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ABSTRACT
This paper introduces support envelopes—a new tool for an-
alyzing association patterns—and illustrates some of their
properties, applications, and possible extensions. Specifi-
cally, the support envelope for a transaction data set and
a specified pair of positive integers (m, n) consists of the
items and transactions that need to be searched to find any
association pattern involving m or more transactions and n
or more items. For any transaction data set with M trans-
actions and N items, there is a unique lattice of at most
M ∗ N support envelopes that captures the structure of the
association patterns in that data set. Because support en-
velopes are not encumbered by a support threshold, this
support lattice provides a complete view of the association
structure of the data set, including association patterns that
have low support. Furthermore, the boundary of the sup-
port lattice—the support boundary—has at most min(M, N)
envelopes and is especially interesting since it bounds the
maximum sizes of potential association patterns—not only
for frequent, closed, and maximal itemsets, but also for pat-
terns, such as error-tolerant itemsets, that are more general.
The association structure can be represented graphically as
a two-dimensional scatter plot of the (m, n) values associ-
ated with the support envelopes of the data set, a feature
that is useful in the exploratory analysis of association pat-
terns. Finally, the algorithm to compute support envelopes
is simple and computationally efficient, and it is straight-
forward to parallelize the process of finding all the support
envelopes.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms, Theory

Keywords: support envelope, association analysis, formal
concept analysis, error-tolerant itemsets

1. INTRODUCTION
This paper introduces support envelopes, which provide

a compact and computationally efficient approach for cap-
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turing the high-level structure of support based association
patterns such as frequent, closed, and error-tolerant item-
sets [8, 9, 13, 20, 19]. More specifically, the support envelope
for a transaction data set and a pair of positive integers
(m, n) consists of the items and transactions that need to
be searched to find all patterns involving a minimum of m
transactions and n items. Thus, the number of distinct en-
velopes is at most M ∗ N , where M is the number of trans-
actions and N is the number of items. For sparse data sets,
the number of support envelopes is typically much less than
M ∗ N .

Like other association patterns, e.g., frequent and closed
itemsets, support envelopes form a lattice. (We will call
this lattice the support lattice.) In particular, for any binary
matrix with M rows (transactions) and N columns (items),
there is a unique lattice that captures the structure of the
association patterns for that matrix. Standard association
analysis techniques for finding frequent, closed, or maximal
itemsets break down when the support threshold becomes
too low, and thus, cannot provide information about pat-
terns with low levels of support. However, because support
envelopes are not encumbered by a support threshold, the
support lattice provides a complete view of the association
structure of the data set, including association patterns that
have low support.

The boundary (positive border [11]) of the support lat-
tice, which we call the support boundary, is especially in-
teresting since it bounds the maximum sizes of potential
association patterns. For example, if an envelope on the
support boundary is characterized by the pair of integers
(m, n), then there are no non-empty envelopes or associa-
tion patterns with larger values of m and n. To illustrate,
if the support boundary of a data set contains the support
envelope characterized by (10, 5), then the data set cannot
contain a frequent itemset with 5 or more items that also
has more than 10 supporting transactions. Furthermore, the
support boundary is not just a bound on frequent, closed,
and maximal itemsets, but also on patterns, such as error-
tolerant itemsets (ETIs) [19], that are more general. An-
other attractive property of the support boundary is that it
contains at most min(M, N) support envelopes.

In addition to providing us with a theoretical foundation
for understanding—at least in part—the high-level structure
of association patterns, support envelopes allow the associa-
tion structure of a binary data to be represented graphically.
Specifically, the (m,n) values associated with the envelopes
in the data set can be displayed in a two-dimensional scatter
plot, which provides a global view of the structure of associ-



ation patterns in a data set. Additional information can be
added to this scatter plot by shading or coloring each point
based on the density—fraction of ones—of its corresponding
support envelope. Support envelopes are often fairly sparse,
i.e., have low density, but in some cases, support envelopes
can be relatively dense, and hence, are interesting not just
because of the information that they provide about other
association patterns, but also as patterns in their own right.
Thus, for some data sets, e.g., the kosarak data set discussed
in Section 4, we can use the scatter plot to identify dense
envelopes that can be investigated to find association pat-
terns of considerable interest, e.g., low support itemsets with
many items.

Support envelopes are also interesting from an algorithmic
point of view. We present a simple iterative algorithm that,
given only (m, n) and a binary data matrix, finds the sup-
port envelope for all the support-based patterns character-
ized by (m, n) in time proportional to (a) nnz, the number
of non-zero entries in the data matrix, and (b) num iter, the
number of iterations, which is typically small, i.e., less than
10 for data sets in this paper. This algorithm can compute
any individual support envelope without using the preceding
elements of the support lattice. (As discussed later, using
the lattice does, however, improve efficiency somewhat, i.e.,
the number of iterations is typically reduced to 2 or 3.) The
computational complexity of computing the entire support
lattice is O(M ∗ N ∗ nnz ∗ num iter), while the computa-
tional complexity of finding only the support boundary is
O(min(N log(M), M log(N)) ∗ nnz ∗ num iter). Thus, un-
like many association mining tasks, the computational com-
plexity of finding the support lattice or support boundary is
not inherently exponential. Also, because support envelopes
can be computed independently of the lattice, it should be
straightforward to parallelize finding either all envelopes or
just those envelopes on the support boundary.

Finally, we consider two simple extensions of support en-
velopes. First, support envelopes involving only the items
of one specific transaction provide a view of patterns with
respect to a particular transaction, i.e., the set of such ‘re-
stricted’ support envelopes will involve only those associa-
tion patterns that are guaranteed to contain the specified
transaction. Second, we consider support envelopes that
involve an additional constraint on items, namely, that a
certain fraction of the occurrences of an item must be in the
support envelope. Such an approach eliminates items that
are frequent across many patterns.

Overview Section 2 introduces support envelopes and an
algorithm for finding them via an informal example, while
Section 3 provides a formal analysis of support envelopes
and their properties, and also discusses algorithms for find-
ing an individual support envelope, the envelopes on the
support boundary, and the set of all envelopes for a data
set. Section 4 uses support envelopes to explore real trans-
action data sets, while extensions to the support envelope
concept are considered in Section 5. Section 6 discusses re-
lated work, and we conclude, in Section 7, with a summary
and indications for future work.

2. SUPPORT ENVELOPES: AN INFORMAL
INTRODUCTION

This section contains an informal introduction to support
envelopes, lattices, and boundaries. Consider the following
task: Construct an algorithm to identify all the items and

Table 1: Original transaction data set.
A B C D E row sum

1 1 0 1 1 1 4
2 0 1 0 1 0 2
3 0 1 1 1 1 4
4 0 0 1 0 1 2
5 0 1 0 1 0 2
6 0 1 0 1 0 2
7 1 0 1 1 1 4
8 1 0 1 1 1 4
9 1 0 0 1 0 2
10 1 0 1 1 1 4
11 0 1 1 1 0 3
12 1 0 0 0 1 2

col sum 6 5 7 10 7

Table 2: Data after eliminating rows with less than
3 items. Step 1.

A B C D E row sum

1 1 0 1 1 1 4
3 0 1 1 1 1 4
7 1 0 1 1 1 4
8 1 0 1 1 1 4
10 1 0 1 1 1 4
11 0 1 1 1 0 3

col sum 4 2 6 6 5

Table 3: Data after eliminating columns with less
than 3 supporting transactions. Step 2.

A C D E row sum

1 1 1 1 1 4
3 0 1 1 1 3
7 1 1 1 1 4
8 1 1 1 1 4
10 1 1 1 1 4
11 0 1 1 0 2

col sum 4 6 6 5

Table 4: Data after eliminating rows with less than
3 items. Step 3.

A C D E row sum

1 1 1 1 1 4
3 0 1 1 1 3
7 1 1 1 1 4
8 1 1 1 1 4
10 1 1 1 1 4

col sum 4 5 5 5

transactions that are involved in frequent itemsets with at
least n items, where by frequent we mean that the itemset
must appear in m or more transactions. Instead of trying
to find the interesting frequent patterns, we are asking for
something simpler—for the items and transactions involved
in such patterns.

We will use the data set provided in Table 1. Transactions
have the numeric labels 1 through 12, while items are labeled
with the letters ‘A’ through ‘E.’ This table also shows the
sums of each row and column, which represent, respectively,
the number of items in each transaction and the number of
transactions containing each item. For example, transaction
1 contains 4 items, while item A occurs in 6 transactions.

2.1 The Support Envelope
We start with a simple idea: Any itemset that has a sup-

port requirement of m must contain items that occur in at
least m transactions. Similarly, any itemset that contains n
items must be supported by transactions that have at least



n items. Thus, for example, suppose we are interested in
all itemsets that contain at least n = 3 items and have at
least m = 3 supporting transactions. From Table 1, we see
that we need consider only transactions (rows) 1, 3, 7, 8, 10,
and 11, since all other transactions have fewer than 3 items.
We are not saying that these transactions are definitely in-
volved in frequent itemsets with 3 or more items, only that
they might be.

Turning our attention to items, we now evaluate which
items are involved in itemsets of size 3 or more with a sup-
port of 3 or more. We might first look at the number of
transactions in which each item appears—see Table 1—but
such an approach does not take into account our previous
observation that some transactions should be eliminated. In
particular, it is only the support of items within transactions
1, 3, 7, 8, 10, and 11 that is important, as these are the only
transactions capable of supporting an itemset with 3 or more
items. After computing support within only these transac-
tions, we get the support for the five items to be, in order,
4, 2, 6, 6, 5—see Table 2. Thus, we can eliminate item B.

Of course, once we have eliminated item B, we have in-
validated our previous counts of how many items occur in
each transaction. After taking the elimination of item B into
consideration, the counts for transactions 1, 3, 7, 8, 10, and
11 are, respectively, 4, 3, 4, 4, 4, and 2—see Table 3. Thus,
transaction 11 can be eliminated—see Table 4. Further iter-
ations yield no change, and thus, we obtain the result that
all itemsets with 3 or more items and 3 or more supporting
transactions occur among some subset of items A, C, D, and
E and some subset of transactions 1, 3, 7, 8, and 10. This
set of items and set of transactions is a support envelope.

To verify the correctness of this result, we computed the
frequent itemsets with a support threshold of 3. These item-
sets are shown in Table 5 and are consistent with the results
of our example, i.e., they show that the only itemsets with
support of 3 or more are those involving items A, C, D, and
E. It is straightforward to verify—see tables 1 and 4—that
the only transactions that contain at least three of these
items are 1, 3, 7, 8, and 10.

Table 5: Frequent itemsets with support 3 or more.
1 item 2 items 3 items 4 items
A B C AC AD AE BD ACD ACE ACDE
D E CD CE DE ADE CDE

2.2 The Support Lattice and Boundary
For the data set in Table 1, all the support envelopes can

readily be computed by using the algorithm that we devel-
oped above for each (m, n) pair, where 1 ≤ m ≤ 12 and
1 ≤ n ≤ 6. (This algorithm, which we call the Support
Envelope Algorithm (SEA), is formally described in Section
3.3.) Not all values of m and n will yield non-empty support
envelopes, and some (m, n) pairs may yield the same sup-
port envelope, i.e., the same set of transactions and items.
Support envelopes can be organized as a lattice [4] by defin-
ing one support envelope to be ‘less than’ (a subset of) a
second support envelope if the items and transactions of the
first are a subset of the items and transactions of the second.

In Figure 1, we see a tree-like display of the support lat-
tice. Nodes represent individual support envelopes, while
lines represent the subset relationships between envelopes,
i.e., that a lower envelope is a subset of a higher envelope.

  

(5, 2) 
{1-12}  
{A-E} 

 

(6, 1) 
{1-12} 

{A,C,D,E}  
 

(7, 1) 
{1-12} 

{C,D,E} 
 

(10, 1) 
{1-3,5-11} 

{E} 
 

(6, 2) 
{1,3,4,7-12} 
{A, C,D,E} 

 

(2, 3) 
{1,3,7,8,10,11} 
{A,B,C,D,E} 

 

(4, 3) 
{1,3,7,8,10} 
{A,C,D,E} 

 

(5, 3) 
{1,3,7,8,10} 

{C,D,E} 
 

(1, 4) 
{1,3,7,8,10} 
{A,B,C,D,E} 

 

(4, 4) 
{1,7,8,10} 
{A,C,D,E} 

 

Figure 1: Support lattice for sample data.

Inside each box representing a support envelope are the val-
ues of m and n that characterize the envelope, as well as
the sets of transactions and items involved in the envelope.
Thus, for the envelope represented by the topmost node in
Figure 1, each of the items in the support envelope occurs in
at least 5 transactions and each transaction in the support
envelope contains at least 2 items. Since these conditions
are satisfied by all transactions and items, this root (or top)
envelope contains all the transactions and items in the data
set. While not illustrated by Figure 1, support envelopes
can have multiple parents and/or children.

Since each pair of integers (m, n) is associated with a sup-
port envelope (possibly the empty support envelope), we can
represent the entire set of support envelopes as a plot of an
M by N grid (M is the number of transactions and N is the
number of items), where each grid cell is shaded according to
its associated support envelope, and where each support en-
velope is assigned a different shade of gray. Figure 2 shows
the set of support envelopes using such a representation.
Once again, we have used the same shade of gray for all grid
cells, i.e., (m, n) pairs, that represent the same support en-
velope. Thus, the block in the upper left corner of Figure
2 represents the fact that all support envelopes with m ≤ 5
and n ≤ 2, are identical, i.e., contain the same transactions
and items. To identify the support envelope associated with
with each block in the figure, we find the largest possible
values of m and n of the block, i.e., we use the values of m
and n from the the lower right corner of the block. Thus,
for example, the big dark block in the upper left corner is
the (5, 2) support envelope. Also, as we will discuss in the
next section, if a support envelope is below (to the right
of) another support envelope, then it is a subset of that en-
velope, i.e., the transactions and items of the lower (more
rightmost) support envelope are subsets of the transactions
and items of the higher (more leftmost) support envelope.

For larger data sets, it is more convenient to view the set
of support envelopes as a scatter plot of the (m, n) values.
Such a plot is shown in Figure 3. To provide more informa-
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Figure 2: Support lattice for sample data - rectan-
gular format.

tion, we have shaded each point representing a support enve-
lope according to its density, i.e., the fraction of ones in the
block defined by the transactions and items in the envelope.
(This information can be gathered at almost no cost when
finding the support envelopes.) When a support envelope is
relatively dense, e.g., more than 50% dense, the envelope is
often an interesting pattern in own right, not just because of
the information it provides about other association patterns.
(All the envelopes in our example are relatively dense.) We
show examples of such interesting dense envelopes for real
data sets later in this paper.

A scatter plot does not explicitly show all the information
of the lattice, i.e., which envelopes are the immediate descen-
dants or parents of other envelopes. However, most of this
information is captured by the position of the points that
represent envelopes. Specifically, an envelope (point) that
is below and/or to the right of a second envelope (point) is
contained by that envelope. In our graphical exploration of
support envelopes later in the paper, we will focus on the
scatter plot of all the envelopes of a data set.

3. SUPPORT ENVELOPES: A FORMAL
INTRODUCTION

After a quick review of notation and some other prelim-
inaries, we define support envelopes, analyze the algorithm
for finding support envelopes, and discuss some properties
of support envelopes.

3.1 Preliminaries
In this section we take care of a few preliminaries.

3.1.1 Notation
An overview of notation is provided in Table 6.

3.1.2 Patterns Characterized by(m, n)

Support envelopes capture the structure of association
patterns that can be characterized with respect to a mini-
mum level of support (m), and a minimum number of items
(n). We make this more formal in the following definition.
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Figure 3: Support lattice for sample data - scatter
plot.

Table 6: Summary of Notation
Notation Description
D Data matrix of M rows and N

columns
T = {t1, t2, · · · , tM} Set of transactions (rows) of D
I = {i1, i2, · · · , iN} Set of items (columns) of D
X, Y A set of items
R, S A set of transactions
m Minimum number of transac-

tions for an envelope
n Minimum number of items for an

envelope
mm Total number of transactions in

an envelope
nn Total number of items in an en-

velope

Definition 1. Pattern Characterized by (m,n)
A pattern characterized by a pair of positive integers (m, n)
is a pattern that involves a set of items X and a set of trans-
actions R such that (a) every item of X occurs in at least
m transactions of R and every transaction of R contains at
least n items of X, and (b) m and n are maximal.

Many common types of association patterns fall into this
category, e.g., frequent itemsets and variations such as closed
and maximal itemsets [8]. Error-tolerant itemsets (ETIs)
[19], or more properly a slight variation of ETIs, can also
considered to be a pattern characterized by a pair of inte-
gers (m, n), as we show in the following discussion

3.1.3 Symmetric Error-Tolerant Itemsets
An ETI is a frequent itemset that allows a specified frac-

tion ε of the items to be missing from any one transaction,
e.g., if ε = 0.2, then 1/5 of the items in a transaction can
be missing. While ETIs are an important approach for ex-
tending association patterns, there is a problem with ETIs
as currently defined. For example, consider an ETI with
ε = 0.2, which consists of a set of 10 transactions and 5
items. While each transaction must contain at least 4 out of



5 items, items are not necessarily treated ‘equally,’ e.g., each
transaction could be missing the same item. The originators
of ETIs noted this issue, which can be problematic in the
degenerate case just mentioned, and avoided this degener-
ate case in an unspecified manner in their implementation.
However, it seems desirable, even beyond the current dis-
cussion, to modify the notion of an ETI to be more in line
with that of frequent itemsets, where all items play an equal
role in the pattern. To this end, we define a symmetric ETI.

Definition 2. Symmetric Error Tolerant Itemset

A symmetric ETI is a frequent itemset that allows a specified
fraction ε of the items to be missing from any one transaction
and a specified fraction β of transactions to be missing a
particular item.

Any symmetric ETI can be characterized by a pair of inte-
gers (m, n). For example, assume that we have a symmetric
ETI which has 12 transactions and 4 items, where ε = 1/4
and β = 1/3. Then, m = 8, i.e., each item must appear
in 8 transactions in the ETI, and n = 3, i.e., each transac-
tion must contain at least 3 of the items in the ETI. Thus,
symmetric ETI’s are contained in support envelopes. The
importance of this is that the support boundary is not only
a bound on frequent, closed, and maximal itemsets, but also
on patterns, such as symmetric ETIs, that are more general.

On a theoretical note, a support envelope can be consid-
ered as a type of symmetric ETI. Suppose that we have a
support envelope characterized by (m, n). If mm is the total
number of transactions in the envelope and nn is the total
number of items in the envelope, then the support envelope
is a symmetric ETI with ε = n/nn and β = m/mm. How-
ever, support envelopes have properties not shared by all
symmetric ETIs.

3.2 Definition of a Support Envelope
We now formally define a support envelope.

Definition 3. Support Envelope

A support envelope Em,n characterized by a pair of positive
integers (m, n) is a set of items X ⊆ I and a set of trans-
actions R ⊆ T which contains all patterns characterized by
any pair of positive integers (m′, n′) such that m′ ≥ m and
n′ ≥ n.

Expressed another way, the transactions and items of the
support envelope are the union, respectively, of all the trans-
actions and items of all patterns characterized by any (m′,
n′), such that m′ ≥ m and n′ ≥ n. Also, by construction,
there cannot be more than one support envelope per (m,
n) pair. However, as discussed previously and below, the
support envelopes for different pairs of integers (m, n) may
be identical, and in that case, we will refer to the support
envelope using the largest values of m and n.

3.3 The Support Envelope Algorithm (SEA)
The algorithm for finding support envelopes—SEA—is

shown below. We analyze the complexity, convergence, and
correctness of SEA, as well as discussing how SEA can be
used as the basis of algorithms for finding either the en-
velopes in the support boundary or the support lattice. Ini-
tial implementations of these algorithms are available from
[16].

Algorithm 1 Support Envelope Algorithm (SEA).

1: {Input: Data matrix D and a pair of positive integers
m and n}

2: repeat
3: Eliminate all rows whose sum is less than n.

(Eliminate all transactions with fewer than n items.)
4: Eliminate all columns whose sum is less than m.

(Eliminate all items in fewer than m transactions.)
5: until D does not change
6: return the set of rows (transactions) and columns

(items) remaining in D

Table 7: Evaluation Data Sets
Data Set # Transactions # Items Density

chess 3196 75 0.49
mushroom 8124 119 0.19

LA1 3204 31472 0.0048
kosarak 990,002 41,270 0.00019

Table 8: Statistics of Computing Support Envelopes
Data Set # Envelopes Time (sec) Avg Iter

chess 353 (37) 3.4 (0.6) 2.1
mushroom 535 (22) 4.7 (0.8) 2.1

LA1 26,678 (168) 570.2 (29.6) 3.1
kosarak 110,606 (318) 46,807 (390.8) 3.0

Some data sets that will be used to illustrate various as-
pects of the following algorithms are listed in Table 7. The
first three data sets can be found at the Frequent Itemset
Mining Implementations Repository [6], while the LA1 data
set is from the LA data of TREC-5 [22]. Table 8 shows
various statistics related to the computation of support en-
velopes for the given data sets. (The results in this table
were gathered by experiments performed on a 3.2 GHz Intel
Xeonr Linux system.) The first value in the # Envelopes
column is the number of envelopes for a data set, while the
value in parentheses is the number of envelopes on the sup-
port boundary. The first value in the Time column is the
time (in seconds) required to compute all the support en-
velopes for a data set, while the value in parentheses is the
time (in seconds) to compute the support boundary.

Complexity: The time complexity of SEA is propor-
tional to (a) the number of iterations, num iter, and (b)
the amount of time to test each row and column to see if
it should be eliminated. For a sparse matrix representation,
the time to sum a row or column and compare this sum to
m or n, is proportional to the number of non-zero entries
in the row or column. Therefore, the total time required
to check which rows and columns should be eliminated is
proportional to, nnz, the number of non-zero entries in the
entire matrix, and the overall time complexity of SEA is
O(M ∗ N ∗ nnz ∗ num iter).

If a parent of a support envelope is known, then finding
a support envelope is somewhat more efficient because we
can use the transactions and items of the parent envelope
to provide a smaller starting matrix. This effect is more im-
portant for larger data sets. For example, with the kosarak
data set shown in Table 7, the average number of iterations
is reduced from 8 to 3 by using a parent envelope. For
the LA1 data set, which is significantly smaller, the average
number of iterations is reduced from 4 to 3. For mushroom
and chess, the reduction is from 3 to 2.

The space required for SEA is O(nnz) plus the amount



of space required to store the support envelopes. While the
row and column indices can potentially require significant
space, there are a couple strategies that can be used to sig-
nificantly reduce memory requirements. First, we can store
only the indices in which an envelope differs from a parent
envelope. (Preliminary investigations indicate that this ap-
proach seems promising.) A second approach is to not store
the row and column indices at all since the entire envelope
can be quickly recomputed if needed.

Convergence: We show that SEA converges to a solu-
tion in a fixed number of steps.

Theorem 3.1. SEA converges to a solution in a fixed
number of steps whenever the input is a binary matrix D
and positive integers m and n.

Proof. Either SEA eliminates a row or column at each
step, eventually producing an empty matrix, or else SEA
terminates after a step in which D is unchanged. Thus, SEA
will converge to a solution in at most min(M, N) steps.

As mentioned, typically, convergence occurs in a much smaller
number of steps, i.e., less than 10 for the data sets in Table
7.

Correctness: Here we show that SEA finds support en-
velopes.

Theorem 3.2. Given the data matrix D and a pair of
positive integers (m, n), the set of items Y ⊆ I and trans-
actions S ⊆ T returned by SEA are the support envelope of
D characterized by (m,n), i.e., SEA( D, m, n ) = Em,n.

Proof. Consider any pattern that is characterized by
m′ ≥ m and n′ ≥ n and that involves the set of items
X ⊆ I and the set of transactions R ⊆ T . By Definition
1, every transaction in R must contain at least n items of
X and every item in Y must occur in at least m transac-
tions of R. Consequently, none of the transactions of R can
be eliminated in Step 3 of SEA since they are ‘supported’
by the items of Y . Also, none of the items of Y can be
eliminated in Step 4 of SEA since they are ‘supported’ by
the transactions of R. Thus, X ⊆ Y and R ⊆ S, i.e., the
items and transactions of this pattern are subsets of the
set of items and transactions found by SEA. From this, we
conclude that the items and transactions returned by SEA
contain those of Em,n. We still need to show that Em,n

contains the items and transactions returned by SEA. How-
ever, the set of items and transactions returned by SEA is
certainly a pattern characterized by (m, n) and must belong
to Em,n.

An Algorithm for Finding the Support Boundary
A straightforward approach to finding the support boundary
is to perform a binary search over possible values of n for
each value of m, or to perform a binary search over possible
values of m for each value of n. Such an approach results in a
conservatively estimated time complexity of O(min(N log(M),
M log(N))∗nnz∗num iter). (Practically, this means that it
is somewhat better to perform the binary search over values
of n if there are fewer rows than columns, and vice-versa.)
We omit a detailed description of this algorithm. An im-
plementation of this algorithm can be found at [16] and the
statistics from runs for real data sets are given in Table 8.

Algorithms for Finding All Support Envelopes A
simple approach to finding all the support envelopes is, for
each value of m, to find envelopes for each value of n up

to the limit imposed by the support boundary. (Again, this
means that it is somewhat better to perform our algorithm
by varying n for a fixed m if there are fewer rows than
columns, and vice-versa.) An implementation of this algo-
rithm can be found at [16], and statistics from runs for real
data sets are presented in Table 8.

Scalability A basic strategy for parallelizing the previ-
ous algorithm is to have each processor compute all the en-
velopes for a fixed value of m (or n) and all values of n (or
m). A similar approach could be used to parallelize the al-
gorithm for finding the support boundary. Issues that would
need to be considered include load balancing and the gener-
ation of duplicate support envelopes by different processors.

Another important scalability issue that needs investiga-
tion is how to best adapt the SEA algorithm for cases where
the data is large, i.e., where the data does not fit in main
memory and it is desirable to (a) access the data in a se-
quential manner and (b) make as few passes over the data
as possible. SEA can be implemented to access data in a
sequential manner if two copies of the data are kept, one
with the data ordered by rows and the other with the data
ordered by columns.

3.4 Properties of Support Envelopes
We have already encountered a number of the proper-

ties of support envelopes in the previous discussion. For
completeness and clarity, we summarize the properties of
support envelopes in this section. Actual proofs of these
properties can be found in our technical report [17].

For for each pair of integers (m, n), where 1 ≤ m ≤ M
and 1 ≤ n ≤ N , there is an associated support envelope—
perhaps the empty support envelope—which is the support
envelope that SEA will return when given (m,n) and the
data set D. However, as we saw in the example, the same
support envelope may be associated with more than one pair
of integers since the items and transactions that satisfy the
(m, n) constraints may actually satisfy stronger constraints.
We characterize a support envelope by the strongest support
and item constraints (i.e., by the maximum (m,n) values)
that it satisfies. A consequence of these two facts is that the
number of support envelopes in a data set is at most M ∗N .

One support envelope may contain another support enve-
lope, i.e., the items and transactions of one envelope may be
subsets of the items and transactions of another envelope.
Said another way, a support envelope defines a block of the
data set (matrix) D, and this block may contain the blocks
that correspond to other envelopes. Indeed, for a given sup-
port envelope characterized by (m, n), any envelope charac-
terized by (m′, n′), such that m′ ≥ m and n′ ≥ n, must be
a subset of the (m, n) envelope. This is not surprising, since
increasing m and n will likely eliminate items and transac-
tions.

Like frequent itemsets, support envelopes form a lattice.
For support envelopes the order relationship is the subset
relationship described above. Support envelopes that con-
tain no other (non-empty) envelopes are said to be on the
support boundary.

An interesting property that was not mentioned in the
example, is that the density of envelopes, i.e., the fraction
of 1’s in the block represented by the envelope, increases
as we move down the lattice. Thus, if one envelope con-
tains another, it must be less dense (or at least no more
dense) than the envelope that it contains. This means that



0 5 10 15 20 25
9000

8000

7000

6000

5000

4000

3000

2000

1000

0   

n (items)

m
 (

tr
an

sa
ct

io
ns

)

Density
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Support envelopes for mushroom data set.

the support boundary must contain the densest envelopes
in the support lattice. This does not mean, however, that
every envelope on the support boundary is denser than any
envelope elsewhere in the support lattice.

There can be at most min(M, N) envelopes on the support
boundary. Otherwise, two envelopes on the boundary would
have the same value of m or n and one would contain the
other. For a similar reason, the values of m and n are in-
versely related as we move along the support boundary, i.e.,
if we order the support envelopes to have increasing values
of m, then successive envelopes will have decreasing values
of n.

4. EXPLORING TRANSACTION DATA SETS
WITH SUPPORT ENVELOPES

In this section we demonstrate how support envelopes can
be used to explore the transaction data sets of Table 7.

4.1 Dense Data Sets: Mushroom and Chess
We begin by showing the support envelopes for the mush-

room and chess data sets in figures 4 and 5, respectively.
As before, we have shaded the points to show the density of
the support envelopes, i.e., the fraction of 1’s in the block
of items and transactions defined by the envelope. Both
of these data sets are relatively dense compared to many
transaction data sets and thus, the overall densities of the
envelopes are relatively high. For both data sets, the den-
sities of the envelopes are highest for envelopes with many
transactions, but few items. This reflects the fact that both
data sets have a few items that occur in most transactions.
In some cases, these ‘overly frequent’ items should be dis-
carded since they yield little information.

Also, for both data sets, there are no envelopes near the
origin. This reflects the fact that every item occurs in some
minimum number of transactions and that every transaction
contains some minimum number of items. For mushroom,
every item occurs in at least 4 transactions and every trans-
action contains exactly 23 items. For chess, every transac-
tion contains 37 items and and every item occurs in at least
1 transaction.

However, all association patterns characterized by (m, n)
values for which there are no points in the figures, can be
found in the transactions and items of the envelopes on the
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Figure 5: Support envelopes for chess data set.
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Figure 6: Plot of mushroom support envelope
(576,23).

inner boundary of the support lattice. Indeed, the root en-
velope corresponding to (1, 1)—and perhaps other pairs of
integers—is guaranteed to encompass all association pat-
terns in the data set. For mushroom, the root envelope is
characterized by the pair (4, 23), while for chess, the root
envelope is characterized by (1, 37).

Despite some similarities, the two sets of support envelopes
are quite distinct, e.g., the boundary of the mushroom data
set curves inward (towards the origin), while that of the
chess data set curves outward. Our observation, which is
based on a limited number of data sets, is that for sparser
data, the boundary is basically concave, while for denser
data sets, the boundary is basically convex. Of course, as fig-
ures 4 and 5 show, regardless of the overall curvature of the
boundary, it may—in different sections—actually be both
concave and convex.

As another example of how we might use support en-
velopes to analyze the structure of support patterns in a
data set, we remark that there is an unusually dense sup-
port envelope with 576 transactions and 23 items in the
mushroom data set. It has a density of 0.65, while most of
the envelopes around it have densities ranging from 0.3 to
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Figure 7: Support envelopes for LA1 data set.
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Figure 8: Support envelopes for kosarak data set.
Note: log scale.

0.4. Since this support envelope is somewhat anomalous,
we show its plot in Figure 6. The items and transactions
of the envelope have been sorted to put the denser region
of the support envelope toward the upper left hand corner.
Each gray pixel corresponds to a 1 in the envelope, while
each white pixel corresponds to a 0. The figure shows that
there is a group of 14 items that occur together in every one
of the 1728 transactions in the envelope. (Remember that
the total number of transactions (mm) and items (nn) in
an envelope is different from the m (support) and n (item)
constraints.)

Upon further analysis, we discovered that one of the columns
was the column 48, ‘gill-color:buff.’ There are exactly 1728
instances of item 48, every one of which occurs with 13 other
items (one of which is ‘poisonous’). This support envelope
is somewhat denser than the others around it because the
co-occurrence of 13 items is larger than is typical for this
data set.
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Figure 9: Plot of kosarak support envelope
(276,113).

4.2 Sparse Data Sets: LA1 and kosarak
For contrast, we show a graph of the LA1 support en-

velopes in Figure 7. LA1 is much more sparse and has more
items, although fewer transactions, then either mushroom or
chess. The support envelopes are relatively sparse compared
to those of both mushroom and chess. However, the density
does increase from 0.0048 for envelopes near the origin (up-
per left) to around 0.2 for envelopes at the boundary. The
two black dots in the upper right and lower left represent,
respectively, the longest document and the most frequent
item (word). The support boundary is extremely concave in
LA1.

The set of kosarak envelopes is shown in Figure 8. We
have used log

10
scales for both the m and n axes because

the m and n values have a much wider range of values.
However, if this were not the case, the support boundary of
kosarak would be even more concave than that of LA1.

Interestingly, some of envelopes on or near the kosarak
support boundary, with values of m between 100 and 1000
(between values of 2 and 3 on the log

10
scale) have relatively

high density. We investigated the boundary support enve-
lope (276, 113). Note that it would be difficult to investigate
patterns with such low support using traditional approaches.
Indeed, the results of the FIMI workshop [6], show that cur-
rent algorithms to find frequent, closed, or maximal itemsets
start to experience a sharp growth in run time at a support
threshold of about 0.1% (990) transactions.) The support
value for envelope (276, 113) is even lower than this, i.e.,
less than 0.03%.

Figure 9 shows a plot of the support envelope correspond-
ing to (276, 113), which has a density 0.993. This envelope
contains a frequent itemset of size 250, and we tried to find
this itemset using the algorithm, fpmax, which is available
from the FIMI website [6]. The program ran for more than a
week on a 2.8 GHz Intel Xeonr and produced a file with al-
most 5 million maximal itemsets. (We are not sure whether
the program terminated normally since memory usage had
grown to 1.2 GB shortly before it terminated.) In contrast,
the support boundary for kosarak was computed in approx-
imately 15 minutes on the same machine. (Computing the
boundary on a faster machine took only about 7 minutes.)



5. EXTENSIONS OF THE BASIC APPROACH
In this section, we discuss two additional extensions of

the basic approach: computing support envelopes with re-
spect to specific transactions or items and adding additional
constraints to support envelopes.

5.1 Transaction Specific Support Envelopes
When support envelopes are not very dense, they are of

interest only for the patterns that can be extracted from
them and for what they tell us about the overall structure
of association patterns. However, if a support envelope is
relatively dense, then the envelope is interesting as a pattern
in its own right. Thus, it may be useful to seek special situ-
ations where support envelopes are more likely to be dense.
To that end, we consider support envelopes associated with
a particular transaction (or item).

To illustrate this idea, we show an example using the LA1
data set. We constructed a data set specific to the first doc-
ument (transaction) in LA1 by eliminating all words (items)
that do not appear in this document. (This document comes
from the ‘Financial’ class.) We then computed the support
boundary of this document specific data set. Since we are
working in the document domain, we display the results
in a table that shows the parameters of the support en-
velopes and the words (items) that are part of the support
envelopes. (LA1 was processed using standard information
retrieval techniques, e.g., the words are stemmed and stop
words are eliminated.) The first support envelope consists of
the selected document and all its words, while successive en-
velopes consist of smaller subsets of these words. For succes-
sive envelopes along the boundary, the number of documents
increases, while the number of words (usually) decreases. In
other words, the pattern represented by the support enve-
lope is becoming more general as we move along the support
boundary from lower to higher values of m. The most inter-
esting support envelopes are those in the middle, since they
are not as specific as a particular document, nor so general
as to be uninteresting. The envelope with the highest value
of m contains the word, ‘home,’ which is the most frequent
word contained by the first document.

These support envelopes have a clear theme of a bank
bailout of the home savings and loan industry. However,
the patterns represented by these support envelopes are only
moderately strong, i.e., the support envelopes that contain
more than a few documents and items tend to have densities
in the range of 0.5 to 0.7. Nonetheless, recall that the regular
support envelopes for LA1 only have a density that is, at
best, around 0.2.

5.2 Constrained Support Envelopes
A special case of extending support envelopes that is easy

to implement and interpret involves adding a constraint to
the support envelope process. For example, very frequent
items show up in many association patterns, but provide
little useful information. One way to address this issue is
to require that the fraction of an item involved in an as-
sociation pattern meets some minimum threshold. (This
is formally defined by the notion of a hyperclique pattern
[18].) It is straightforward to add such a constraint to the
computation of support envelopes. In other words, given a
specified fraction f between 0 and 1, we eliminate an item

Table 9: Support boundary envelopes LA1 re-
stricted to words (items) in the first document
(transaction).

m n mm nn words

1 26 1 26 bailout bank billion board clos cost countri

deal expect feder goal govern hemorrhag home

hoyle industri karl loan overal quote rest sav

spokesman stop texa throughout

2 16 2 16 bailout bank billion board clos cost deal expect

feder govern home industri loan rest sav texa

3 13 3 13 bailout bank billion board cost deal feder govern

home industri loan sav texa

5 11 10 15 bailout bank billion board cost countri deal ex-

pect feder govern home industri loan rest sav

7 10 30 21 bailout bank billion board clos cost countri deal

expect feder goal govern home industri loan rest

sav spokesman stop texa throughout

13 9 38 17 bank billion board clos cost countri deal expect

feder govern home industri loan sav spokesman

stop throughout

21 8 46 14 bank billion board clos cost countri deal expect

feder govern home industri loan sav

33 7 80 14 bank billion board clos cost countri deal expect

feder govern home industri loan sav

54 6 150 14 bank billion board clos cost countri deal expect

feder govern home industri loan sav

80 5 197 11 bank billion board cost countri deal expect feder

govern home industri

121 4 348 11 bank billion board cost countri deal expect feder

govern home ndustri

193 3 552 9 board cost countri deal expect feder govern home

industri

298 2 532 4 countri expect govern home

676 1 676 1 home

Table 10: Support boundary envelopes LA1 re-
stricted to words in the first document and with the
additional constraint that 50% of the occurrences of
a word must be in the envelope.

m n mm nn words

140 3 894 16 bank billion board clos cost countri deal expect

feder goal govern home industri rest spokesman

stop

287 2 669 5 countri expect feder govern home

676 1 676 1 home

if does not occur in at least m transactions and at least f of
its total support occurs among the transactions of the sup-
port envelope. For example, if f = 0.5, then at least half
of the supporting transactions of an item must occur in the
support envelope. While a similar constraint could also be
applied to the rows as well, we do not pursue that approach
here.

To illustrate this approach, we find the support boundary
specific to the first document in the LA1 data set using a
threshold of 0.5. The results are shown in Table 10. There
are far fewer envelopes, but they still seem to capture much
of the meaning of the envelopes of Table 9. In particular,
the first envelope on the boundary no longer consists of all
the terms from the first document of LA1 that was used to
generate the reduced data set.

6. RELATED WORK
To our knowledge, the notion of a support envelope is new,

although the concept of an ‘envelope’ is common in mathe-
matics, where an envelope is a mathematical entity—usually
a curve—that bounds a collection of other mathematical en-
tities. The related notion of a cover has been used before in
association analysis, but for association rules [3, 12, 14].

The idea of support envelopes was inspired partly by var-
ious concepts in lattice theory [4] and formal concept analy-
sis [5], especially those ideas that have found their way into
association analysis [5, 7, 11]. In particular, a key motivat-
ing concept for us is the notion of efficiently representing
frequent itemsets via a lattice of closed itemsets [1, 13, 21].
More generally, closed itemsets are a specific example of con-



densed representations [2, 10]. However, support envelopes
are not a condensed representation since it is necessary to
keep the original matrix if the goal is to use support en-
velopes to actually find itemsets.

The idea of error tolerant itemsets (ETIs) [19] also played
an important role in our thinking. In particular, ETIs em-
phasize the notion that it is useful to consider a version
of frequent itemsets that relaxes the requirement that all
items be contained in all transactions. Support envelopes
also embrace this idea, and as we showed in Section 3.1.3,
are a special type of ETI.

Finally, there has been some recent work on computing
tight lower bounds for distributions of frequent and maximal
frequent itemsets [15]. Although this is a different line of
inquiry than we have pursued in this paper, such work is
also quite relevant to understanding the structure of support
based patterns in transaction data.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced support envelopes, a new tool

that is useful for exploring the high-level structure of associ-
ation patterns in a transaction data set. Support envelopes
are not encumbered by a support threshold and they pro-
vide information not only about frequent, closed, and maxi-
mal itemsets, but also about more general patterns, such as
symmetric error-tolerant itemsets. Support envelopes pro-
vide both a theoretical basis for understanding the structure
of association patterns and a graphical technique for visu-
alizing this structure. Furthermore, there are simple and
efficient algorithms to compute a single support envelope,
the support envelopes on the support boundary, or all the
support envelopes of a data set.

There is considerable potential for future work. Current
implementations for finding the support boundary support
or all support envelopes and could be improved and par-
allelized to provide additional performance. Also, the the-
oretical properties of support envelopes should be further
explored. In particular, the extensions of support envelopes
deserve further investigations since they may be useful both
for finding actual patterns, as well as for providing addi-
tional information about the overall structure of association
patterns. In particular, we hope to investigate whether we
can extend the notion of support envelopes to continuous
data. Finally, further work is necessary to more fully under-
stand what information can be extracted from scatter plots
of support envelopes.

8. ACKNOWLEDGMENTS
This work was partially supported by NASA grant #

NCC 2 1231, by DOE/LLNL grant W-7045-ENG-48, by
NSF grant IIS-0308264, and by the Army High Performance
Computing Research Center under the auspices of the De-
partment of the Army, Army Research Laboratory cooper-
ative agreement number DAAD19-01-2-0014. The content
of this work does not necessarily reflect the position or pol-
icy of the government and no official endorsement should
be inferred. Access to computing facilities was provided by
AHPCRC and Minnesota Supercomputing Institute.

9. REFERENCES
[1] Jean-Francois Boulicaut and Artur Bykowski. Frequent

closures as a concise representation for binary data mining.
In PAKDD 2000, pages 62–73, 2000.

[2] J.F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a
condensed representation of boolean data for the

approximation of frequency queries. Data Mining and
Knowledge Discovery Journal (DMKD), 7(1):5–22, 2003.

[3] Laurentiu Cristofor and Dan A. Simovici. Generating an
informative cover for association rules. In ICDM 2002, 9-12
December 2002, Maebashi City, Japan, pages 597–600.
IEEE Computer Society, 2002.

[4] B. A. Davey and H. A. Priestley. Introduction to Lattices
and Order. Cambridge University Press, 2nd edition, 2002.

[5] B. Ganter and R. Wille. Formal Concept Analysis –
Mathematical Foundations. Springer, May 1999.

[6] Bart Goethals and Mohammed J. Zaki. Frequent Itemset
Mining Implementations Repository (FIMI). This site
contains a wide-variety of algorithms for mining frequent,
closed, and maximal itemsets, http://fimi.cs.helsinki.fi/.

[7] Dimitrios Gunopulos, Heikki Mannila, Roni Khardon, and
Hannu Toivonen. Data mining, hypergraph transversals,
and machine learning. In Proceedings of the sixteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 209–216. ACM Press, 1997.

[8] Jiawei Han and Micheline Kamber. Data Mining: Concepts
and Techniques. Morgan Kaufmann Publishers, 2000.

[9] Jochen Hipp, Ulrich Güntzer, and Gholamreza
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