
UDC, DOI: N/A

Support for End-to-End Response-Time and Delay

Analysis in the Industrial Tool Suite: Issues,

Experiences and a Case Study

Saad Mubeen1, Jukka Mäki-Turja1,2, and Mikael Sjödin1

1 Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Sweden
2 Arcticus Systems, Järfälla, Sweden

{saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se

Abstract. In this paper we discuss the implementation of the state-of-the-

art end-to-end response-time and delay analysis as two individual plug-ins

for the existing industrial tool suite Rubus-ICE. The tool suite is used for

the development of software for vehicular embedded systems by several

international companies. We describe and solve the problems encoun-

tered and highlight the experiences gained during the process of imple-

mentation, integration and evaluation of the analysis plug-ins. Finally, we

provide a proof of concept by modeling the automotive-application case

study with the existing industrial model (the Rubus Component Model),

and analyzing it with the implemented analysis plug-ins.

Keywords: real-time systems, response-time analysis, end-to-end timing

analysis, component-based development, distributed embedded systems.

1. Introduction

Often, an embedded system needs to interact and communicate with its envi-

ronment in a timely manner, i.e., the embedded system is a real-time system.

For such a system, the desired and correct output is one which is logically

correct as well as delivered within a specified time. Many real-time systems are

also safety critical which means that the system failure can result in catastrophic

consequences such as endangering human life or the environment. The safety-

critical nature of these systems requires evidence that the actions by them will

be provided in a timely manner, i.e., each action will be taken at a time that is

appropriate to the environment of the system. Therefore, it is important to make

accurate predictions of the timing behavior of these systems.

In order to provide evidence that each action in the system will meet its

deadline, a priori analysis techniques such as schedulability analysis have been

developed by the research community. Response Time Analysis (RTA) [17, 47]

is one of the methods to check the schedulability of a system. It calculates

upper bounds on the response times of tasks or messages in a real-time system

or a network respectively. Holistic Response-Time Analysis (HRTA) [50, 49, 43]

is an academic well established schedulability analysis technique to calculate



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

upper bounds on the response times of task chains that may be distributed over

several nodes in a Distributed Real-time Embedded (DRE) system.

A task chain is a sequence of more than one task in which every task (other

than the first) receives a trigger, data or both from its predecessor. One way

to classify these chains is as trigger chains and data chains. In trigger chains,

there is only one triggering source (e.g, event, clock or interrupt) that activates

the first task in the chain. The rest of the tasks are activated by their predeces-

sors. In data chains, tasks are activated independent of each other, often with

distinct periods. Each task (except the first) in these chains receives data from

its predecessor. The first task in a data chain may receive data from the periph-

eral devices and interfaces, e.g., signals from the sensors or messages from

the network interfaces. The end-to-end timing requirements on trigger chains

are different from those on data chains. If a system is modeled with trigger

chains only, it is called a single-rate system. On the other hand, if the system

contains at least one data chain with different clocks then the system is said to

be multi-rate.

In order to predict complete timing behavior of multi-rate real-time systems

[21], the end-to-end delays should also be computed along with the holistic

response times. For this purpose, the research community has developed the

End-to-End Delay Analysis (E2EDA). In [21], the authors have a view that al-

most all automotive embedded systems are multi-rate systems. The industrial

tools used for the development of such systems should be equipped with the

state-of-the-art timing analysis.

The process of transferring such academic research results to the tools for

industrial use can be challenging. A tool chain for the industrial development

of component-based DRE systems consists of a number of tools such as de-

signer, compiler, builder, debugger, simulator, etc. Often, a tool chain may com-

prise of tools that are developed by different tool vendors. The implementation

of state-of-the-art complex real-time analysis techniques such as RTA, HRTA

and E2EDA in such a tool chain is non-trivial because there are several chal-

lenges that are encountered apart from merely coding and testing the analysis

algorithms. These challenges and corresponding solutions that we propose are

central to this paper.

1.1. Goals and Paper Contributions

In this paper, we discuss the implementation of holistic response time analysis

and end-to-end 3 delay analysis as two plug-ins in the existing industrial tool

suite Rubus-ICE (Integrated Component development Environment) [1]. Our

goals in this paper are as follows.

3 The terms “holistic” and “end-to-end” mean the same thing. In order to be consistent

with the previous work and naming conventions used in the existing industrial tools,

we will use “holistic” with response-times and “end-to-end” with delays.

2 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

1. Transfer the state-of-the-art real-time analysis results, i.e., holistic response-

time analysis and end-to-end delay analysis to the existing tools for the in-

dustrial use.

2. Discuss and solve several problems encountered during the implementa-

tion, integration and evaluation of HRTA and E2EDA as two individual plug-

ins for Rubus-ICE.

3. Discuss the experiences gained during the implementation, integration and

evaluation of the HRTA and E2EDA plug-ins.

4. Provide a proof of concept by conducting an automotive-application case

study.

1.2. Paper Layout

The rest of the paper is organized as follows. Section 2 presents the back-

ground and related work. Section 3 discusses the end-to-end timing require-

ments and the analysis that we implemented in Rubus-ICE. Section 4 describes

the challenges encountered, solutions proposed and experiences gained during

the implementation and integration of the HRTA and E2EDA plug-ins. Section 5

presents our test plan. In Section 6, we present a case study by modeling and

analyzing the automotive DRE application. Section 7 concludes the paper and

presents the future work.

2. Background and Related Work

2.1. Relation to Authors’ Previous Work

This work is the extension of our previous work [38] in which we discussed the

implementation of only HRTA plug-in for the Rubus-ICE. In this paper, we im-

plement E2EDA as a second plug-in. As compared to our previous work, this

paper presents a detailed discussion on the end-to-end timing requirements in

the industrial DRE systems. We also discuss the algorithm of end-to-end de-

lay analysis and its conceptual organization in Rubus-ICE. Further, we discuss

several challenging problems that were encountered during the implementa-

tion, integration and evaluation of the E2EDA plug-in. Moreover, we discuss the

proposed solutions and gained experiences during the process of transferring

state-of-the-art research results to the industrial tool suite. For the sake of com-

pleteness, we also revisit the problems and their solutions corresponding to the

HRTA plug-in.

We also reconducted the case study. This is because the automotive DRE

application (Autonomous Cruise Control system) considered in the previous

work was modeled with only trigger chains. This limited the usability of our

modeling and analysis tools because many automotive embedded systems in

the industry are build using data and mixed chains as well. Therefore, we re-

modeled the same automotive-application with trigger, data and mixed chains.

ComSIS Vol. V, No. N, Month 20YY 3



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

We also analyzed it with both the HRTA and E2EDA plug-ins. With the addition

of E2EDA plug-in, a complete end-to-end timing analysis of DRE systems can

be performed. Thus, the scope and usability of Rubus tools has widened with

the addition of HRTA and E2EDA plug-ins.

2.2. The Rubus Concept

Rubus is a collection of methods and tools for model- and component-based de-

velopment of dependable embedded real-time systems. Rubus is developed by

Arcticus Systems [1] in close collaboration with several academic and industrial

partners. Rubus is today mainly used for development of control functionality

in vehicles by several international companies [2, 13, 7, 5]. The Rubus concept

is based around the Rubus Component Model (RCM) [25] and its development

environment Rubus-ICE, which includes modeling tools, code generators, anal-

ysis tools and run-time infrastructure. The overall goal of Rubus is to be ag-

gressively resource efficient and to provide means for developing predictable

and analyzable control functions in resource-constrained embedded systems.

RCM expresses the infrastructure for software functions, i.e., the interaction

between software functions in terms of data and control flow separately. The

control flow is expressed by triggering objects such as internal periodic clocks,

interrupts, internal and external events. In RCM, the basic component is called

Software Circuit (SWC). The execution semantics of the SWC is simply:

1. Upon triggering, read data on data in-ports;

2. Execute the function;

3. Write data on data out-ports;

4. Activate the output trigger.

RCM separates the control flow from the data flow among SWCs within a

node. Thus, explicit synchronization and data access are visible at the modeling

level. One important principle in RCM is to separate functional code and infras-

tructure implementing the execution model. RCM facilitates analysis and reuse

of components in different contexts (SWC has no knowledge how it connects

to other components). The component model has the possibility to encapsulate

SWCs into software assemblies enabling the designer to construct the system

at different hierarchical levels. Recently, we extended RCM for the development

of DRE systems by introducing new components [31, 40, 34]. A detailed com-

parison of RCM with several component models is presented in [40].

Fig. 1 depicts the sequence of main steps followed in Rubus-ICE from mod-

eling of an application to the generation of code. The component-based design

of an application is modeled in the Rubus Designer tool. Then the compiler

compiles the design model into the Intermediate Compiled Component Model

(ICCM). After that the builder tool sequentially runs a set of plug-ins. Finally, a

coder tool generates the code.

4 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

Designer Compiler Builder Coder

XML XML

Plug-ins

ICCM Code

Fig. 1. Sequence of steps from design to code generation in Rubus-ICE

2.3. The Rubus Analysis Framework

The Rubus model allows expressing real-time requirements and properties at

the architectural level. For example, it is possible to declare real-time require-

ments from a generated event and an arbitrary output trigger along the trig-

ger chain. For this purpose, the designer has to express real-time properties

of SWCs, such as worst-case execution times and stack usage. The scheduler

will take these real-time constraints into consideration when producing a sched-

ule. For event-triggered tasks, response-time calculations are performed and

compared to the requirements. The analysis supported by the model includes

response time analysis and shared stack analysis.

2.4. Plug-in Framework in Rubus-ICE

The plug-in framework in Rubus-ICE [28] facilitates the implementation of state-

of-the-art research results in isolation (without needing Rubus tools) and their

integration as add-on plug-ins (binaries or source code) with the integrated de-

velopment environment. A plug-in is interfaced with the builder tool as shown in

Fig. 1. The plug-ins are executed sequentially which means that the next plug-

in can execute only when the previous plug-in has run to completion. Hence,

each plug-in reads required attributes as inputs, runs to completion and finally

writes the results to the ICCM file. The Application Programming Interface (API)

defines the services required and provided by a plug-in. Each plug-in specifies

the supported system model, required inputs, provided outputs, error handling

mechanisms and a user interface. Fig. 2 shows a conceptual organization of a

Rubus-ICE plug-in.

API Calls
Analysis 

Algorithms

User Interaction

Error Handling

API Calls

Fig. 2. Conceptual organization of a plug-in in Rubus-ICE

ComSIS Vol. V, No. N, Month 20YY 5



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

2.5. Response-Time Analysis

RTA of Tasks in a Node. Liu and Layland [29] provided theoretical foundation

for analysis of fixed-priority scheduled systems. Joseph and Pandya published

the first RTA [27] for the simple task model presented in [29]. Subsequently,

it has been applied and extended in a number of ways by the research com-

munity. RTA is used to perform a schedulability test which means it checks

whether or not tasks in the system will satisfy their deadlines. RTA applies to

systems where tasks are scheduled with respect to their priorities and which

is the predominant scheduling technique used in real-time operating systems

[41]. In [41], it is claimed that amongst the more traditional, analytical, schedu-

lability analysis techniques, RTA of tasks with offsets stands out as the prime

candidate because of its better precision and ability to analyze quite complex

system behaviors.

Tindell [49] developed the schedulability analysis for tasks with offsets for

fixed-priority systems. It was extended by Palencia and Gonzalez Harbour [43].

Later, Mäki-Turja and Nolin [30] reduced pessimism from RTA developed in [49,

43] and presented a tighter RTA for tasks with offsets by accurately modeling

inter-task interference. In [21, 48], the authors point out that the existing RTA

does not target general multi-rate systems. We implemented tighter version of

RTA of tasks with offsets [30] as part of the end-to-end response-time and delay

analysis.

RTA of Messages in a Network. There are many protocols such as Con-

troller Area Network (CAN), Time-Triggered CAN (TTCAN), FlexRay, etc., that

are used for network communication in DRE systems. To stay focussed on the

automotive or vehicular domain, we will consider only CAN and its high-level

protocols. Tindell et al. [51] developed the schedulability analysis of CAN which

has served as a basis for many research projects. Later on, this analysis was

revisited and revised by Davis et al. [19].

The analysis in [51, 19] assumes that all CAN device drivers implement

priority-based queues. In [20] Davis et al. pointed out that this assumption may

become invalid when some nodes in a CAN network implement FIFO queues.

Hence, they extended the analysis of CAN with FIFO queues as well. In this

work, the message deadlines are assumed to be smaller than or equal to the

corresponding periods. In [18], Davis et al. lifted this assumption by supporting

the analysis of CAN messages with arbitrary deadlines. Furthermore, they ex-

tended their work to support RTA of CAN for FIFO and work-conserving queues.

However, the existing analysis does not support mixed messages which are

implemented by several high-level protocols for CAN. In [33, 37, 32], Mubeen

et al. extended the existing analysis to support RTA of mixed messages in the

CAN network where some nodes use FIFO queues while others use priority

queues. Later on, Mubeen et al. [39] extended the existing analysis for CAN to

support mixed messages that are scheduled with offsets in the controllers that

implement priority-ordered queues. In this work we will consider all of the above

analyses as part of the end-to-end response-time and delay analysis.

6 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

Holistic RTA. It combines the analysis of nodes (uniprocessors) and networks.

In this paper, we consider the end-to-end timing model that corresponds to the

holistic schedulability analysis for DRE systems [50]. In [44], Pop et al. pro-

vide a holistic schedulability analysis of distributed embedded systems in which

tasks are both time- and event-triggered. The analysis is developed for ST/DYN

bus protocol that uses static and dynamic phases for sending messages. As

compared to this approach, we implement the holistic analysis of [50] because

it provides the flexibility to use several network-communication protocols used

in the automotive domain. In [35], we discussed our preliminary findings about

implementation issues that are encountered when HRTA is transferred to the

industrial tools.

End-to-end Delay Analysis. Stappert et al. [48] formally described end-to-

end timing constrains for multi-rate systems in the automotive domain. In [21],

Feiertag et al. presented a framework (developed in TIMMO project [16]) for the

computation of end-to-end delays for multi-rate automotive embedded systems.

Furthermore, they emphasized on the importance of two end-to-end latency se-

mantics, i.e., “maximum age of data” and “first reaction” in control systems and

body electronics domains respectively. A scalable technique, based on model

checking, for the computation of end-to-end latencies is described in [45]. In

this work, we will implement the end-to-end delay analysis [21] as a plug-in for

the Rubus-ICE tool suite.

2.6. Tools for End-to-end Timing Analysis of DRE Systems

We briefly discuss few tool suites that provide similar real-time analysis support

for DRE systems. The MAST tool suite [6] implements a number of state-of-

the-art analysis algorithms for DRE systems. Among them is the offset-based

analysis algorithm [49, 43] whose tighter version [30] is implemented as part

of the end-to-end response-time and delays analysis in Rubus-ICE. The MAST

model also allows visual modeling and analysis of real-time systems in a Unified

Modeling Language (UML) design environment.

The Volcano Family [10] is a bunch of tools for designing, analyzing, testing

and validating automotive embedded software systems. Among them, Volcano

Network Architect (VNA) [12] is a communication design tool that supports the

analysis of Local Interconnect Network (LIN) and CAN networks. It also sup-

ports end-to-end timing analysis of a system with more than one network. It

implements RTA of CAN developed by Tindell et al. [51].

SymTA/S [24] is a tool for model-based timing analysis and optimization. It

implements several real-time analysis techniques for single-node, multiproces-

sor and distributed systems. It supports RTA of software functions, RTA of bus

messages and end-to-end timing analysis of both single-rate and multi-rate sys-

tems. It is also integrated with the UML development environment to provide a

timing analysis support for the applications modeled with UML [22].

Vector [11] is a tools provider for the development of networked electronic

systems in the automotive and related domains. In the Vector tool family, CANoe

ComSIS Vol. V, No. N, Month 20YY 7



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

[3] is a tool for the development, testing and analysis of ECU (Electronic Control

Units) networks and individual ECUs. It supports various protocols for network

communication including CAN, LIN, MOST, Flexray, Ethernet and J1708. Net-

work Designer CAN is another tool by Vector that is used to design the archi-

tecture and perform timing analysis of CAN network.

RAPID RMA [8] implements several scheduling schemes and supports end-

to-end analysis for single- and multiple-node real-time systems. It also allows

real-time analysis support for the systems modeled with Real-Time CORBA

[46].

The Rubus-ICE tool suite allows a developer to specify timing information

and perform end-to-end response time and delay analysis at the modeling

phase during component-based development of DRE systems. To the best of

our knowledge, Rubus-ICE is the first and only tool suite that implements RTA

of mixed messages in CAN [33], RTA of mixed messages with offsets [39] and

a tighter version of offset-based RTA algorithm [30] as part of the end-to-end

response time and delay analysis.

3. End-to-end Timing Requirements and Implemented
Analysis in Rubus-ICE

3.1. End-to-end timing requirements in trigger chains

A real-time system can be modeled with trigger chains (see Fig.4 and Fig.5),

data chains (see Fig.6 and Fig.8) or a combination of both. The end-to-end tim-

ing requirements on trigger chains are different from those on data chains. If the

system is modeled with trigger chains then the interest, from the schedulabil-

ity point of view, lies in the calculation of end-to-end or holistic response times

and their comparison with corresponding deadlines. Hence, end-to-end dead-

line requirements placed on trigger chains correspond to their holistic response

times. If holistic response times of all trigger chains are less than or equal to

corresponding deadlines, the system is considered schedulable.

The holistic response-time analysis calculates the response times of event

chains that are distributed over several nodes (also called distributed transac-

tions) in a DRE system. An example of a distributed transaction in a DRE sys-

tem is shown in Fig. 3. The holistic response time is equal to the elapsed time

between the arrival of an event (corresponding to the brake pedal input in the

sensor node) and the response time of Task4 (corresponding to the production

of brake actuation signal in the actuation node).

Examples. An example of a trigger chain that consists of three components is

shown in Fig. 4. Assume that each component corresponds to a task at run-

time. When task τSWC A finishes its execution, it triggers τSWC B . Similarly,

τSWC C can only be triggered by τSWC B after finishing its execution. There

cannot be multiple outputs corresponding to a single input signal. In fact, there

will always be one output of the chain corresponding to the input trigger. Hence,

8 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

Task1 Task2 Task3 Task4

Network

Sensor Node Computation Node Actuation Node

Holistic Response Time

Brake 

Pedal 

Input

Brake 

Actuator

Fig. 3. Holistic response-time in a distributed real-time system

the end-to-end timing requirements correspond to the holistic response times.

In order to provide a comparison of holistic response time in a trigger chain with

the end-to-end delays in a data chain, assume that the trigger chain shown in

Fig. 4 is the only chain of tasks in the system. Let the priorities of all tasks be

the same while WCET of each task is 1ms. The holistic response time of this

trigger chain is equal to the response time of τSWC C which is, intuitively, equal

to 3ms.

�����

���	
 ���	����	����������	
� �
�
�����

Fig. 4. RCM model of a trigger chain in a single-node real-time system

Distributed real-time systems can also be modeled with trigger chains. Con-

sider a model of a two-node distributed real-time system modeled with RCM as

shown in Fig. 5. There is only one triggering ancestor in node A that activates

SWC A which, in turn, triggers OSWC A component that is responsible for

sending a message to CAN. The ISWC C component in only activated when

an interrupt is raised due to the arrival of a CAN message at node C. Hence,

these three components form a distributed trigger chain. Once again, the end-

to-end timing requirements correspond to the holistic response times.

3.2. End-to-end timing requirements in data chains

As compared to the systems which are modeled with trigger chains, merely

computing the holistic response times and comparing them with the end-to-end

deadlines is not sufficient to predict the complete timing behavior of multi-rate

real-time systems which are modeled with data chains. There may be over-

and under-sampling in such systems because the individual tasks are activated

by independent clocks, often with different periods. Since data is transferred

among tasks and messages within a data chain by means of asynchronous

buffers, there exist different semantics of end-to-end delay in a data chain.

ComSIS Vol. V, No. N, Month 20YY 9



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

�
����

�
�����
���
 �
�

�����

����	� ���

�����

����
�

�
���


�����

���	
 ����	
�������

��	
�

�����

Fig. 5. RCM model of a distributed trigger chain in a DRE system

These buffers are often of a non-consuming type which means the data stays

in the buffer after it is read by the reader task. Moreover, the data in the buffer

can be overwritten by the writer task with new values before the previous value

was read by the reader task. Therefore, some input values in the data buffers

can be overwritten by new values, and hence the effect of the old input values

may never propagate to the output of a data chain. Further, it is also possi-

ble to have several duplicates of the output of a data chain corresponding to a

particular input.

The end-to-end timing requirements in multi-rate real-time systems, espe-

cially in the automotive domain, are placed on the first reaction to the input and

age of the data received at the output [21]. Hence, it is important to calculate

the end-to-end delays in these systems. The end-to-end delay in a data chain

refers to the time elapsed between the arrival of a signal at the first task and

production of corresponding output signal by the last task in the chain (provided

the information corresponding to the input signal has traversed the chain from

first to last task) [45].

In a single-rate real-time system that contains only trigger chains, tasks in

a chain are not activated by independent events, in fact, there is only one ac-

tivating event in the chain. Hence, the holistic response times and end-to-end

delays will have equal values. On the other hand, these values are not the same

in multi-rate real-time systems that are modeled with data chains. Therefore, a

complete analysis of a real-time system modeled with data chains requires the

calculation of not only holistic response times but also end-to-end delays.

Examples. A multi-rate real-time system modeled with three SWCs in RCM is

shown in Fig. 6. These SWCs are activated by independent clocks with different

periods, i.e., 8ms, 16ms and 4ms respectively. SWC A reads the input signals

from the sensors while SWC C produces the output signals for the actuators.

Assume that each SWC will be allocated to an individual task by the run-time

environment generator. Also assume that WCET of each task is 1ms.

The time line corresponding to the run-time execution of the three tasks

(corresponding to three SWCs) is depicted in Fig. 7. It can be seen that there

10 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

8 ms 16 ms 4 ms

SWC_A SWC_CSWC_B
Sensor Input Data sink

Fig. 6. RCM model of a data chain in a single-node real-time system

are multiple outputs corresponding to a single input signal. The four end-to-end

delays are identified in Fig. 7.

Last In First Out (LIFO). This delay is equal to the time elapsed between the

current non-overwritten release of task τA (input of the data chain) and corre-

sponding first response of task τC (output of the data chain).

Last In Last Out (LILO). This delay is equal to the time elapsed between the

current non-overwritten release of task τA (input of the data chain) and cor-

responding last response of task τC (output of the data chain). This delay is

identified as “Data Age”4 in [21]. Data age specifies the longest time data is

allowed to age from production by the initiator until the data is delivered to the

terminator. This delay finds its importance in control applications where the in-

terest lies in the freshness of the produced data. For a data chain in a control

system that initiates with a sensor input and terminates by producing an ac-

tuation signal, it is very important to ensure that the actuator signal does not

exceed a maximum age [21].

Generally speaking, we consider the last non-overwritten input that actually

propagates through the data chain towards the output in the case of both LIFO

and LILO delays.

First In First Out (FIFO). This delay is equal to the time elapsed between the

previous non-overwritten release of task τA (input of the data chain) and first

response of task τC (output of the data chain) corresponding to the current non-

overwritten release of task τA. Assume that a new value of the input is available

in the input buffer of task τA “just after” the release of the second instance of

task τA (at time 8ms). Hence, the second instance of task τA “just misses” the

read of the new value from its input buffer. This new value has to wait for the

next instance of task τA to travel towards the output of the data chain. Therefore,

the new value will be read by the third and forth instances of task τA. The first

output corresponding to the new value (arriving just after 8ms) will appear at

the output of the chain at 34ms. This will result in the FIFO delay of 26ms as

shown in Fig. 7. This phenomenon is more obvious in the case of distributed

embedded systems where a task in the receiving node may just miss to read

fresh signals from a message that is received from the network.

4 We will use the term “Data Age delay” to refer to LILO delay throughout the paper.

ComSIS Vol. V, No. N, Month 20YY 11



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

This delay is identified as “first reaction to data or Data Reaction”5 in [21].

Data reaction delay is the longest allowed reaction time for data produced by the

initiator to be delivered to the terminator. This delay finds its importance in the

button-to-reaction applications in body electronics domain where first reaction

to input is important.

First In Last Out (FILO). This delay is equal to the time elapsed between the

previous non-overwritten release of task τA (input of the data chain) and last

response of task τC (output of the data chain) corresponding to the current

non-overwritten release of task τA. The reasoning about “just missing” a fresh

input that we discussed in the case of FIFO delay is also applicable in the case

of FILO delay.

��������	

� �� �� �� ��� �� �� �� ����

� �� �� �� ��� �� �� �� ����

� �� �� �� ��

��

� �� �� �� ����

�����
��
��������
����������
�����
��
������
������
����������

���������

�	

�

t (ms)

t (ms)

t (ms)

Fig. 7. End-to-end delays for a data chain in a real-time system

In the case of distributed real-time systems, data chains may also be dis-

tributed over more than one node. Consider a model of a two-node distributed

real-time system modeled with RCM as shown in Fig. 8. The nodes are con-

nected to the CAN network. The internal model of the nodes is also shown in

Fig. 8. In Node A, SWC A is triggered by a clock with a period of 8ms. The

OSWC A component that is responsible for sending a message to the network

is triggered by another clock with a period of 16ms. ISWC C is a component

that receives a message from the network and is activated by a clock with a

period of 4ms. Assume that each component is allocated to a separate task at

run-time, i.e., the components SWC A, OSWC A and ISWC C are allocated to

5 We will use the term “Data Reaction delay” to refer to FIFO delay throughout the

paper.

12 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

tasks τA, τB and τC respectively. Since, the system consists of tasks with simi-

lar activation patterns and periods as compared to the tasks in the single-node

real-time system example discussed above, it can be scheduled in a similar

manner as indicated by τA, τB and τC in Fig. 7. The end-to-end delays are also

defined in a similar fashion.

Node CNode A CAN

Node C

4 ms

ISWC_C Actuation 
Signal

Node A

8 ms

SWC_A OSWC_ASensor 
Input

16 ms

Fig. 8. RCM model of a distributed data chain in a DRE system

3.3. Implemented Holistic Response-Time Analysis

We implemented HRTA as a plug-in in Rubus-ICE. The plug-in can be used

to compute the response times of individual tasks in a node, messages in a

network and Distributed Transactions (DTs) in a distributed real-time system.

In order to analyze tasks in each node, we implement RTA of tasks with

offsets developed by [49, 43] and improved by [30]. We implement the network

RTA that supports the analysis of CAN and its high-level protocols. It is based

on the following RTA profiles for CAN.

1. RTA of CAN [51, 19].

2. RTA of CAN for mixed messages [33].

3. RTA of CAN for mixed messages with offsets [39]6.

The above analyses assume that CAN nodes implement priority-ordered queues.

The next step, as a future work, will be the implementation of CAN analysis that

also supports FIFO ordered queues, i.e., RTA of CAN with FIFO and work-

conserving queues [18, 20] and RTA of CAN with FIFO Queues for Mixed Mes-

sages [37].

The pseudocode of HRTA algorithm is shown in Algorithm 1. The HRTA al-

gorithm iteratively runs the algorithms for node and network analyses. In the first

step, release jitter of all messages and tasks in the system is assumed to be

6 The analysis of this profile is implemented as a standalone analyzer whose integration

with Rubus-ICE is a work in progress

ComSIS Vol. V, No. N, Month 20YY 13



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

zero. The response times of all messages in the network and all tasks in each

node are computed. In the second step attribute inheritance is carried out. This

means that each message inherits a release jitter equal to the difference be-

tween the worst- and best-case response times of its sender task (computed in

the first step). Similarly, each task that receives the message inherits a release

jitter equal to the difference between the worst- and best-case response times

of the message (computed in the first step). In the third step, response times

of all messages and tasks are computed again. The newly computed response

times are compared with the response times previously computed in the first

step. The analysis terminates if the values are equal otherwise these steps are

repeated. The conceptual view of HRTA that we implemented in Rubus-ICE is

shown in Fig. 9.

Algorithm 1 Algorithm for holistic response-time analysis

1: begin

2: RTPrev ← 0 ⊲ Initialize all Response Times (RTs) to zero

3: Repeat ← TRUE

4: while Repeat = TRUE do

5: for all Messages and tasks in the system do

6: JitterMsg ← (WCRTSender task − BCRTSender task ) ⊲ WCRT: Worst-Case

Response Time, BCRT: Best-Case Response Time

7: JitterReceiver task ← (WCRTMsg − BCRTMsg)
8: COMPUTE RT OF ALL MESSAGES()

9: COMPUTE RT OF ALL TASKS IN EVERY NODE()

10: if RT > RTPrev then

11: RTPrev ← RT

12: Repeat ← TRUE

13: else

14: Repeat ← FALSE

15: end if

16: end for

17: end while

18: end

3.4. Implemented End-to-end Delay Analysis

We implemented the end-to-end delay analysis that is derived in [21] as the

E2EDA plug-in for Rubus-ICE. This analysis implicitly requires the calculation

of response times of individual tasks, messages and holistic response times of

task chains. For example, the calculation of four end-to-end delays for the multi-

rate real-time system shown in Fig. 6 requires the response time of the task

τC (corresponding to the component SWC C ) and the activation times of tasks

τA and τC . Similarly, the calculation of four end-to-end delays for the multi-rate

DRE system shown in Fig. 8 requires the calculation of the response time of

14 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

HRTA Plug-in

Algorithms for RTA of 

Tasks in a Node

Algorithms for RTA of 

Messages in a Network

HRTA Algorithm

Rubus Builder

End-to-end

Timing Information

Analysis 

Results

Fig. 9. Conceptual view of the HRTA plug-in in Rubus-ICE

the task τC in node C and the activation times of tasks τA and τC in nodes A

and C respectively. Since, the HRTA plug-in is able to calculate response times

of tasks, network messages and task chains, we reuse the analysis results

computed by the HRTA plug-in as an input to the E2EDA plug-in as shown in

Fig. 10. The pseudocode of E2EDA algorithm7 is shown in Algorithm 2.

����������	
�

����������

��	��
�����
	�����

���������

�������

��
���������

��
�
���	����
��������

���������������

��
�
���	����
�����

�����
��	����
��

�������
�
���	
�������������

��
�
���	���
������������

��������������

����������

��	��
�����
	�����

���������

�������

Fig. 10. Conceptual view of the E2EDA plug-in in Rubus-ICE

4. Encountered Problems, Proposed Solutions and Gained
Experiences

In this section we discuss several problems encountered during the process of

implementation and integration of HRTA and E2EDA as plug-ins for the Rubus-

ICE tool suite. We also present our solution to each individual problem. More-

7 [21] should be referred for detailed analysis.

ComSIS Vol. V, No. N, Month 20YY 15



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

Algorithm 2 Algorithm for end-to-end delay analysis

1: begin

2: GET RT OF ALL TASKS MESSAGES TASK CHAINS() ⊲ Get the analysis results from

the HRTA plug-in

3: FIND ALL VALID TIMED PATHS() ⊲ Timed Path (TP) is a sequence of task instances

from input to output. A TP is valid if information flow among tasks is possible [21],

e.g., [τA(1stinstance), τB(1stinstance), τC (5thinstance)] in Fig. 7 is a valid TP. On the

other hand, TP [τA(1stinstance), τB(1stinstance), τC (1stinstance)] in Fig. 7 is invalid

because information cannot flow between τB(1stinstance) and τC (1stinstance)

4: procedure COMPUTE FF DELAY(FF TP)

5: FF delay = αn(instance) + δn(instance) - α1(instance) ⊲ αn(instance): Activation

time of the corresponding instance of the nth task in timed path FF TP

⊲ δn(instance): Response time of the corresponding instance of the nth task in

timed path FF TP

6: return FF delay

7: end procedure

⊲ The above mentioned procedure calculates FFDelay only. [21] should be

referred for the calculation of the rest of the delays

8: for all Delay constraints specified in the system do

9: FFDelay ← 0,FLDelay ← 0,LFDelay ← 0,LLDelay ← 0 ⊲ Initialize all delays

10: COMPUTE ALL REACHABLE TIMED PATHS() ⊲ All those paths from

input to output in which the changes in input actually travel towards the output, e.g.,

[τA(2ndinstance), τB(1stinstance), τC (5thinstance)] in Fig. 7

11: FF TPcount ← GET ALL FF TPS() ⊲ TP: Timed Path, FF: First to First

12: FL TPcount ← GET ALL FL TPS() ⊲ FL: First to Last

13: LF TPcount ← GET ALL LF TPS() ⊲ LF: Last to First

14: LL TPcount ← GET ALL LL TPS() ⊲ LL: Last to Last

15: for i:=1 doFF TPcount

16: if COMPUTE FF DELAY(i) > FFDelay then

17: FFDelay ← COMPUTE FF DELAY()

18: end if

19: end for

20: for i:=1 doFL TPcount

21: if COMPUTE FL DELAY(i) > FLDelay then

22: FLDelay ← COMPUTE FL DELAY()

23: end if

24: end for

25: for i:=1 doLF TPcount

26: if COMPUTE LF DELAY(i) > LFDelay then

27: LFDelay ← COMPUTE LF DELAY()

28: end if

29: end for

30: for i:=1 doLL TPcount

31: if COMPUTE LL DELAY(i) > LLDelay then

32: LLDelay ← COMPUTE LL DELAY()

33: end if

34: end for

35: end for

36: end

16 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

over, we discuss the summary of the experiences that we gained while trans-

ferring theoretical research results (i.e., HRTA and E2EDA) to the industrial tool

suite.

4.1. Extraction of Unambiguous Timing Information

One common assumption in end-to-end response time and delay analyses

is that the timing attributes required by the analysis are available as input.

However, when these analyses are implemented in a tool chain used for the

component-based development of DRE systems, the implementer has to not

only code and implement the analysis, but also extract unambiguous timing in-

formation from the component model and map it to the inputs for the analysis

model. This is because the design and analysis models are often build upon

different meta-models [23]. Moreover, the design model can contain redundant

timing information. Hence, it is not trivial to extract unambiguous timing infor-

mation for HRTA and E2EDA.

We divide the timing information (to be extracted) into two categories.

Extraction of Timing Information Corresponding to User Inputs. The first

category corresponds to the timing attributes of tasks (in each node) and net-

work messages that are provided in the modeled application by the user. These

timing attributes include Worst Case Execution Times (WCETs), periods, mini-

mum update times, offsets, priorities, deadlines, blocking times, precedence re-

lations in task chains, jitters, etc. In [34], we identified all the timing attributes of

nodes, networks, transactions, tasks and messages that are required by HRTA.

This timing information should be extracted from the modeled application and

be made available as an input for the end-to-end response time and delay anal-

ysis.

Extraction of Timing Information from the Modeled Application. The sec-

ond category corresponds to the timing attributes that are not directly provided

by the user but they must be extracted from the modeled application. For exam-

ple, message period (in the case of periodic transmission) or message inhibit

time (in the case of sporadic transmission) is often not specified by the user.

These attributes must be extracted from the modeled application because they

are required by the RTA of network communication. In fact, a message inherits

the period or inhibit time from the task that queues it. Thus, we assign period

or inhibit time to the message which is equal to the period or inhibit time of its

sender task respectively.

However, the extraction of message timing attributes becomes complex when

the sender task has both periodic and sporadic activation patterns. In this case,

not only the timing attributes of a message have to be extracted but also the

transmission type of the message has to be identified. This problem can be

visualized in the example shown in Fig. 11. It should be noted that the Out

Software Circuit (OSWC), shown in the figure, is one of the network interface

ComSIS Vol. V, No. N, Month 20YY 17



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

components in RCM that sends a message to the network. The other network

interface component is In Software Circuit (ISWC) that receives a message from

the network [40].

In Fig. 11(a), the sender task is activated by a clock, and hence the cor-

responding message is periodic. Similarly, the corresponding message is spo-

radic in Fig. 11(b) because the sender task is activated by an event. However,

the sender task in Fig. 11(c) is triggered by both a clock and an event. Here

the relationship between two triggering sources is important. If there exists a

dependency relation between them as in the case of mixed transmission mode

in the CANopen protocol [4] and AUTOSAR communication [9] then such mes-

sage will be considered as a special type of sporadic message. On the other

hand, if triggering sources are independent of each other as in the case of im-

plementation in the HCAN protocol [15] then the corresponding message will

be considered a mixed message [33, 37].

If there are periodic and sporadic messages in the modeled application,

the HRTA plug-in uses the first profile for network analysis (discussed in Sec-

tion 3.3). On the other hand, if the modeled application contains mixed mes-

sages as well, the second profile for network analysis is used. We extract the

transmission type of a message from the modeled application as follows. If the

sender of a message has a periodic or sporadic activation pattern then the mes-

sage is assigned periodic or sporadic transmission type respectively. However,

if the sender is activated periodically as well as sporadically and both trigger-

ing sources are independent of each other, the message is assigned the mixed

transmission type.

������ ���

Fig. 11. Extraction of transmission type of a message

Identification of Trigger, Data and Mixed Chains. The end-to-end timing require-

ments on trigger chains are different from those on data chains. These require-

ments correspond to end-to-end response times for trigger chains and both

end-to-end response times and delays for data chains. Data and trigger chains

should be distinctly identified and the corresponding timing requirements should

be unambiguously captured in the timing model on which the analysis tools op-

erate. For this purpose, we add a new attribute “trigger dependency” in the data

structure of tasks in the analysis model. If a task is triggered by an independent

source such as a clock then this attribute will be assigned “independent”. On

the other hand, if the task is triggered by another task then this parameter will

be assigned “dependent”. Moreover, a precedence constraint will also be spec-

18 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

ified on this task in the case of dependent triggering. This is because, a task in

a trigger chain cannot start its execution before the completion of the previous

task in the chain.

However, a system can also be modeled with task chains that are com-

prised of data chains as well as trigger chains. We call these chains as mixed

chains. An example of a mixed chain modeled with RCM is shown in Fig. 12.

In this chain, components SWC A, SWC B and SWC E are triggered by in-

dependent clocks and which is the property of components in a data chain.

Hence, the “trigger dependency” attribute of the tasks corresponding to these

three components will be assigned “independent”. Whereas, the components

SWC C and SWC D are triggered by their respective predecessors and which

is the property of components in a trigger chain. The “trigger dependency” at-

tribute of the tasks corresponding to these two components will be assigned

“dependent”.

A task chain is identified by checking the “trigger dependency” parameter for

each individual task in the chain. If this parameter is “dependent” for all tasks

(except the first or initiating task) then the chain is identified as a trigger chain.

On the other hand, if this parameter for each task in the chain is “independent”

then the chain is identified as a data chain. However, if this parameter for some

tasks is “independent” and for the others it is “dependent” then the chain is

considered as mixed.

�	
�� �	
�
�	
�

���������	
� �
�
�����

�	
���	
��

���� ����� ����

Fig. 12. RCM model of a mixed chain in a single-node real-time system

The problem of identification of a task chain becomes more challenging to

resolve when a chain mimics as a data chain as well as a trigger chain by

means of trigger merges as shown in Fig. 13. It can be seen that SWC C

component can be triggered by both its predecessor task and a clock. In this

case, the “trigger dependency” attribute is assumed to have both the values,

i.e., “independent” and “dependent”. If such task is identified in a task chain,

we consider it as a special type of mixed chain. For this chain, the end-to-end

timing requirements correspond to both holistic response times and end-to-end

delays.

4.2. Extraction of Linking Information from Distributed Transactions

In order to perform HRTA, correct linking information of DTs should be extracted

from the design model [36]. For this purpose, we need to have a mapping

ComSIS Vol. V, No. N, Month 20YY 19



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

������

��	
� ���	
 ���	� ���	�

�����
�����

�
�
�����

�������������

Fig. 13. An example of a data chain with trigger merges

among signals, data ports and messages in the system. Consider the follow-

ing DT in a two-node DRE system modeled with RCM as shown in Fig. 14.

SWC1 → OSWC A → ISWC B → SWC2 → SWC3

In this example, our focus is on the network interface components, i.e.,

OSWC and ISWC [40]. In order to compute the holistic response time of this

DT, we need to extract linking information from the component model. We iden-

tified the need for the following mappings in the component model.

– At the sender node, mapping between signals and input data ports of OSWC

components.
– At the sender node, mapping between signals and a message that is sent

to the network.
– At the receiver node, mapping between data output ports of ISWC compo-

nents and the signals to be sent to the desired components.
– At the receiver node, mapping between message received from the network

and the signals to be sent to the desired component.
– Mapping between multiple signals and a complex data port. For example,

mapping of multiple signals extracted from a received message to a data

port that sends a complex signal (structure of signals).
– Mapping of all trigger ports of network interface components along a DT as

shown by the bidirectional arrow in Fig. 14.

Controller Area Network (CAN)

Node A

Signals

SWC1

OSWC_A

CAN 

SEND

Ext

messages

Signals

ISWC_B

SWC2 SWC3

CAN 

RECEIVE

Node B
Data Port

Trigger 

Port

External 

Event
Ext

Data 

Source

Data 

Sink

Fig. 14. Two-node DRE system modeled with RCM

Since, the E2EDA plug-in needs to compute all valid timed paths (i.e., those

paths in which input actually travels to the output) from initiator to the terminator

20 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

for every data chain (see Algorithm 2), the linking information among all tasks

and messages in the data chain should be available. We extract this information

about all tasks and messages in those data chains on which end-to-end delay

constraints are specified. The linking information also includes Trigger Depen-

dency attribute for every task in the chain.

4.3. Analysis of Distributed Transactions with Branches

If a modeled DRE application contains branches of task chains that are dis-

tributed over several nodes and have one common terminator task, the cal-

culations for the end-to-end response-time and delays of such chains are not

straight forward. Consider the example of a two-node DRE system contain-

ing branches in DTs as shown in Fig. 15. The components OSWC A1 and

OSWC A2 in node A send messages m1 and m2 which are received by the

components ISWC C1 and ISWC C2 in node C respectively. Hence, there

are two DTs that have different initiators but a single terminator, i.e., SWC C3 .

These transactions are listed below.

1. SWC A1 → SWC A2 → OSWC A1 → ISWC C1 → SWC C1

→ SWC C3

2. SWC A3 → OSWC A2 → ISWC C2 → SWC C2 → SWC C3

Assume that Data Age delay constraint is specified on SWC C3 . Also as-

sume that the start of this constraint is specified on the component SWC A1 in

node A. Therefore, we need to perform end-to-end delay analysis only on the

first DT (in the above list). It should be noted that the start (initiating task of the

data chain) and end (terminating task of the data chain) of each delay constraint

should be specified by the user. We know from Section 3 (Algorithm 2) that the

calculations for Data Age delay require the calculation of the holistic response

time, i.e., the response time of the last task in the chain (task corresponding to

SWC C3 component). However, the response time of this task depends upon

the the holistic response times of both DTs listed above. In this case, the HRTA

plug-in will calculate the holistic response times of all branches (two in this case)

while the E2EDA plug-in will consider the maximum value among these holistic

response times during calculations for the end-to-end delays. Although, the ex-

ample in Fig. 15 consisted of data chains only, the HRTA plug-in treats trigger

chains in a similar fashion.

4.4. Analysis of Mixed Task Chains

The four different end-to-end delays (discussed in Section 3.2) do not exist

in the case of trigger chains. This is because trigger chains are analogous to

single-rate systems in which over- and under-sampling cannot occur. Moreover,

there can never be multiple copies of a single input. If the user specifies end-

to-end delay constraints on a trigger chain then the E2EDA plug-in detects this

incorrect specification and complains about it. However, a system can also be

ComSIS Vol. V, No. N, Month 20YY 21



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

������������ ���

�	�
���
� �
�
�

������������

�����

�����	 �������������

���
����
�

������ ������	

�������

������	

����	�
��


�
��	�

������

�����	

������

���
�

���
�
���
�

	
�
� 	��
�

���
��


������

Fig. 15. RCM model of a two-node DRE system with branches in distributed transactions

modeled with mixed chains that are comprised of data chains as well as trigger

chains as shown in Fig. 12. Although a mixed chain contains a trigger chain, it is

meaningful to compute both holistic response time as well as end-to-end delays

for it. Therefore, the newly developed plug-ins compute the holistic response-

times as well as end-to-end delays for mixed chains.

There are two options to handle mixed chains in the analysis model. In the

first option, if a component is triggered by its predecessor then it is assumed to

be triggered by independent clock with the same period as that of its predeces-

sor’s clock. Moreover, this component is assumed to have implicit precedence

relation with its predecessor, i.e., it can be executed only upon completion of its

predecessor’s execution. SWC C and SWC D are the examples of such com-

ponents in the mixed chain shown in Fig. 12. Using this option, the execution

time line of the task chain corresponding to component chain of Fig. 12 is shown

in Fig. 16. This time line will be used by the E2EDA plug-in to compute the total

number of timed paths. However, there are several timed paths (indicated with

crosses in Fig. 16) that are impossible to occur in reality. This is because each

instance of a task in a trigger chain can be triggered only by one instance of its

predecessor task. This will result in unnecessary calculations, i.e., a consider-

able overhead on the execution time of the analysis plug-ins. Therefore, we do

not implement this option in the analysis model.

Instead, we use the second option that reduces the mixed chain by com-

bining all tasks belonging to a trigger sub-chain (within the mixed chain) into

a single task activated by independent clock. Hence, the reduced mixed chain

resembles a data chain. For example, SWC B , SWC C and SWC D are com-

bined to a single task (with combined WCETs, offsets, etc.) which is triggered

by independent clock whose period is exactly the same as that of the clock

that triggers SWC B component. The execution time line of the task chain cor-

responding to reduced mixed chain of Fig. 12 is shown in Fig. 17. The corre-

sponding end-to-end delays are also depicted in Fig. 17. By implementing the

22 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

� �� �� �� ��

��

� �� �� �� ����

� �� �� �� ��� �� �� �� ����

�


� �� �� �� ��� �� �� �� ����

�	

� �� �� �� ��� �� �� �� ����

��

��

� �� �� �� ��� �� �� �� ����

���������	


���	�

���


Fig. 16. Demonstration of impossible timed paths in mixed chains

second option , we got rid of the so-called “impossible timed paths”. It should be

noted that these chain reductions are not required by the HRTA plug-in. Mixed

chain reduction method is only applied in the analysis model of the E2EDA

plug-in.

��

�	

�


� �� �� �� ��

�	

� �� �� �� ����

��

� �� �� �� ��� �� �� �� ����

� �� �� �� ��� �� �� �� ����

����
��������	��
��


��������	������	���


����

Fig. 17. Reduction of a mixed chain in the analysis model

Mixed chains may also exist in the models of DRE systems where they may

contain many combinations of data and trigger chains distributed over several

nodes. Four such combinations in a two-node DRE system are shown in Fig. 18.

Mixed chain reduction method is applied on distributed mixed chains in a similar

fashion.

ComSIS Vol. V, No. N, Month 20YY 23



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

������������ ���

���		
���
���������
���

�	�
���
� �
�
�

������������

�
�����

�����

�����	 ������������

����������

��	���
������ ������

���

���		
���
���

������������

����������

��	���
������ ������

���

���		
���
���

��
�

�
�����

�����
�����	 ������������

������
������		
���
���

��
�

���
�

	
�
�

������������

�
�����

�����
�����	 ������������

����������

��	���
������ ������

���

������
���������
���

�	�
���
� �
�
�

���
�

	
�
�

������������

�
�����

�����

�����	 ������������
����������

��	���
������ ������

���

Fig. 18. Different combinations of data and trigger chains in a two-node DRE system

modeled with RCM

4.5. Analysis of the System Containing Messages Received from
Outside of the Model

One of the requirements by the users of the analysis tools was that the HRTA

and E2EDA plug-ins should be able to support the analysis of a system that

receives messages from unknown senders (from outside of the modeled appli-

cation). One motivation behind this requirement may be the integration of two

systems that are build using different methodologies and tools. Second motiva-

tion could be the integration of legacy systems with newly developed systems.

Another motivation could be the requirement for the end-to-end timing analy-

sis early during the development. At early stage, the models of some nodes

24 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

may not be available. However, the signals and messages which these missing

nodes are supposed to send and receive might have been decided. With these

requirements on the system development, the network is assumed to contain

messages whose sender nodes are not developed yet. Similarly, the available

nodes may send messages via network to the nodes that will be available at a

later stage.

As we discussed earlier in Section 3.3, the holistic response-time analysis

connects the tasks and messages in a DT by means of attribute inheritance

[50]. This means that a message inherits the difference between the worst- and

best-case response times of the sending task as its release jitter. Moreover, the

message also inherits other attributes from the sender task such as transmis-

sion type (periodic, sporadic or mixed [33]); and period or inhibit time or both.

Since, the HRTA algorithm is iterative, the attribute inheritance is repeatedly

carried out until holistic response time of the chain converges or corresponding

deadlines are violated.

The only problem with this requirement is that a message, obviously, cannot

inherit these attributes if the sender is unknown or the message is received

from outside of the model. In order to solve this problem, we treat all such

messages in the analysis model differently from the rest of the messages in the

system. Each such message is assumed to be the initiator of the corresponding

DT. The transmission type and period (in the case of periodic transmission) or

inhibit time (in the case of sporadic transmission) or both (in the case of mixed

transmission) [37] of such message are extracted from the user input (instead of

the sending task as in the case of intra-model messages). However, the forward

attribute inheritance is valid for such messages. This means that the receiver

task of this message will inherit the difference between the worst- and best-case

response times of the message as its release jitter.

4.6. Impact of Design Decisions in the Component Technology on the
Implementation of the Analysis

The design decisions made in the component technology (i.e., RCM) can have

indirect impact on the response times computed by the analysis. For exam-

ple, design decisions could have impact on WCETs and blocking times which

in turn have impact on the response times. In order to implement, integrate

and test HRTA and E2EDA, the implementer needs to understand the design

model (component model), analysis model and run-time translation of the de-

sign model. In the design model, the architecture of an application is described

in terms of software components, their interconnections and software archi-

tectures. Whereas in the analysis model, the application is defined in terms

of tasks, transactions, messages and timing parameters. At run-time, a task

may correspond to a single component or a chain of components. The run-

time translation of a software component may differ among different component

models.

ComSIS Vol. V, No. N, Month 20YY 25



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

4.7. Direct Cycles in Distributed Transactions

A direct cycle in a DT is formed when any two tasks located on different nodes

send messages to each other. When there are direct cycles in a DT, the holistic

analysis algorithm may run forever and may not produce converging results (if

deadlines are not specified), i.e., the response times increase in every iteration.

Consider a two-node application modeled in RCM as shown in Fig. 19 (a).

The OSWC A component in node A sends a message m1 to node B where

it is received by ISWC B component. Similarly, OSWC B component in node

B sends a message m2 to ISWC A component in node A. There are two op-

tions for the run-time allocation of network interface components (OSWC and

ISWC) as shown in Fig. 19 (b). First option is to allocate a network interface

component to the task that corresponds to the immediate SWC, i.e., to the

same task as that of the component that receives/sends the signals from/to it.

Since SWC A is immediately connected to both network interface components

in node A, there will be only one task in node A denoted by τA as shown in

Fig. 19 (b). Similarly, τB is the run-time representation of ISWC B , SWC B

and OSWC B components. It is obvious that the run-time allocation of network

interface components in the first option results in direct cycles. This problem

may appear in those component models which do not use exclusive modeling

objects or means to differentiate between intra- and inter-node communication

in the design model and rely completely on the run-time environment to handle

the communication. Hence, some special methods are required to avoid direct

cycles in these models.

However, the direct cycles in DTs can be avoided by allocating each network

interface component to a separate task as shown in the option 2 in Fig. 19 (b).

Although same messages are sent between the nodes, one task cannot be

both a sender and a receiver. No doubt, there is a cycle between the nodes,

but not a direct one. In this case, the holistic algorithm may produce converging

response-times, and non-terminating execution of the plug-in may be avoided.

It is interesting to note that the requirements and limitations of the analysis

implementation may provide feedback to the design decisions concerning the

run-time allocation of modeling components.

4.8. Sequential Execution of Plug-ins in Rubus Plug-in Framework

The plug-in framework in Rubus-ICE allows only sequential execution of plug-

ins. Hence, a plug-in has to execute to completion and terminate before the next

plug-in can start. It should be noted that there exists a plug-in in Rubus-ICE that

can perform RTA of tasks in a node and it is already in the industrial use. There

are two options to develop the HRTA plug-in for Rubus-ICE, i.e., option A and B

as shown in Fig. 20.

The option A supports reusability by building the HRTA plug-in upon the

existing Node RTA Plug-in. Thus, the HRTA plug-in is built by integrating ex-

isting RTA plug-in with two new plug-ins, i.e., one implementing network RTA

algorithms and the other implementing holistic RTA algorithm. In this case, the

26 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

Node B

ISWC_B OSWC_BSWC_B

Node A

ISWC_A OSWC_ASWC_A

m2

Node B

τSWC_B

τOSWC_B

τISWC_B

Node A

τSWC_A

τISWC_A

τOSWC_A

Option 2

Node B

τB

Node A

τA

Option 1

m1

m2

m1

(a) (b)

Fig. 19. Options for the run-time allocation of network interface components

HRTA plug-in will be lightweight. It iteratively uses the analysis results produced

by the node and the network RTA plug-ins and accordingly provides new inputs

to them until converging holistic response times are obtained or the deadlines

(if specified) are violated. On the other hand, option B requires the development

of the HRTA plug-in from the scratch, i.e, implementing the algorithms of node,

network and holistic RTA. This option does not support any reuse of existing

plug-ins.

Node RTA Plug-in

Rubus Builder

Algorithms for RTA 
of Tasks in a Node

Node Timing 
Information

Network RTA Plug-in

Algorithms for RTA of 
messages in a Network

Network Timing 
Information

HRTA Plug-in

Algorithms for HRTA

End-to-end
Timing Information

Rubus Builder

HRTA Plug-in

Algorithms for 
RTA of Tasks

in a Node

Algorithms for 
RTA of messages

in a Network

Algorithms for HRTA

End-to-end
Timing Information

Analysis 
Results

Analysis Results Analysis Results

Analysis 
Results

Option A Option B

Fig. 20. Options to develop the HRTA Plug-in for Rubus-ICE

Since, option A allows the reuse of a pre-tested and heavyweight (having

most complex algorithms compared to the network and holistic RTA) node RTA

plug-in, it is easy to implement and requires less time for implementation, inte-

gration and test compared to option B. However, the implementation method in

option A is not supported by the plug-in framework of Rubus-ICE because the

ComSIS Vol. V, No. N, Month 20YY 27



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

plug-ins can only be executed sequentially. Moreover, one plug-in cannot exe-

cute the other. Hence, we selected option B for the implementation of HRTA.

The algorithm for the computation of end-to-end delays requires the re-

sponse times of all tasks, messages and task chains in the system as one of its

inputs. As compared to HRTA algorithm, it is not iterative. Therefore, there is no

need to build the E2EDA plug-in from the scratch. In fact, the HRTA plug-in can

be completely reused as a black box. This means that the response times of

tasks, messages and task chains computed by the HRTA plug-in can be used

as one of the inputs for the E2EDA plug-in as shown in Fig. 10.

4.9. Analysis of DRE Systems with Multiple Networks

In a DRE system, a node may be connected to more than one network. This

type of node is called a gateway node. If a transaction is distributed over more

than one network, the computation of its holistic response time involves the

analysis of more than one network. Consider the example of a DRE system with

two networks, i.e., CAN and LIN as shown in Fig. 21. There are five nodes in

the system. Node 3 is the gateway node that is connected to both the networks.

Consider a transaction in which task1 in Node1 sends a message to task1 in

Node5 via Node3. The computation of holistic response time of this transaction

will involve the computation of message response times in both CAN and LIN

networks.

If a modeled system contains more than one network, we divide it into sub-

systems (each having a single network) and analyze them separately in the first

step. In the second step, the attribute inheritance is carried out (see Section

3.3) and the subsystems are analyzed again. The second step is repeated until

the response times converge or the deadlines (if specified) are violated. In the

above example, we first perform HRTA using CAN and LIN networks separately.

Then we provide the response times of the messages that are received at the

gateway node as input jitters to the receiver tasks (attribute inheritance). Then

HRTA of CAN and LIN networks is performed again. These steps are repeated

until we get stable response times. Although we analyzed the subsystems sep-

arately, the multi-step analysis (especially attribute inheritance step) makes the

overall analysis to be holistic.

The implemented HRTA does not support the analysis of a transaction that

is distributed cyclically on multiple networks, i.e., the transactions that is dis-

tributed over more than one network while its first and last tasks are located

on the same network. Since, the E2EDA plug-in receives the response-time re-

sults from the HRTA plug-in, it does not need to split the system (with multiple

networks) into sub-systems. In fact, the E2EDA plug-in analyzes it as a single

system.

4.10. Specification of Delay Constraints on Data Paths

One issue that concerns both modeling and analysis is how to specify the de-

lay constraints on data paths in both data and mixed chains. This is important

28 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

Task1 Task1 Task2 Task1

CAN

Node1 Node2
Gateway Node

Node3

Task1

LIN

Node4 Node5

Task1

Fig. 21. Multiple networks in a DRE system

because the delay constraints specified in the modeled application have to be

extracted in the timing model and the end-to-end delays have to be computed

only for the specified data path(s) by the E2EDA plug-in. For this purpose, we in-

troduce start and end objects for each of the four delay constraints (discussed

in Subsection 3.2) in the component technology. The constraint object has a

meaningful name, and start and end points along a data path. Fig. 22 shows the

“Data Age” delay constraint specified on a sensor-actuator data path. Similarly,

there are start and end objects for “Data Reaction”, “LIFO” and “FILO” delays.

All these delay constraints will be used in the case study in Section 6. In the ex-

ample shown in Fig. 22, the E2EDA plug-in will consider the tasks correspond-

ing to the components sensor signal read, filter and compute actuator signal

while calculating the data age delay. A delay constraint can also be distributed

over several nodes. It should be noted that the delay constraints can be spec-

ified even on a small segment of a long data path. Another useful method

for specifying the delay constraints is by selecting each component (e.g., with

mouse click) along the data path. The implementation of this method in Rubus-

ICE is left for the future work.

Fig. 22. Age delay constraint specified on a data path

4.11. Presentation of Analysis Results

When HRTA of a modeled application has been performed, the next issue is

how to present the analysis results. There can be a large number of tasks and

messages in the system. It may not be appropriate to display the response time

of all tasks and messages in the system because it may contain a lot of useless

information (if the user is not interested in all of it). Furthermore, presenting

the end-to-end response times and delays of only DTs to the user may not be

appropriate because there may be hundreds of DTs in a DRE application. A

ComSIS Vol. V, No. N, Month 20YY 29



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

way around this problem is to provide the end-to-end response times and de-

lays of only those tasks and DTs which have deadline requirements and delay

constraints (specified by the user) or which produce control signals for exter-

nal actuators (e.g., the analysis results of case study that will be discussed in

Section 6). Apart from this, we also provide an option for the user to get de-

tailed analysis results from both the HRTA and E2EDA plug-ins. The analysis

report also shows network utilization which is defined as the sum of the ratio of

transmission time to the corresponding period (or minimum-update time) for all

messages in the network [33].

4.12. Interaction between the User and the HRTA Plug-in

We identified that it is important to provide a progress report of the HRTA and

E2EDA plug-ins during their executions. Based on the progress, the user should

be able to interact with the plug-in while it is running. The HRTA algorithm itera-

tively runs the algorithms of node RTA and network RTA until converging values

of the response times are computed or the computed response times exceed

the deadlines (if deadlines are specified). We feel that it is important to display

the number of iterations, running time and over all progress of the plug-in during

its execution. Moreover, the user should be able to stop, rerun or exit the plug-in

at any time.

4.13. Suggestions to Improve Schedulability Based on Analysis Results

If the analysis results indicate that the modeled system is unschedulable, it

can be interesting if the HRTA plug-in is able to provide suggestions (e.g., by

varying system parameters) guiding the user to make the system schedulable.

However, it is not trivial to provide such feedback because there can be so many

reasons behind the system being not schedulable. The support for this type of

feedback in the HRTA plug-in will be provided in the future. Another interesting

and related feature would be to provide a trace analyzer as another plug-in

that can be used after system has been developed. This analyzer will record

the execution of the actual system and then present a graphical comparison of

the trace with response times of tasks and messages; holistic response times

of trigger, data and mixed chains; and end-to-end delays of data and mixed

chains. Based on such comparisons, the user may have better understanding

of how the schedulability of the system can be improved. The implementation

of this feature is left for the future work.

4.14. Requirement for Continuous Collaboration between Integrator and
Implementer

Our experience of integrating the HRTA and E2EDA plug-ins with Rubus-ICE

shows that there is a need for continuous collaboration between the integrator

of the plug-ins and its implementer especially during the phase of integration

30 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

testing (see next Section). This collaboration is more obvious when the plug-in

is developed in isolation by the implementer (from research background) and

integrated with the industrial tool chain by the integrator (with limited experi-

ence of integrating complex real-time analysis but aware of overall objective). A

continuous consultation and communication was required between the integra-

tor and the implementer for the verification of the plug-ins. Examples of small

DRE systems with varying architectures were created for the verification. The

implementer had to verify these examples by hand. The integration testing and

verification of the HRTA plug-in was non-trivial and most tedious activity.

5. Testing and Evaluation

In this section we discuss our test plan for both standalone and integration test-

ing of the HRTA and E2EDA plug-ins. Error handling and sanity checking rou-

tines make significant part of the implementation. The purpose of these routines

is to detect and isolate faults and present them to the user during the analysis.

Our test plan contains the following sets of error handling routines.

– A set of routines evaluating the validity of all inputs: attributes of all nodes,

transactions, tasks, networks and messages in the system.
– A set of routines evaluating the validity of linking information of all DTs in

the system.
– A set of routines evaluating the validity of intermediate results that are itera-

tively inherited as inputs (e.g., a message inheriting the difference between

the worst- and best-case response times of the sender task as its release

jitter).
– A set of routines evaluating the overload conditions during the analysis. For

example, processor or network utilization exceeding 100%, and presence of

direct cycles in the system. Since HRTA algorithm is iterative, the analysis

may never terminate in the presence of these conditions if the deadlines are

not specified.
– A set of routines evaluating variable overflow during the analysis.
– A set of routines verifying the design correctness of the modeled applica-

tion. These routines identify the presence of direct cycles in the modeled

application. Moreover, they also identify if the delay constraints are wrongly

specified, for example, a delay constraint specified on a trigger chain in-

stead of a data or a mixed chain.

5.1. Standalone Testing

Standalone testing means testing of the implementation of HRTA and E2EDA

before they are integrated as plug-ins with the Rubus builder tool. In other

words, it refers to the testing of HRTA and E2EDA in isolation. The following

input methods were used for the standalone testing.

1. Hard coded input test vectors.

ComSIS Vol. V, No. N, Month 20YY 31



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

2. Test vectors are read from external files.
3. Test vectors are generated using a test case generator (a separate pro-

gram). This generator produces test cases with varying architectures. It also

randomly inserts invalid inputs to check if the error handling routines are

able to catch the errors.

The analysis results provided by the plug-ins corresponding to the test vectors

in the first two input methods were also verified by hand.

5.2. Integration Testing

Integration testing refers to the testing of the HRTA and E2EDA plug-ins after

they have been integrated with the Rubus builder tool. Although standalone test-

ing is already performed, the integration of these plug-ins with Rubus-ICE may

induce unexpected errors. Our experience shows that the integration testing is

much more difficult and time consuming activity compared to the standalone

testing. The following input methods were used for the integration testing.

1. Test vectors are read from external files.
2. Test vectors are manually written in the ICCM file (see Fig. 1) to make it

appear as if test vectors were extracted from the modeled application.
3. Test vectors are automatically extracted from several DRE applications mod-

eled with RCM.

The analysis results provided by the plug-ins corresponding to all types of test

cases were also verified by hand.

6. Automotive Application Case Study

We provide a proof of concept for the analysis techniques that we implemented

in the Rubus-ICE tool suite by conducting the automotive-application case study.

First, we model the Autonomous Cruise Control (ACC) system with RCM using

Rubus-ICE. Then, we analyze the modeled ACC system using the HRTA and

E2EDA plug-ins.

6.1. Autonomous Cruise Control System

A cruise control system is an automotive feature that allows a vehicle to auto-

matically maintain a steady speed to the value that is preset by the driver. It

uses velocity feedback from the speed sensor (e.g., a speedometer) and ac-

cordingly controls the engine throttle. However, it does not take into account

traffic conditions around the vehicle. Whereas, an Autonomous Cruise Control

(ACC) system allows the cruise control of the vehicle to adapt itself to the traffic

environment without communicating (cooperating) with the surrounding vehi-

cles. Often, it uses a radar to create a feedback of distance to and velocity of the

preceding vehicle. Based on the feedback, it either reduces the vehicle speed

32 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

to keep a safe distance and time gap from the preceding vehicle or accelerates

the vehicle to match the preset speed specified by the driver [42].

The ACC system may be divided into four subsystems, i.e., Cruise Control,

Engine Control, Brake Control and User Interface [14]. Fig. 23 shows the block

diagram of the ACC system. The subsystems communicate with each other via

the CAN network.

User Interface Subsystem. The User Interface (UI) subsystem reads inputs

(provided by the driver) and shows status messages and warnings on the dis-

play screen. The inputs are acquired by means of switches and buttons mounted

on the steering wheel. These include Cruise Switch input that corresponds to

ON/OFF, Standby and Resume (resuming to a speed predefined by the driver)

states for ACC; Set Speed input (desired cruising speed set by the driver) and

desired clearing distance from the preceding vehicle. Apart from user inputs, it

also receives some other parameters from the rest of the subsystems via CAN

network. These include linear and angular speed of the vehicle, i.e., kilometer

per hour (KPH) and revolution per minute (RPM), status of manual brake sen-

sor, state of ACC subsystem, status messages and warnings to be displayed

on the screen. Apart from showing status messages and warnings, it sends

messages (including status of driver’s input) to other subsystems.

Controller Area Network (CAN)

Brake Control 

Subsystem

Engine Control 

Subsystem

Cruise Control 

Subsystem

User Interface 

Subsystem

Fig. 23. Block diagram of Autonomous Cruise Control System

Cruise Control Subsystem. The Cruse Control (CC) subsystem receives user

input information as a CAN message from the UI subsystem. From the received

message it analyzes the state of the cruise control switch; if it is in ON state

then it activates the cruise control functionality. It reads input from the proximity

sensor (e.g., radar) and processes it to determine the presence of a vehicle in

front of it. Moreover, it processes the radar signals along with the information

received from other subsystems such as vehicle speed to determine its dis-

tance from the preceding vehicle. Accordingly, it sends control information to

the Brake Control and Engine Control subsystems to adjust the speed of the

vehicle with the cruising speed or clearing distance from the preceding vehicle.

It also receives the status of manual brake sensor from the Brake Control sub-

system. If brakes are pressed manually then the cruise control functionality is

disabled. It also sends status messages to the UI subsystem.

ComSIS Vol. V, No. N, Month 20YY 33



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

Engine Control Subsystem. The Engine Control (EC) subsystem is responsi-

ble for controlling the vehicle speed by adjusting engine throttle. It reads sensor

input and accordingly determines engine torque. It receives CAN messages

sent by other subsystems. The messages include information regarding vehi-

cle speed, status of manual brake sensor, and input information processed by

the UI system. Based on the received information, it determines whether to in-

crease or decrease engine throttle. It then sends new throttle position to the

actuators that control engine throttle.

Brake Control Subsystem. The Brake Control (BC) subsystem receives in-

puts from sensor for manual brakes status and linear and angular speed sen-

sors connected to all wheels. It also receives a CAN message that includes

control information processed by the CC subsystem. Based on this feedback,

it computes new vehicle speed. Accordingly, it produces control signals and

sends them to the brake actuators and brake light controllers. It also sends

CAN messages to other subsystems that carry information regarding status of

manual brake, vehicle speed and RPM.

6.2. Modeling of ACC System with RCM in Rubus-ICE

In RCM, we model each subsystem as a separate node connected to a CAN

network as shown in Fig. 24. The selected speed of the CAN bus is 500 kbps.

The extended frame format is selected which means that each frame will use

29-bit identifier [26]. The ACC system is modeled with trigger, data and mixed

chains.

 

   
Fig. 24. Autonomous Cruise Control System modeled with RCM

There are seven CAN messages that are sent by the nodes as shown in

Fig. 25. A signal data base “signalDB” that contains all the signals sent to the

network is also shown. Each signal in the signal database is linked to one or

more messages. The extracted attributes of all messages including data size

(sm), priority (Pm), transmission type (ξm) and period or minimum inter-arrival

time (Tm) are listed in Table 1.

The high-level architectures of CC, EC, BC and UI nodes modeled with RCM

are shown in Fig. 26, 27, 28 and 29 respectively.

34 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

 

 

 

   

Fig. 25. CAN messages and signal database modeled with RCM

Table 1. Message attributes extracted from the model

Msg sm Pm ξm Tm (µSec) Cm (µSec)

m1 8 7 Periodic 10000 320

m2 8 6 Periodic 10000 320

m3 8 4 Periodic 10000 200

m4 8 3 Sporadic 10000 320

m5 2 5 Sporadic 10000 320

m6 2 2 Periodic 10000 200

m7 1 1 Sporadic 10000 180

Fig. 26. RCM model of the Cruise Control node

Fig. 27. RCM model of the Engine Control node

ComSIS Vol. V, No. N, Month 20YY 35



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

Fig. 28. RCM model of the Brake Control node

Fig. 29. RCM model of the User Interface node

Internal Model of Cruise Control Node in RCM. The CC node is modeled with

four assemblies as shown in Fig. 26. An assembly in RCM is a container for var-

ious software items. The Input from Sensors assembly contains one SWC that

reads radar sensor values as shown in Fig. 30. The Input from CAN assembly

contains three ISWCs, i.e., GUI Input Msg ISWC, Vehicle speed Msg ISWC

and Manual brake input Msg ISWC as depicted in Fig. 31. These components

receive messages m1 , m6 and m7 from the CAN network respectively. Simi-

larly, the assembly Output to CAN contains three OSWC components as shown

in Fig. 32. These components send messages m5 , m4 and m2 to the CAN net-

work. The Cruise Control assembly contains two SWCs: one handles the input

and cruise control mode signals while the other processes the received infor-

mation and produces control messages for the other nodes. The internal model

of this assembly is shown in Fig. 33.

Internal Model of Engine Control Node in RCM. The Engine Control node

is modeled with four assemblies as shown in Fig. 27. The Input from Sensors

assembly contains one SWC that reads the sensor values corresponding to

36 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

 

Fig. 30. CC node: Internal model of the Input from Sensors assembly

 

   
Fig. 31. CC node: Internal model of the Input from CAN assembly

the engine torque as shown in Fig. 34. The Input from CAN assembly contains

three ISWCs, i.e., Vehicle Speed Msg ISWC, Engine control info Msg ISWC

and Manual brake input Msg ISWC as shown in Fig. 35. These components

receive messages m6 , m4 and m7 from the CAN network respectively. The

third assembly, Output to Actuators as shown in Fig. 36, contains the SWC that

produces control signals for the engine throttle actuator. The fourth assembly,

i.e., Engine Control as shown in Fig. 37, contains two SWCs: one handles and

processes the inputs from sensors and received messages, while the other

computes the new position for the engine throttle. These components are part

ComSIS Vol. V, No. N, Month 20YY 37



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

Fig. 32. CC node: Internal model of the Output to CAN assembly

Fig. 33. CC node: SWCs comprising the Cruise Control assembly

of a distributed mixed chain that we will analyze along with other distributed

mixed chains in the next subsections.

 

   
Fig. 34. EC node: Internal model of the Input from Sensors assembly

Internal Model of Brake Control Node in RCM. The Brake Control node is

modeled with five assemblies as shown in Fig. 28. The Input from Sensors as-

sembly contains three SWCs as shown in Fig. 38. These SWCs read the sensor

values that correspond to the values of speed, rpm and manual brake sensors

in the vehicle. The Input from CAN assembly, shown in Fig. 39, contains the

ISWC component Brake control info Msg ISWC that receives a message m5

from the CAN network.

38 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

Fig. 35. EC node: Internal model of the Input from CAN assembly

 

Fig. 36. EC node: Internal model of the Output to Actuators assembly

Fig. 37. EC node: SWCs comprising the Engine Control assembly

The third assembly, i.e., Brake Control as shown in Fig. 40, contains two

SWCs: one handles and processes the inputs from sensors and received mes-

sages while the other computes the control signals for brake actuators. The

fourth assembly Output to CAN contains three OSWC components as shown

in Fig. 41. These components send messages m7 , m6 and m3 to the CAN

network. The fifth assembly, Output to Actuators as shown in Fig. 42, contains

the SWCs that produce control signals for the brake actuators and brake light

controllers.

ComSIS Vol. V, No. N, Month 20YY 39



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

Fig. 38. BC node: Internal model of the Input from Sensors assembly

Fig. 39. BC node: Internal model of the Input from CAN assembly

Fig. 40. BC node: Internal model of the Brake Control assembly

 

   
Fig. 41. BC node: Internal model of the Output to CAN assembly

Internal Model of User Interface Node in RCM. The User Interface node

is modeled with four assemblies along with one SWC as shown in Fig. 29.

The GUI Control SWC handles the input from the sensors and messages from

40 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

 

Fig. 42. BC node: Internal model of the Output to Actuators assembly

the CAN network. After processing the information, it not only produces infor-

mation for Graphical User Interface (GUI), but also computes control signals

for the other nodes. The Input from Sensors assembly contains two SWCs as

shown in Fig. 43. One of them reads the sensor values that correspond to

the state of the cruise control switch on the steering wheel. The other SWC

reads the sensor values that correspond to the vehicle cruising speed set by the

driver. The Input from CAN assembly contains four ISWC components, i.e., Ve-

hicle Speed Msg ISWC, RPM Msg ISWC, Manual brake input Msg ISWC and

ACC text display Msg ISWC as shown in Fig. 44. These components receive

messages m6 , m3 , m7 and m2 from the CAN network respectively. The third

assembly, i.e., Output to CAN Periodic sends a message m1 to the CAN net-

work via the OSWC component as shown in Fig. 45. The fourth assembly, i.e.,

GUI Display Asm contains one SWC, i.e., GUIdisplay component as shown in

Fig. 46. This component sends the signals (corresponding to updated informa-

tion) to GUI in the car.

 

 

 

 

   

Fig. 43. UI node: Internal model of the Input from Sensors assembly

ComSIS Vol. V, No. N, Month 20YY 41



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

Fig. 44. UI node: Internal model of the Input from CAN assembly

 

   
Fig. 45. UI node: Internal model of the Output to CAN Periodic assembly

 

Fig. 46. UI node: Internal model of the GUI Display Asm assembly

42 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

6.3. Modeling of End-to-end Deadline Requirements

We specify end-to-end deadline requirements on four DTs in the ACC system

using a deadline object in RCM. All these DTs, i.e., DT1, DT2, DT3 and DT4

are distributed mixed chains as shown in Table 2. All these chains have one

common initiator, i.e., their first task corresponds to the SWC that reads radar

signal which is denoted by RadarSignalInput and located in the Cruise Con-

trol node as shown in Fig. 30. The last tasks of DT1 and DT2 are located in

the Brake Control node. These tasks correspond to the SWCs SetBrakeSignal

and SetBrakeLightSignal as shown in Fig. 28. These two tasks are responsi-

ble for producing brake actuation and brake light control signals respectively.

The last task of DT3 corresponds to SetThrottlePosition SWC and is located

in the Engine Control node as shown in Fig. 27. This task is responsible for

producing control signal for the engine throttle actuator. The last task of DT4

corresponds to GUIdisplay SWC and is located in the User Interface node as

shown in Fig. 29. This task is responsible for providing display information for

the driver.

All the mixed chains under analysis are distributed over more than one node.

For the sake of convenience, we list all the components in the data path (from

initiator to terminator) of each chain as shown below. We also specify four delay

constraints (discussed in Section 3) on each DT under analysis. In RCM, the

model of each delay constraint consists of start object and end object. The start

objects for all four delay constraints for each DT are shown in Fig. 30. There are

sixteen start objects for delay constraints in Fig. 30 because there are four DTs

under analysis with four delay constraints specified on each DT. The end objects

for all delay constraints for DT1 and DT2 are specified in Fig. 42. Similarly, the

end objects for all delay constraints for DT3 and DT4 are specified in Fig. 36

and Fig. 46 respectively.

1. DT1: RadarSignalInput → InputAndModeControl → InfoProcessing →

Brake control info Msg OSWC → message : m5 →

Brake control info Msg ISWC → BrakeInputInfoProcessing →

BrakeController → SetBrakeSignal SWC

2. DT2: RadarSignalInput → InputAndModeControl → InfoProcessing →

Brake control info Msg OSWC → message : m5 →

Brake control info Msg ISWC → BrakeInputInfoProcessing →

BrakeController → SetBrakeLightSignal SWC

3. DT3: RadarSignalInput → InputAndModeControl → InfoProcessing →

Engine control info Msg OSWC → message : m4 →

Engine control info Msg ISWC → EngineInputInformationProcessing →

ThrottleControl → SetThrottlePosition

4. DT4: RadarSignalInput → InputAndModeControl → InfoProcessing →

ACC text display Msg OSWC → message : m2 →

ACC text display Msg ISWC → GUI Control → GUIdisplay

ComSIS Vol. V, No. N, Month 20YY 43



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

6.4. Analysis of ACC System using the HRTA and E2EDA Plug-ins

The run-time allocation of all the components in the model of the ACC system

results in 19 transactions, 36 tasks and 7 messages. We provide the analysis

results of only those transactions on which deadline requirements or delay con-

straints are specified. The transmission times (Cm) of all messages computed

by the HRTA plug-in are shown in Table 1. The WCET of each component in

the modeled ACC system is selected from the range of 10-60 µSec. The HRTA

plug-in analyzes all four DTs (discussed in the previous subsection). Once the

HRTA plug-in has completed its execution and produced analysis results then

the E2EDA plug-in analyzes only those DTs on which end-to-end delay con-

straints are specified (i.e., all four DTs).

The analysis report in Table 2 provides worst-case holistic response times

of the four distributed mixed chains using the HRTA plug-in. The correspond-

ing deadlines are also shown. The response time of a DT is counted from the

activation of the first task to the completion of the last task in the chain. The

response times of these four DTs correspond to the production of control sig-

nals for brake actuators, brake lights controllers, engine throttle actuator and

graphical user interface.

The analysis report produced by the E2EDA plug-in is shown in Table 3. It

lists four end-to-end delays calculated for each DT under analysis. The corre-

sponding specified delay constraints are also listed in the table. By comparing

the end-to-end deadlines and specified delay constraints with the calculated

holistic response times and end-to-end delays in Tables 2 and 3 respectively,

we see that the modeled ACC system meets all of its deadlines.

Table 2. Analysis report by the HRTA plug-in

Distributed Chain Control Signal Produced Deadline Holistic Response

Transaction Type by the Chain (µSec) Time (µSec)

DT1 Mixed Chain SetBrakeSignal 1000 220

DT2 Mixed Chain SetBrakeLightSignal 1000 280

DT3 Mixed Chain SetThrottlePosition 1000 130

DT4 Mixed Chain GUIdisplay 1500 345

7. Conclusion and Future Work

We presented the implementation of the state-of-the-art Holistic Response Time

Analysis (HRTA) and End-to-End Delay Analysis (E2EDA) as two individual

plug-ins for the existing industrial tool suite Rubus-ICE. The implemented anal-

yses are general as they support the integration of real-time analysis of various

networks without a need for changing the end-to-end analysis algorithms. With

44 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

Table 3. Analysis report by the E2EDA plug-in

Distributed Transaction DT1 DT2 DT3 DT4

Specified Age Delay Constraint(µSec) 5000 5000 5000 5000

Calculated Age Delay (µSec) 4220 4280 4130 4345

Specified Reaction Delay Constraint(µSec) 10000 10000 10000 10000

Calculated Reaction Delay (µSec) 8220 8280 8130 8345

Specified LIFO Delay Constraint(µSec) 1000 1000 1000 1500

Calculated LIFO Delay (µSec) 220 280 130 345

Specified FILO Delay Constraint(µSec) 15000 15000 15000 15000

Calculated FILO Delay (µSec) 12220 12280 12130 12345

the implementation of these plug-ins, Rubus-ICE is able to support distributed

end-to-end timing analysis of trigger flows as well as asynchronous data flows

which are common in automotive embedded systems.

There are many challenges faced by the implementer when state-of-the-art

real-time analyses like HRTA and E2EDA are transferred to the industrial tools.

The implementer has to not only code and implement the analyses in the tools,

but also deal with various challenging issues in an effective way with respect to

time and cost. We discussed and solved several issues that we faced during the

implementation, integration and evaluation of the HRTA and E2EDA plug-ins.

The experience gained by dealing with the implementation challenges provided

a feed back to the component technology (i.e., the Rubus Component Model),

for example, feed back on the design decisions for efficient run-time allocation

of network interface components.

We also discussed the steps that we followed for testing and evaluating the

HRTA and E2EDA plug-ins. We found the integration testing to be a tedious and

non-trivial activity. Our experience of implementing, integrating and evaluating

these plug-ins shows that a considerable amount of work and time is required

to transfer complex real-time analysis results to the industrial tools.

We provided a proof of concept by modeling the autonomous cruise con-

trol system with component-based development approach using the existing

industrial component model (Rubus Component Model) and analyzing it with

the HRTA and E2EDA plug-ins.

We believe that most of the problems discussed in this paper are generally

applicable when real-time analysis is transferred to any industrial or academic

tool suite. Moreover, the contributions in this paper may provide guidance for the

implementation of other complex real-time analysis techniques in any industrial

tool suite that supports a plug-in framework for the integration of new tools

and allows component-based development of distributed real-time embedded

systems.

In the future, we plan to implement the analysis of other network communi-

cation protocols (e.g., Flexray, switched ethernet, etc.) and integrate them within

the HRTA plug-in. Another future work is the implementation of RTA for CAN

ComSIS Vol. V, No. N, Month 20YY 45



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

with FIFO and work-conserving queues [18, 20], and RTA of CAN with FIFO

Queues for Mixed Messages [37] within HRTA plug-in. We also plan to inte-

grate the stand alone analyzer, that we developed for the analysis of mixed

messages with offsets [39], with the HRTA plug-in.

Acknowledgement

This work is supported by the Swedish Knowledge Foundation (KKS) within the

projects FEMMVA and EEMDEF, the Swedish Research Council (VR) within

project TiPCES, and the Strategic Research Foundation (SSF) with the centre

PROGRESS. The authors would like to thank the industrial partners Arcticus

Systems, BAE Systems Hägglunds and Volvo Construction Equipment (VCE)

Sweden.

References

1. Arcticus Systems, http://www.arcticus-systems.com
2. BAE Systems Hägglunds, http://www.baesystems.com/hagglunds
3. CANoe. http://www.vector.com/portal/medien/cmc/info/canoe productinformation

en.pdf
4. CANopen Application Layer and Communication Profile. CiA Draft Standard 301.

Version 4.02. February 13, 2002, http://www.can-cia.org/index.php?id=440
5. Knorr-bremse, web page, http://www.knorr-bremse.com
6. MAST–Modeling and Analysis Suite for Real-Time Applications, http://mast.uni-

can.es
7. Mecel, web page, http://www.mecel.se
8. RAPID RMA: The Art of Modeling Real-Time Systems, http://www.tripac.com/rapid-

rma
9. Requirements on Communication, Release 3.0, Revision 7, Ver. 2.2.0. The AU-

TOSAR Consortium, September, 2010, www.autosar.org/download/R3.0/AUTO-

SAR SRS COM.pdf
10. The Volcano Family, http://www.mentor.com/products/vnd
11. Vector. http://www.vector.com
12. Volcano Network Architect. Mentor Graphics, http://www.mentor.com/products/vnd/

communication-management/vna
13. Volvo Construction Equipment, http://www.volvoce.com
14. Adaptive Cruise Control System Overview. In: Workshop of Software System

Safety Working Group (April 2005), Anaheim, California, USA. Available at: sun-

nyday.mit.edu/Adaptive Cruise Control Sys Overview.pdf
15. Hägglunds Controller Area Network (HCAN), Network Implementation Specification.

BAE Systems Hägglunds, Sweden (internal document) (April 2009)
16. TIMMO Methodology , Version 2. TIMMO (TIMing MOdel), Deliverable 7 (October

2009), The TIMMO Consortium
17. Audsley, N., Burns, A., Davis, R., Tindell, K., Wellings, A.: Fixed priority pre-emptive

scheduling:an historic perspective. Real-Time Systems 8(2/3), 173–198 (1995)
18. Davis, R., Navet, N.: Controller Area Network (CAN) Schedulability Analysis for Mes-

sages with Arbitrary Deadlines in FIFO and Work-Conserving Queues. In: 9th IEEE

International Workshop on Factory Communication Systems (WFCS). pp. 33 –42

(May 2012)

46 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

19. Davis, R., Burns, A., Bril, R., Lukkien, J.: Controller Area Network (CAN) schedu-

lability analysis: Refuted, revisited and revised. Real-Time Systems 35, 239–272

(2007)

20. Davis, R.I., Kollmann, S., Pollex, V., Slomka, F.: Controller Area Network (CAN)

Schedulability Analysis with FIFO queues. In: 23rd Euromicro Conference on Real-

Time Systems (July 2011)

21. Feiertag, N., Richter, K., Nordlander, J., Jonsson, J.: A Compositional Framework

for End-to-End Path Delay Calculation of Automotive Systems under Different Path

Semantics. In: Workshop on Compositional Theory and Technology for Real-Time

Embedded Systems (CRTS) (December 2008)

22. Hagner, M., Goltz, U.: Integration of scheduling analysis into uml based develop-

ment processes through model transformation. In: International Multi-conference on

Computer Science and Information Technology (IMCSIT). pp. 797 –804 (October

2010)

23. Hagner, M., Goltz, U.: Integration of scheduling analysis into uml based develop-

ment processes through model transformation. In: International Multi-conference on

Computer Science and Information Technology (IMCSIT). pp. 797 –804 (October

2010)

24. Hamann, A., Henia, R., Racu, R., Jersak, M., Richter, K., Ernst, R.: Symta/s - sym-

bolic timing analysis for systems (2004)

25. Hänninen et.al., K.: The Rubus Component Model for Resource Constrained Real-

Time Systems. In: 3rd IEEE International Symposium on Industrial Embedded Sys-

tems (June 2008)

26. ISO 11898-1: Road Vehicles interchange of digital information controller area net-

work (CAN) for high-speed communication, ISO Standard-11898, Nov. 1993.

27. Joseph, M., Pandya, P.: Finding Response Times in a Real-Time System. The Com-

puter Journal (British Computer Society) 29(5), 390–395 (October 1986)

28. K. Hänninen et.al.: Framework for real-time analysis in Rubus-ICE. In: 13th IEEE

Conference on Emerging Technologies and Factory Automation (ETFA). pp. 782

–788 (2008)

29. Liu, C., Layland, J.: Scheduling algorithms for multi-programming in a hard-real-time

environment. ACM 20(1), 46–61 (1973)

30. Mäki-Turja, J., , Nolin, M.: Tighter response-times for tasks with offsets. In: Real-time

and Embedded Computing Systems and Applications Conference (RTCSA) (August

2004)

31. Mubeen, S.: Modeling and timing analysis of industrial component-based distributed

real-time embedded systems. Licentiate thesis, Mälardalen University (January

2012), http://www.mrtc.mdh.se/index.php?choice=publications&id=2748

32. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Extending response-time analysis of con-

troller area network (CAN) with FIFO queues for mixed messages. In: 16th IEEE

Conference on Emerging Technologies and Factory Automation (ETFA). pp. 1–4

(September 2011)

33. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Extending schedulability analysis of controller

area network (CAN) for mixed (periodic/sporadic) messages. In: 16th IEEE Confer-

ence on Emerging Technologies and Factory Automation (ETFA) (September 2011)

34. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Extraction of end-to-end timing model from

component-based distributed real-time embedded systems. In: Time Analysis and

Model-Based Design, from Functional Models to Distributed Deployments (TiMoBD)

workshop located at Embedded Systems Week. pp. 1–6. Springer (October 2011)

ComSIS Vol. V, No. N, Month 20YY 47



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

35. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Implementation of Holistic Response-Time

Analysis in Rubus-ICE: Preliminary Findings, Issues and Experiences. In: The 32nd

IEEE Real-Time Systems Symposium (RTSS), WIP Session. pp. 9–12 (December

2011)

36. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Tracing event chains for holistic response-

time analysis of component-based distributed real-time systems. SIGBED Review

8, 48–51 (September 2011), http://doi.acm.org/10.1145/2038617.2038628

37. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Response-Time Analysis of Mixed Messages

in Controller Area Network with Priority- and FIFO-Queued Nodes. In: 9th IEEE

International Workshop on Factory Communication Systems (WFCS) (May 2012)

38. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Support for Holistic Response-time Analysis

in an Industrial Tool Suite: Implementation Issues, Experiences and a Case Study.

In: 19th IEEE Conference on Engineering of Computer Based Systems (ECBS). pp.

210 –221 (April 2012)

39. Mubeen, S., Mäki-Turja, J., Sjödin, M.: Worst-case response-time analysis for mixed

messages with offsets in controller area network. In: 17th IEEE Conference on

Emerging Technologies and Factory Automation (ETFA) (September 2012)

40. Mubeen, S., Mäki-Turja, J., Sjödin, M., Carlson, J.: Analyzable modeling of legacy

communication in component-based distributed embedded systems. In: 37th Eu-

romicro Conference on Software Engineering and Advanced Applications (SEAA).

pp. 229–238 (September 2011)

41. Nolin, M., Mäki-Turja, J., Hänninen, K.: Achieving Industrial Strength Timing Predic-

tions of Embedded System Behavior. In: ESA. pp. 173–178 (2008)

42. P. Berggren: Autonomous Cruise Control for Chalmers Vehicle Simulator. Master’s

thesis, Department of Signals and Systems, Chalmers University of Technology

(2008)

43. Palencia, J., Harbour, M.G.: Schedulability Analysis for Tasks with Static and Dy-

namic Offsets. IEEE International Symposium on Real-Time Systems p. 26 (1998)

44. Pop, T., Eles, P., Peng, Z.: Holistic scheduling and analysis of mixed time/event-

triggered distributed embedded systems. In: Proceedings of the tenth international

symposium on Hardware/software codesign. pp. 187–192. CODES ’02, ACM, New

York, USA (2002)

45. Rajeev, A.C., Mohalik, S., Dixit, M.G., Chokshi, D.B., Ramesh, S.: Schedulability

and end-to-end latency in distributed ecu networks: formal modeling and precise

estimation. In: Proceedings of the tenth ACM international conference on Embedded

software. pp. 129–138. EMSOFT ’10, ACM (2010)

46. Schmidt, D., Kuhns, F.: An overview of the Real-Time CORBA specification. Com-

puter 33(6), 56 –63 (June 2000)

47. Sha, L., Abdelzaher, T., rzén, K.E.A., Cervin, A., Baker, T.P., Burns, A., Buttazzo, G.,

Caccamo, M., Lehoczky, J.P., Mok, A.K.: Real Time Scheduling Theory: A Historical

Perspective. Real-Time Systems 28(2/3), 101–155 (2004)

48. Stappert, F., Jonsson, J., Mottok, J., Johansson, R.: A Design Framework for End-

To-End Timing Constrained Automotive Applications. In: Embedded Real-Time Soft-

ware and Systems (ERTS), 2010

49. Tindell, K.W.: Using offset information to analyse static priority preemptively sched-

uled task sets. Tech. Rep. YCS 182, Dept. of Computer Science, University of York

(1992)

50. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time

systems. Microprocess. Microprogram. 40, 117–134 (April 1994)

48 ComSIS Vol. V, No. N, Month 20YY



Support for end-to-end response-time and delay analysis in the industrial tool

51. Tindell, K., Hansson, H., Wellings, A.: Analysing real-time communications: con-

troller area network (CAN). In: Real-Time Systems Symposium (RTSS) 1994. pp.

259 –263

Appendix A

Acronyms and Abbreviations

ACC Autonomous Cruise Control

API Application Programming Interface

AUTOSAR AUTomotive Open System ARchitecture

BC Brake Control

BCRT Best Case Response Time

CAN Controller Area Network

CC Cruise Control

DR Data Reaction

DRE Distributed Real-time Embedded

DT Distributed Transaction

EC Engine Control

E2EDA End To End Delay Analysis

FIFO First In First Out

FILO First In Last Out

HCAN Hägglunds Controller Area Network

HRTA Holistic Response Time Analysis

ICCM Intermediate Compiled Component Model

ICE Integrated Component development Environment

ISWC Input Software Circuit

LIFO Last In First Out

LILO Last In Last Out

OSWC Output Software Circuit

RCM Rubus Component Model

RTA Response Time Analysis

SWC Software Circuit

TIMMO TIMing MOdel

TP Timed Path

TTCAN Time Triggered Controller Area Network

UI User Interface

WCET Worst Case Execution Time

WCRT Worst Case Response Time

ComSIS Vol. V, No. N, Month 20YY 49



Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin

Saad Mubeen is a PhD student at Mälardalen Real-Time Research Centre

(MRTC), Mälardalen University, Sweden. His research focus is on modeling and

timing analysis of distributed real-time embedded systems in the automotive

domain. Saad received his degree of Licentiate in Computer Science and Engi-

neering from Mälardalen University in January 2012. He received his degree of

M.Sc. in Electrical Engineering with specialization in Embedded Systems from

Jönköping University (Sweden) in 2009. He has co-authored over 30 research

papers in peer-reviewed conferences, workshops, books and journals.

Jukka Mäki-Turja is a senior lecturer and researcher at Mälardalen Real-Time

Research Centre. His research interest lies in design and analysis of predictable

real-time systems. Jukka received his PhD in computer science from Mälardalen

University in 2005 with response time analysis for tasks with offsets as focus.

He has co-authored over 75 research papers in peer-reviewed conferences,

workshops and journals.

Mikael Sjödin is a professor of real-time system and research director for Em-

bedded Systems at Mälardalen University, Sweden. His current research goal

is to find methods that will make embedded-software development cheaper,

faster and yield software with higher quality. Concurrently, Mikael is also been

pursuing research in analysis of real-time systems, where the goal is to find

theoretical models for real-time systems that will allow their timing behavior and

memory consumption to be calculated. Mikael received his PhD in computer

systems in 2000 from Uppsala University (Sweden). Since then he has been

working in both academia and in industry with embedded systems, real-time

systems, and embedded communications. Previous affiliations include Newline

Information, Melody Interactive Solutions and CC Systems. In 2006 he joined

the Mälardalen Real-Time Research Centre (MRTC) faculty as a full professor

with speciality in real-time systems and vehicular software-systems. He has co-

authored over 200 research papers in peer-reviewed conferences, workshops,

books and journals.

Received: Month DD, 20YY; Accepted: Month DD, 20YY.

50 ComSIS Vol. V, No. N, Month 20YY


