
Support for Context-Aware Collaboration

Hana K. Rubinsztejn, Markus Endler, Vagner Sacramento,

Kleder Gonçalves, Fernando Nascimento

e-mail: {hana,endler,vagner,kleder,ney}@inf.puc-rio.br

PUC-RioInf.MCC34/04 September, 2004

Abstract

This paper describes a middleware architecture with its location inference service (LIS), and an application

for context-aware mobile collaboration which is based on this architecture. The architecture, named Mobile

Collaboration Architecture - MoCA comprises client and server APIs, a set of core services for registering

applications, monitoring and inferring the execution context of mobile devices, in particular their location.

This architecture is suited for the development of new kinds of collaborative applications in which the context

information (connectivity, location) plays a central role in defining both the group of collaborators, and the

communication mode.

Keywords: Mobile Computing, Middleware, Context-awareness, Mobile Collaboration

Resumo

Este artigo descrevemos uma arquitetura middleware, seu serviço de inferência de localização (LIS) e uma

aplicação para colaboração móvel sensı́vel a contexto baseada nessa arquitetura. A arquitetura, denomindada

Mobile Collaboration Architecture - MoCA provê APIs cliente e servidor, um conjunto de serviços básicos para

monitorar e inferir o contexto de dispositivos móveis, em particular sua localização. Essa arquitetura é adequada

ao desenvolvimento de novos tipos de aplicações colaborativas nas quais a informação de contexto (conectividade,

localização) representa o papél central na definição do grupo de colaboração e do modo de comunicação.

Palavras Chaves: Computação Móvel, Middleware, Percepção de Contexto, Colaboração Móvel



Support for Context-Aware Collaboration

I. INTRODUCTION

With the increasing popularity of mobile technologies, high-speed wireless communication is now available

in many locations such as corporate offices, factories, shopping malls, university campi, airport halls, cafes and

at homes. Moreover, with the widespread availability of cheaper and more powerful portable devices, there is

also an increasing demand for services that support seamless communication and collaboration among mobile

users. User mobility has also inspired the development of many location-based services, such as automated

tourist guides or generic location-specific information services. We believe that user mobility and wireless

communication capabilities also open a wide range of new and yet unexplored forms of collaboration, in which

information about the user’s context, for example, her position, plays a central role in defining both the group

of collaborators, and the communication mode.

Concerning the first aspect, we believe that, unlike in traditional groupware, the group of collaborators tends

to be dynamic and formed spontaneously, for example, motivated by a common interest, situation or environment

shared among the peers. In particular, collaboration happens in form of spontaneous and occasional initiatives

of requesting or giving assistance, sharing news or contributing to the building of public knowledge. Thus,

participation is very often motivated by the implicit gain of reputation caused by providing help or a contribution

[1].

In terms of the second aspect, we think that the user’s context (e.g. her current location, quality of the

connectivity, or her current activity/task) will be an important factor when determining the most appropriate

communication mode for a given situation or task, i.e. whether synchronous or asynchronous communication

is to be used in each situation. In particular, for mobile collaboration we are convinced that both modes of

communication are equally important and that they will probably be used in an interleaved way.

Finally, due to the intrinsic weak and intermittent connectivity in mobile networks, there is need to re-define the

notion of mutual collaboration awareness. For example, when a user is engaged in a synchronous collaboration

session and for any reason suffers an involuntary and temporary disconnection, in most cases it is important that

her new context (e.g. disconnected) is shared among the collaborating peers, so as to minimize the disruption

of the group dynamics. Hence, we think that mobile collaboration tools should support some degree of context

sharing.

In order to share our vision of new forms of context-aware collaboration, consider the following two scenarios:

Scenario 1: While in his office, Bob is co-editing a document with colleagues using a groupware tool

at his desktop connected to a 100 Mbps network. At a certain point he has to leave for a departmental

meeting (in the same building), but wants to continue the collaboration, during the meeting. He then

decides transfer the collaboration session to his WiFi-enabled PDA, where he has a PDA-ported version

of the same groupware application. On his way to the meeting he keeps the device on, but obviously

cannot engage in any serious interaction until he arrives in the meeting room. There, his visualization

and interaction capabilities are seriously affected, due to device limitations (smaller screen and lack

of keyboard), the smaller network bandwidth of WiFi, as well as his limited attentiveness. Therefore,

Bob decides to focus on the exchange of messages with his co-workers, giving them instructions on

what he would like them to do. However, because he is still on-line, none of them accepts his requests,

arguing that he should do it by himself.

This scenario suggests that the users of a collaboration application would have concrete benefits if their

application were able to notify all the session participants whenever Bob changed his context: e.g. when Bob

1



transferred the session to this PDA, when he was walking, or entered the meeting room. If they had this

information, they would probably know what to expect from Bob, and would better understand his change of

behavior.

Scenario 2: In the cafeteria during lunch, Alice realizes that she has probably forgotten her home

keys in the lab, where she had been in the morning. But since she has an important meeting afterward

she cannot return there to check for the keys. So she calls the lab but because it is lunch hour, nobody

picks up the phone. And since she rarely visits the lab in the afternoon, she does not know who

could be there later. So she decides, using her wireless enabled PDA, to send a message to the lab’s

virtual note board, asking for any student or lab staff who happens to come into the lab to store away

her keys in her drawer. As soon as Peter enters the lab and turns on his notebook, he is notified

of a new message from Alice to the lab. Because he is a regular lab user, he is authorized to open

it. He reads the message, finds and stores Alice’s keys, and closes the message with an OK. When

doing so, Alice is automatically notified that someone has read her message and probably attended

her appeal. Although she does not know who it was, she knows that if necessary she could later check

in the virtual note board who it was. So she decides to remotely remove her note. She then rushes to

the meeting, where she arrives 20 minutes late. In the meeting, she realizes that the most important

topic has already been discussed. Instead of asking (and disturbing) someone, through her PDA, she

searches for any meeting-specific note being shared by any of the participants. Fortunately, Helen the

secretary, is her friend, and Alice can immediately know what she has missed. Moreover, she can see

that right now Helen is scribbles: “Late again, uh?”.

This scenario shows the benefits of location-specific asynchronous and synchronous communication. The first

is useful as a form of any-casting, while the latter may be useful in situations where sharing of documents

is required among people which are co-located, and participating in the same event, such as a meeting, a

presentation or a class.

The aforementioned discussion and scenarios suggest that environments for developing mobile collaboration

applications and services should incorporate new mechanisms facilitating the collection, the aggregation and

the application-level access to different kinds of information about the individual and collective context of a

user or group of users, which can be both made available to the collaborating peers (e.g. mobile collaboration

awareness), or used for adapting the behavior of the application (e.g. its behavior, available functions or user

interfaces) to the current situation.

This paper describes a middleware architecture (MoCA) with its location inference service (LIS), and an

application for context-aware mobile collaboration which is based on this architecture. The work is part of a

wider project which aims at experimenting with new forms of mobile collaboration and implementing a flexible

and extensible service-based environment for the development of collaborative applications for infra-structured

mobile networks.

In the following session we describe the main design principles MoCA’s support for application programming

and the network requirements of our architecture. Section III presents a general overview of MoCA, its main

components and their interactions. Our current work on context-aware collaborative applications is presented in

Section V. In section VI we discuss some related work and make a comparison with the MoCA architecture.

Finally, in section VII, we make some considerations with regard to the MoCA properties, and mention other

ongoing work that in the scope of this project.

2



II. DESIGN PRINCIPLES

The Mobile Collaboration Architecture (MoCA) consists of client and server APIs, basic services supporting

collaborative applications and a framework for implementing application proxies (ProxyFramework), which can

be customized to the specific needs of the collaborative application and which facilitates the access to the basic

services by the applications. The APIs and the basic services have been designed to be generic and flexible, so

as to be useful for different types of collaborative applications, e.g. synchronous or asynchronous interaction,

message-oriented or artifact-sharing-oriented.

In MoCA, each application has three parts: a server, a proxy and a client, where the two first execute on

nodes of the wired network, while the client runs on a mobile device. A proxy intermediates all communication

between the application server and one or more of its clients on mobile hosts.

Applications with requirements to scale to large numbers of clients may have several proxies executing on

different networks. The proxy of an application may execute several tasks, such as adaptation of the transferred

data, e.g. compression, protocol conversion, encryption, user authentication, processing of context information,

service registration and discovery, handover management and others. Most of such tasks require quite a lot of

processing effort, and hence, the proxy also serves as a means of distributing the application-specific processing

among the server and its proxies.

When designing MoCA, we adopted following principles:

Scalability: The architecture accounts for the possibility of implementing any service as a pool of servers,

guaranteeing distribution and location transparency to the clients. New servers can be added to the system

according to the service demand.

Extensibility: Nearly all of MoCAs services can be extended, incorporating new functionality, and new

services can be included independently of the existing ones. For example, the location service discussed in

Section IV can be regarded as an additional optional service for location-aware applications.

Simplicity: MoCA facilitates the use of its services by the application developer. Using the ProxyFramework

and the APIs for the Server and the Client, the developer has easy access to all basic services (and other

services) without having to care about the details of their execution and interactions, and can therefore focus

on the application’s logic.

Heterogeneity: Several communication protocols can be used for the services of the architecture. For example,

the proxy of an application can use several protocols, such as (JMS, TCP, UDP, SMS, WAP, etc.) to interact

with different clients executing on mobile devices prepared for different communication technologies, such as

CDMA, GSM/GPRS, 802.11.

Flexibility: With the goal to offer a flexible and robust execution environment, all the services in MoCA

shall be modular and distributable, easy to configure, update and maintain. Moreover, application servers and

clients should be executable both on mobile and stationary devices. For example, a server for sharing files (e.g.

music files in a peer-to-peer application) could either execute on a notebook with wireless interface or on a

workstation.

Independence: Yet another design principle was to depend only on the most basic and widely available

internet protocols and services. Related to this, there are just three basic requirements of using MoCA for

developing and executing a collaboration application:

• The application developer must use the ProxyFramework and the client and server APIs provided by the

architecture in order to be able to use the MoCA services;

• TCP/IP must be available in the wired network

• DNS (Domain Name System) must be available in the wired network, since it is used by the services to

resolve network names.

3



Fig. 1. Typical Interaction Sequence between a collaborative application and MoCA’s core services

III. OVERVIEW OF MoCA

The MoCA was designed for infra-structured wireless networks. The current prototype of this architecture

works with an 802.11 wireless network based on the IP protocol stack, but the architecture could as well be

implemented for a cellular data network protocol, such as GPRS.

MoCA offers client and server APIs and a ProxyFramework. The server and the client of a collaborative

application should be implemented using the MoCA APIs, since they hide from the application developer most

of the details concerning the use of the services provided by the architecture (see below). The ProxyFramework

is a white-box framework for developing and customizing the proxies according to the specific needs of the

application. It facilitates the programming of adaptations that should be triggered by context-change events.

In addition, the architecture offers the following core services which support the development of context-aware

collaborative applications:

• Monitor: is a daemon executing on each mobile device and is in charge of collecting data concerning

the device’s execution state/environment, and sending this data to the CIS (Context Information Service)

executing on one (or more) node(s) of the wired network. The collected data includes the quality of the

wireless connection, remaining energy, CPU usage, free memory, current Access Point (AP), list of all APs

and their signal strengths that are within the range of the mobile device.

• Configuration Service (CS): this service is in charge of storing and managing configuration information

for all mobile devices, so that these can use MoCA’s core services, such as CIS and Discovery Service

(DS). The configuration information is stored in a persistent hash table, where each entry (indexed by the

device’s MAC address) holds the following data: the (IP:port) addresses of a CIS server and a Discovery

Server, and the periodicity by which the Monitor must send the device’s information to the CIS. The

MAC address-specific indexing is essential for implementing a distributed CIS, where each server gets

approximately the same context processing load.

• Discovery Service (DS): is in charge of storing information, such as name, properties, addresses, etc., of

any application (i.e. its servers and proxies) or any service registered with the MoCA middleware.

4



• Context Information Service (CIS): This is a distributed service where each CIS server receives and processes

devices’ state information sent by the corresponding Monitors. It also receives requests for notifications

(aka subscriptions) from application Proxies, and generates and delivers events to a proxy whenever a

change in a device’s state is of interest to this proxy.

• Location Inference Service (LIS): infers the approximate symbolic location of a device. Details of this

service will be presented in Section IV.

Figure 1 shows the typical sequence of interactions among the elements of the architecture, which is to

illustrate the roles played by these elements during registration and execution of an collaborative application,

composed of one (or more) instances of an Application Server, a Proxy(ies) and Application Clients.

Initially, the Application Server registers itself at the DS (step 1) informing the name and the properties of

the collaborative service that it implements. Each Proxy of the application also performs a similar registration

at the DS (step 2). This way, the Application Clients can query the DS in order to discover how to access a

given collaborative service in their current network , i.e. either through the Application Server or a Proxy. The

Monitor executing on each mobile device, polls the state of the local resources and the RF signals, and sends

this context information to the CIS. As mentioned, the address of the target CIS and the periodicity for sending

the context information are obtained from the CS when the Monitor is started (step 3). Thereafter, the Monitor

sends periodically the state information to the CIS (step 4).

After discovering a Proxy which implements the desired collaborative service through the DS (in step 5),

the client can start sending requests to the Application Server. Every such request gets routed through the

corresponding Proxy (step 6), which processes the client’s request with respect to specific adaptation needs

of the application, and forwards it to the Application Server. For example, the Proxy may send an Interest

Expression to the CIS (step 7) registering its interest in notifications of events about a state change of the client

it is representing. An Interest Expression may be for example {“FreeMem < 15%” OR “roaming=True”}.

Now, whenever the CIS receives a device’s context information (from the corresponding Monitor), it checks

whether this new context evaluates any stored Interest Expression to true. If this is the case, CIS generates a

notification message and sends it to all Proxies which have registered interest in such change of the device’s

state.

Applications which require location information, instead register their interest with LIS, (step 8) which in

turn subscribes at CIS (step 9) for receiving periodic updates of the device’s RF signals, which LIS uses to infer

the device’s location and send the corresponding notification to the Application Proxy.

When the Application Server receives the client’s request, the request is processed and a reply is sent to some

or all the Proxies (step 10), which may then modify/process the reply (e.g. compress, filter, etc.) according

to the notification received from CIS about the corresponding mobile device. Such context-specific processing

depends on the specific requirements of the collaborative application. For example, if the Proxy is informed

that the quality of the wireless connectivity of a mobile device has fallen below a certain threshold, it could

temporarily store the server’s reply data in a local buffer for an optimized bulk transfer, remove part of the data,

e.g. figures, apply some compression to the data, etc. Moreover, the Proxy could use other context information,

such as the device’s location, to determine what data, when and how it should be sent to the client at the mobile

device (step 11).

The architecture also implements mobility transparency for the applications. When a mobile devices moves

to another network , the Monitor detects this and the CIS notifies the Proxy. The Proxy performs the handover

at the application level, by determining the most appropriate Proxy for the device in the new network, and if

available, transferring the collaboration session state to this new Proxy.

5



Area Manager
Location Inference

Engine

Area

Repository

Event Manager
Location Information

Cache

Skeleton

CIS Stub

(CIS Client API)

Fig. 2. LIS Architecture

IV. LOCATION INFERENCE SERVICE

The Location Inference Service (LIS) is responsible for inferring the approximate location of a mobile

device from the raw context information collected by the CIS for this device. It does this by comparing

the device’s current pattern of RF signals received (from all “audible” 802.11 Access Points) with the signal

patterns previously measured at pre-defined Reference Points in a Building or Campus. Therefore, before being

able to make any inference, the LIS database has to be populated with RF signal probes (device pointing in

several directions) at each reference point, and inference parameters must be chosen according to the specific

characteristics of the region. In fact, the number of reference points determines the reliability of the inference.

LIS uses a hybrid and hierarchical location model where position can be given either by coordinates or by

symbolic name.

The LIS architecture is outlined in Figure 2.

The CIS stub requests to the CIS periodic notifications of the RF signal strengths sensed by a device from

several APs (i.e. the RF pattern), collects and prepares this information for location inference.

The Inference Engine applies the Multiple Nearest Neighbor technique, as used in RADAR [2], to

infer the approximate location of the device. This technique calculates the Euclidean Signal Distance dk to a

reference point k, based on the difference between each component i ∈ [1, m] of the RF signal pattern (i.e.

signal from each one of the m APs) collected for the device s′
i
, and the corresponding component of the RF

pattern ski of the reference point, which has been previously measured and recorded.

dk =
√

(sk1 − s
′

1
)2 + (sk2 − s

′

2
)2 + ... + (skm − s

′

m)2

Each coordinate of the (estimated) position of the device is then computed as the weighted mean value of

the corresponding coordinate of only some reference points, which happen to have the lowest Signal Distances.

Since the RF signal is subject to much variation and interference, the inference can only be approximate.

However, in order reduce the error, when comparing the RF patterns of a device and a reference point, we

always use the mean value of several (e.g. N = 20) probes, and extreme values are previously discarded.

As part of LIS’ configuration, a MoCA administrator can define geographic regions of arbitrary size and

shape, assign them a symbolic region name, and use them to construct a hierarchical topology (i.e. composite

6



regions with nested sub-regions) for his site. This information will be stored in the Area Repository in

XML format. Accessing the Area Manager, the Inference Engine is able to map the coordinates of

the inferred point to a symbolic region.

The result of an inference is the information of a device’s coordinates, or if it is positioned inside any of the

symbolic regions defined by the user. This information will then be recorded in the Location Information

Cache. Because of the hierarchical topology, even if a device is not detected within an atomic symbolic region

(e.g. a room), it will be detected in the enclosing region.

The Event Manager is responsible for processing queries and requests for notifications from applications

which are interested in the location (or its change) of one or several devices, as well as sending the notifications

whenever a device’s location is updated in the Location Information Cache. LIS provides an interface

for both device-based and region-based queries and notification subscriptions. Within LIS, each device is

identified through its MAC Address.

Preliminary tests have shown that LIS can deliver satisfactory precision. We tested it on the 600 m2 region

(5th floor of our CS building), where signals from up to eight 802.11 APs can be sensed. Within this region, we

defined reference points (i.e. measured and recorded their RF signal patterns) at approximately every 4 meters,

mainly in corridors and common halls. The measurements were made at several, randomly chosen, test points

in this region. For each test point, we made 20 measurements and computed the error (the Euclidean Distance,

in meters) between its actual geographic position and the position inferred by LIS.

TABLE I

PRELIMINARY PRECISION RESULTS

Percentage of Test Points 50% 70% 90%

Error (in meters) 1.56 1.74 2.84

Table I presents the errors (in meters) obtained with 50%, 70% and 90% of the test points. For example, for

70% of the tests, the error was at most 1.74 meters. And even for 90% of the tests, the error at most 3 meters.

The results obtained in our experiments are similar to the ones described in [2], which was expected since

the algorithms are equivalent. As a next step we will experiment with other inference algorithms, such as the

ones described in [3], [4] that use a probabilistic approach which seems to be more robust to variations of

the RF signal strength. However, for the sort of location-aware applications we are developing, the achieved

accuracy is fairly good and sufficient.

V. APPLICATION: NOTES IN THE AIR

In this section we present a Collaborative Application which we are developing as case study of MoCA.

NITA (from “Notes in the Air”) is an application to post text messages (and files, in general) to a symbolic

region. Hence, any client which is currently in (or enters) this region and has the proper authorization will

automatically receive this message. There are several other projects with similar services combining messaging

with spatial events. However, most of these services where implemented from scratch or without a general

middleware support for context monitoring and inference.

In NITA, the sender of a message can set its destination (a symbolic region), the users authorized to read

the message, and the time period the messages is to be readable. Moreover, it can search for available NITA

servers, their regions, and visible users in each of the regions. A potential receiver can set her visibility flag

(on/off), choose which types of messages she wants to receive, and choose between an immediate display of

the message, or if it should be logged for future reading.

7



When a message is first read, its author receives an acknowledge message with a timestamp on it. It does

not contain the reader’s identity because such information would raise privacy problems, i.e., the author would

know what time the reader was in a location. The acknowledge message is just used to inform the sender that

her message was read at least once, and when.

When a user enters in a new symbolic region, the LIS service informs the NITA proxy about this change

of user location. The latter forwards this information to the server application which calls the removeUser()

method on the Location object related to the previous region and the addUser() method on the Location object

representing the user’s current region. Then, the Location object sends to the client application on the mobile

device the list of IDs of all messages posted to the location it represents. A new messages on the air warning

appears on user’s screen, and the user can open a window to browse the list, showing subject and author of

each message. If she decides to read one, the message’s ID is sent to the application server, which retrieves

the related message from the database and sends it to the client. Hence, only the desired messages are actually

sent to the users. Besides, the user can choose whether to save or discard a message. On the former case, the

message is saved on a previously configured URL, which can point to a local file system or to the user’s remote

account on the NITA server.

Besides this asynchronous kind of communication, NITA also provides a synchronous mode of communication.

Each symbolic region has a chat room associated to it, allowing users to send/receive synchronous messages

to/from people in the same location. This feature is interesting for regions with many people. For instance, a

conference room, where users can communicate with each other without disturbing the speaker, or a bar, where

shy people want to first have a virtual conversation before engaging in a meeting in the physical world.

Furthermore, the user does not need to be in the same place as her peers. When she first opens the application,

she is automatically added to her current location and the chat room related to it. But she can browse and join

other chat rooms and therefore be able to communicate with peers in other regions. In this case, her icon appears

in a different way so the others know that she is not physically present in the region. It is also possible to send

messages to a specific peer, as in normal peer-to-peer communication.

In addition to symbolic regions, a chat room can be created and associated to subjects. Hence, users can

meet to talk about a topic of their interest, no matter where they are. This way, NITA works like a conventional

wireless chat application.

Because NITA is essentially a message retrieval service driven by spatial events of the kind (Device X detected

in region Y), and by communication events, it interacts closely with the location service LIS (cf. section III),

which provides derived/inferred context information.

The NITA proxy is in charge of querying the LIS service about its region structure and registering interest

in location changes of the clients it represents. Moreover, it manages the client’s profile, i.e., whether it should

filter out some messages, log the messages or forward them to the client. Although many of these tasks could

as well be performed by the NITA server, this decentralization is necessary for providing a scalable service.

VI. RELATED WORK

Much research related to middleware and programming environments for mobile and context-aware ap-

plications [5], [6] has been done, and many influenced our work. However,we will only discuss some

architectures/environments with similar goals as MoCA. Furthermore, we will present also some applications

which use the device location as the main context information, like NITA.

8



A. Middlewares

ActiveCampus [7] is a large project at UCSD which provides an infra-structure focusing on integration of

location-based services for academic communities. It employs a centralized and extensible architecture with

five layers (Data, Entity Modeling, Situation Modeling, Environment Proxy and Device) which supports a clear

separation of the collection, the interpretation, the association with physical entities and the service-specific

representation of context information. Currently, they implemented and deployed two applications: ActiveCampus

Explorer, which uses students’ locations to help engage them in campus life; and ActiveClass, a client-server

application for enhancing participation in the classroom setting via PDAs. Like in MoCA, location is inferred

by measuring the RF signals from 802.11 Access Points.

Aura[8] is a project at Carnegie Mellon University which is developing a system architecture, algorithms,

interfaces and evaluation techniques needed for pervasive computing environments. The architecture components

comprise Coda - a nomadic file system, Odyssey - for resource monitoring and adaptation, Spectra - remote

execution mechanism and Prism - a new task layer above applications that is responsible for capturing and

managing user intent to provide support for proactivity and self-tuning. Aura also offers a bandwidth advisor

service (for IEEE 802.11 wireless networks) with two components for monitoring and prediction, and a user

location service based on signal strength and 802.11 access point information, similar to LIS.

STEAM [9] is an event-based middleware for collaborative applications where location plays a central role. It

is a system specially designed for ad-hoc mobile networks, and hence inherently distributed. It supports filtering

of event notifications both based on subject and on proximity.

YCab [10] is also a framework for development of collaborative services for ad-hoc networks. The framework

supports asynchronous and multicast communication based on 802.11. The architecture includes a module for

message routing and modules managing the communication, the client component and its state. Among the

offered collaboration services, there is a chat, a shared white-board, and sharing of images (video-conferencing)

and user files.

A common feature observed in most aforementioned environments is their concern to shield from the

application developer all aspects regarding mobility and user location, aiming the provision of a seamless,

anywhere-available service. Only STEAM, ActiveCampus and Aura use information about the current context

(e.g. the location) for triggering appropriate adaptations of the application’s behavior or enabling context-specific

application functions, such as the proximity-based selection of collaboration partners, or the dissemination of

the connectivity status of mobile devices.

In MoCA we take a similar approach as in ActiveCampus, where context information (of any mobile user) may

not only trigger user-transparent adaptations, but may also affect the specific functions available (and behavior) of

the application at each point of time and space. Through its core services and the ProxyFramework, MoCA makes

available to the application developer a wide range of context information, e.g. the user device’s (approximate)

location, the quality of the connectivity, the device characteristics, and available resources, which she can use

according to the specific needs of the application.

Compared to ActiveCampus’ architecture, MoCA proposes a decentralized context-information service (CIS),

which can be used by other services for deriving some higher-level and application-specific context information.

Moreover, MoCA also supports service integration, extensibility and evolution through the Discovery Service

and well-defined interfaces between the core services.

B. Applications

There are several location-aware applications described in literature. comMotion[11], [12] and Stick-e

Notes[13] post messages (to-do lists, news from the Internet, etc) to a place, using a GPS device to get the

9



user’s location information. As in NITA, information is delivered according to physical location and/or user

identity. Cyberguide[14] is a mobile context-aware tour guide that offers information to users according to their

position or orientation. The information is retrieved by anyone who is in a specific area, and cannot be filtered

according to user identity.

In many applications, the positioning information is only used by the beholder of the device and is not shared.

This way, it doesn’t contribute to other purposes, i.e., knowing the location of a peer might suggest places of

potential interest, as mentioned in Conference Assistant[15], where users attending a conference indicate their

level of interest in a particular presentation to the application. Some privacy issues arise from this feature,

and therefore some applications, like Cricket[16], chose not to provide it, avoiding a common database that

holds such information, as used in NITA. But we believe that with some precaution, like using buddy-lists and

configuration of a set of properties, privacy can be assured.

According to the limits imposed by their positioning technology, all applications can be used either indoors

(Cricket) or outdoors (comMotion, Stick-e Notes) but not both. Currently, NITA is also restricted to indoor

use (because of LIS), but we designed NITA to be independent of the location technology. Furthermore, all

the above-mentioned applications support either synchronous or asynchronous communication, but not both, as

NITA does.

VII. CONCLUSIONS

This work is part of a wider project which aims at investigating collaboration support for mobile users. We

believe that collaboration among mobile users requires new and different middleware services and functionality

than the ones provided by groupware for wired networks.

In particular, we believe that not only individual context information of a user (such as her location or

connectivity), but also collective context information (such as the proximity of two or more users) can be used

not only to enrich collaboration awareness, but as well allow for new forms of collaboration, which have not

been yet explored in conventional, wired collaboration.

Compared with other middlewares and environments for mobile collaboration, MoCA offers a generic and

extensible infrastructure for the development of both new services for collecting and/or processing context

information, and collaborative applications that make use of this information to determine the form, the contents

and/or the peers involved in the collaboration. By developing the LIS service, we have shown how MoCA can

be extended to incorporate new services that infers an abstract context, as for example, the device location from

“raw”context data, such as 802.11 RF signals.

So far, we have implemented the Monitor for WinXP and Linux1, the Configuration Service, and prototypes

of the Context Information Service and the Location Inference Service. Although, preliminary tests have shown

that LIS can deliver satisfactory precision, we are still experimenting with different inference algorithms, as

well as assessing the accuracy of the inference in other areas on the campus.

Application NITA is still being developed, but we can already notice the benefits of using MoCA’s services,

especially LIS, the APIs and the ProxyFramework. Their use reduced considerably the complexity of the

application development since the application just needs to register for notification of context changes. We

have already developed one other context-aware application using MoCA, named W-Chat which is a chat tool

providing collaborative peers with information about mutual (wireless) connectivity. Moreover, we are also

planning to use MoCA and LIS for the development of location-aware information services for the university

campus.

1These implementations are mostly independent of the 802.11b chip set. And we are currently working on a WinCE version.

10



In another thread of research, we are investigating means of defining user interests using ontologies, and

designing services for matchmaking of interests and skills. The goal is to design collaborative applications

which use both information about user location and interest affinity for selecting the peers and the form of

collaboration.

REFERENCES

[1] H. Rheingold, Smart Mobs: The Next Social Revolution. Perseus Publishing, Oct. 2002, iSBN: 0738206083.

[2] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based user location and tracking system,” in INFOCOM (2), 2000,

pp. 775–784. [Online]. Available: citeseer.nj.nec.com/bahl00radar.html

[3] A. M. Ladd, K. E. Bekris, A. Rudys, L. E. Kavraki, D. S. Wallach, and G. Marceau, “Robotics-based location sensing using wireless

ethernet,” in Proceedings of the 8th annual international conference on Mobile computing and networking. ACM Press, 2002, pp.

227–238.

[4] T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen, “A probabilistic approach to wlan user location estimation,”

International Journal of Wireless Information Networks, vol. 9, no. 3, pp. 155–164, July 2002.

[5] G. Chen and D. Kotz, “A survey of context-aware mobile computing research,” Dept. of Computer Science, Dartmouth College,

Tech. Rep. TR2000-381, November 2000. [Online]. Available: ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.ps.Z

[6] C. Mascolo, L. Capra, and W. Emmerich, Advanced Lectures in Networking. Springer Verlag, 2002, vol. LNCS 2497, ch. Middleware

for Mobile Computing (A Survey), pp. 20–52.

[7] S. W. B. W. G. Griswold, R. Boyer and T. M. Truong, “A component architecture for an extensible, highly integrated context-aware

computing infrastructure,” in Proc. of the 25th International Conference on Software Engineering (ICSE 2003), Portland, Oregon,

May 2003.

[8] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, “Project Aura: Toward Distraction-Free Pervasive Computing,” IEEE

Pervasive Computing, no. 2, pp. 22–31, April-June 2002.

[9] R. Meier and V. Cahil, “Exploiting proximity in event-based middleware for collaborative mobile applications,” in 4th IFIP International

Conference on Distributed Applications and Interoperable Systems (DAIS’03), Paris, France, 2003.

[10] D. Buszko, W.-H. Lee, and A. Helal, “Decentralized ad hoc groupware API and framework for mobile collaboration,” in Proceedings

of the 2001 International ACM SIGGROUP Conference on Supporting Group Work, Boulder, USA, Oct. 2001.

[11] N. Marmasse, “comMotion: a context-aware communication system,” in CHI ’99 extended abstracts on Human factors in computing

systems, MIT Media Laboratory. ACM Press, 1999, pp. 320–321.

[12] N. Marmasse and C. Schmandt, “Location-Aware Information Delivery with ComMotion,” in HUC - Handheld and Ubiquitous

Computing, ser. Lecture Notes in Computer Science, vol. 1927. Springer, September 2000, pp. 157–171.

[13] J. Pascoe and N. Ryan, “Stick-e notes,” http://www.cs.ukc.ac.uk/research/infosys/mobicomp/Fieldwork/Sticke.

[14] S. Long, R. Kooper, G. Abowd, and C. Atkeson, “Rapid prototyping of mobile context-aware applications: The cyberguide case study,”

in 2nd ACM International Conference on Mobile Computing and Networking (MobiCom’96), November 1996.

[15] A. K. Dey, D. Salber, G. D. Abowd, and M. Futakawa, “The conference assistant: Combining context-awareness with wearable

computing,” in ISWC - 3rd International Symposium on Wearable Computers , 1999, pp. 21–28.

[16] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket Location-Support System,” in 6th ACM/IEEE MobiCom, Boston,

MA, August 2000, pp. 32–43.

11


