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Abstract—This paper presents a 4 MHz current control ring 

oscillator with a new temperature and supply voltage immune 

current reference implemented by 0.35 m CMOS technology. 

Compared to the conventional oscillator with current reference 

techniques, the proposed approach shows a significant 

improvement for the sensitivities of temperature and supply 

voltage. The current reference is designed by combining positive 

and negative temperature effect circuits, such that it can exempt 

from the temperature and supply voltage variations. By HSPICE 

simulation, this new current reference is insensitive to the supply 

voltage with variations of 0.47%~0.67% over the supply voltage 

range of 2.97V to 3.63V, and it is also insensitive to the 

temperature with variation of 366 ppm/ C over the temperature 

range of 40 C to 100 C. The proposed oscillator frequency is 

insensitive to the supply voltage with variations of 15%~20% 

over the supply voltage range of 2.97V to 3.63V, and it is 

insensitive to temperature with variation of 404 ppm/ C over the  

temperature range of 40 C to 100 C. 
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I. INTRODUCTION

Current reference is an essential block in many analog 
circuits, such as the bias sources for oscillators, amplifiers, and 
phase lock loops. For those applications, the current references 
must be insensitive to supply voltage and temperature 
variations. Since it is easy to implement a voltage reference by 
bandgap circuit, the current references can be derived from 
voltage references by applying Ohm’s law for voltage to 
current conversion [1]. However, this kind of current reference 
may take more silicon area since it contains some bipolar 
transistors, operational amplifier, and resistors. The current 
reference proposed by Sansen et al. [2] is a circuit without 
resistor. With an absolute temperature T, the current is 
proportional to T0.5 with 3.5V minimum supply voltage. The 
current reference proposed by Oquey et al. [3] is a low voltage 
approach using the PTAT-like technique. Here the resistor R is 
replaced by an n-channel MOSFET working in the triode 
region. Like [2], the output current is proportional to T0.5. It 
can work with a power supply as low as 1.2V and produce 1-
100 nA output current. However, this current reference is 
strongly dependent on the supply voltage. 

In this research work, we present a new current reference. 
The proposed current reference consists of two components. 

The first one is adopted from the well-known circuit given by 
Razavi’s text book [4], which uses two PMOS transistors as 
current mirror and a resistor to define the output current. This 
circuit exhibits a positive supply voltage coefficient and the 
current is also proportional to the absolute temperature (PTAT). 
The second component has the characteristics of negative 
supply voltage coefficient and negative temperature coefficient. 
The two circuits can compensate each other such that it 
provides a current insensitive to supply voltage and 
temperature. We apply the proposed current reference further 
to the current control  ring oscillator and make the ring 
oscillator have low sensitivity to temperature and supply 
voltage variations. 

The rest of this paper is organized as follows. Section 2 
describes the circuit descriptions and analyses. The simulation 
results are addressed in Section 3 and a brief conclusion is 
given in Section 4. 

II. CIRCUIT DESCRIPTION AND ANALYSIS

In this section, the circuit architecture and associated 
operating principles of temperature and supply voltage 
compensated ring oscillator are analyzed and discussed. The 
system block diagram of the current control ring oscillator with 
temperature and supply voltage compensated scheme is shown 
in Fig. 1(a); the system block diagram of the temperature and 
supply voltage compensated current reference is shown in Fig. 
1(b). The current reference is comprised by two parts, positive 
temperature current reference circuit and negative temperature 
current reference circuit, and the details of the current 
references are described in the following subsection. 

(a) 

(b) 

Figure 1. (a) Temperature and supply voltage compensated ring oscillator  

(b) Temperature and supply voltage compensated current reference 
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A. Positive temperature current reference circuit 

A well-known conventional current reference given by 
Razavi [4] is shown in Fig. 2. According to Fig. 2, the output 
current is given as follows: 
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where K is the ratio of the size of MN17 to MN18. From (1), the 
current reference is insensitive to the supply voltage. In fact, 
based on the simulation results depicted in Fig. 3 with a supply 
voltage range of 2.97V to 3.63V, the current reference still 
depends on the supply voltage slightly for the channel length 
modulation of transistors MP12 and MP13.

Figure 2. Positive temperature current reference circuit 

Figure 3. The simulation of currents versus supply voltage for the positive 

temperature current reference 

Figure 4. The simulation of currents versus temperature for the positive 

temperature current reference 

Moreover, due to the mobility in the denominator of (1), 
this current reference has the effect of positive temperature 
coefficient as shown in Fig. 4. 

B. Negative temperature current reference circuit 

The negative temperature current reference circuit proposed 
here is to compensate the positive temperature current 
reference. At first, we propose two different types of current 
references as the basic current operational component. 

Figure 5. Negative temperature current reference circuit 

The first component shown in block A of Fig. 5 is almost 
the same as the known current reference depicted in Fig. 2 
except that the resistor is replaced by transistor MN1 which 
works in the triode region. Besides, transistor MP2 is placed in 
between MP1 and MN2 to provide a bias voltage for MN1. As a 
result, MN1 works in the triode region, and I1 can be expressed 
as:
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where VGS= VDD, 1= nCox VDS, and 1=VTH/ . The 
second component of the proposed current reference shown in 
block B of Fig. 5 composes of MP6 - MP11 and MN9. Transistors 
MP6 - MP11 all work in the triode region. Based on HSPICE 
simulation, the current reference of these two components will 
be almost linearly dependent on the supply voltage. Therefore, 
I4 can be expressed as: 
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where VGS=VDD, 2= nCoxVDS, and 2=VTH+1/2(VDS).
According to blocks A and B of Fig. 4, MP0 and MP3 are a set 
of current mirror; MN9 and MN10 are another set of current 
mirror. By adjusting the ratio of (W/L)P3 and (W/L)N10, we can 
make 1(W/L)P3 to be smaller than 2(W/L)N10. According to 
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the operation of current subtraction (I6 = I3 I5), current I6

presents the negative supply voltage coefficient due to currents 
I5 behaving a larger supply voltage coefficient than I3.
Moreover, current I6 also presents the negative temperature 
coefficient due to the mobility. 

C. Current Adding circuit 

According to block C of Fig. 5 and Fig. 2, I7 and I10 are the 
duplicated currents of the negative temperature current 
reference and the positive temperature current reference, 
respectively. By adding currents of I7 and I10, we can derive a 
new current reference I11 which has low sensitivity to 
temperature and supply voltage variations. Fig. 6 shows the 
combination circuit to generate the temperature and supply 
voltage immune current I11 and the currents (I12 and I13)
required for the current control ring oscillator. 

Figure 6. Current Adding circuit 

D. Current Controlled Oscillator 

Fig 7 shows the current control oscillator (CCO). In Fig. 7, 
INV is a dummy circuit. The required references are provided 
from the circuit described in the previous subsection. The 
buffer can drive the capacitance loading as high as 30pF, and 
the designed output frequency is 4MHz. 

Figure 7. Current Controlled Oscillator (CCO) 

III. SIMULATION RESULTS

The HSPICE simulator has been performed on the 
temperature and supply voltage compensated ring oscillator 
using TSMC 0.35um models for the MOS device. Fig. 8 shows 
the current reference versus voltage variation simulation results. 
I7 and I10 exhibit linear relationship with the supply voltage 
from 2.97V to 3.63V. It is clear that current I11, I11=I7+I10, is 
weakly dependent on the supply voltage from 2.97V to 3.63V. 
Fig. 9 shows the current reference versus temperature variation 
simulation results. According to the simulation, I7 has the effect 
of negative temperature coefficient, and I10 has the effect of 

positive temperature coefficient from 40 C to 100 C.
Moreover, it is clear that current I11, I11=I7+I10, shows the 
insensitivity to the temperature variations. 

Figure 8. The simulation results of the currents versus supply voltages 

Figure 9. The simulation results of the currents versus different temperature 

The simulation results of the output frequency of the 
temperature and supply voltage compensated ring oscillator is 
shown in Figs. 10 and 11. Because the current reference I13

possesses low sensitivity to temperature and supply voltage 
variations according to Fig. 6, the oscillator frequency is 
proved to be insensitive to supply voltage with variations of 

15%~20% over the supply voltage range of 2.97V to 3.63V 

and insensitive to temperature with a variation of 404 ppm/ C

over a temperature range of 40 C to 100 C. The performance  
specification and comparisons with other research works of the 
ring oscillator are shown in Table. 1. 
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Figure 10. The simulation results of the CCO frequency versus supply 

voltages 

Figure 11. The simulation results of the CCO frequency versus different 

temperature 

TABLE I. PERFORMANCE SUMMARY AND COMPARISONS

Parameters [5] [6] [7] [8] [9] 
This

work

Process ( m) 0.5 0.25 0.28 0.25 0.5 0.35 

Frequency 

(Hz) 
80k 7M 2.4G 800M 12.8M 4M 

Supply 

Voltage (V) 
1 2.5 2.5 2.5 3 3.3 

Consume 

current ( A) 
1.14 600 7680 7580 133 67 

Temperature

( )
0

~80

-40 

~125 

-40 

~120 
N/A 

-40 

~125 

-40 

~100 

Area (mm2) 0.24 1.6 0.0121 N/A 0.1848 0.02 

IV. CONCLUSIONS

In this paper we propose a new negative temperature 
current reference circuit to compensate the positive temperature 
current reference and combine these two current references to 

form a new current reference which can exempt from the 
effects of temperature and supply voltage variations. This 
temperature and supply voltage immune reference is further 
applied to design a 4MHz current control oscillator. The 
simulation results prove that the proposed current reference is 
insensitive to the supply voltage with a variation of 

0.47%~0.67% over a supply voltage range of 2.97V to 3.63V, 
and it is also insensitive to temperature with variation of 366 

ppm/ C over the temperature range of 40 C to 100 C. The 
simulations also show that the 4MHz current control oscillator 
whose output frequency is insensitive to the supply voltage 

with variation of 15%~20% over the supply voltage range of 
2.97V to 3.63V, and it is insensitive to temperature with 

variation of 404 ppm/ C over the temperature range of 40 C

to 100 C.
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