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A fundamental question exists pertaining to memory
retrieval: Does it occur in a continuous or an all-or-none
manner? These two possibilities have been described
using two general classes of memory models that de-
scribe the cognitive processes of recognition memory
(i.e., item memory) and source memory (i.e., memory
for contextual information): the continuous or signal de-
tection models (Banks, 2000; Johnson, Hashtroudi, &
Lindsay, 1993; Qin, Raye, Johnson, & Mitchell, 2001;
Slotnick, Klein, Dodson, & Shimamura, 2000) and the
all-or-none or high threshold models (Batchelder & Riefer,
1990; Bayen, Murnane, & Erdfelder, 1996; Riefer, Hu, &
Batchelder, 1994; i.e., the recollection component of the
dual-process model, see Yonelinas, 1999). One method
of distinguishing between these two models of memory
is to analyze the receiver operating characteristic (ROC;
i.e., hit rates plotted against false alarm rates). The shape
of the ROC is predicted to be different depending on
whether memory retrieval occurs in a continuous or an
all-or-none manner. To better understand the basis of the
disparate predictions regarding ROC shape, we first con-
sider the main signal detection and threshold models of

recognition memory and source memory in the context
of a source memory experiment.

Models of Recognition Memory 
and Source Memory

ROC shape is assumed to depend on the characteris-
tics of the underlying distributions in decision space
(Green & Swets, 1966; Macmillan & Creelman, 1991).
Figure 1 shows the decision space dictated by a two-
dimensional unequal variance signal detection theory
model in a standard source memory paradigm. In this ex-
ample, to-be-remembered words are first spoken in a
male or female voice. Later, participants are presented
with words previously spoken by the male (male source),
words previously spoken by the female (female source),
and new words (new) and make a recognition memory
and source memory decision. Source memory, in this
case, refers to memory for the speaker of a previously
presented word. For each word at test, both recognition
memory strength and source memory strength are dic-
tated by the underlying Gaussian probability distribution
in decision space, where recognition memory strength is
defined as the distance (d′) between the male source and
new or between the female source and new, each with a
distribution standard deviation ratio (σn/σs), whereas
source memory strength is defined as the distance (d′)
between the male source and female source, also with a
standard deviation ratio (σn/σs). This model is associated
with a continuous process of memory retrieval, akin to
familiarity, associated with both recognition memory
and source memory (i.e., a continuous single process un-
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Does memory retrieval occur in a continuous or an all-or-none manner? The shape of the receiver
operating characteristic (ROC) has been used to answer this question, with curvilinear and linear mem-
ory ROCs indicating continuous and all-or-none retrieval processes, respectively. Signal detection mod-
els (e.g., the unequal variance model) correspond to a continuous retrieval process, whereas threshold
models (including the multinomial model and the recollection component of the dual-process model)
correspond to an all-or-none process. In studies of source memory, Slotnick et al. (2000) and others
have observed curvilinear ROCs (supporting the unequal variance model), whereas Yonelinas (1999)
observed linear ROCs (supporting the dual-process model). We resolve these seemingly inconsistent
results, showing that source memory ROCs are naturally curvilinear but can appear linear when non-
diagnostic source information is included in the analysis. Furthermore, the unequal variance model ac-
counted for both recognition memory and source memory ROCs, supporting a continuous process of
memory retrieval.
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derlies both types of memory retrieval). A classic one-
dimensional unequal variance signal detection model of
source memory can be observed by projecting the two-
dimensional female source and male source distributions
to one dimension. Two-dimensional recognition memory
and source memory model parameters (d′ and σn/σs) are
each fit independently in such a one-dimensional space
(e.g., Banks, 2000; Slotnick et al., 2000).

A one-dimensional unequal variance model of source
memory is shown in Figure 2A. Decision space also con-
sists of one or more decision criteria that delineate the
boundary between different behavioral responses. In the
present example, there are six criteria (C1–C6) that might
correspond to the 7 responses in a confidence rating ex-
periment (1 � very sure female, 2 � moderately sure fe-
male, . . . , and 7 � very sure male). For example, on a
given trial, if memory strength falls between C1 and C2, a
participant will respond “2.” Each criterion is associated
with a hit rate p(“male” response/male source), the area
under the male source distribution to the right of the crite-

rion and a false alarm rate p(“male” response/female
source), the area under the female source distribution to
the right of the criterion, which define a point on the ROC
(Figure 2B). The z-ROC is a related means of assessing the
relationship between hit rate and false alarm rate (Fig-
ure 2C) and is constructed by plotting the z-transformation
(i.e., conversion into standard deviation units; see Macmil-
lan & Creelman, 1991) of ROC hit rates and false alarm
rates. The shapes of the underlying distributions in deci-
sion space dictate that the unequal variance memory ROC
is always curvilinear (Figure 2B), whereas the unequal
variance memory z-ROC is always linear (Figure 2C).

In contrast to the unequal variance model of source
memory, Figure 2D presents a two-high threshold model
associated with an all-or-none process of source memory
retrieval. The all-or-none property of this model occurs
because of the two thresholds in decision space that
specify the boundaries beyond which the two distribu-
tions no longer overlap. Above Threshold 2, for example,
a participant completely recollects that an item was pre-
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Figure 1. Decision space associated with a two-dimensional unequal

variance (UEV) signal detection model of recognition memory and
source memory. The recognition memory axis is shown to the right,
where recognition memory strength systematically increases from new
toward female and male sources. The source memory axis is orthogonal
to the recognition memory axis. Recognition memory strength is defined
as the distance (d′) between the male source and new distribution and
also the distance between the female source and new distribution; source
memory strength is defined as the distance between the male and female
source distributions. Each distribution can have a unique standard de-
viation (σ), hence the name unequal variance model. Words previously
spoken by a male (male source), words previously spoken by a female
(female source), and new words (new) each have a probability of recog-
nition memory strength and source memory strength dictated by their
respective underlying distributions (i.e., probability density functions)
in decision space.
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sented by the male source. By contrast, in the area where
the two memory distributions overlap, a participant has
no diagnostic source information for an item and can
only guess at the source. In other words, in this area of
overlap the distributions have a constant ratio, translat-
ing into an equivalent (linear) increase in hit rate and
false alarm rate with progressively more lenient criterion
placement. Because of this, the corresponding two-high
threshold memory ROC is always linear (Figure 2E),
whereas the two-high threshold memory z-ROC is al-
ways curvilinear (and concave; Figure 2F).

Memory Model Predictions
The unequal variance signal detection model (Slotnick

et al., 2000) assumes that the underlying distributions in

decision space are Gaussian (Figure 1) and thus predicts
that the recognition memory ROC and source memory
ROC will be curvilinear, whereas the recognition memory
z-ROC and source memory z-ROC will be linear.

The multinomial model (Batchelder & Riefer, 1990;
Riefer et al., 1994) assumes that recognition memory is
a one-high threshold process (see Macmillan & Creelman,
1991), whereas source memory is a two-high threshold
process. A revised version of the multinomial model as-
sumes that both recognition memory and source memory
are two-high threshold processes (Bayen et al., 1996; Yu &
Bellezza, 2000). It follows that the multinomial model pre-
dicts that the recognition memory ROC and source mem-
ory ROC will be linear, whereas the recognition memory
z-ROC and source memory z-ROC will be curvilinear.

Figure 2. (A) Decision space associated with a one-dimensional unequal variance (UEV) signal detection model of source memory.
The decision criteria (C1–C6) dictate how behavioral responses are assigned. (B) Curvilinear UEVmodel source memory ROC con-
structed by plotting the hit rate versus false alarm rate for each criterion, shown as circles. The smooth curve was constructed by sweep-
ing a criterion across decision space and plotting the resultant hit rate versus false alarm rate. (C) Linear UEV model source memory
z-ROC constructed by plotting the z-transformation of the ROC hit rates and false alarm rates. (D) Decision space associated with a
one-dimensional two-high threshold (2HT) model of source memory. In addition to multiple criteria, two thresholds are shown below
and above which only a single source distribution exists. (E) Linear 2HT model source memory ROC with points, shown as circles, cor-
responding to criteria and the line constructed by sweeping a criterion across decision space and plotting the successive hit rates versus
false alarm rates. (F) Curvilinear 2HT model source memory z-ROC.
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The dual-process model of memory (Atkinson & Juola,
1974; see Jacoby, 1991) can be viewed as a hybrid be-
tween a signal detection model and a threshold model. In
this model, both familiarity and recollection are assumed
to contribute toward recognition memory. Jacoby’s dual-
process model of recognition memory has been placed in
the signal detection framework, in which familiarity was
modeled as a continuous process, using equal variance
Gaussian memory strength distributions in decision space,
and recollection was initially modeled as a one-high
threshold process (Yonelinas, 1994). The dual-process
model has been extended to include source memory and
revised such that recollection is assumed to be a two-
high threshold process (Yonelinas, 1999). As such, the
dual-process model predicts that the recognition mem-
ory ROC and the recognition memory z-ROC could be
linear or curvilinear, whereas the source memory ROC
will be linear and the source memory z-ROC will be
curvilinear (when item familiarity is approximately
equal, as is generally the case in source memory exper-
iments).

Present Status of Memory Models 
and Motivation

A number of studies have provided evidence that recog-
nition memory ROCs are curvilinear and recognition
memory z-ROCs are linear (Heathcote, 2003; Slotnick
et al., 2000; Yonelinas, 1994, 1999). These results argue
against the validity of the multinomial model but are
consistent with both the unequal variance model and the
dual-process model. Given that both the unequal vari-
ance model and dual-process model can predict a curvi-
linear recognition memory ROC, it is inherently difficult
to distinguish between these models by assessing the
shape of the recognition memory ROC (but see Glanzer,
Kim, Hilford, & Adams, 1999, and Heathcote, 2003).
Because of this, many investigators have turned to the
source memory ROC, which is predicted to be curvilin-
ear by the unequal variance model but linear by the dual-
process model, and the source memory z-ROC, which is
predicted to be linear by the unequal variance model but
curvilinear by the dual-process model. Source memory
ROC and source memory z-ROC results have been in-
conclusive; Yonelinas (1999) has observed linear source
memory ROCs and curvilinear z-ROCs, whereas other
investigators have observed curvilinear source memory
ROCs and linear z-ROCs (Qin et al., 2001; Slotnick et al.,
2000). One of the aims of the present study is to uncover
the basis of these inconsistent source memory ROC/z-ROC
results.

Consider, for example, the studies conducted by Yoneli-
nas (1999) and Slotnick et al. (2000), both of which em-
ployed a task in which participants made an old–new
confidence rating and a source A/source B confidence
rating. There was a key difference in these studies—
Yonelinas analyzed the data by summing over all levels
of old–new response ratings, yielding collapsed source

responses to generate the source memory ROC and z-ROC,
whereas Slotnick et al. analyzed both collapsed source
responses and the source response ratings, correspond-
ing to the highest old–new rating to generate the source
memory ROC and z-ROC. Yonelinas observed linear
source memory ROCs and curvilinear source memory
z-ROCs. However, Slotnick et al. observed that source
memory ROCs were more curvilinear (and source mem-
ory z-ROCs were more linear) when they were derived
from the highest old–new response rating (i.e., refined
source memory ROCs/z-ROCs) than when they were de-
rived from all levels of the old–new responses (i.e., col-
lapsed source memory ROCs/z-ROCs).

Why would computing source memory ROCs/z-ROCs
from all levels of old–new confidence ratings produce
more linear ROCs and more curvilinear z-ROCs than
computing these source memory ROCs/z-ROCs from the
highest old–new confidence rating? We hypothesize that
collapsing over all old–new responses adds “noise” to
the source memory data. In other words, participants
may be more likely to guess the source of an item when
they are unsure whether the item is old or new. Inclusion
of guessing responses from lower old–new response rat-
ings may tend to flatten or linearize the memory ROC
and make the z-ROC more curvilinear, a possibility echo-
ing that put forth by Ratcliff, McKoon, and Tindall (1994).
Supporting this, DeCarlo (2003) showed that higher
recognition memory strength was correlated with higher
source memory strength and argued that collapsing over
old–new responses can bias parameter estimates. Fur-
thermore, Hilford, Glanzer, Kim, and DeCarlo (2002)
have proposed a variant of the unequal variance signal
detection model with a parameter that essentially elimi-
nates forgotten items (i.e., studied items with low old–
new response ratings; see the General Discussion sec-
tion), and have shown that inclusion of such items dis-
torts the source memory ROC/z-ROC. If our hypothesis
is correct, participants should be less likely to guess the
source when they are confident that the item is old (as
shown by DeCarlo, 2003); thus high old–new confidence
ratings should be associated with a refined (more curvi-
linear) source memory ROC and (more linear) source
memory z-ROC. Although less frequently utilized than
collapsed ROCs/z-ROCs, in part due to the need for a
dual-judgment paradigm, conditional ROCs/z-ROCs have
been constructed for nearly half a century (Clarke, Bird-
sall, & Tanner, 1959; Macmillan & Creelman, 1991). In
short, we hypothesize that the source memory ROC is
naturally curvilinear and the source memory z-ROC is
naturally linear but that the ROC can appear linear and
the z-ROC can appear curvilinear when including data
in which participants guess the source.

We examined this hypothesis in three ways. First, we
reanalyzed a dataset from Yonelinas (1999, Experiment 2)
in which we assessed the shape of the source memory
ROC and z-ROC when derived from old –new confi-
dence ratings that contained diagnostic source informa-
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tion. Second, we constructed an analytical model to de-
termine the effect of parametric increases of noise on the
shape of the source memory ROC and z-ROC. Third, we
conducted two experiments to empirically determine
whether source memory ROCs are more likely to be lin-
ear and source memory z-ROCs are more likely to be
curvilinear under conditions of low, compared with high,
memory performance (i.e., lower vs. higher diagnostic
source information). All of these methods produced re-
sults that were consistent with our hypothesis that source
memory ROCs are curvilinear but can appear linear under
noisy conditions and source memory z-ROCs are linear but
can appear curvilinear under noisy conditions. Finally,
another aim of the present study was to evaluate the un-
equal variance model and two-high threshold models of
recognition memory and source memory by comparing
the shapes of recognition memory ROCs and z-ROCs
and source memory ROCs and z-ROCs with those pre-
dicted by these models.

REANALYSIS OF YONELINAS (1999)

Method
Data collection and experimental protocol. The data under

investigation were collected during a source memory experiment
conducted by Yonelinas (1999, Experiment 2). Twenty-four under-
graduates participated in this experiment, and the stimuli consisted
of words randomly selected from the Toronto word pool. During the
study phase, the participants first heard 80 words presented by a
male, followed by 80 words presented by a female; they had been
instructed to remember each word and which voice had spoken each
word. During the test phase, the participants were presented with a
booklet that contained the 160 study words and 80 new words in
random order. The participants made two judgments for each word:
(1) confidence that the word was in the study phase (1 � sure not
studied and 6 � sure studied) and (2) confidence of the word’s
source (1 � sure female voice and 6 � sure male voice). Summing
across the participants, this resulted in a 6 � 6 matrix for words
from each of the three sources: the male source, the female source,
and new. As illustrated in Table 1, the response matrices were or-
ganized such that each row corresponded to each of the 6 old–new
confidence ratings (e.g., the top row referred to very sure old) and
each column corresponded to each of the 6 source confidence rat-
ings (e.g., the first column referred to very sure female). In this par-
adigm, words were grouped by speaker at study, such that differen-
tial source familiarity could have been used to some degree during
source memory judgments. However, according to dual-process
theory, the linear source ROCs observed by Yonelinas (1999) indi-
cate that the sources in this paradigm were of similar familiarity
(otherwise, source ROCs would have been curvilinear) and source
judgments can be assumed to rely for all practical purposes solely
on the process of recollection (i.e., a two-high threshold model).

Collapsed ROC/z-ROC construction. When we plotted the
collapsed source memory ROC, we summed the male source and
female source response data over all of the old–new ratings, thus
converting each two-dimensional response matrix into a one-
dimensional response matrix (bottom rows in Table 1; note that if
the participants only made source ratings, without old–new confi-
dence ratings, this would effectively be the same as collapsing over
old–new ratings). Frequencies were then computed for each of the
six source ratings. After this, the male source was arbitrarily desig-
nated as the target, and the source ratings were cumulated in the di-
rection of decreasing confidence “male” (right to left), resulting in

a series of hit rates. Similarly, the female source frequencies were
cumulated in the same direction, resulting in a series of false alarm
rates. A plot of these hit rates versus false alarm rates defined the
collapsed source memory ROC (for additional procedural details
on ROC construction, see Macmillan & Creelman, 1991). The
source memory z-ROC consisted of the z-transformation of the
ROC points. The old–new recognition memory ROC and z-ROC
were computed in a similar manner by first collapsing over source
ratings (yielding the right columns in Table 1) and then comparing
the male source and new (male vs. new) with the female source and
new (female vs. new). Models were fit using the maximum likeli-
hood procedure (Press, Teukolsky, Vetterling, & Flannery, 1996),
where the best-fit two-high threshold model was determined by fit-
ting a line to the ROC and the best-fit unequal variance model was
determined by fitting a line to the z-ROC.

Refined source memory ROC/z-ROC construction. Because
source memory strength is dependent on old–new confidence rat-
ing, in that higher confidence “old” responses are associated with
greater source memory (DeCarlo, 2003; Slotnick et al., 2000), the
data used to construct the refined ROC/z-ROC was restricted to the
source response matrix rows that contained diagnostic source in-
formation (see Table 1). A source memory ROC corresponding to
each old–new confidence rating was constructed in the same man-
ner as the collapsed source memory ROC. Then, the unequal vari-
ance model was fit to each of these ROCs, resulting in associated
values of d′ and σn/σs (the ratio of female source standard deviation
to male source standard deviation in decision space). Only old–new
confidence ratings that resulted in a d′ significantly greater than
zero (i.e., the top two rows of the male and female source response
matrices, see the Results section), as assessed by using a two-tailed
t test, were collapsed and then used to plot the refined source mem-
ory ROC and z-ROC.

Table 1
Measured and Collapsed (Summed) Confidence Ratings From

Yonelinas (1999, Experiment 2)

Female Male

1 2 3 4 5 6 Σ

Male Source

Old 6 79 64 75 40 119 433 810
5 12 77 43 48 71 10 261
4 2 35 84 68 27 3 219
3 4 34 119 82 7 0 246
2 4 29 130 75 2 2 242

New 1 6 16 71 43 3 3 142

Σ 107 255 522 356 229 451 1,920

Female Source

Old 6 489 119 62 40 56 84 850
5 24 105 51 40 45 9 274
4 8 33 82 54 26 1 204
3 5 20 101 86 8 3 223
2 8 26 113 78 4 1 230

New 1 3 16 83 30 5 2 139

Σ 537 319 492 328 144 100 1,920

New

Old 6 22 20 14 9 24 12 101
5 15 54 37 35 48 11 200
4 15 38 124 57 20 2 256
3 3 49 166 118 8 1 345
2 14 37 296 181 15 4 547

New 1 9 46 246 150 13 7 471

Σ 78 244 883 550 128 37 1,920
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Chi-square analysis. Chi-square (χ2) analysis directly assesses
the deviation between each model’s predicted ROC/z-ROC and the
empirically derived ROC/z-ROC (Heathcote, 2003; Slotnick et al.,
2000). Specifically, the χ2 value is calculated by using the differ-
ence between the hit rates associated with the best-fit model and
the hit rates that are measured. A large χ2 value indicates a poor fit,
whereas a small χ2 value indicates a good fit. A fit is considered ad-
equate if the χ2 value is sufficiently small ( p � .05).

Linearity analysis. Linearity analysis tests whether the ROC or
z-ROC has a significant linear component and whether the addition
of a quadratic component results in a significantly better fit. A line
is fit to the ROC or z-ROC and then, separately, a line plus a qua-
dratic component are fit (with quadratic coefficient c). Regression
is conducted in the x direction and y direction, and only the fits with
the lowest sum-of-squares error between the model and the data are
used. If the addition of a quadratic term significantly improves the
fit over the linear fit alone (at p � .05), the ROC or z-ROC is con-
sidered curvilinear; otherwise, the ROC or z-ROC is considered lin-
ear (i.e., p � .05; Hilford et al., 2002; Slotnick et al., 2000; Yoneli-

nas, 1999). It should be noted that the parabolic curvature associ-
ated with a quadratic component, defined by the exponent of 2 in
the cx2 term, is not the same as the ROC curvature predicted by the
unequal variance model or the z-ROC curvature predicted by the
two-high threshold model. As such, linearity analysis should be
considered a general test of ROC or z-ROC curvature.

Results and Discussion
The recognition memory ROCs and z-ROCs (male vs.

new and female vs. new) are shown in Figure 3, and the
associated parameters are illustrated in Table 2. The top
of Table 2 is segregated by d′ and σn/σs values, given by
the best-fit unequal variance model. The χ2 analysis re-
sults are separated into two columns (χ2 and significance
value) associated with the unequal variance model and two
columns associated with the two-high threshold model.
The ROC and z-ROC linearity analysis results (in the

Figure 3. (A) Recognition memory ROC (male vs. new), shown as circles, constructed by
collapsing over source response ratings from Yonelinas (1999, Experiment 2), and best-fit
unequal variance model, shown as curve, and two-high threshold model, shown as line (ROC
points and best-fit models are indicated similarly in subsequent figures). (B) Recognition
memory ROC constructed using female versus new response ratings. (C) Male versus new
recognition memory z-ROC. (D) Female versus new recognition memory z-ROC.
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middle and bottom of Table 2) divide eight columns
equally between the linear fit (R2, F, MSe, and signifi-
cance) and the quadratic component (F, MSe, significance,
and c). The χ2 analysis indicated that only the female
versus new recognition memory ROC was adequately fit
by the unequal variance model, while neither recognition
memory ROC was adequately fit by the two-high thresh-
old model. The linearity analysis showed that both recog-
nition memory ROCs were curvilinear (as indicated by
the significant quadratic components), whereas the male
versus new recognition memory z-ROC was linear and
the female versus new recognition memory z-ROC was
curvilinear.

Figures 4A and 4D show the source memory ROC and
z-ROC that were empirically derived by collapsing over
all of the old–new ratings (collapsed source memory
ROC/z-ROC) as well as the best-fit two-high threshold
and unequal variance models. Results from the χ2 analy-
sis and the linearity analysis of the collapsed source
memory ROC are shown in Table 2. The χ2 analysis in-
dicates that neither model adequately fit the collapsed
source memory ROC (both ps � .001), whereas the lin-
earity analysis indicated that the collapsed source mem-
ory ROC was linear and the collapsed source memory
z-ROC was curvilinear, in support of the two-high thresh-
old model (i.e., the addition of a quadratic component
did not significantly improve the fit to the ROC [p �
.062], but did significantly improve the fit to the z-ROC
[p � .012] ). The fact that the χ2 analysis results indi-
cated that the two-high threshold model did not provide
an adequate fit, whereas the linearity analysis results in-
dicated that the ROC was linear and the z-ROC was curvi-

linear (as predicted by the two-high threshold model)
would at first blush appear to be inconsistent with regard
to the shape of the collapsed source memory ROC. How-
ever, as was stated previously, linearity analysis is only
sensitive to quadratic deviations from linearity, whereas
χ2 analysis is sensitive to any deviation from linearity
(i.e., it is a direct assessment of the ROC/z-ROC curva-
ture predicted by either model). It follows that the col-
lapsed source ROC indeed deviated from linearity, but in
a nonquadratic manner (e.g., cubic or some other type of
nonlinearity). Thus, again, neither model adequately fit
the collapsed ROC.

The ROCs/z-ROCs illustrated in Figures 4B and 4E
were derived from highest to lowest old–new confidence
ratings (Table 1) and corresponded to unequal variance
model d′s of 1.45 � .057, 0.34 � .053, 0.14 � .068,
�0.17 � .059, �0.02 � .062, and 0.01 � .087, respec-
tively. Only the top two rows of the response matrix cor-
responded to a source memory d′ that was significantly
different from 0 ( p � .05). That is, the bottom four rows
of the response matrix contained nondiagnostic source
information (i.e., noise); these four rows made up 42.84%
of the total responses, taken as the percentage of noise in
the collapsed source memory ROC/z-ROC. Note that
this definition of noise—the percentage of responses
without diagnostic source information—will be used in
the remainder of the article to quantify noise level,
thereby allowing us to more accurately assess the effect
of noise on the shape of the ROC and z-ROC. Given that
only the top two rows contained relevant source memory
information, they were used to construct the refined
source memory ROC and z-ROC (Figures 4C and 4F).

Table 2
Recognition Memory and Source Memory ROC and z-ROC Parameters From 

Yonelinas’s (1999, Experiment 2) Data Reanalysis

Parameter Values χ2 Analysis Results

d′ σn/σs χ2
UEV pUEV χ2

2HT p2HT

MN 1.03�.037 0.71�.037 11.39 .010 70.19 .000
FN 1.08�.029 0.69�.029 6.86 .077 74.39 .000
MFc 0.79�.089 1.02�.094 73.71 .000 28.06 .000
MFr 1.19�.035 1.05�.039 1.98 .577 46.69 .000

ROC Linearity Analysis Results

R2
lin Flin MSe lin plin Fquad MSe quad pquad cquad

MN 0.958 , 69.24 2.2�10�3 .004 53.27 1.2�10�4 .018 �0.69
FN 0.950 , 57.24 2.4�10�3 .005 118.47 1.3�10�4 .008 �0.71
MFc 0.994 ,498.12 7.1�10�4 .000 14.74 1.1�10�4 .062 �0.45
MFr 0.944 , 50.89 2.7�10�3 .006 66.57 1.0�10�4 .015 �1.73

z-ROC Linearity Analysis Results

R2
lin Flin MSe lin plin Fquad MSe quad pquad cquad

MN 0.993 ,429.20 3.8�10�3 .000 16.80 6.0�10�4 .055 �0.08
FN 0.995 ,636.92 2.4�10�3 .000 32.78 2.0�10�4 .029 �0.06
MFc 0.977 ,125.81 2.8�10�2 .002 84.38 8.8�10�4 .012 �0.26
MFr 0.997 1,178.52 1.2�10�3 .000 8.06 3.2�10�4 .105 �0.10

Note—MN, male versus new; FN, female versus new; MFc, collapsed (43% noise) male versus female; MFr ,
refined male versus female; UEV, unequal variance model; 2HT, two-high threshold model. Bold χ2 analy-
sis p values indicate adequate fit ( p � .05), and bold linearity analysis p values indicate significant compo-
nent ( p � .05).
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The refined source memory ROC was curvilinear and the
z-ROC was linear (see Table 2), as indicated by the χ2

analysis, in which the unequal variance model provided an
adequate fit ( p � .58) whereas the two-high threshold
model did not ( p � .001), and the linearity analysis, with
a significant ROC quadratic component ( p � .05) and a
nonsignificant z-ROC quadratic component. Therefore,
the reanalysis of the Yonelinas (1999) data was consis-
tent with our hypothesis that source memory ROCs are
naturally curvilinear and z-ROCs are naturally linear
when they contain only diagnostic source information.

NOISE DISTORTION OF A 
CURVILINEAR ROC

Method
Curvilinear ROC/linear z-ROC model. To further test our hy-

pothesis that curvilinear source memory ROCs will become more

linear and linear source memory z-ROCs will become more curvi-
linear with the addition of noise, we conducted a simulation. The
overall strategy was to determine the effect of noise on the shape of
a curvilinear ROC/linear z-ROC by first modeling the refined
source memory ROC from Yonelinas’s (1999) dataset, and then
parametrically increasing the level of noise.

An unequal variance signal detection model, necessarily yielding
a curvilinear ROC/linear z-ROC (Figures 2B and 2C) was con-
structed to match the refined source memory ROC parameters ob-
tained in the reanalysis of Yonelinas (1999, Experiment 2). In the
context of this simulation, we refer to the refined source memory
ROC/z-ROC as the 0% noise condition. The model was constructed
by first setting d′ to 1.19 and σn/σs to 1.05 (matching Yonelinas’s
[1999] parameters listed in the 4th row of Table 2); these values
were used to generate artificial source confidence ratings. Specifi-
cally, the total number of confidence rating responses in the model
was designed to increase linearly from that used to construct Yoneli-
nas’s (1999) refined source memory ROC (0% noise) to that used
to construct Yonelinas’s (1999) collapsed source memory ROC
(43% noise). In this way, the model was representative of two points
on a continuum of possible noise percentages, to mirror the Yoneli-

Figure 4. (A) Source memory ROC constructed by collapsing over old–new response ratings from Yonelinas (1999, Experiment 2).
(B) Source memory ROCs constructed from the rows in the source response matrices corresponding to each old–new rating, each fit
with the unequal variance model. Only the top two ratings, indicated by circles and triangles, resulted in d′ values that were signifi-
cantly different from chance. (C) Refined source memory ROC constructed by collapsing over top two old–new ratings. (D–F) Cor-
responding source memory z-ROCs.
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nas (1999) reanalysis results. Criteria were iteratively selected such
that the leftmost and rightmost points of the model ROC were sim-
ilar to Yonelinas’s (1999) refined source memory ROC (Figure 4C);
intermediate criteria in the model were equally spaced (explaining
the slight deviation between Yonelinas’s (1999) refined source mem-
ory ROC parameters and the model parameters associated with 0%
noise). The noise confidence ratings in the model (used when noise
was greater than 0%) were resampled from the frequencies in the
collapsed bottom four rows from Yonelinas’s (1999) response matrix
(which contained no diagnostic source information; see Table 1).

To simulate variability in the data, hit rates at the 0% noise level
were randomly jittered, using unit variance Gaussian noise, weighted
by the variance at each point (assuming binomial statistics). This
jitter was held constant for all other noise levels, thus avoiding the
potential confound between jitter and noise level. The fraction of
noise responses, as a function of the total number of responses, was
parametrically varied from 0%–100% in increments of 5%. At each
level of noise, the model ROC and z-ROC was assessed, using both
χ2 analysis and linearity analysis. If our hypothesis is correct, the
modeling results should show that systematic increases in noise are
associated with increasingly linear ROCs and increasingly curvi-
linear (concave) z-ROCs.

Results and Discussion
Table 3 and Figure 5 show the results of the paramet-

ric addition of noise to a model of Yonelinas’s (1999) re-
fined source memory ROC and z-ROC. As expected, the
unequal variance parameter d′ is similar for the model
ROC at 0% noise, as compared with Yonelinas’s (1999)
refined source memory ROC (1.23 vs. 1.19), and 43%
noise, as compared with Yonelinas’s (1999) collapsed
source memory ROC (0.82 vs. 0.79, the former value
being estimated by linear interpolation). Also as ex-
pected, d′ systematically decreased to zero as percent
noise increased and σn/σs was relatively constant.

In support of the hypothesis under investigation, the
quadratic component c in the ROC linearity analysis de-
creased with increasing noise, indicating a systematic
flattening of the ROC. The decreasing significance of
the quadratic component with increasing percent noise
ultimately resulted in a failure to reach significance at
40% noise ( p � .054). At the 43% noise level, the model
p value of the quadratic component was equal to .059,
which is comparable to the collapsed ROC linearity analy-
sis quadratic p value of .062 reported by Yonelinas (1999,
Experiment 2). The linear fit also systematically improved
with increasing noise levels, as assessed by increases in
both R2 and F values. Also supporting our hypothesis is
the fact that the quadratic component in the z-ROC lin-
earity analysis initially increased with increasing noise
(and was concave, as predicted by the two-high thresh-
old model), becoming significant at 30% noise ( p �
.042), whereas the linear fit R2 and F values initially de-
creased. The value of the z-ROC quadratic component at
the 43% noise level for the model (c � 0.19) was simi-
lar to that reported by Yonelinas (c � 0.26; 1999, Ex-
periment 2) indicating that addition of noise can produce
concave curvature of the z-ROC. Chi-square analysis proved
to be more sensitive than the linearity analysis, in that the
addition of 25% noise or greater failed to result in an ad-

equate fit for the unequal variance model ( p � .01). The
two-high threshold χ2 analysis results showed a system-
atically better fit with increasing noise, which is also
consistent with ROC flattening/z-ROC bending, ulti-
mately resulting in an adequate fit at 90% noise.

EXPERIMENTS

The previous reanalysis of data from Yonelinas (1999,
Experiment 2) and the simulation are consistent with our
hypothesis that source memory ROCs are naturally curvi-
linear and source memory z-ROCs are naturally linear.
The reanalysis results indicate that source memory ROCs
only appear linear and source memory z-ROCs only ap-
pear curvilinear when they are derived from data that in-
clude nondiagnostic source information, such as con-
tained in the collapsed source memory ROC/z-ROC. In
addition, our simulation showed that a curvilinear ROC
becomes more linear and a linear z-ROC becomes more
curvilinear as noise increases. In the next section, we test
our hypothesis empirically.

We conducted two experiments to examine the pre-
diction that source memory ROCs are more linear and
source memory z-ROCs are more curvilinear under con-
ditions in which participants are more likely to guess the
source. Specifically, we manipulated encoding condi-
tions such that in Experiment 1, participants were given
a limited amount of time to study each item (to evoke a
relatively lower level of processing), whereas in Experi-
ment 2 participants were given as much time as they
needed to study each item (to evoke a relatively higher
level of processing). Because the experiments were nearly
identical, a single description will follow, with differences
noted accordingly. These experiments were analyzed
using the methods described earlier to provide evidence
pertaining to the shape of both the recognition memory
ROCs/z-ROCs and source memory ROCs/z-ROCs.

Method
Participants and Materials. Experiment 1 was conducted at the

University of Virginia, where 15 undergraduates were each paid
$10.00/hour for participation. Experiment 2 was conducted at Johns
Hopkins University, where 15 undergraduates were each paid
$8.00/hour for participation. The stimulus set for each participant
consisted of 250 words randomly selected from the Toronto word
pool. This set of words was divided into three 80-word lists—one
female word list, one male word list, and one new word list—and
10 noncritical buffer words. The female word list and male word
list, randomly intermixed, were used to construct the study list,
whereas all three lists, also randomly intermixed, were used to con-
struct the test list. All words were presented visually during both
study and test phases. In addition, female and male words in the
study phase were presented auditorily in the appropriate voice. Cus-
tom presentation/data acquisition software was written in MAT-
LAB (Mathworks, Inc., Natick, MA).

Procedures. During the study phase, words were presented se-
quentially. To diminish primacy and recency effects, five buffer
words were presented at the beginning and end of the study phase.
The participants were told that they would hear a very long list of
words and that they should try to use specific associations (e.g.,
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“imagine the male or female speaker interacting with the object”)
in order to remember who spoke the word. Speed and accuracy (i.e.,
vividness) of making the association were stressed as equally im-
portant. In Experiment 1, study words were presented for 2 sec,
thereby limiting encoding time. In Experiment 2, encoding time
was self-paced, and the participants were instructed to press “enter”
after an association was made. These encoding time differences
were expected to elicit weaker memory strength (i.e., greater noise)
in Experiment 1 as compared with Experiment 2.

Immediately following the encoding phase, the 240 words from
the test list were presented. The participants made two judgments
for each word: (1) confidence that a word was from the study phase
(1 � very sure new, 2 � moderately sure new, 3 � less sure new,
4 � don’t know, 5 � less sure old, 6 � moderately sure old, and 7 �
very sure old) and (2) confidence of the word’s source (also using

responses ranging from 1 � very sure female to 7 � very sure
male). If the participants were very sure a word was new, they were
told to respond “4” on the source judgment. In addition, they were
instructed not to use the endpoints of the response scale alone or 
to evenly distribute their responses, but rather each response was 
to reflect the specific memorial experience relating to a given word.

Analysis. The response matrices from both experiments (Ta-
bles 4 and 5), each summed across participants, were subjected to
the same group analysis procedure as that used in the reanalysis of
data from Yonelinas (1999, Experiment 2). Moreover, an individual
participant analysis was conducted to (1) allow for post hoc pa-
rameter comparisons within or between experiments, using a one-
tailed t test (using between-participant variability to estimate vari-
ance) and (2) to ensure that the results reported were not due to
averaging effects (Brown & Heathcote, 2003).

Table 3
Simulating the Effect of Increases in Noise on a 

Curvilinear Source Memory ROC/Linear z-ROC

Parameter Values χ2 Analysis Results

% Noise d′ σn/σs χ2
UEV pUEV χ2

2HT p2HT

0 1.23�.034 1.03�.038 0.53 .913 68.54 .000
5 1.19�.031 1.01�.034 0.54 .911 68.21 .000

10 1.14�.028 1.00�.031 1.67 .643 67.25 .000
15 1.09�.030 0.99�.033 4.06 .255 65.71 .000
20 1.04�.039 0.98�.041 7.77 .051 63.62 .000
25 1.00�.046 0.98�.049 12.87 .005 61.05 .000
30 0.95�.053 0.97�.056 19.36 .000 58.04 .000
35 0.90�.059 0.97�.061 27.21 .000 54.64 .000
40 0.85�.065 0.96�.066 36.31 .000 50.89 .000
45 0.81�.069 0.96�.070 46.47 .000 46.85 .000
50 0.76�.074 0.95�.073 57.41 .000 42.57 .000
55 0.70�.077 0.95�.075 68.71 .000 38.09 .000
60 0.65�.080 0.95�.077 79.77 .000 33.49 .000
65 0.60�.082 0.95�.078 89.75 .000 28.81 .000
70 0.54�.083 0.95�.078 97.53 .000 24.13 .000
75 0.47�.083 0.95�.077 101.62 .000 19.53 .000
80 0.40�.081 0.95�.074 100.11 .000 15.10 .002
85 0.33�.077 0.96�.069 90.78 .000 10.94 .012
90 0.24�.068 0.96�.061 71.53 .000 7.20 .066
95 0.15�.053 0.96�.046 42.37 .000 4.12 .249

100 0.03�.031 0.96�.027 13.58 .004 2.16 .541

ROC Linearity Analysis Results

R2
lin Flin MSe lin plin Fquad MSe quad pquad cquad

0 0.927 37.94 3.6�10�3 .009 59.49 1.7�10�4 .016 �2.02
5 0.941 47.78 3.2�10�3 .006 52.41 1.8�10�4 .019 �1.76

10 0.952 60.04 2.9�10�3 .004 45.33 1.8�10�4 .021 �1.53
15 0.962 75.38 2.6�10�3 .003 38.70 1.9�10�4 .025 �1.33
20 0.969 94.67 2.3�10�3 .002 32.82 2.0�10�4 .029 �1.16
25 0.975 119.11 2.0�10�3 .002 27.76 2.1�10�4 .034 �1.01
30 0.980 150.33 1.8�10�3 .001 23.52 2.1�10�4 .040 �0.87
35 0.985 190.62 1.6�10�3 .001 19.98 2.1�10�4 .047 �0.75
40 0.988 243.27 1.3�10�3 .001 17.04 2.1�10�4 .054 �0.65
45 0.991 313.10 1.1�10�3 .000 14.60 2.0�10�4 .062 �0.55
50 0.993 407.38 9.5�10�4 .000 12.54 2.0�10�4 .071 �0.47
55 0.994 537.47 7.7�10�4 .000 10.79 1.8�10�4 .081 �0.40
60 0.996 721.75 6.3�10�4 .000 9.28 1.7�10�4 .093 �0.33
65 0.997 991.37 4.9�10�4 .000 7.94 1.5�10�4 .106 �0.27
70 0.998 1.4�103 3.7�10�4 .000 6.73 1.3�10�4 .122 �0.22
75 0.999 2.1�103 2.7�10�4 .000 5.59 1.1�10�4 .142 �0.17
80 0.999 3.2�103 1.8�10�4 .000 4.47 8.7�10�5 .169 �0.13
85 0.999 5.3�103 1.2�10�4 .000 3.32 6.8�10�5 .210 �0.10
90 1.000 9.7�103 7.1�10�5 .000 2.11 5.2�10�5 .283 �0.06
95 1.000 2.0�104 3.7�10�5 .000 0.91 3.9�10�5 .442 �0.03

100 1.000 3.7�104 2.1�10�5 .000 0.07 3.0�10�5 .816 �0.01
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Results and Discussion
The recognition memory ROCs and z-ROCs (male vs.

new and female vs. new) are shown in Figure 6, with as-
sociated parameter values in Table 6. The χ2 analyses in-
dicated that all recognition memory ROCs/z-ROCs were
adequately fit by the unequal variance model, whereas
the two-high threshold model did not provide an ade-
quate fit in any case (Table 6). The individual participant
χ2 analysis results (Table 7) were generally consistent
with the group χ2 analysis, with the two-high threshold
model not providing an adequate fit in any case and the
unequal variance model not fitting either recognition
memory ROC/z-ROC in Experiment 1 but providing an
adequate fit to both recognition memory ROCs/z-ROCs
in Experiment 2. To better assess the inadequate fits of
the models to the recognition memory ROCs/z-ROCs in
Experiment 1, the number of individual participant
ROCs/z-ROCs that were adequately fit by each model
were tallied, and the unequal variance model provided a
significantly greater number of adequate fits than did the
two-high threshold model (male vs. new, unequal vari-
ance model fit 11/15, two-high threshold model fit 0/15;
female vs. new, unequal variance model fit 10/15, two-
high threshold model fit 0/15; both p values � .001,
Fisher exact test). The χ2 results were complemented 
by the linearity analysis, showing that all recognition
memory ROCs were curvilinear (as indicated by the sig-
nificant quadratic components) and all recognition mem-
ory z-ROCs were linear (with no significant quadratic
components).

To determine whether weaker memory strength was
associated with a more linear source memory ROC, the
collapsed source memory ROC results are considered

first (see Figures 7A and 7C and Table 6). Our encoding
manipulation had the desired effect; the percent noise in
Experiment 1 (43%) was significantly greater than that
in Experiment 2 (35%; p � .001). This reduction in noise
level across experiments was further illustrated by a sig-
nificantly higher d′ corresponding to the collapsed source
memory ROC in Experiment 2 (1.27), as compared with
Experiment 1 (1.02; p � .001).

We next assessed the shape of the collapsed source
memory ROCs and z-ROCs in the two experiments. In
agreement with our hypothesis, the collapsed source
memory ROC was more curvilinear in Experiment 2
than in Experiment 1. Specifically, the quadratic compo-
nent was significantly greater in Experiment 2 (�1.04)
than in Experiment 1 (�0.64; p � .05). Although the
collapsed source memory z-ROC was not significantly
more linear in Experiment 2 than in Experiment 1, the
small change in the value of the quadratic component
(0.25 and 0.26, respectively) was in the predicted direc-
tion and of the same magnitude of change (0.01) shown
in our simulation at the same noise levels (see Table 3,
right column). In other words, the collapsed source mem-
ory ROCs are more linear (and the collapsed source
memory z-ROCs are slightly more curvilinear) when
participants are less likely to remember diagnostic source
information. This result provides empirical evidence that
increasing noise makes the ROC more linear and the
z-ROC more curvilinear, which is consistent with the re-
analysis of data from Yonelinas (1999, Experiment 2)
and our simulation results.

The χ2 analysis of the collapsed source memory ROCs/
z-ROCs of both experiments showed that neither the un-
equal variance model nor the two-high threshold model

Table 3 (Continued)

z-ROC Linearity Analysis Results

% Noise R2
lin Flin MSe lin plin Fquad MSe quad pquad cquad

0 0.999 3.5�103 4.1�10�4 .000 1.67 3.3�10�4 .325 �0.04
5 0.999 5.4�103 3.0�10�4 .000 0.14 4.0�10�4 .746 0.01

10 0.999 2.2�103 8.0�10�4 .000 2.49 5.3�10�4 .255 0.06
15 0.997 1.1�103 1.8�10�3 .000 6.35 6.6�10�4 .128 0.09
20 0.995 645.35 3.4�10�3 .000 11.02 7.7�10�4 .080 0.12
25 0.993 451.10 5.3�10�3 .000 16.37 8.6�10�4 .056 0.15
30 0.991 345.86 7.6�10�3 .000 22.57 9.2�10�4 .042 0.16
35 0.990 282.63 1.0�10�2 .001 29.93 9.5�10�4 .032 0.18
40 0.988 242.08 1.3�10�2 .001 38.92 9.5�10�4 .025 0.18
45 0.986 215.09 1.6�10�2 .001 50.32 9.1�10�4 .019 0.19
50 0.985 196.99 1.9�10�2 .001 65.43 8.4�10�4 .015 0.19
55 0.984 185.28 2.2�10�2 .001 86.80 7.4�10�4 .011 0.19
60 0.983 178.64 2.5�10�2 .001 120.00 6.1�10�4 .008 0.18
65 0.983 176.56 2.8�10�2 .001 179.66 4.6�10�4 .006 0.18
70 0.984 179.27 3.0�10�2 .001 316.31 2.8�10�4 .003 0.17
75 0.984 187.88 3.1�10�2 .001 824.41 1.1�10�4 .001 0.16
80 0.986 205.24 3.2�10�2 .001 6.3�103 1.5�10�5 .000 0.14
85 0.988 238.18 3.0�10�2 .001 701.35 1.3�10�4 .001 0.12
90 0.990 306.28 2.7�10�2 .000 98.83 7.9�10�4 .010 0.10
95 0.994 488.81 1.9�10�2 .000 18.85 2.7�10�3 .049 0.07

100 0.998 1.4�103 7.8�10�3 .000 1.25 7.2�10�3 .380 0.02

Note—Bold χ2 analysis p values indicate adequate fit ( p � .05), and bold linearity analysis p values
indicate significant component ( p � .05).
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provided an adequate fit. In contrast, the unequal vari-
ance model adequately fit both refined source memory
ROCs/z-ROCs (Table 6). The identical pattern of results
for the collapsed and refined source memory ROCs/
z-ROCs was observed in the individual participant χ2

analysis (Table 7). These results replicate our reanalysis
results of Yonelinas’s (1999, Experiment 2) data. The lin-
earity analysis results, however, were mixed. The collapsed
and refined ROCs in both experiments were curvilinear,
given that all quadratic components were significant.
The collapsed source memory z-ROCs in both experi-
ments and the refined source memory z-ROC in Experi-

ment 1 were also curvilinear, which is not consistent
with either the unequal variance model or the two-high
threshold model. However, the refined source memory
z-ROC in Experiment 2 was linear, as predicted by the
unequal variance model. Overall, the results are consis-
tent with our hypothesis that an increase in noise is as-
sociated with greater ROC linearity/z-ROC curvilinear-
ity, as indicated by the significantly larger quadratic
component for the refined than for the collapsed source
memory ROC in both experiments (Experiment 1, �1.45
vs. �0.64, p � .001; Experiment 2, �2.31 vs. �1.04,
p � .01) and by the smaller quadratic component for the

Figure 5. (A) ROCs derived from an unequal variance (UEV) model with noise ranging
from 0% to 100%, in 20% increments. At 0% noise, model parameters were selected to ap-
proximate the UEV results of the refined source memory ROC derived from the reanalyzed
data of Yonelinas (1999, Experiment 2); as such, the topmost ROC, shown by circles, is curvi-
linear by definition. Each ROC was fit with the UEV model. (B) The same ROCs in panel A
each fit with the two-high threshold (2HT) model. (C) The corresponding z-ROCs each fit
with the UEV model. (D) The corresponding z-ROCs each fit with the 2HT model.
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refined than for the collapsed source memory z-ROC in
both experiments (Experiment 1, 0.21 vs. 0.26, p � .01;
Experiment 2, 0.03 vs. 0.25, p � .19).

GENERAL DISCUSSION

Does source memory retrieval occur in an all-or-none
manner or in a continuous manner? High threshold mod-
els (e.g., Batchelder & Riefer, 1990; Yonelinas, 1999)
predict that source memory is an all-or-none process,
whereas signal detection models (e.g., Johnson et al.,
1993; Slotnick et al., 2000) predict that source memory
is a continuous process. Yonelinas (1999) observed lin-
ear source memory ROCs and curvilinear z-ROCs—
markers of an all-or-none process—whereas Slotnick
et al. and others observed curvilinear source memory
ROCs and linear z-ROCs (Qin et al., 2001; see also Hil-
ford et al., 2002), supporting a continuous process. We
have resolved these seemingly inconsistent results by
showing that source memory ROCs are naturally curvi-
linear and source memory z-ROCs are naturally linear
but can appear linear and curvilinear, respectively, when
the source memory ROC/z-ROC is computed from data
that includes frequent guessing (i.e., noise). Specifically,
we reanalyzed a dataset of Yonelinas (1999) and showed
that the source memory ROC is curvilinear and z-ROC is

linear when it is derived from data that only include di-
agnostic source information (i.e., the refined source
memory ROC/z-ROC). The source memory ROC was
shown to be linear and source memory z-ROC was shown
to be curvilinear only when it was based on data that in-
cluded many guessing responses (i.e., the collapsed source
memory ROC/z-ROC). In addition, we constructed a
model and showed that systematically adding noise lin-
earizes—or flattens—a curvilinear source memory ROC
and makes a linear z-ROC more curvilinear. Finally, we
experimentally examined our hypothesis that source mem-
ory ROCs become more linear and source memory z-ROCs
become more curvilinear under conditions in which par-
ticipants are less likely to remember diagnostic source
information. As predicted, these experiments revealed
that source memory ROCs are more linear under noisy
conditions and source memory z-ROCs are more curvi-
linear under noisy conditions.

The present results also speak to distinguishing be-
tween models of recognition memory and source mem-
ory. In five of the six empirical examples evaluated, lin-
earity analysis showed that the recognition memory ROCs
were curvilinear and the z-ROCs were linear, replicating
previous findings (Heathcote, 2003; Slotnick et al., 2000).
These results are inconsistent with a two-high threshold
model, thereby arguing against the multinomial model

Table 4
Measured and Collapsed Confidence Ratings from

Experiment 1

Female Male

1 2 3 4 5 6 7 Σ

Male Source

Old 7 40 40 11 15 25 64 316 511
6 1 29 29 23 37 49 5 173
5 0 6 26 43 44 12 2 133
4 0 0 1 182 0 0 0 183
3 1 2 9 43 15 0 0 70
2 0 2 6 58 6 1 1 74

New 1 1 0 1 49 1 0 4 5

Σ 43 79 83 413 128 126 328 1,200

Female Source

Old 7 320 56 25 22 20 38 33 514
6 7 54 39 24 33 25 1 183
5 0 4 25 46 38 7 0 120
4 0 0 2 187 1 0 0 190
3 0 2 8 47 9 1 0 67
2 0 2 4 48 2 2 0 58

New 1 2 3 2 61 0 0 0 68

Σ 329 121 105 435 103 73 34 1,200

New

Old 7 15 18 9 7 14 17 16 96
6 3 26 30 31 30 29 0 149
5 1 11 34 58 53 9 0 166
4 1 2 2 295 3 3 0 306
3 0 2 15 75 17 1 0 110
2 1 2 5 188 5 2 0 203

New 1 0 0 0 168 1 1 0 170

Σ 21 61 95 822 123 62 16 1,200 Table 5
Measured and Collapsed Confidence Ratings From

Experiment 2

Female Male

1 2 3 4 5 6 7 Σ

Male Source

Old 7 36 15 19 17 29 83 419 618
6 0 34 24 17 32 47 9 163
5 1 9 45 31 50 12 2 150
4 1 0 0 66 4 0 0 71
3 0 1 1 70 2 0 0 74
2 0 0 2 64 0 0 0 66

New 1 0 0 0 55 1 0 2 58

Σ 38 59 91 320 118 142 432 1,200

Female Source

Old 7 374 56 37 18 22 22 44 573
6 15 65 32 20 36 26 2 196
5 2 17 52 32 43 6 1 153
4 1 1 3 68 0 0 0 73
3 0 0 1 68 3 0 0 72
2 0 2 1 58 2 0 0 63

New 1 5 1 0 64 0 0 0 70

Σ 397 142 126 328 106 54 47 1,200

New

Old 7 30 4 8 6 7 4 29 88
6 2 25 15 13 13 21 1 90
5 1 15 72 65 46 8 1 208
4 0 0 5 142 2 0 0 149
3 0 0 5 200 5 0 0 210
2 0 2 4 194 1 0 0 201

New 1 1 0 0 250 2 0 1 254

Σ 34 46 109 870 76 33 32 1,200
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as a viable model of recognition memory. The χ2 analy-
sis provided convergent results as the unequal variance
model provided an adequate fit in five of the six recog-
nition memory ROCs/z-ROCs evaluated (while the two-
high threshold model never provided an adequate fit). As
we have pointed out before (Slotnick et al., 2000), it is
quite astounding that the two-parameter unequal vari-
ance model so frequently provides an adequate fit to
such a complex cognitive process as recognition mem-
ory.

The linearity analysis of our two experiments indi-
cated that both the collapsed source memory ROC and
z-ROC were curvilinear (which is not predicted by either
the unequal variance model or two-high threshold model),

failing to replicate Yonelinas (1999), who observed lin-
ear ROCs and curvilinear z-ROCs. By contrast, the lin-
earity analysis of the refined source ROCs/z-ROCs, both
from the reanalysis of Yonelinas’s (1999, Experiment 2)
data and our two experiments, revealed a curvilinear re-
fined source memory ROC in all cases and a linear re-
fined source memory z-ROC in two of three cases. The
refined source ROC/z-ROC pattern of results argues
against the two-high threshold models of source memory
(i.e., the multinomial model and dual-process model),
but is consistent with the unequal variance model of
source memory. Similar to the recognition memory re-
sults, the unequal variance model provided an adequate
fit to the refined source memory ROC/z-ROC in all cases,

Figure 6. (A) Male versus new recognition memory ROC from Experiment 1 and best-fit
unequal variance model and two-high threshold model. (B) Female versus new recognition
memory ROC from Experiment 1. (C) Male versus new recognition memory ROC from Ex-
periment 2. (D) Female versus new recognition memory ROC from Experiment 2. (E–H) Cor-
responding recognition memory z-ROCs.
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whereas the two-high threshold model never provided an
adequate fit. It should also be mentioned that according
to the dual-process model, the refined source memory
ROCs/z-ROCs were constructed from the data in which
recollection (a two-high threshold process) would be ex-
pected to play the largest role (i.e., at the highest confi-
dence “old” level). However, the observed refined source
memory ROCs and z-ROCs were relatively more curvi-
linear and linear, respectively, than were the collapsed
source memory ROCs and z-ROCs, which is in direct op-
position to the pattern of results predicted by the dual-
process model.

In summary, the present recognition memory results
disconfirmed the multinomial model and the present
source memory results disconfirmed the multinomial
model and the dual-process model (i.e., two-high thresh-

old models of source memory). Both recognition mem-
ory results and source memory results, however, were
largely consistent with an unequal variance model of
memory retrieval.

The present results question previous reports of linear
associative memory ROCs/curvilinear z-ROCs (Yoneli-
nas, 1997; Yonelinas, Kroll, Dobbins, & Soltani, 1999),
used as evidence to support the dual-process model (i.e.,
a high-threshold model under conditions of equal item
familiarity). In those studies, the associative memory
ROCs/z-ROCs were effectively collapsed (because old–
new recognition ratings were not collected), which may
have led to the linearization of the associative memory
ROCs and produced more curvilinear z-ROCs. Supporting
this possibility, Kelley and Wixted (2001) conducted mul-
tiple associative memory experiments using weak and

Figure 6 (Continued).
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Table 6
Recognition Memory and Source Memory ROC and z-ROC Parameters 

From Experiments 1 and 2

Experiment 1 (Higher Noise)

Parameter Values χ2 Analysis Results

d′ σn/σs χ2
UEV pUEV χ2

2HT p2HT

MN 0.93�.023 0.75�.027 5.96 .202 45.58 .000
FN 0.94�.022 0.73�.025 5.20 .267 58.94 .000
MFc 1.02�.090 0.94�.081 69.32 .000 32.82 .000
MFr 1.42�.059 0.89�.060 9.01 .061 31.78 .000

ROC Linearity Analysis Results

R2
lin Flin MSe lin plin Fquad MSe quad pquad cquad

MN 0.974 150.43 1.3�10�3 .000 37.11 1.3�10�4 .009 �0.51
FN 0.967 116.00 1.7�10�3 .000 36.71 1.7�10�4 .009 �0.57
MFc 0.992 469.55 9.2�10�4 .000 285.51 1.3�10�5 .001 �0.64
MFr 0.938 60.28 2.1�10�3 .002 243.50 3.7�10�5 .001 �1.45

z-ROC Linearity Analysis Results

R2
lin Flin MSe lin plin Fquad MSe quad pquad cquad

MN 0.996 931.60 2.6�10�3 .000 7.41 1.0�10�3 .072 0.06
FN 0.996 939.75 2.4�10�3 .000 0.11 3.1�10�3 .758 0.01
MFc 0.970 130.62 3.5�10�2 .000 74.70 2.0�10�3 .003 0.26
MFr 0.979 189.82 8.1�10�3 .000 59.35 6.1�10�4 .005 0.21

Experiment 2 (Lower Noise)

Parameter Values χ2 Analysis Results

d′ σn/σs χ2
UEV pUEV χ2

2HT p2HT

MN 1.25�.022 0.70�.024 2.20 .699 76.98 .000
FN 1.20�.030 0.71�.033 7.44 .114 106.66 .000
MFc 1.27�.077 0.96�.068 37.01 .000 91.27 .000
MFr 1.68�.050 0.99�.047 1.46 .835 68.71 .000

ROC Linearity Analysis Results

R2
lin Flin MSe lin plin Fquad MSe quad pquad cquad

MN 0.917 44.41 2.7�10�3 .003 582.10 5.3�10�5 .000 �0.74
FN 0.893 33.38 4.0�10�3 .005 309.74 1.3�10�4 .000 �0.87
MFc 0.973 142.11 2.2�10�3 .000 25.52 3.3�10�4 .015 �1.04
MFr 0.859 24.35 3.7�10�3 .008 90.98 1.8�10�4 .002 �2.31

z-ROC Linearity Analysis Results

R2
lin Flin MSe lin plin Fquad MSe quad pquad cquad

MN 0.998 1.8�103 9.4�10�4 .000 0.01 1.3�10�3 .933 0.00
FN 0.994 639.50 2.7�10�3 .000 2.43 2.0�10�3 .217 �0.06
MFc 0.981 204.57 1.9�10�2 .000 28.44 2.4�10�3 .013 0.25
MFr 0.997 1.5�103 1.0�10�3 .000 0.25 1.2�10�3 .651 0.03

Note—The noise levels in the collapsed source memory ROCs/z-ROCs of Experiments 1 and 2 were 43%
and 35%, respectively. Bold χ2 analysis p values indicate adequate fit ( p � .05), and bold linearity analysis
p values indicate significant component ( p � .05).

Table 7
Individual Participant χ2 Analysis Results From 

Experiments 1 and 2

χ2
UEV pUEV χ2

2HT p2HT

Experiment 1 (Higher Noise)

MN 107.66 .000 414.94 .000
FN 113.60 .000 487.33 .000
MFc 510.02 .000 421.17 .000
MFr 70.21 .173 443.58 .000

Experiment 2 (Lower Noise)

MN 30.33 1.000 355.95 .000
FN 42.98 .952 550.76 .000
MFc 356.43 .000 395.05 .000
MFr 43.68 .944 305.82 .000

Note—Bold p values indicate adequate fit ( p � .05).
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strong associative memory strength conditions, similar to
the present experiments. In the weak conditions, which
approximately matched the associative memory strength
of Yonelinas’s studies, the χ2 analysis results were incon-
clusive, sometimes supporting the two-high threshold
model and sometimes supporting the unequal variance
model. However, in the strong conditions, the unequal
variance model provided an adequate fit in all cases,
whereas the two-high threshold model never provided an
adequate fit. These associative memory results parallel
the present source memory results and indicate that when
there is little diagnostic associative memory information
(as in the weaker source memory strength conditions), the
naturally curvy associative memory ROC may be flat-
tened and appear linear, and the naturally linear associa-
tive memory z-ROC may appear more curvilinear.

The unequal variance memory model supported here
is fully consistent with a variant of the classic signal de-
tection model (Hilford et al., 2002). In that model, an ad-
ditional parameter defines the proportion of items that
were unsuccessfully encoded; these items are forgotten
and treated as new. The additional parameter in this model
does not represent a threshold process (as recollection
does in the dual-process model), because forgotten items
are modeled as part of the new Gaussian distribution
such that there are no thresholds in decision space above
or below which any distribution exists in isolation (i.e.,
the marker for a threshold model; see Figure 2D). Hil-
ford et al. (2002) essentially remove the effect of forgot-
ten items from the source memory analysis by fitting an
additional parameter. In the refined source memory
ROC/z-ROC analysis used in the present study, we re-

Figure 7. (A) Source memory ROC constructed by collapsing over old–new responses from
Experiment 1. (B) Refined source memory ROC constructed by collapsing over the top two
old–new ratings from Experiment 1. (C) Collapsed source memory ROC from Experiment 2.
(D) Refined source memory ROC from Experiment 2 constructed from the top two old–new
ratings. (E–H) Corresponding source memory z-ROCs.
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moved the same items (i.e., forgotten items, with lower
old –new confidence ratings). Thus, both procedures
eliminate noise from the source memory analysis but op-
erate in slightly different ways.

The same line of argument for refining the source
memory ROC/z-ROC might also be made for refining
the recognition memory ROC/z-ROC, given that they are
typically collapsed over source response ratings. In the
male source versus new comparison, for example, male
items might be incorrectly remembered as female items
(i.e., source confusion), and new items might be falsely
remembered as female items (i.e., false memories). A
potential difficulty in producing the refined recognition
memory ROC/z-ROC is that unlike the source memory
analysis in which the lower recognition memory confi-
dence ratings contain no diagnostic source information
(allowing for an objective method to remove noise), all
source memory confidence ratings contain old –new
recognition memory information (see Tables 1, 4, and 5).
Still, the percent noise in the collapsed recognition mem-

ory ROC/z-ROC could be estimated from source memory
ratings representing the source of interest and including
a fraction of those in the direction of the alternative
source (which manifests the effects of source confusion
or false memory). For example, within the male source
and new response matrices shown in Tables 4 and 5 (cor-
responding to the male source vs. new comparison),
columns 1–3 could be taken as containing no diagnostic
recognition memory information (and similarly, columns
5–7 could be considered nondiagnostic for the female
source vs. new comparison). However, using this proce-
dure, the collapsed recognition memory ROCs/z-ROCs
from our two experiments contained 12%–18% noise,
which is substantially lower than the 35%–43% noise in
the collapsed source memory ROCs/z-ROCs. Given
these relatively low recognition memory noise levels,
one might expect little distortion of the collapsed recog-
nition memory ROC/z-ROC, obviating the need to com-
pute a refined recognition memory ROC/z-ROC. Indeed,
the present results and previous results (Heathcote, 2003;

Figure 7 (Continued).
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Slotnick et al., 2000) indicate that collapsed recognition
memory ROCs/z-ROCs are well fit by an unequal vari-
ance model; therefore, the distortion of the recognition
memory ROC/z-ROC due to collapsing over source mem-
ory response judgments appears to have little (if any)
measurable effect and may well be ignored for all prac-
tical purposes.

The present analysis provides support for an unequal
variance model of recognition memory and source mem-
ory and rules out two-high threshold models (i.e., the
multinomial model and dual-process model) as viable
models of recognition memory and source memory. How-
ever, the present results do not rule out all threshold mod-
els, and more complex multithreshold models may rep-
resent our pattern of results. To determine the degree to
which this might be so (given that the two-high thresh-
old model never provided an adequate fit), we fit a three-
threshold model (i.e., a combination of the two-high
threshold model and Luce’s [1963] low threshold theory
model) and a four-threshold model (i.e., a combination of
the two-high threshold model and Green’s two-threshold
model; see Swets, 1964) to the three refined source mem-
ory ROCs from the present study. Although the four-
threshold model provided an adequate fit in all cases, such
a model is associated with five states of memory retrieval
(vs. three states for the two-high threshold model). A five-
state model goes well beyond any reasonable model of
recognition memory and source memory that has been
proposed to date; in fact, such multithreshold models have
been considered variants of unequal variance signal de-
tection models (Swets, 1964). Therefore, the unequal vari-
ance model of recognition memory and source memory is
the most parsimonious in that it adequately fits the data
and is associated with a defensible cognitive process.

The two-high threshold model assumes all-or-none
memory for source, whereas the unequal variance model
assumes a continuum of memory strength from no mem-
ory to complete memory for source. In support of the un-
equal variance model, Dodson, Holland, and Shimamura
(1998) have shown that recollection is not an all-or-none
process; participants often remember the correct gender
of a previously heard speaker when they are unable to re-
member the particular speaker. Further evidence for partial
source memory has been shown to occur during source
confusion (Dodson & Johnson, 1996), and more recently
in a source memory remember/know paradigm (Hicks,
Marsh, & Ritschel, 2002), where a high rate of correct
source trials was associated with “know” responses (ac-
cording to the dual-process model, correct source re-
sponses should be largely mediated by recollection and
thus should be associated with “remember” responses).

The present results provide compelling support for an
unequal variance model of both recognition memory and
source memory. Considering this, the all-or-none pro-
cess of memory retrieval (as assumed in the multinomial
model and the recollection component of the dual-process
model), although intuitively appealing, should be recon-
sidered as a viable description of memory retrieval. On

the basis of the present evidence, we argue that the vast
range of memorial experiences, from incomplete mem-
ories to extremely vivid memories that seem to be all-or-
none would be better construed as continuous in nature.
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