
SUPPORT FOR COMPONENT

BASED SYSTEMS: CAN

CONTEMPORARYTECHNOLOGY

COPE?

1 Coutts and J Edwards

MSI Research Institute

Department 01 Manulacturing Engineering

Loughborough University, Loughborough

Leicestershire LEII 3 TU, UK

Tel: +44 1509228250 Fax: +44 1509267725

Abstract

Infonnation Technology (IT) systems can generally be described through

subdivision into components whose level of abstraction allows the people who are

involved with their creation and maintenance to better understand the system.

However, this component sub division seldom exists beyond the conceptual system

description. Implementation of the system based on this component level

decomposition offers many advantages in tenns of re-use, system maintenance and

general support for change.

The work described in this paper has investigated the level of support for

component systems that is provided by available distributed object technology. The

work covers the lifecycle phases from conceptual design to implementation using

technologies which include Smalltalk, IDL, C++, and CORBA.

The work concludes that important features for enabling component

implementation are not supported by the object paradigm and are still missing [rom

available distributed object support products. As such it is necessary for the system

creator to design in features which support the component paradigm. Without this

additional infrastructure it is highly likely that system implementations which

claim to be component based will still be monolithic and subject to all the

problems oftoday's legacy systems.

©

The original version of this chapter was revised: The copyright line was incorrect. This has

been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35390-6_58

IFIP International Federation for Information Processing
L. M. Camarinha-Matos et al. (eds.), Intelligent Systems for Manufacturing

1998

http://dx.doi.org/10.1007/978-0-387-35390-6_58

280

1. MANUFACTURING SYSTEM SOFTWARE

Software systems created to support the control of a manufacturing business can
generally be regarded as being Information Systems. Jackson states that [Jackson
1995]:

"In its simplest form, an Information System provides information, in response to

requests about some real world domain of interest"

Figure 1 illustrates this, highlighting the fact that the IT system models the real

world but is not directly coupled to it. Indeed, most manufacturing control software

does not control the manufacturing process, it provides information so that a person

or machine can control it. To enable an IT system to provide relevant information

we must produce a model of the real world and embody that model in the system.
In effect, the system becomes a simulation of the real world, and derives its
information directly from its model, and only indirectly from the real world itself.

Something (person or

machine) uses

information to control

the Real W orld

•

Information

Requests

Information

Outputs

Figure 1 Jackson IS Frame

TheSystem

models the

Real World,

but they are not

directly

coupled

The real world for manufacturing industry has dramatically changed over the past

two decades, from a very stable world of established and slow changing practices

to the current position of extreme turbulence. Pressures from globalisation,

decentralisation, customisation and the acceleration of the rate of business change
itself,. driven by technical, social and organisational factors all demand a

requirement for flexibility from the business [Taylor 1992]. If the IT systems

which underpin contemporary business processes are simulations of these real
world businesses they must in turn support a high degree of flexibility.
Unfortunately recent experience has shown [Ganti 1995] that the inherent

flexibility of software has led to the creation of highly complex monolithic bespoke
solutions which turn out to be one ofthe least flexible elements within a business.

2. MONOLITHIC SYSTEMS

Manufacturing Information Systems are commonly created using a data base and
associated management system structured using a 4 GL database language. Here a
high levellanguage can be used to defme transaction processes linking data fields
within the system. In this way, a working system specific to a particular domain or
an individual companies requirements can be rapidly created. However, the

281

complexity of the system so on becomes very high as it mirrors the complexity of

the real world. Although complex, the real world is comprehensible as it is made

up of identifiable component parts combined through structured re1ationships. In
manufacturing these include such things as people (in sales, design, engineering
etc), orders, products, parts etc linked through defined relationships such as order

processes or product designs. In the equally complex IT system implementation all
that is generally visible is a collection of programs which reftect the computational
abstractions imposed by the architecture of the underlYing computer hardware.

The conceptual descriptions of these monolithic systems as portrayed in sales
literature are often modular in nature as they match the natural component

breakdown ofthe real wOrld they model. The user is offered the advantage ofbeing
able to chose specific modules generally based around some core system such as a
generaliedger facility. However this vision of modularity seldom extends beyond
the conceptual system description with hard links between modules introduced in

design and implementation which make it impossible to reduce complexity through
sub division in these phases of the system development lifecycle.

The solution proposed by many in the software industry [Cox 1987, Edwards

1996] is to carry the component philosophy through design to implementation,
using the real world and its component parts as a model. Distributed object
technology has been championed [Orfali 1996] as the medium capable of
supporting this notion. The experiment described in this paper tests the hypo thesis
that contemporary distributed object technology is capable of supporting
component system implementations.

3. COMPONENT BASED SYSTEMS

The creation of modular component parts that provide a service but encapsulate
their internal complexity, and the use of these components to build tangible

products is weil established in modem industry. The computer hardware industry
being a classic example. The architectures that enable this are seen as key to
enabling cost and time reduction. In modem software development however
compliance to rules is often seen as a constraint, and the pace of change in the
industry has provided some justificationto the belief that it can stifte innovation.
However the emergence of standard distribution technology from low level

communications protocols [Lefffler 1989] to higher level object request broking
services [OMG 1994] has provided the opportunity for the industry to take

advantage of a component based approach. If this opportunity is taken up it can

offer the same benefits as componentisation has provided in other industries i.e.:

• Reduction in time to market through re-use;

• Lowering of costs through multiple use of standard components;

• Improved quality through the use of tried and tested components;

• Simplification of the system delivery process, and;

• Outsourcing of specialist skills.
The key requirements for useful components are no different from the two long
standing principles of software engineering, a low degree of coupling and a high
degree of cohesion [Chidamber 1994, Hitz 1996] which are often used to design

objects when using an Object Oriented approach. Cohesion, essentially a measure

of how weil the internal functions of the component are related, demands a logical
grouping of functionality. This logical grouping can be regarded as a design issue

internal to the component, the only external issue here is the access to this

functionality which demands the building of sensible weil defined interfaces to the

services provided by and encapsulated within the component. Coupling however, is

a measure of the external dependencies of the component defmed by the number of

282

links a component has to other components within a system. A low degree of

coupling demands minimised interaction with other components in the system.

Coupling then involves issues external to the component. As an external issue

coupling demands support from the environment in which the components exist
and to maximise the degree of flexibility achieved by component systems this

support should provide for loose coupling. Loose coupling demands that the

components in a system are not linked directly to form a complex network of
interactions, but are linked in such a way that they remain as separate abstractions,

as identifiable as their real world counterparts.
Ultimate1y loose coupling should provide the ability for developers to create

components in complete isolation. System builders would then bring these
components together to form an integrated system where each component in the
system has no prior knowledge of the other components in the system. Whilst this
is easily stated as a system requirement it is not easily realised within a working

system, and as such this level of support for loose coupling is currently the subject

of a number of research initiatives including those at MSI [Edwards 1996]. In the
work described in this paper a general solution is not proposed, the solution path is

to create a system design that addresses the provision of loose component coupling.
In general each phase of the system creation lifecycle places requirements on the

subsequent phase. Loose coupling defined as a requirement at the conceptuaI
design level has generated a requirement which is satisfied through the provision of
"mediation" facilities devised during system design and carried through to
implementation. lbroughout the system construction life-cycle requirements
"trickle down" as each phase defmes requirements which must be satisfied by the
subsequent phase.

4. REQUIREMENTS FOR A COMPONENT BASED SYSTEM

In order to provide the loose coupling required between the components which

comprise a system, a number of issues must be addressed:

• Each component should pos ses a weH defmed role or cohesive set of roles
realised through the provision of services, such that any peer component can

make use of these services;

• These services should be easily accessed, without the requirement for detailed
knowledge ofunderlying computational mechanisms;

• The definition of the component coupling required to produce a system should
not reside within the components themselves, as these are system issues

external to the component.
As introduced in the previous section, a correlation exists between the object

oriented approach to software construction and a component approach to system
construction. An object is an encapsulated entity that possesses an identity and an
interface to its functionality. TypicaHyan object may manage aresource, or just its

own data, which can only be accessed using the object's published interface. Other
objects can either invoke the services it provides through this interface or reuse the

complete object by inheriting from it [Booch 1994]. Using these means, objects
which invoke services on each other can be combined to create systems.

Hence, objects can be used to meet the requirement of providing a weH defmed

role or cohesive set of roles. In addition, as object services are usuaHy invoked by a
method (or function) caH or by receipt of a message, a suitable abstraction exists

for hiding any underlying mechanisms required for object interaction. This
abstraction aHows the composition of weH defmed interfaces to the services an
object encapsulates.

283

With the emergence of distributed object technology, systems can be constructed
as a set of interacting objects without any concem for details such as:

• on which host computer the objects reside;

• the operating system resident on a host computer;

• the programming language used to implement objects.
When using distributed object technology, components use remote procedure and

function calls in order to interact with each other. A C++ program (for example)
can use distributed object technology to invoke functions on a object executing on
another host within a distributed system. This achieves a high degree of
transparency because a C++ programmer can make a standard C++ function call to
invoke a remote object method. This allows a familiar programming paradigm and
syntax to be used to create distributed pro grams.

To enable the implementation of different objects using different programming
languages, an abstract representation of their interface must be produced. The
Interface Defmition Language (IDL) is a standard language defmed by the OMG,
for defming distributed object interfaces. Having used IDL to defme an object's

interface, a programmer is then free to implement the object using any suitable
programming language. Correspondingly, a programmer who wishes to use the
services of an object, can employ any programming language to issue remote
method calls to the object.

Realising system components as objects may provide the cohesion of services we
require, however, relying on the object paradigm alone to implement the
proliferation of interactions that are required to defme an object based system
leaves the degree of flexibility achieved entirely on the hands of the system
programmer. When a large number of object interdependencies exist within a
system, the system tends to become monolithic, due to the difficulty in isolating the
role of any one object. Object systems based on this approach offer little
advantage over conventional legacy software systems. So the object oriented
approach in itself does not fulfi1 the third of our system component requirements,
this must be tackled by some other means. The approach adopted by the authors
which provides additional infrastructural software elements· to support the systems
programmer in creating loosely coupled component based systems is discussed in
the following sections.

5. SYSTEM DESIGN

The system considered in this paper is a manufacturing information system as
introduced in section 1. Such a system must model the natural component
breakdown of the real world. For example, central to many manufacturing
organisations is the concept of parts, together with the concept of buying and
holding parts as stock, the construction of more complex parts or products from a
collection of parts described within a design and the storage and sale of these
products. A component based system which models some of these concepts can be
described as in Figure 2, where Sales Order Processing deals with the buying and
selling operations, Inventory holds details of stock levels and the Bill of Materials
relates parts to the more complex products. Each of these information system
entities must interact to form the IT system.

Having established that the principles embodied by the object oriented approach
could be used to help realise this component based design, the authors required an
appropriate object oriented notation and support tool in order to enunciate and
evaluate the design. The Smalltalk programming language was chosen, primarily
for the following reasons:

• its adherence to the Object Oriented paradigm

284

Bill of
Materials

Management

Figure 2 The Conceptual Design

• its compact notation, and

Sales Order

Process

Inventory

• its ability to simulate particular scenarios within the design

Inherits

from

System Component

Class

components

Figure 3 An overview of the system design

The requirement for loose coupling of components, specified in the conceptual
design, is not inherent within the object paradigm and its supporting language, nor
is it yet supported by the general purpose products that are emerging to underpin

distributed objects [OMG 1994]. Loose coupling is therefore a design requirement
and mechanisms to support it must be devised by those responsible for systems
design where these mechanisms must generate a c1ear set of requirements for
system implementation. An overview of the structure of the solution proposed by

the authors is depicted in Figure 3. The approach is known as mediation [Gamma

94], the intent ofwhich is to:
"Define an object that encapsulates how a set of objects interact. Mediator

promotes loose coupling by keeping objects from referring to each other explicitly,
and it lets you vary their interaction independently"

A system component mediator should be responsible for controlling and co­

ordinating the interactions of a group of components by serving as an intermediary.
Hence components are not known to each other, they are only known to the

mediator. This approach reduces the number of interconnections and controls the
build up of complexity in the system which is responsible for the creation of
monolithic systems.

285

To implement this approach the authors have introduced two infrastructural
elements to the component system namely: a mediation facility, and; a system

component c1ass.

6. THE MEDIATION F ACILITY

The mediation facility performs two main roles, it holds adefinition of the system

component coupling, and it brokers component message requests through its

knowledge of the component coupling within the system.
Hence a11 interactions between system components are configured within the

mediator. Figure 4 provides an example of the operation of the mediation facility.
Here a system interaction comprising arequest from the SOP component for a

service provided by the INVENT component is brokered via the Mediator.

1. Request sent to Mediator

2. Request sent to INVENT

3. Response received by

Mediator

4. Response sent SOP

Configuration

Figure 4 The Mediation Facility broking interaction between two components

Although the example in Figure 4 may seem to add a lot of operational overhead to

what could be a simple system ca11 from the SOP component direct to the INVENT

component, it is important to remember the motivation for such an approach. The

sales and inventory components do not direct1y interact, indeed the message

signature brokered by the mediator need not be the same for both components. This
a110ws for the mediator to broker service requests at a semantic level, and not just
at a syntactic level. The configuration facility in the Mediator provides a semantic
level understanding of the services within the system. For example a service
request issued by the SOP component to obtain the level of stock of a particular
part such as

stocklevel: flange

may be issued to the INVENT component by the mediator as

partRequestLevel: flange

The mapping of one syntax for the service to another, being achieved within the
configuration utility in the Mediator. The service response mayaiso be modified in

a similar manner. This de-couples the two components to an extent where they

must only share the semantics of their interactions and a common means to

interact. The latter being the role of the system component c1ass.

286

This level of configuration is not currently supported within contemporary

Distributed Object Technology and so must be built into a mediation facility by the
system implementor. However, the OMG's Trading service specification has
recently been approved and is aimed at supporting the concept of system wide
mediation service provision.

The second role performed by a mediation facility, the brokering of component

interactions within a distributed system, is weIl served by Object Request Brokers

as described in the previous section. The implementation of a mediation facility
requires a layer of configuration functionality to be added to the services provided

by an Object Request Broker. This has been achieved within a prototype solution

using the following methods

add: method forObject: anObjRef supplier: aSupplier method: aMethod
args: anArgMap block: aBlock
"This method stores configuration information wi thin a local
database"

This allows configuration information to be added to the mediator as follows

mediator add: #stocklevel: forObject: sop supplier:. invent method:
#PartRequestLevel: args: #(1) block: [:retll

During system execution, when a message such as

stocklevel: flange

is sent to the mediator a method

aMessage:fromObject:

accesses the configuration information and performs the following:

• identifies the appropriate destination system component for the message, i.e.
INVENT;

• transforms the message syntax to that required by the destination component
i.e. partRequestLevel: flange;

• sends the message via the ORB to INVENT;

• transforms the response message into the required syntax of the message
originator, in this case no transformation is required;

• sends the transformed response message back to the component sop.
This facility enables any system component to interact with other system
components without it containing details of other component interfaces.

7. THE SYSTEM COMPONENT CLASS

Using the solution proposed by the authors all components within the system
require access to the mediation facility in order to interact with other system

components. To achieve this a single system component class was devised. The

intention here is to use the object oriented property of inheritance as a means of
providing all system components with the capability ofusing the mediation facility

Inheritance is the mechanism that allows the designer to create new child classes

from existing parent classes. Child classes inherit their parent services and data

structures. The designer can then add new services or override inherited services so
the child class becomes a specialisation of the parent class.
Hence within the system solution proposed in this paper all components are a
specialisation of the system component class where this class directs all service
requests to the mediation.

287

During system implementation the construction of a system component class is

required, this class encapsulates the means of interacting with the system mediator.

The provision for constructing object classes and implementing object inheritance

is well catered for by object oriented programming languages, only the means of

interaction with the mediator has to be implemented. This has been achieved within

a prototype solution by creating a systemComponent class which supports two

instance variables 'myName' and 'myMediator' and implements the Smalltalk

method 'doesNotUnderstand:' in order to divert messages to a mediation facility.

The class supports system component creation by providing the method

new: instanceName mediator: aMediator
A(super new) name: instanceName; mediator: aMediator

which identifies the name of the component and its mediator. Within Smalltalk

when an inappropriate message is sent to an object the message is encoded in an

instance of the class Message and sent back to the same receiver as the parameter

to 'doesNotUnderstand:'. Tbis method is implemented by the system component

class as follows.

doesNotUnderstand: aMessage
Aself media tor perform: #aMessage: fromObj ect: wi thArguments:

(Array with: aMessage with: self name)

The effect is to send the message and the component's identity to the system

mediator. Therefore, to interact with another system component, a component only

has to send a message to itself, the message will then be sent to the mediator by the

'doesNotUnderstand:' method inherited from the class systemComponent. Using

the previous example the component SOP would execute the following statement

to obtain the stock level ofthe part flange from the component INVENT.

self stocklevel: flange

8. CONCLUSIONS

The work described in this paper supports the notion that the software crisis,

primarily caused by creating systems of extreme complexity as software monoliths,

will only be curtailed when the component system paradigm moves out of

conceptual design and can be clearly recognised in system implementations. The

work has demonstrated that loose coupling of components is an important

requirement for component systems. This requirement is as yet unsupported by

general purpose distributed object technology products and is the responsibility of

the system creator to build in at the design stage and carry through to
implementation.

If the system creator abdicates bis responsibility and does not provide the

additional inftastructural software elements required to support loose coupling it is

quite possible, if not highly likely that bis distributed object system will be just as

monolithic as the legacy systems wbich exist today.

REFERENCES

Jackson M., (1995) "Software Requirements and Specification", Addison Wesley.

Taylor D., (1992) "Object Oriented Information Systems: planning and

Implementation", New York, John Wiley & Sons.

Ganti N and Brayman W, (1995) "The Transition of Legacy Systems to a

Distributed Architecture", New York, John Wiley & Sons.

288

Chidamber, Shyam R,and CF Kernerer., (1994) "A Metrics Suite for Object
Oriented Design", IEEE Transactions on Software Engineering, Vol. 20,No. 6.

Hitz, Martin, and B Montazeri, (1996) "Measuring Coup1ing in Object Oriented
Systems", Bject Currents, Vol. 1, No. 4.

Gamma E, Helm R, Johnson R and Vlissides J, (1994) "Design Patterns",
Addison-Wes1ey.

Leffler, S., McKusick, M., Kareis, M. and Quartermain J., (1989) The design and
Imp1ementation of the 4.3 BSD UNIX Operating System. Reading MA:
Addison-Wesley. 1989.

OMG (1994) "The Common Object Request Broker: Architecture and
Specification", Object Management Group Inc., 492 01d Connecticut Path,
Framingham, MA., USA.

Edwards J,Clements P, Gascoigne J, and Coutts I, (1997) "Component Based
Systems: the basis of future manufacturing Systems", Component Users
Conference CUC96, Munich July 96, SIGS Books.

Cox BJ,(1987) "Object Oriented Programming, An Evolutionary Approach",
Addison Wesley.

Booch G., (1994) "Object Oriented Analysis and Design", BejaminiCummings Co.

Inc.

BIOGRAPHY

lan Coutts spent two years at Marconi Research as a research scientist, working
on industrial assembly automation and robotics projects. He has spent the last
eleven years at Loughborough University, and currently works in the MSI
Research Institute at Loughborough. Particular responsibilities include work on
infrastructure and facilities for enabling model execution.

John Edwards gained his PhD from Loughborough University in 1994. Having

spent 13 years in industry, being involved in the creation of computer control an
information systems, he joined Loughborough University in 1987. During his 11
years at Loughborough he has been involved with Systems Integration and is now a
member of the MSI Research Institute where his role is as principal investigator on
a number of UK govemment funded research Initiatives.

	SUPPORT FOR COMPONENT BASED SYSTEMS: CAN CONTEMPORARY TECHNOLOGY COPE?

	1. MANUFACTURING SYSTEM SOFTWARE
	2. MONOLITHIC SYSTEMS
	3. COMPONENT BASED SYSTEMS
	4. REQUIREMENTS FOR A COMPONENT BASED SYSTEM
	5. SYSTEM DESIGN
	6. THE MEDIATION FACILITY

	7. THE SYSTEM COMPONENT CLASS
	8. CONCLUSIONS
	REFERENCES
	BIOGRAPHY

