, ζ ].

Maximize

{

f4(Ex) = fcZ
2/3D1.8

b if Db ≤ 25.4mm

f4(Ex) = 3.647fcZ
2/3D1.4

b if Db > 25.4mm
.

Subject to g1(Ex) = φo

2 sin−1(Db/Dm)
− Z + 1 ≥ 0,

g2(Ex) = 2Db − KDmin(D− d) ≥ 0,

g3(Ex) = KDmax(D− d) − 2Db ≥ 0,

g4(Ex) = Dm − (0.5 − e)(D+ d) ≥ 0,

g5(Ex) = (0.5 + e)(D+ d) − Dm ≥ 0,

g6(Ex) = Dm − 0.5(D+ d) ≥ 0,

g7(Ex) = 0.5(D− Dm − Db) − εDb ≥ 0,

g8(Ex) = ζBw − Db ≤ 0,

g9(Ex) = fi ≥ 0.515,

g10(Ex) = fo ≥ 0.515.
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TABLE 22. Low-dimensional multimodal test functions.

where

fc = 37.91

[

1 +
{

1.04

(

1 − γ

1 + γ

)1.72

×
(

fi(2fo − 1)

fo(2fi − 1)

)0.4
}10/3





−0.3

×
(

γ 0.3(1 − γ )1.39

fo(1 + γ )
1
3

)

(

2fi

2fi − 1

)0.41

,

γ = Db cosα

Dm
, fi = ri

Db
, fo = ro

Db
,

φo = 2π − 2 cos−1

×{ {(D− d) /2 − 3 (T/4)}2
2 {(D− d) /2 − 3 (T/4)} {D/2 − (T/4) − Db}

,

× {D/2 − (T/4) − Db}2 − {d/2 + (T/4)}2
2 {(D− d) /2 − 3 (T/4)} {D/2 − (T/4) − Db}

}
T = D− d − 2Db,

D = 160, d = 90, Bw = 30, ri = ro = 11.033.

Variable range

0.5 (D+ d) ≤ Dm ≤ 0.6 (D+ d) ,

0.15 (D− d) ≤ Db ≤ 0.45 (D− d) , 4 ≤ Z ≤ 50,

0.515 ≤ fi ≤ 0.6, 0.515 ≤ fo ≤ 0.6,

0.4 ≤ KDmin ≤ 0.5, 0.6 ≤ KDmax ≤ 0.7,

0.3 ≤ ε ≤ 0.4, 0.02 ≤ e ≤ 0.1, 0.6 ≤ ζ ≤ 0.85.

E. BELLEVILLE SPRING DESIGN

Consider variable Ex = [t, h,Di,De].

Minimize: f5(Ex) = 0.07075π
(

D2
e − D2

i

)

t.

Subject to g1(Ex) = S − 4Eδmax
(

1 − µ2
)

αD2
e

[

β(h− δmax

2
) + γ t

]

≥ 0,

g2(Ex) =
(

4Eδmax
(

1 − µ2
)

αD2
e

[

(h− δ

2
)((h− δ) t + t3)

])

δ=δmax

−Pmax ≥ 0,

g3(Ex) = δ1 − δmax ≥ 0,

g4(Ex) = H − h− t ≥ 0,

g5(Ex) = Dmax − De ≥ 0,

g6(Ex) = De − Di ≥ 0,

g7(Ex) = 0.3 − h

De − Di
≥ 0.

where

α = 6

π lnK

(

K − 1

K

)2

,

β = 6

π lnK

(

K − 1

lnK
− 1

)

,

γ = 6

π lnK

(

K − 1

2

)

,
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TABLE 23. Composition test functions.

TABLE 24. Variation of f (a) with a.

Pmax = 5400lb, δmax = 0.2 in, S = 200000Psi,

E = 30 × 106psi, µ = 0.3, H = 2 in,

Dmax = 12.01 in, K = De/Di, δl = f (a) h,

a = h/t.

Values of f (a) vary as shown in Table 24.

Variable range 0.01 ≤ t ≤ 6, 0.05 ≤ h ≤ 0.5, 5 ≤ Di ≤
15, 5 ≤ Do ≤ 15.

F. HYDROSTATIC THRUST BEARING DESIGN

Consider variable Ex = [R,Ro, µ,Q].

Minimize f6(Ex) = QPo

0.7
+ Ef .

Subject to g1(Ex) = W −Ws ≥ 0,

g2(Ex) = Pmax − Po ≥ 0,

g3(Ex) = 1Tmax − 1T ≥ 0,

g4(Ex) = h− hmin ≥ 0,

g5(Ex) = R− Ro ≥ 0,

g6(Ex) = 0.001 − γ

gPo
(

Q

2πRh
) ≥ 0,

g7(Ex) = 5000 − W

π(R2 − R2o)
≥ 0.

where

W = πPo

2

R2 − R2o

ln(R/Ro)
,

Po = 6µQ

πh3
ln(R/Ro), Ef = 9336QγC1T

1T = 2(10P − 560),

P = log10 log10(8.122 × 106µ + 0.8) − C1

n
,

h = (
2πN

60
)2
2πµ

Ef
(
R4

4
− R4o

4
), γ = 0.0307, C = 0.5,

n = −3.55, C1 = 10.04, Ws = 101000,

Pmax = 1000, hmin = 0.001, 1Tmax = 50,

g = 386.4,N = 750.

Variable range 1 ≤ R ≤ 16, 1 ≤ Ro ≤ 16,

10−6 ≤ µ ≤ 16 × 10−6, 1 ≤ Q ≤ 16.
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