

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 26, 2022

Support for Programming Models in Network-on-Chip-based Many-core Systems

Rasmussen, Morten Sleth

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Rasmussen, M. S. (2010). Support for Programming Models in Network-on-Chip-based Many-core Systems.
Technical University of Denmark. IMM-PHD-2010-235

https://orbit.dtu.dk/en/publications/827b72c2-f4d0-41b4-894c-6ecbdff5998d

Support for Programming Models in
Network-on-Chip-based Many-core

Systems

Morten Sleth Rasmussen

Kongens Lyngby 2010

IMM-PHD-2010-235

Technical University of Denmark

DTU Informatics

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Abstract

This thesis addresses aspects of support for programming models in Network-
on-Chip-based many-core architectures. The main focus is to consider architec-
tural support for a plethora of programming models in a single system. The
thesis has three main parts. The first part considers parallelization and scal-
ability in an image processing application with the aim of providing insight
into parallel programming issues. The second part proposes and presents the
tile-based Clupea many-core architecture, which has the objective of providing
configurable support for programming models to allow different programming
models to be supported by a single architecture. The architecture features a
specialized network interface processor which allows extensive configurability
of the memory system. Based on this architecture, a detailed implementation
of the cache coherent shared memory programming model is presented. The
third part considers modeling and evaluation of the Clupea architecture con-
figured for support for cache coherent shared memory. An analytical model
and the MC sim simulator, which provides detailed cycle-accurate simulation of
many-core architectures, have been developed for the evaluation of the Clupea
architecture. The evaluation shows that configurability causes a moderate in-
crease of the application execution time. Considering the improved flexibility,
this impact is considered acceptable as the architecture can potentially exploit
application-specific optimizations and offers a valuable platform for comparing
programming models.

i

ii

Resume

Denne afhandling omhandler aspekter relateret til understøttelse af program-
meringsmodeller i mange-kernede arkitekturer baseret op intra-chip netværk.
Hovedfokus er overvejelser omkring arkitekturunderstøttelse for et stort an-
tal programmeringsmodeller i et enkelt system. Afhandlingen har tre dele.
Den første del omhandler parallelisering af en billedbehandlingsapplikation med
formålet at opn̊a indsigt i udfordringer relateret til parallelprogrammering. Den
anden del præsenterer den blok-baserede Clupea arkitektur, som giver mulighed
for konfigurerbar understøttelse for programmeringsmodeller med henblik p̊a
understøttelse af flere programmeringsmodeller i en enkelt arkitektur. Arkitek-
turen er baseret p̊a specialiserede netværkinterfaceprocessorer som tillader stor
konfigurerbarhed i hukommelsessystemet. Baseret p̊a denne arkitektur bliver
en detaljeret implementation af programmeringsmodellen cache coherent delt
hukommelse beskrevet. Den tredje del omhandler modellering og evaluering
af Clupea arkitekturen konfigureret med understøttelse for cache coherent delt
hukommelse. Til evalueringen af Clupea arkitekturen er der blevet udviklet
en analytisk model og MC sim-simulatoren, som muliggør detaljeret simulation
af mange-kernede arkitekturer. Evalueringen viser konfigurerbarhed medfører
moderate forøgelser i applikationskøretid. Set i forhold den øgede fleksibilitet
anses dette som acceptabelt da arkitekturen potentielt kan udnytte applikation-
sspecifikke optimeringer og udgør en vigtig referenceplatform til sammenligning
af programmeringsmodeller.

iii

iv

Preface

This thesis was prepared at DTU Informatics, at the Technical University of
Denmark in partial fullfillment of the requirements for acquiring the Ph.D.-
degree. The Ph.D.-project was supervised by Professor Jens Sparsø, Assistant
Professor Sven Karlsson and Professor Jan Madsen.

Kgs. Lyngby, July 3rd, 2010.

Morten Sleth Rasmussen

v

vi

Acknowledgements

Many people have supported me during this journey. I am grateful to them all.

vii

viii

List of Figures

1.1 Evolution of digital design. 2
1.2 Heterogeneous SoC platform. 4

2.1 Logical memory organization in multiprocessors. 11
2.2 Physical memory organization in multiprocessors. 12
2.3 The cache coherence issue. 14
2.4 Cache coherence protocol example. 14
2.5 Example of directory-based cache coherence protocol. 16
2.6 Programming model abstraction layers. 17
2.7 The message passing programming model. 18
2.8 The shared memory programming model. 19
2.9 SoC design example. Cores interconnected by an on-chip bus. . . 20
2.10 NoC-based SoC design example. 22

4.1 Overview of the image processing application. 37
4.2 Spectral image of fungi colonies. 37
4.3 Overview of immediately available parallelism in the application. 39
4.4 Execution times under non-uniform memory latency. 43
4.5 OpenMP threading strategies. 45
4.6 Speedups for the nested version of feature set 2 with 16 processors. 48
4.7 Speedups for the nested version of feature set 3 with 16 processors. 48
4.8 Thread execution time histogram when running 3 threads. 49
4.9 Thread execution time histogram when running 9 threads. 49
4.10 Speedups for all implementations of feature set 2 with 16 processors. 50
4.11 Speedups for all implementations of feature set 3 with 16 processors. 50

5.1 Allocatable tiles in a many-core architecture. 56

ix

x LIST OF FIGURES

5.2 Internal processor tile architecture. 58
5.3 Configuring programming model support in the NIP. 59
5.4 NIP architecture overview. 63
5.5 NIP hardware threads. 66
5.6 Message passing using the NIP. 70
5.7 Tile allocation for cache coherent shared memory. 73
5.8 Cache coherence protocol states. 75
5.9 Application tile NIP threads and data structures. 76
5.10 Directory tile threads and data structures. 79
5.11 Cache miss example. 82

6.1 Many-core memory system model overview. 86
6.2 Cache miss example for directory-based cache coherence protocol. 90
6.3 Interconnect model overview. 92
6.4 Analytical cache miss latency estimates. 94
6.5 Analytical estimates of application execution times. 95
6.6 Cache miss latencies for optimized cache coherence protocol. . . . 96
6.7 MC sim component overview. 98
6.8 Application memory reference trace example. 98
6.9 MC sim processor core model. 99
6.10 Barrier synchronization example. 101
6.11 Memory model overview. 103
6.12 Local memory system model in each tile. 103
6.13 Simulated Clupea benchmark execution times. 112
6.14 HWC benchmark scalability. 114
6.15 Clupea benchmark scalability. 115
6.16 Relative execution times for all timing models. 116
6.17 Clupea directory tile NIP loads. 117
6.18 Hardware directory tile NIP loads. 117
6.19 Clupea directory tile processor core loads. 119
6.20 Directory queuing time. 120
6.21 Temporal FFT directory tile NIP load. 120
6.22 Temporal Ocean con. directory tile NIP load. 121
6.23 Clupea application tile NIP load. 122
6.24 Memory interface tile load. 123
6.25 Cache miss latency overview. 124
6.26 Simulated NoC latencies. 125
6.27 Directory cache miss rates. 126
6.28 Evaluation of different directory cache configurations. 127

LIST OF FIGURES xi

6.29 Evaluation of data cache size. 129
6.30 Data cache misses per 1000 instructions. 129
6.31 Directory load balacing. 131
6.32 Memory reference trace address distribution 132
6.33 Directory load balancing for increasing data cache associativity. . 132
6.34 Increasing NoC latency. 133

xii LIST OF FIGURES

List of Tables

5.1 NoC packet layout. 61

6.1 Analytical model parameters. 93
6.2 Clupea architecture configuration. 107
6.3 MC sim timing model parameters. 109
6.4 Benchmark applications. 110

xiii

xiv LIST OF TABLES

Contents

1 Introduction 1

1.1 Evolution of Digital System Design 1
1.2 Multiprocessor System-on-Chip Design Challenges 3
1.3 Contributions . 5
1.4 Thesis Outline . 7

2 Programming Many-core Systems 9

2.1 Parallel Computer Architecture 9
2.1.1 Memory Organization . 11
2.1.2 Memory Consistency . 12
2.1.3 Cache Coherence . 13

2.2 Programming Parallel Systems 15
2.2.1 Message Passing Model 17
2.2.2 Shared Memory Model . 18

2.3 System-on-Chip Architecture . 19
2.3.1 Network-on-Chip . 20
2.3.2 Programming System-on-Chip 22

3 Related Work 23

3.1 Multiprocessor Architecture . 23
3.1.1 Multichip Multiprocessors 24
3.1.2 Chip Multiprocessors . 25

3.2 Network-on-Chip-based Architectures 26
3.2.1 Embedded Applications and Programming Models 27
3.2.2 Programming Model Implementation 28

3.3 Many-core Architectures . 30
3.4 This Work . 31

xv

xvi CONTENTS

4 Parallelization of an Image Processing Application 35

4.1 Introduction . 36
4.2 Application Overview . 36

4.2.1 Pre-processing and Mask Generation 38
4.2.2 Arithmetic Feature Extraction 38

4.3 Parallelization Strategies . 39
4.3.1 Scaling Properties . 40
4.3.2 Non-uniform Memory Latency 41

4.4 OpenMP Implementation . 43
4.4.1 Nested Implementation 44
4.4.2 Non-nested Implementation 44
4.4.3 Improved Non-nested Implementation 45

4.5 Results and Discussion . 46
4.5.1 Test Setup . 46
4.5.2 Parallel Efficiency . 47

4.6 Summary . 50

5 Clupea: Configurable Support for Programming Models 53

5.1 Introduction . 54
5.1.1 Configurable Programming Model Support 54
5.1.2 Allocatable Processing Resources 55

5.2 System Architecture . 56
5.2.1 Tile Architecture . 56
5.2.2 Memory System . 57
5.2.3 NoC Architecture . 60

5.3 Network Interface Processor Architecture 61
5.3.1 Processor Pipeline . 62
5.3.2 Interfaces . 64
5.3.3 Hardware Threads . 65
5.3.4 Lock Variables . 66
5.3.5 Data Movement . 67
5.3.6 Configuration Example 67

5.4 Support for Programming Models 68
5.4.1 Shared Memory Models 68
5.4.2 Message Passing Models 70

5.5 Implementing Cache Coherent Shared Memory 71
5.5.1 Introduction . 71
5.5.2 Application Tile Configuration 75
5.5.3 Directory Tile Configuration 78

CONTENTS xvii

5.6 Summary . 82

6 Modeling and Evaluation 85

6.1 Introduction . 86
6.1.1 Application Modeling . 86
6.1.2 Memory System Modeling 87
6.1.3 Interconnection Network Modeling 87

6.2 Analytical Modeling . 88
6.2.1 Model Overview . 88
6.2.2 Application Model . 88
6.2.3 Memory System Model 89
6.2.4 Interconnect Model . 91
6.2.5 Results and Discussion . 92

6.3 MC sim: A Fast Cycle-accurate Memory System Simulator . . . 95
6.3.1 Model Overview . 96
6.3.2 Application Model . 97
6.3.3 Memory System Model 102
6.3.4 Interconnect Model . 104
6.3.5 Simulator Implementation 104

6.4 Results and Discussion . 105
6.4.1 System Configuration . 105
6.4.2 Timing Models . 106
6.4.3 Benchmark Applications 108
6.4.4 Relative Execution Time 110
6.4.5 In-tile Latency . 114
6.4.6 Directory Tile Load . 115
6.4.7 Application Tile Load . 121
6.4.8 Memory Interface Tile Load 122
6.4.9 Cache Miss Latency . 123
6.4.10 Directory Cache Organization 125
6.4.11 Data Cache Size . 128
6.4.12 Directory Load Balancing 128
6.4.13 Interconnect Latency . 131

6.5 Summary . 133

7 Future Research Directions 135

8 Conclusions 137

xviii CONTENTS

Chapter 1

Introduction

In recent years, a wide range of advanced embedded systems have emerged. Per-
sonal computing is moving away from traditional computers and transitioning to
portable computing devices with constant Internet access. Examples of these are
smart phones, portable gaming devices and tablet computers. While embedded
systems have traditionally been designed as application-specific energy-efficient
integrated circuits, they are now significantly more versatile and are designed
as scaled down general computer systems.

1.1 Evolution of Digital System Design

Application-specific integrated circuits and general-purpose processors have ex-
isted as separate areas of digital system design for decades. Application-specific
systems are generally designed to implement a particular application efficiently
and minimize its implementation costs. Mobile phones and digital cameras are
examples of such systems. In contrast, general-purpose computer systems are
designed with generality and often high performance in mind. However, in
recent years, a trend of increasing focus on parallel processing in application-
specific systems has caused the two areas to converge. Fig. 1.1 illustrates the
evolution of the two types of digital systems.

Application-specific integrated circuits, ASICs, have over time evolved from
small gate-level optimized circuits to complex embedded hardware platforms.
Each technology generation has enabled increasingly complex systems and called
for new design methodologies to reduce the system design costs. As a response

1

2 1. Introduction

Figure 1.1: Evolution of general purpose computer systems and ASIC/SoC
systems.

to this, the basic building blocks of ASICs have increased in size and complexity
from being single transistors, through gates and register transfer level compo-
nents, to pre-designed cores, which may be entire processors. This evolution
is illustrated in the left side of Fig. 1.1. In the current era of System-on-Chip
(SoC) design, it is possible to compose an entire system using pre-designed cores
and integrate it on a single chip. It is therefore a natural next step in the evolu-
tion to design multiprocessor SoCs (MPSoCs) by simply adding more processor
cores. In this way, the processing demands of future applications can be met
without dramatically increasing the design effort and development costs. Fur-
thermore, increasing chip production costs are expected to move the focus of
SoC design from application-specific designs to more general SoC designs that
are targeted application domains. The emerging trend of MPSoCs means many
new challenges related to parallel computing, but also that application-specific
system design is converging with the current trends in general-purpose computer
system design.

For decades, general-purpose computer systems have been exploiting paral-
lelism in the pursuit of high performance. Multiprocessor systems have been
built by connecting processors through a system interconnect. Examples of
such systems are the MIT Alewife [6], Stanford DASH [63] and FLASH [59]
multiprocessors. Meanwhile, the technology evolution has provided increasing

1.2. Multiprocessor System-on-Chip Design Challenges 3

transistor densities that allow increasingly complex processor designs to be inte-
grated into a single chip. As a consequence of this and diminishing returns from
processor pipeline improvements, processor designs have evolved from being
single-threaded single-core processors to become simultaneous multithreading
processors as illustrated in the right side of Fig. 1.1. In recent years, this evo-
lution has continued into chip multiprocessors with multiple general-purpose
processor cores and caches integrated in a single chip. Chip multiprocessors
are today the standard in general-purpose systems and the number of on-chip
processor cores is expected to increase rapidly in future systems. This will even-
tually lead to many-core chip multiprocessors and cause the boundary between
general-purpose computers and MPSoCs to blur.

The current trends indicate that SoC design is heading towards MPSoCs
with a high number of processor cores in the future that may go beyond a
thousand cores [49]. However, while it is conceptually trivial to imagine many-
core SoC systems, it remains largely unanswered how these systems should be
programmed. Parallel programming has been studied for decades for high per-
formance general-purpose computer systems, but it is still an ongoing research
area. Parallel programming is considered one of the biggest challenges in par-
allel computing [8] and is a major factor that slows down widespread adoption
of parallel systems. It is therefore an obvious move to use existing research to
enable the evolution of SoCs into many-core architectures. This raises the in-
teresting question of how existing multiprocessor technologies can be applied to
many-core SoCs and what needs to be reconsidered to make these technologies
fit into the context of SoC design.

1.2 Multiprocessor System-on-Chip Design Chal-

lenges

To lower the design effort, MPSoCs are typically designed using pre-designed
cores connected by a shared on-chip interconnect. When the number of cores
increases, bus interconnects become bottlenecks in the systems. As a conse-
quence of this, more sophisticated Network-on-Chip (NoC) interconnects have
been proposed [25, 10]. Conceptually, NoCs resemble the interconnects found
in general-purpose multiprocessor systems. However, due to the different imple-
mentation technologies, the design constraints are different. The interconnect
of general-purpose multiprocessors typically dedicates an entire chip to han-
dling the interconnect interfacing, while the transistor budget is shared between

4 1. Introduction

App 1

App 2

Cx Cx Cx

Cy Cy Cy

Cz Cz Cz

App 3

App 4

Applications
Many-core SoC

Cores

Figure 1.2: Heterogeneous SoC platform with x, y, and z-type cores executing
multiple applications simultaneously.

the NoC and the cores in a NoC-based MPSoC. The NoC implementation cost
should therefore be kept at a low level to reserve more transistors to implement
processing cores.

Furthermore, MPSoCs are typically heterogeneous systems consisting of dif-
ferent types of cores as illustrated in Fig. 1.2 and thus it can not be assumed
that the NoC interface can be integrated directly into all cores. In contrast, tra-
ditional general-purpose multiprocessors are homogeneous systems consisting of
a number of identical processor chips.

Another important difference between the general-purpose multiprocessors
and MPSoCs is the applications executing on the system. General-purpose
multiprocessor systems are usually used for executing a single application that
requires maximum processing performance. On the other hand, MPSoCs may
run several applications concurrently, which have different processing require-
ments and use different resources in the system as shown in Fig. 1.2.

Due to the above aspects it can not be assumed that the hardware sup-
port for parallel programming in general-purpose multiprocessor systems can
be directly applied to MPSoCs. The hardware/software trade-off must be re-
considered to take the on-chip constraints into account. Furthermore, the lack
of an established parallel programming abstraction, i.e. a common program-
ming model, for MPSoCs and the fact that it is unlikely that a single solution
for programming future many-core systems will be found means that the hard-
ware support for programming should be flexible. However, one might expect a
flexible approach to have a large negative impact on performance compared to
a fixed hardware implementation.

The problem statement of this thesis is to determine the general hardware
support that is needed for flexible programming of NoC-based many-core sys-

1.3. Contributions 5

tems and estimate the performance impact of this hardware support. The major
challenges related to identifying this hardware support are:

• Flexibility: Ensure that the hardware support can be used to support a
wide range of embedded applications and allow SoCs to be composed of
cores of different types.

• Scalability: The hardware support must take scalability into account as
future many-core SoCs are expected to have hundreds or thousands of
cores.

• Constraints: The complexity of the hardware support should match the
constraints of SoC design. Minimizing the resources used for hardware
support enables more cores to be integrated into the SoC.

Addressing these challenges in future many-core architectures is crucial to
enable the transition of MPSoC design into the many-core era. The aim of this
thesis is to develop a many-core SoC architecture with general hardware support
for programming abstractions. The work uses existing programming models as
the starting point to propose a many-core architecture with support for mul-
tiple programming models. Hardware/software trade-off considerations have
a central role in the architecture, which provides increased flexibility through
software programability and configurability.

1.3 Contributions

The work leading to this thesis has three main contributions. A more detailed
description of the individual contribution is in Sec. 3.4. The contributions are
as follows:

• A thorough case study on parallelism and scalability in an image process-
ing application, which reveals the practical parallel programming issues
faced by the programmer. The study shows that lack of control over
workload distribution on multiprocessor systems can lead to poor cache
performance and that these effects are even more pronounced on systems
with non-uniform memory access latency. In spite of this and limited
available parallelism, reasonable speed-ups are achieved. This work has
previously been described in [89, 90].

6 1. Introduction

• The tile-based Clupea many-core architecture, which provides highly flex-
ible generic hardware support for on-chip communication and memory
management that can support a wide range of programming models. Im-
plementation of a number of programming models are outlined and a
detailed implementation of support for cache coherent shared memory
programming is presented and evaluated. The evaluation shows modest
execution time increases for a range of benchmark applications when com-
pared to a fixed hardware implementation of similar programming model
support. Considering the high flexibility of the architecture which means
a high potential for optimizations, this architecture is an interesting al-
ternative to other architectures with fixed hardware support. The Clupea
architectural concepts has previously been presented in [87].

• A set of many-core modeling tools, consisting of an analytical model for
early design space exploration and the MC sim trace-driven cycle-accurate
many-core simulator. The analytical model provides early performance es-
timates for the Clupea architecture based on a small set of model parame-
ters. The analytical model has previously been described in [88]. MC sim
provides a configurable component-based simulator targeted at detailed
simulation of the Clupea cache coherent shared memory implementation.

Although this thesis takes SoC as the starting point, the work can to a great
extent be applied to general-purpose many-core systems due to the previously
discussed convergence of the research areas.

The following peer-reviewed papers have contributed to this thesis:

1. Morten S. Rasmussen, Matthias B. Stuart, and Sven Karlsson, “Paral-
lelism and Scalability in an Image Processing Application”, International
Workshop on OpenMP, IWOMP, pp. 158-169, 2008.

2. Morten S. Rasmussen, Matthias B. Stuart, and Sven Karlsson, “Paral-
lelism and Scalability in an Image Processing Application”, International
Journal of Parallel Programming, 37(3), pp. 306-323, 2009.

3. Morten S. Rasmussen, Sven Karlsson, and Jens Sparsø, “Performance
Analysis of a Hardware/Software-based Cache Coherence Protocol in Shared
Memory MPSoCs”, Workshop on Programming Models for Emerging Ar-
chitecture, PMEA, 2009.

4. Morten S. Rasmussen, Sven Karlsson, and Jens Sparsø, “Adaptable Sup-
port for Programming Models in Many-core Architectures”, Workshop on
New Directions in Computer Architecture, NDCA, 2009.

1.4. Thesis Outline 7

1.4 Thesis Outline

The following briefly outlines the structure of the thesis.

• Chapter 2 is an introduction to the basics of parallel computer archi-
tecture, parallel programming models and System-on-Chip design. The
chapter should be considered as a condensed summary rather than a com-
plete reference. The chapter also introduces the definitions of the terms
used throughout the thesis.

• Chapter 3 provides an overview of related work in the areas of multipro-
cessor architecture, System-on-Chip design and Network-on-Chip design.
The last section of this chapter gives a more detailed description of the
thesis contributions and their relations.

• Chapter 4 presents a case study on parallelism and scalability in an image
processing application. Parallelization strategies and their implementation
are discussed and evaluated.

• Chapter 5 describes the proposed Clupea many-core architecture. The
hardware architecture concepts are presented. The chapter also describes
the implementation of cache coherent shared memory on the architecture.

• Chapter 6 presents the many-core architecture modeling tools: An an-
alytical model for early design-space exploration and the MC sim cycle
accurate many-core simulator. This section also presents modeling re-
sults of the cache coherent shared memory implementation on the Clupea
architecture.

• Chapter 7 discusses future research directions related to the Clupea ar-
chitecture.

• Chapter 8 concludes the work presented in this thesis.

Readers knowledgeable about parallel computer architecture and parallel
programming models may choose to browse through the background material
covered in Chap. 2 to familiarize themselves with the terminology used in the
thesis.

8 1. Introduction

Chapter 2

Programming Many-core

Systems

Understanding many-core system design requires fundamental knowledge about
parallel computer architecture and System-on-Chip design. This chapter pro-
vides an overall introduction to these areas. However, it is not intended as a
complete reference on the subjects. Rather, it is a summary for the experienced
reader, who possesses a basic understanding of computer architecture. For a
more thorough introduction to parallel computer architecture and many-core
systems, the reader is referred to textbooks [41, 22, 30, 105]. Additionally, this
chapter introduces the terminology used in this thesis.

The chapter is structured as follows. The first two sections give introduc-
tions to parallel computer architecture and programming from a general-purpose
computing perspective. Sec. 2.3 gives an introduction to System-on-Chip archi-
tecture with focus on interconnects and programming.

2.1 Parallel Computer Architecture

Parallelism can be found at many levels in computer architecture and ranges
from fine-grained instruction level parallelism to coarse-grained parallelism at
application level.

• Data parallelism: Single instruction multiple data architectures exploit
parallelism through performing operations on multiple data elements in

9

10 2. Programming Many-core Systems

parallel. The overall idea of this architecture is to use multiple functional
units in parallel to reduce the processing time. Data parallelism is often
applied in processors with instruction set extensions for media processing.
Processor architectures with this type of parallelism are also known as
vector processors.

• Instruction parallelism: Instruction level parallelism exploits the par-
allelism found in the stream of instructions executed by the processor.
Instruction level parallelism can be exploited by pipelining, where mul-
tiple instructions are in flight simultaneously. Further parallelism can
be exploited by issuing and executing multiple instructions in a single
clock cycle. This approach is limited by the data dependencies of the in-
structions in the instruction stream. The latter approach are is found in
super-scalar and very long instruction word processors.

• Task parallelism: Task parallelism exists at the application level. An
application may be decomposable into a number of tasks, which can be
performed in parallel using multiple processor cores. Task parallelism is
limited by the data dependencies in the particular application. Thread
level parallelism is a special case of task parallelism, where all tasks reside
in the same memory address space.

Data and instruction parallelism are applied within the processor by ex-
ploiting the available parallelism in the instruction stream. Task parallelism, on
the other hand, exploits more coarse-grained parallelism by executing multiple
instruction streams in parallel using a number of processors in a multiproces-
sor system. Since the focus of this thesis is many-core architectures, only task
parallelism and multiprocessor architectures are considered in this thesis. How-
ever, this does not prevent exploitation of data and instruction parallelism in
the cores.

Before going further into multiprocessor architectures, a clear definition of
these is necessary. A multiprocessor system consists of a set of two or more
processors interconnected by a system interconnect. The processors may be
residing in separate chips, multichip multiprocessors, or be processor cores inte-
grated in a single chip, chip multiprocessors. Thus, the system interconnect may
be on-chip, off-chip or both. Many-core architectures are a subset of multipro-
cessor architectures, which implements multiprocessing using a large number of
on-chip processor cores and an on-chip interconnect.

2.1. Parallel Computer Architecture 11

M

P P P P

a)

P

M

P

M

P

M

P

M

b)

Figure 2.1: Multiprocessor logical memory organization: a) Shared memory,
and b) distributed memory. “P” represents processors and “M” is memory.

2.1.1 Memory Organization

Based on the logical memory organization, multiprocessor architectures can be
roughly categorized into two different types: Shared memory and distributed
memory architectures.

• Shared memory architectures: All memory is mapped into a global
memory address space, which is accessible by all processors in the sys-
tem. Data written to memory is eventually visible to all processors in the
system. Illustrated in Fig. 2.1a.

• Distributed memory architectures: Each processor has its own pri-
vate memory, which can not be addressed by other processors. A processor
can only access its own memory. Access to data held in memory belonging
to another processor must be explicitly requested and copied into the local
private memory. Illustrated in Fig. 2.1b.

The implementation of the two architecture may be different from these
logical organizations. Similar to uni-processor systems, caches are used to im-
prove memory performance and reduce memory contention. Fig. 2.2 illustrates
memory hierarchies found in multiprocessor systems. Bus-based memory sys-
tems, Fig. 2.2a, can only support a limited number of processors due to bus
contention. Shared memory can be distributed among the processors, Fig. 2.2b,
to allow fast access to a part of the memory while the remaining main memory
must be accessed through the interconnect. Chip multiprocessors often share
the last level of caches as shown in Fig. 2.2c.

The simultaneous access to memory by multiple processors in shared mem-
ory architectures leads to two issues: Memory consistency and cache coherence.
These complicate cache management significantly. The two following subsec-
tions will describe these issues.

12 2. Programming Many-core Systems

a)

M

P P P P

$ $ $ $ M

P

$

M$

P

M

P

$

M$

P c) M

P P P P

$ $ $ $

$

b)

Figure 2.2: Physical multiprocessor memory organizations: a) Bus-based shared
memory, b) distributed shared memory, and c) shared memory chip multipro-
cessor with shared cache. “P” represents processors, “M” is memory and “$” is
a cache.

2.1.2 Memory Consistency

In most uni-processor systems, load operations always return the value of the
last write to a memory location. In shared memory architectures where multiple
processors are accessing memory in parallel the “last” write is no longer clearly
defined. Buffering and interconnect latencies may cause writes from different
processors to be re-ordered.

The memory consistency model of a shared memory multiprocessor defines
the programmer’s view of the ordering of memory operations, such as read and
write, and synchronization. This includes operations on the same or different
memory locations performed by one or more processors. The consistency model
is the formal specification of the behavior of the memory system that enables
the programmer to write correct programs.

Several consistency models have been proposed. These range from strict to
more relaxed consistency models, depending of the provided guarantees. The
most commonly assumed consistency model is sequential consistency. Sequen-
tial consistency was formally described by Lamport [61] and defined as follows:
“The result of any execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program”. Se-
quential consistency is considered a strong consistency model since all operations
must appear in order and that operations must be visible to all processors.

For a more thorough introduction to consistency models and alternative
consistency models the reader is referred to literature [22, 4, 66].

2.1. Parallel Computer Architecture 13

2.1.3 Cache Coherence

In a shared memory system with private caches, multiple copies of a cache
line can potentially exist in different caches and main memory as illustrated in
Fig. 2.3. When the memory location is written by a processor, a notice about
this event must be propagated to all processors with a copy to ensure that
reads by other processors will return the value of the last write. How strict
this notification is done, depends on the consistency model. For sequential
consistency, all write events must be propagated to all processors holding a
copy of the affected cache line. Thus, there are four sources of cache misses in
multiprocessor systems [22]: i) Capacity misses caused by the size of the cache,
ii) conflict misses caused by the cache organization, iii) cold misses caused by
first access to a memory location, and iv) coherence misses due to cache line
sharing.

The cache coherence protocol describes how cache coherence is ensured in a
given multiprocessor system. The cache controller must be coherence aware and
each cache line is typically extended with additional status bits that represents
the state of the cache line.

Examples of states found in common cache coherence protocols are: Modi-
fied, Shared and Invalid. A cache line in the modified state is an exclusive copy
with write permission. Shared cache lines are read-only and multiple copies
may exist in other caches. The invalid state is used to flag unused cache lines.
Read and write operations to a cache line may require the cache line to switch
state as illustrated in the state diagram in Fig. 2.4. State transitions may re-
quire several operations to invalidate cache line copies. Extra transition states
are often required to keep track of these operations and avoid race conditions.
Cache coherence protocols can have more states than the three mentioned here
and the exact definition of the states vary from protocol to protocol.

Cache coherence protocols can be roughly categorized as snooping protocols
or directory protocols.

Snooping Protocols

Shared memory architectures with interconnects capable of broadcasting, such
as shared busses, can implement cache coherence by exploiting the global knowl-
edge of all memory operations. All cache controllers are able to “snoop” the
memory operations performed by all other processors on the bus. When it
detects that one of its cache lines has been modified by another processor it
either: i) updates the cache line with the data written on the bus, or ii) invali-

14 2. Programming Many-core Systems

load 0x100t 1
:

old valuenew value

store '1' -> 0x100

Processor x

t 0
:

Data cache x

Addr. Value

0

Valid

0x100 1

Processor y

Data cache y

Addr. Value

0

Valid

0x100 1

Figure 2.3: Example of the cache coherence issue under sequential consistency:
Both processors caches hold a copy of the same cache line. Processor “x” updates
the contents of the cache line. Subsequently, Processor “y” has no knowledge
about the new contents of the cache line since it already has a valid copy in its
cache. A cache coherence protocol is required to prevent this situation.

Read

Write

Modified

Remote Read

Write
Write, Read

/Create new copy

/Invalidate

copies

/Fetch copy

Eviction,

Remote Write

Eviction,

Invalidation

/Fetch copy

Read

Shared

Invalid

Figure 2.4: Cache coherence protocol example. The principles of the MSI pro-
tocol. Transition states are omitted for simplicity.

2.2. Programming Parallel Systems 15

dates the cache line to force a cache miss that will cause an updated copy to be
fetched on the next access. Protocols based on the former approach are known
as write-update protocols and the latter approach is known as write-invalidate
protocols.

Directory Protocols

Directory protocols are based on look-ups in a common directory rather than
broadcasting of memory operations to keep track of shared cache lines. The
directory maintains information about the location and state of all copies of
cache lines in the system. When a processor needs to perform an operation
that can affect consistency, the cache controller must consult the directory first.
Fig. 2.5a illustrates a write operation. Before a processor can write to a spe-
cific cache line, the cache controller must first request exclusive access to the
cache line from the directory. The directory ensures exclusive access by sending
invalidations to all other caches that hold a copy of the cache line. Similarly,
the processor must consult the directory when it attempts to read from a cache
line that is not currently held in its cache. The directory ensures that the most
recent version of the cache line is forwarded to the processor as illustrated in
Fig. 2.5b.

Directory protocols differ in how much information that is maintained about
shared cache lines. The directory information may be distributed across sev-
eral directories depending on the system architecture. Further details on cache
coherence is not covered here, but can be found in literature [22, 66].

2.2 Programming Parallel Systems

Programming parallel systems is known to be a complex task. To ease the
programming, programmers must use a higher level of abstraction than the bare
system implementation. This abstraction is offered by the parallel programming
model, which is a conceptualization of the system that the programmer can use
for coding applications.

The parallel programming model is the top layer of system abstraction and is
defined by the underlying compilers, libraries, operating system and program-
ming language. The layers of abstraction are illustrated in Fig. 2.6. Parallel
programming models are often implemented as libraries for existing sequential
programming languages, language extensions or completely new languages.

The programming model does not necessarily reflect the underlying hardware

16 2. Programming Many-core Systems

Data cache x

Addr. Value

0

State

0x100 shared

store '1' -> 0x100

Processor x

t 0
:

Directory

Addr.

0x100

State

shared

Copies

i,j,k,...

Data cache i,j,k,...

Addr. Value

0

State

0x100 shared

Exclusive

request

Invalidations

Acknowledgements

State: shared -> modified

a) Write miss

Data cache x

Addr. Value

-

State

0x100 invalid

Processor x

t 0
:

Directory

Addr.

0x100

State

shared

Copies

i,j,k,...

Data cache i

Addr. Value

0

State

0x100 shared

Shared

request

Send copy

Cache line copy

State: invalid -> shared

b) Read miss

load 0x100

Figure 2.5: Directory-based cache coherence protocol examples: a) Write miss
caused by insufficient permissions. Write permission is obtained through the
directory, which invalidates all other copies of the cache line. b) Read miss. A
cache line copy is obtained through the directory from another cache. The copy
could be fetched from main memory as well if the main memory contents are
up to date.

2.2. Programming Parallel Systems 17

Hardware architecture

Programming model

Libraries

Operating system

Languages

Applications

Abstraction

Figure 2.6: Programming model abstraction layers.

architecture. Any programming model can be implemented using compilers and
libraries. However, in general, a simple mapping that takes advantage of the
programming model support offered by the hardware primitives and functional-
ity of the lower layers of abstraction in Fig. 2.6 leads to a simpler programming
model implementation and thus better performance. The ultimate goal of the
programming model is to find the highest level of abstraction that still expresses
enough parallelism to enable an efficient mapping of applications to the hard-
ware architecture.

A common high-level abstraction of parallel applications is to consider them
as a set of tasks. Each task constitutes a part of the application that is executed
sequentially on a processor core. Tasks can be executed in parallel, as long
as their inter-task data dependencies are obeyed. Programming models have
different terminologies and definitions of tasks and how they can interact. Thus,
for consistency, tasks will be used as a common reference in this thesis for
program entities that can be executed in parallel subject to satisfaction of the
dependency constraints.

Parallel programming models can be roughly categorized into shared memory
and message passing models. However, since many recent programming mod-
els are using concepts from both paradigms, the boundary is becoming rather
unclear. The following subsections will describe the basic concepts of the two
paradigms.

2.2.1 Message Passing Model

In the message passing model, applications consist of a set of tasks where each
task has it own private address space. Interaction between tasks takes place
using messages generated through explicit user-level communication operations.
These are mostly variants of send and receive operations. The send operation

18 2. Programming Many-core Systems

receive x, b

send 0x100, y

Memory x

Addr. Value

00x100

Processor x

t 0
:

Memory y

Addr. Value

Processor y

t 1
:

Match

Figure 2.7: The message passing programming model. Data transfer between
address spaces of the two processors takes place when a send operation is
matched with a receive operation.

specifies a portion of data in the private address space to be sent as a message
to a specific receiver. The receive operation specifies a sending task and local
receive buffer in the local address space. The message transfer occurs when a
receive operation in a task is matched with a send to that particular task as
illustrated in Fig. 2.7.

The message passing model can offer blocking and non-blocking variants of
the communication operations that can be used to synchronize the execution of
tasks. Non-blocking sends can improve performance, since the sender contin-
ues execution immediately rather than waiting for the receiver to perform the
matching receive operation.

The explicit communication operations force the programmer to identify
tasks and their communication, which may be a complex task. Message passing
is efficient for communicating large blocks of contiguous data, but may require
a large programming effort and cause extra overhead if the communication can
not be determined easily. However, the explicit parallelism, lack of shared data,
and no implicit data replication leads to good scalability.

2.2.2 Shared Memory Model

The shared memory model has one global address space for all tasks in the
application. Interaction between tasks happens implicitly through memory. Any
write to a portion of the memory will eventually be visible to read operations
by all tasks according to a consistency model, as described in Sec. 2.1.2. The
consistency model in the shared memory programming model does not need to
match the consistency model assumed by the lower system abstraction layers.

2.3. System-on-Chip Architecture 19

Memory

Addr. Value

00x100

Processor x

t 0
:

Processor y

t 1
:

store '1' -> 0x100

load 0x100

'1'

Figure 2.8: The shared memory model. Global address space with implicit
communication.

Shared memory has no notion of ownership of data, all task have equal access to
all memory as shown in Fig. 2.8. The programmer only needs to identify tasks
and communication is handled implicitly.

Task synchronization must be done through explicit user-level synchroniza-
tion primitives. Common primitives are variants of locks and barriers. A lock
supports two operations: lock and unlock. The blocking lock operation succeeds
when the current state of the lock is “unlocked”. The unlock operation releases
the lock and allows another task to obtain the lock. The barrier primitive allows
a number of tasks to rendezvous and continue execution when all participating
tasks have reached the barrier.

Compared to the message passing model, the implicit communication of the
shared memory model allows a more smooth transition to parallel programming
for the programmer. However, the broadcasting nature of writes and the need
for complex cache management limit the scalability of the shared memory model.

2.3 System-on-Chip Architecture

Contrary to general-purpose computer architectures, SoC architectures are typ-
ically designed for a specific application. Instead of considering the hardware
architecture and application programming as two separate tasks, SoC design is
based on co-design. Both hardware and software development are parts of a
unified design flow. A fundamental step in this flow is to determine which parts
of the applications are implemented in software or accelerated by hardware.
The trade-offs are individual for each system, depending on the application
requirements.

20 2. Programming Many-core Systems

Processor DSP

Memory

controller

Ethernet

MAC

I/O

Bus

Figure 2.9: SoC design example. Cores interconnected by an on-chip bus.

Given that SoCs are application-specific systems, design costs is a major
concern. To minimize the design costs, SoCs typically consist of reusable cores
connected to an on-chip bus as illustrated in Fig. 2.9. Examples of cores are
processors, I/O interfaces, hardware accelerators and memories. A standard
bus interface allow cores to be reused across designs.

SoCs are usually based on a common interconnect. Busses do not support
concurrent transactions and thus scale poorly with an increasing number of
cores. Instead, NoCs have been proposed as a viable alternative for MPSoCs.
Furthermore, increasing costs of designing new application-specific chips means
that there is a general belief in that future many-core SoCs will be based on
flexible platform chips rather than low volume specialized chips. A NoC inter-
connect can offer both the scalability and flexibility needed for such platforms.

The following two subsection will give a short introduction to NoC and the
implications of NoC on SoC programming. For further material on NoC design,
the reader is referred to literature [24, 26].

2.3.1 Network-on-Chip

The basic idea of the NoC approach is to replace the bus-based interconnect with
a packet-based network consisting of on-chip routers and links as illustrated in
Fig. 2.10. The NoC connects tiles consisting of one or more cores that share
a single network interface. The network interface of each tile is connected to
a NoC router, which is capable of routing packets to other tiles in the system.
All inter-tile communication is wrapped into packets in the network interface,
sent through the NoC and unwrapped by the network interface at the receiver.
A packet consists of header information and payload. The header information
is used by the routers and the NoC interfaces to route and identify the packet,
while the payload contains the transferred data. Limited width of the NoC links
means that packets typically must be transferred as a serialized stream of phits.

2.3. System-on-Chip Architecture 21

Many different NoC architectures and topologies have been proposed with
different properties. An important factor in the NoC design is the inter-tile
communication pattern generated by the application tasks. The NoC must
be able to handle the communication pattern without saturating the network.
In general, regular NoC topologies, such as mesh and torus networks, offer
large bandwidth and flexibility to support different communication patterns.
However, excess capacity also means wasting unnecessary resources on the NoC
implementation. Thus, a more resource efficient approach is to include the
NoC synthesis into the SoC design flow to enable generation of application
specific NoC topologies. Application-specific NoCs are often optimized irregular
topologies that leaves little or no room for variations in the communication
pattern.

NoCs can be categorized as circuit- or packet-switched depending how com-
munication is managed.

• Circuit-switched NoCs resemble the behaviour of point-to-point links
by reserving resources for specific connections between tiles. NoC routers
support a limited number of connection reservations and thus restrict the
number of possible connections. Routing is done on a connection basis
rather than for each packet.

• Packet-switchedNoCs route packets individually using shared resources.
No resources are reserved, so the NoC has no limitation on the number
of tiles that can communicate. In systems that require guarantees for
available bandwidth or latency, logically separate virtual networks can be
used to enforce traffic prioritization.

A common issue for all NoC designs is deadlocks. Deadlocks can occur if the
system can reach a situation where packets block each other in a circular fashion
that prevent any of them from proceeding towards their destination. While
deadlocks caused by the network itself can be prevented by design, deadlocks
can also occur due to the communication of the application itself. A number
of solutions to this problem have been proposed [1] that are either based on
precise knowledge about the characteristics of the application or end-to-end
flow-control. In both cases, deadlocks must be considered in the programming
model.

As opposed to the general-purpose parallel systems mentioned in Sec. 2.1,
SoCs often consist of a number of different cores in a heterogeneous architecture.
The NoC interface must provide the flexibility to allow tiles with different cores

22 2. Programming Many-core Systems

DSP

Memory

IF

Ethernet

MAC

I/O

Processor

Processor

Processor

N
I

R

Processor

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

N
I

R

Figure 2.10: NoC-based SoC design example. Tiles connected by a packet-based
network through network interfaces, NI, which are attached to the NoC routers,
R.

to communicate. NoC interfacing and programming will be described in the
next subsection.

2.3.2 Programming System-on-Chip

As previously mentioned, SoC programming is an integrated part of the co-
design process. Applications are often represented by task graphs similar to the
task-based application representation introduced in Sec. 2.2. A part of the SoC
design flow is to map the application tasks to the cores in the SoC hardware
platform. When the mapping is determined, each task can be implemented using
the programming model provided by its designated cores. This is in contrast
to general-purpose multiprocessor systems, which are typically homogeneous
architectures used to execute a single parallel application.

Replacing global busses and point-to-point connections with a NoC signifi-
cantly complicates the SoC design. This complexity must either be included in
the programming model or hidden in the lower abstraction layers as illustrated
previously in Fig. 2.6. One approach is to let the NoC interface provide a bus
abstraction of the NoC interconnect to ensure compatibility with existing SoC
co-design flows. The NoC interface is configured to provide virtual busses and
point-to-point links that abstract the complexity of the NoC. This approach can
also support legacy cores which are designed with bus interfaces. An alterna-
tive to this approach is to expose the NoC and let the cores explicitly send and
receive messages to specific tiles similar to the message passing programming
model. This obviously requires NoC aware cores. Another approach is to inte-
grate the NoC into the in-tile cache controller to provide seamless support for
the shared memory programming model.

Chapter 3

Related Work

Many-core SoC architecture is an emerging research area, but it is related
to existing research done in the area of parallel general-purpose computers.
This chapter has two main purposes: i) To present recent advances in NoC-
architecture and programming models for many-core SoCs, and ii) present and
compare related work in the area of parallel general-purpose computer systems
that potentially can be applied in many-core SoCs. On this basis, the work and
contributions of the thesis are defined in more detail.

Multiprocessor systems, SoCs and NoCs are broad research areas. Related
work covering these areas can be structured in many different ways. The ap-
proach chosen here is to follow the lines of Fig. 1.1 and discuss the trends
and previous work on system architecture and programming model support for
general-purpose multiprocessor systems and NoC-based SoCs separately. Fol-
lowing this, recent advances in the new overlapping area of many-core architec-
ture research is discussed.

3.1 Multiprocessor Architecture

From a conceptual point of view, general-purpose multiprocessor systems only
differ by implementation technology. However, the technology has great influ-
ence on the design trade-offs. This has led to two largely distinct generations of
multiprocessor system designs: i) Multichip multiprocessor systems, which are
composed of discrete processor chips connected by an off-chip interconnection
network, and the more recent ii) Chip multiprocessors, which are single-chip

23

24 3. Related Work

systems with multiple on-chip processors and an on-chip interconnect. The
following subsections will discuss related work in these areas.

3.1.1 Multichip Multiprocessors

Task parallelism in general-purpose computer architecture gained momentum
as the semiconductor technology allowed integration of entire processors in a
single chip. Having access to compact and cheap processors it is a natural next
step is to combine a number of processors to work in parallel on a single problem
to get better performance.

Several large scale multiprocessor systems have basically been constructed
using standard processors connected by a custom interconnect [6, 63, 59, 29, 43,
91, 62, 9, 32]. The basic architecture consists of processor nodes, where each
processor node contains a processor with private caches, a local portion of main
memory and a network interface connected to the memory bus. As a natural
extension to this architecture, several of these systems have multiple processors
per node connected to the memory bus [63, 62, 9, 32]. The distributed memory
architecture is intuitively a good match with the message passing programming
model, however, the majority of these systems are designed for cache coherent
shared memory due to the conceptually simpler programming model.

Maintaining coherence in large scale multiprocessor systems is a major issue
since a simple bus-based snooping cache coherence protocol is infeasible [7, 99,
22]. Instead, these systems must use a more complex directory-based cache
coherence protocol.

A number of architectures for directory-based cache coherence has been pro-
posed and implemented. The implementation strategies range from hardware
approaches [63, 62] to predominantly software-based solutions [91, 59, 6, 35, 9].
These reflect the general trade-off between fast custom hardware controllers and
flexible protocol processor based architectures [73].

In the MIT Alewife multiprocessor [6] the majority of the LimitLESS [17]
cache coherence protocol is implemented in a hardware cache controller chip.
Corner cases are regarded as rarely occurring and are therefore not implemented
in the cache controller. Instead, these are handled in software on the processor,
which is designed to have fast context switches to support this approach.

The more recent Piranha [9] is based on interconnecting chip multiprocessors
to form systems with a high number of processor cores. Coherence between on-
chip cores is maintained through snooping on the on-chip bus. The inter-chip
coherence protocol is directory-based and implemented in a more flexible way
using highly specialized microcoded protocol engines.

3.1. Multiprocessor Architecture 25

The Stanford FLASH multiprocessor [59] is based on the MAGIC node con-
troller chip. The MAGIC chip acts a combined memory controller and network
interface. It consists of specialized hardware interfaces and a programmable
protocol processor, which is used to implement the cache coherence protocol.
The interconnect interface is accelerated by having hardware support for mes-
sage preprocessing and hardware buffers. A similar, but slightly more flexible,
approach is taken in the Typhoon [91] multiprocessor, which uses a general-
purpose processor as protocol processor to support a software implementation
of the cache coherence protocol.

Common for these approaches are that the controllers and protocol proces-
sors are generally too expensive in terms of hardware to be feasible for on-chip
implementation. Their complexity is comparable to the processors that they
interconnect. In a many-core architecture, the overhead of the NI should be
kept at a minimum to allow more tiles within the chip size limitations.

The implementation of the directory is a major issue related to directory-
based cache coherence protocols. The directory needs to store information about
all memory locations that are cached in the system. Basically, each cache line
must be annotated with a coherence state and a list of caches that currently
holds a copy. Depending on the data structure used to hold the information,
this may require a substantial amount of memory [66]. This issue is aggra-
vated for many-core systems with on-chip directories, where on-chip memory
is a scarce resource. In multichip multiprocessors, the directory is commonly
distributed among the nodes and directory information is stored along with
the main memory in dedicated directory memory. As the number of cores in-
creases and thereby also the number of caches and potential cache lines copies,
the size of the list of sharers grows linearly and becomes excessively expensive.
Addressing this issue, a number of approaches have been proposed to reduce
the directory storage requirements [78, 66, 2] and improve access latency to the
directory data structure [72].

3.1.2 Chip Multiprocessors

The increasing transistor density and diminishing returns from exploiting in-
struction parallelism in complex processor architectures have called for a new
direction in computer architecture. An obvious next step is to target the next
level of parallelism and exploit task parallelism by implementing multiple pro-
cessor cores on a single chip [79] to form a chip multiprocessor, CMP. Today,
CMPs are commercially available from all major vendors [54, 48, 3].

The majority of proposed CMP architectures are designed for cache coher-

26 3. Related Work

ent shared memory. Typically, the first levels in the cache hierarchy are private
and local to each core and the last-level cache is shared among all cores. The
last-level cache is accessed through a bus, a crossbar switch or a more advanced
interconnection network. This architecture works well for low number of proces-
sor cores, but the last-level cache and shared busses become system bottlenecks
as the number of cores increases.

Segmentation of the last-level cache and allowing simultaneous access to
segments reduce the bottleneck, but requires a segmented interconnect that
leads to non-uniform cache access latency, NUCA. The cache segments are ei-
ther independent tiles [57, 50, 15] or included in the tiles with the processor
cores [110, 16, 39]. The cache line placement is crucial for performance in
NUCA architectures. A number of placement and partitioning schemes have
been proposed, which attempt to optimize the cache line distribution to achieve
better locality [50, 16, 39].

Cache coherence is an issue in CMPs as it is in multichip multiprocessors.
Different solutions have been proposed for this.

• Shared last-level cache: In architectures where the last-level cache is
shared among all processor cores and duplicates the cache lines found in
all private caches, cache coherence can be implemented by storing sharing
information along the cache lines in the last-level cache [110, 15, 39].

• Non-shared last-level cache: Cache organizations where the last-level
cache is not globally shared also require coherence among last-level caches.
This can be done using a coherence bus [100] or a coherence directory [16,
50].

Few alternatives to the cache coherent shared memory have been proposed
for CMPs. The most well known example is the Cell processor architecture [53],
which differs from the cache coherent shared memory approach by having pri-
vate local memories instead of caches for eight of its accelerator cores. Data
is transferred between global shared memory and local memories using explicit
transfers.

3.2 Network-on-Chip-based Architectures

Early work done on NoC based architectures [25, 10] has been primarily fo-
cused on automatic generation of scalable interconnects that can replace the

3.2. Network-on-Chip-based Architectures 27

busses and point-to-point links in traditional SoCs and improve design automa-
tion [56, 96]. Much of this work consider NoC synthesis flows [51, 11] and NoC
optimization methods [34, 76, 75] that can perform application-specific opti-
mizations of the NoC implementation based on an abstract application model
represented as a task graph [69].

Meanwhile, the chip production cost has increased rapidly and made cus-
tomized chip designs an option only feasible for very high volume systems. As
a consequence of this, trends are pointing towards embedded platform chips
with more general architectures that can be used for a range of applications.
In such architectures, NoCs are no longer mere bus replacements, but flexible
interconnects that offer the reconfigurability needed to accommodate a range
of applications on the same platform. Recent proposals in NoC research follow
this trend [68, 37, 98].

3.2.1 Embedded Applications and Programming Models

A fundamental difference between the contexts of general-purpose multiproces-
sor systems and System-on-Chip is their typical application areas. General-
purpose multiprocessor design has been mainly driven by high-performance
computing applications, which include scientific applications and commercial
server applications. SoC design is driven by embedded applications such as
video encoding/decoding, image processing and audio processing, which are all
found in any mobile phone today [70]. The algorithms found in many of these
applications are difficult to parallelize in a homogeneous way, as it is often pos-
sible with large-scale computations. This leads to applications consisting of a
heterogeneous set of tasks that needs to be managed in a single programming
model.

Furthermore, the processing capabilities of future embedded systems allows
multiple applications to execute simultaneously and new applications can be
added by the user. This scenario is already valid for the latest generation of
smart phone platforms [80].

Dealing with heterogeneous architectures in the programming model is a dif-
ficult task. Several frameworks and tool flows have been proposed that address
this issue [77, 102, 84, 83, 52, 60].

C-HEAP [77] proposed a streaming oriented programming model and syn-
thesis flow for embedded signal processing where data is communicated as tokens
between cores. This abstraction of communication fits well with abstract appli-
cation models used in design flows for application-specific embedded systems.
However, the lack of support for shared data may lead to inefficient paralleliza-

28 3. Related Work

tion. TTL [102] is a similar task-orient token-based programming model, which
relies on token interfaces implemented in hardware or software.

Paulin et al. [84, 83] introduced the MultiFlex approach which targets au-
tomated platform generation for multimedia and networking applications. The
programming model supports both shared memory programming and Distributed
System Object Component programming, which is inspired by remote procedure
calls. A system object broker is used to keep track of available cores and dis-
tribute tasks among them.

High level programming model approaches [52, 60] completely abstract the
hardware architecture and rely on libraries and compilers to determine how tasks
communicate. Common Intermediate Code [60] uses channel-based communi-
cation by default, but also supports other alternatives such as shared memory.

Attempts to evaluate programming models for embedded systems by com-
paring streaming and shared memory programming models [85, 65] have lead
to inconclusive results. The best choice of programming model is highly appli-
cation dependent. However, despite this fact, a large fraction of the research in
embedded architectures is focusing on streaming programming models due to
its explicit expression of parallelism.

3.2.2 Programming Model Implementation

The hardware/software trade-off of the programming model implementation is
an important aspect of NoC architecture, i.e. how much hardware program-
ming model support is needed. Implementing the programming model fully in
hardware may take up a substantial amount of transistors [64], which could
otherwise be used for additional cores. The trade-off involves both the NoC in-
terface and also shared services needed to manage execution of tasks in parallel
on a number of cores. As mentioned previously, a lot of work has been done on
interconnect interfaces for multiprocessor systems. However, surprisingly little
work has been done in this area in the context of NoCs. Most work in NoC and
MPSoC design is either considering the network itself or focusing only on high
level interface abstractions.

NoC interface implementations can be put into two categories depending on
NoC awareness of the cores as proposed in the comparison done by Bhojwani
and Mahapatra [12].

3.2. Network-on-Chip-based Architectures 29

Wrapper Interfaces

Wrapper interfaces encapsulate NoC non-aware cores and translate core requests
into NoC packets. Examples of this approach are bus and protocol wrappers
that allow cores with interfaces such as OCP and AXI to be seamlessly connected
through the NoC. This type of NoC interfaces are found in the AEthereal [86]
and MANGO [13] NoCs.

The MANGO interfaces [13] are based on the OCP protocol which specifies
point-to-point connection between master and slave cores. Each NoC interface
presents its core with an OCP complaint interface counter-part. The AEthereal
NoC [86] provides additional flexibility by supporting a range of interface wrap-
pers that allow cores with different interfaces to communicate through the NoC
using a shared memory programming model. It is common for both of these
approaches that they do not consider private caches in the system.

In the more recent approach by Hansson and Goossens [38], the support for
heterogeneous architectures is improved by offering a set of compatible hardware
wrappers that allow communication between memory mapped cores and simple
streaming cores.

Direct hardware implementations of data-flow and token-based programming
models for MPSoCs have also been proposed using wrapper interfaces [42, 20].
Here, the NoC interface acts as a core controller, which controls the core by
generating requests to the core when new data tokens arrive. When the token
has been processed, the NoC interface is responsible for passing token on to the
next core.

Wrapper interfaces have also been used to add hardware support for synchro-
nization. Monchiero et al. [74] propose a specialized hardware unit to maintain
spin-lock variables coherent in non-coherent shared memory systems. Others
have proposed hardware support for task queues [58].

Combined NoC interfaces and cache controllers for shared memory sys-
tems [18] similar to those previously described in multiprocessor systems [63, 6]
also belong to this category. Here, communication is done implicitly through
the shared memory programming model and handled by NoC interface au-
tonomously.

Core Interfaces

The core based network interface is based on a NoC aware core that is capable
of handling packetization itself. This type of network interface allows the NoC
interfacing to be considered as a hardware/software trade-off. On programmable

30 3. Related Work

cores, the packetization can be done partially in software to reduce the interface
hardware complexity at the expense of higher latency [12].

DMA-like communication co-processor NoC interfaces [36, 31, 53] can be
considered as a combination of the two approaches. The cores are aware of the
distributed nature of the system architecture, but non-aware of the interconnect
details, which are off-loaded to the communication co-processor. Among inter-
faces of this type, the memory flow controller found in the Cell processor [53]
is a well-known example. Here, data blocks are transferred between distributed
memories on request by the processor core.

The programming model can also be supported by special purpose cores.
The previously mentioned Distributed System Object Component programming
model [83] is based on a hardware implemented broker that distributes service
requests to available cores in the system.

3.3 Many-core Architectures

The evolution of SoC architectures into more general many-core platforms and
CMPs into to massively parallel many-core architectures have lead to a con-
vergence of the two areas. Tile-based many-core architectures have recently
started to emerge [101, 95, 103, 55, 46]. Early many-core architectures were
mainly targeted at data-flow applications, such as signal processing, and consist
of relatively simple cores.

The MIT Raw processor [101] offers a general tile-based computation fabric
interconnected by an on-chip mesh network. The processor cores are tightly inte-
grated with the interconnect through communication FIFOs that are accessible
as processor registers. These allow fast passing of single data words between
neighboring tiles, which can be exploited in data-flow applications such as video
processing.

The TRIPS architecture [94] is a highly configurable data flow oriented ar-
chitecture that attempts to exploit both instruction and task parallelism. The
architecture is organized into four tiles that each contains 16 simple computation
nodes. The architecture relies heavily on the ability of the compiler to extract
parallelism of the applications. A similar approach is taken in the AsAP archi-
tecture [108], which targets low-power digital signal processing applications.

In line with these architecture, Vangal et al. [103] presented an 80-tile pro-
cessor for high-throughput floating-point applications. The architecture consists
of an array of simple floating-point units with small local memories that can
communicate through explicit data transfer instructions.

3.4. This Work 31

More recent architectures are based on homogeneous set of processor cores
similar to those found in CMPs, which are interconnected using a NoC. The
shared memory programming model is supported by all of them, however, the
hardware support for cache coherence has been reduced or completely removed
in the most recent architectures [55, 46].

In the Larabee many-core architecture [95], each tile holds a part of a coher-
ent level two cache and a private local memory. All tiles are interconnected with
a ring-based network similar to the one found the Cell processor [53]. Cache
coherence is implemented through the level two cache and the ring intercon-
nect. The private local memories are non-coherent and managed using explicit
DMA-transfers.

The Rigel architecture [55] uses a global shared address space but has no
hardware support for global coherence. The tiles consists of a cluster of eight
processor cores, which have access to a shared cluster cache. On-chip global
caches are accessible using special global memory operations, that bypass the
cluster cache. Global coherence can be implemented through software based on
these operations.

Recently, Howard et al. [46] presented a 48-tile many-core architecture tar-
geted at energy efficient server computing. The architecture has moved away
from hardware implemented cache coherence, instead the architecture is opti-
mized for message-passing through shared memory. Each tile has a private level
two cache that is non-coherent and a hardware message buffer. Communication
between cores must be done explicitly by either explicit messages or by flushing
the private cache of the sender and forcing the receiver to read the data from
main memory.

The addition of the expected heterogeneity of future applications to the
already hard problem of programming massively parallel architectures means
that programming these systems is currently one of the pressing challenges in
digital system design [56, 106, 8, 70, 69]. The variety of the approaches to
programming and programming models support found in recent architectures
expresses the general uncertainty over how this should be done and indicates
that it is unlikely that a single approach can fit all applications.

3.4 This Work

Based on the discussion of related work in the previous sections, it is possible
to describe the work that has lead to this thesis in more detail. As previously
mentioned in the introduction in Chap. 1, the overall idea of the thesis is to take

32 3. Related Work

a holistic approach to programming model support and identify the hardware
support needed to aid in future many-core SoCs, which are expected to be
massively parallel architectures with hundreds or thousands of cores. Many
concepts are already known from research in multichip multiprocessor systems
and can be applied to SoC design, but on-chip multiprocessing put them into
a new context, so the design trade-offs must be reconsidered. Little work has
yet been done on programming model support for many-core SoC architectures
despite its importance for future SoC designs.

The hardware/software interface design challenges introduced in Chap. 1 can
now be revisited and refined to define the aim of the thesis more precisely.

• Flexibility: Future SoC hardware platforms need to be more general to
facilitate platform reuse to reduce design costs. Customization is mainly
possible through software. Furthermore, no single programming model is
likely to fit all applications. Thus the hardware/software interface should
support a plethora of programming models and allow application-specific
optimizations.

• Scalability: Memory hierarchy design and communication are key as-
pects in many-core architectures. Private caches are crucial to mitigate the
communication latency of a NoC-based interconnect. The NoC interface
is a central part of the hardware/software trade-off of the programming
model support as all inter-tile communication and accesses to non-local
memories must be translated into packets transferred across the NoC.

• Constraints: The design trade-offs of many-core architectures are differ-
ent from the architectures proposed for multichip multiprocessors. The
processor core and the interconnect interface can be more tightly inte-
grated, but fewer resources can be used for complex interfaces as these
resources could be used for more cores. The amount of hardware support
for programming models is therefore limited.

The main focus of this thesis is the design trade-offs in NoC interfaces for
many-core architectures with respect to programming model support. The aim
is to identify generic hardware support that can be used to provide flexible
programming model support that can aid programming of future many-core
SoCs. The key idea is to integrate the NoC interface and the cache controller into
a single programmable network interface processor. The NoC architecture itself
is outside the scope of this thesis, however, certain aspects must be considered
in the network interface design. In these cases, as few assumptions as possible

3.4. This Work 33

are made, to make the proposed many-core architecture as NoC architecture
independent as possible.

Overall, the thesis work consists of three parts, which are described in
Chap. 4, 5 and 6.

• Case study of parallel programming: Chap. 4 describes a case study
on parallelism and scalability in an image processing application. This
work was done to achieve practical experience with parallel programming
and to better understand the related challenges. The case study evaluates
three parallelization strategies using the OpenMP shared memory pro-
gramming model using a cache coherent shared memory multichip multi-
processor system. The study reveals programming issues related to cache
performance due to lack of memory system awareness in the OpenMP
programming model.

• The Clupea many-core architecture: Chap. 5 presents the tile-based
Clupea many-core architecture. The key concepts of the architecture are
allocatable processing tiles and individually configurable support for pro-
gramming abstractions for each application that execute on the system.
The programming model support is based on a specialized programmable
NoC interface processor, which integrates NoC interfacing and parts of
the cache controller. In contrast to previous multichip multiprocessor in-
terface processors [91, 59, 6], the Clupea approach focuses on the on-chip
hardware constraints of single-chip many-core architectures and more flex-
ibility to support a plethora of programming models. Compared to the
recently proposed dual-controller distributed shared memory implemen-
tation by Chen et al. [18], the Clupea architecture uses a single network
interface processor and provides full support for cache coherent shared
memory.

Implementations of a number of programming models are outlined briefly,
while a scalable implementation of cache coherent shared memory is dis-
cussed in detail. Cache coherent shared memory is a widespread program-
ming model supported by many existing multiprocessors. It therefore
represents an important base line programming model to support. The
cache coherent shared memory implementation is based on directory-based
cache coherence protocol implemented using generic processing tiles as di-
rectories which allows the programming model support to be scaled to
match the needs of the application.

34 3. Related Work

• Many-core architecture modeling: Chap. 6 deals with many-core ar-
chitecture modeling. An analytical model and the MC sim cycle-accurate
system simulator are presented and used for evaluation of the Clupea ar-
chitecture configured for cache coherent shared memory support. The
analytical model provides early estimates of the performance of the ar-
chitecture, while MC sim provides detailed simulation of the architecture
based on trace-driven simulation. Results show a modest overhead of the
Clupea architecture compared to fixed hardware implementation of similar
support for cache coherent shared memory. Directory latency is identified
to be the main limitation of the proposed implementation, however, the
flexibility of the Clupea architecture allows the number of directories to
be scaled to mitigate this limitation.

Chapter 4

Parallelization of an Image

Processing Application

Applications for emerging many-core systems aiming at embedded and personal
computing are different from the traditional applications for multi-processor
systems. Applications for embedded computing are typically working on small
data sets, which makes parallelization much more challenging. On top of this,
the embedded applications often have to share system resources with other
applications and services. Resources are often limited and system response
latency is more important than throughput.

This chapter is a case study of a potential application for an embedded many-
core system. The study analyzes the parallelization of an image processing
application. The aim is to get practical experience with the parallelization
challenges introduced with this new class of parallel applications. The chapter
is based on two published papers [90, 89] and is structured into the following
sections. The first section introduces the case study. This is followed by an
overview of the main algorithms of the application in Sec. 4.2. Section 4.3
describes the parallelization strategies. Section 4.4 describes the implementation
of the parallelization strategies. Results and a discussion of these are given in
Sec. 4.5. Finally, a summary of the case study is provided in Sec. 4.6.

35

36 4. Parallelization of an Image Processing Application

4.1 Introduction

Programming parallel systems is challenging. It remains unclear if the existing
parallel programming models from high performance multiprocessor systems
are suitable for embedded systems. Thus, there is a need to explore parallel
programming models for embedded applications to expose the influence of the
constraints of the embedded systems.

So far the programming models for multi-core architectures have been very
similar to those for shared memory multiprocessors. OpenMP [81, 82] is one of
these shared memory programming models. OpenMP offers a multi-threaded
programming model based on a set of compiler directives and library calls.
Instead of explicit thread management, OpenMP controls threads, synchroniza-
tion and work distribution implicitly based on the parallelism exposed in the
code through the use of compiler directives. Thus, explicit thread management
and lock-based synchronization, which are both complex and error-prone, are
largely avoided. One example of the parallel constructs supported by OpenMP
is automated parallel execution of for-loop iterations.

Since embedded systems are an emerging area for parallel programming,
efficient programming models for these systems have yet to be found. Shared
memory has been used for decades in traditional multiprocessor systems and is
therefore an obvious starting point for exploring parallelism in applications for
embedded systems.

This case study considers an embedded image processing application for
object identification using multi-spectral images. Parallelization is studied using
OpenMP 2.5 [81]. The contributions of this case study are: i) The analysis of an
embedded image processing application; ii) A thorough performance evaluation
of the parallel properties of the application using OpenMP.

The major challenges faced when parallelizing the application were to extract
enough parallelism from the application and to reduce load imbalance. The
experimental results show that, with some tuning, relative speedups in excess
of 9 on a 16 CPU system can be reached.

4.2 Application Overview

This case study is focusing on an image processing application developed at
DTU [19] and written in Matlab. The application is used for object identi-
fication based on multi-spectral imaging and can be used for many different
purposes. One example is identifying the species of a Penicillium fungus in a

4.2. Application Overview 37

Figure 4.1: Overview of the entire image processing application application.

Figure 4.2: Spectral image of fungi colonies.

petri dish from a multi-spectral image [19]. The object identification is based on
information extracted from the images in the form of scalar values, called fea-
tures, that each describes some aspect of the input image. Features are grouped
into feature sets, based on extraction method used for the particular features.

The flowchart in Fig. 4.1 gives an overview of the application. It consist
of three major parts: Pre-processing, analysis and a statistical model. The
application input is a multi-spectral image of the object that has to be identified.
The multi-spectral image is a set of spectral images, where each spectral image
shows the object exposed to single colored source of light. Different wave lengths
of light reveal different elements in the object. Fig. 4.2 shows an example of a
spectral image of fungi colonies.

The pre-processing part involves preparing the raw input image for process-
ing, which means removing unnecessary information in the image and normal-
izing the image. The analysis part is feature extraction based on arithmetic
and morphological operations and scale space analysis. The extracted feature
sets are used in the last part, the statistical model, to classify the object using
known statistical characteristics of the object types to be identified.

The case study will focus on the pre-processing and analysis based on fea-
tures from arithmetic operations as these are the most computationally intensive

38 4. Parallelization of an Image Processing Application

parts of application. Furthermore, the case of identification of fungi is based on
features extracted using these operations. The statistical methods for classify-
ing the contents of images are outside the scope of this study and are described
elsewhere [19].

The remaining parts of this section will describe the application in more
detail.

4.2.1 Pre-processing and Mask Generation

The pre-processing of the multi-spectral input image involves two steps, i) the
actual pre-processing and ii) the mask generation.

The pre-processing step produces a noise-filtered normalized image. First,
the pixel-wise average intensity across spectral bands in the multi-spectral input
image is found. The mean of the resulting single-channel image is found and
subtracted from each pixel. Following this, each pixel is then divided by the
standard deviation to produce the normalized image. Finally, a 3 × 3 median
filter is used to filter noise. These steps are illustrated in the more detailed
overview of the application in Fig. 4.3.

The mask is used to select the interesting parts of the image, thus its gen-
eration varies depending on what information is extracted. For the input im-
ages used in this study, edge detection is used to find areas of interest in the
images. For each pixel in the single-channel image previously constructed by
pixel-wise average of the spectral images, the magnitude of the numerical gra-
dient |(δf

δx
, δf
δy
)| is calculated where f describes the pixel values as function of

coordinates (x, y). The median of the gradient values is found and all pixels
whose gradient are greater than or equal to the median are included in the
mask. They correspond to interesting areas in the image. The mask can be
seen as a bit field where each bit corresponds to a pixel in the image. Each bit
indicates if the pixel should be considered or not.

4.2.2 Arithmetic Feature Extraction

The mask is applied to each spectral band in the input multi-spectral image
by discarding all pixels not in the mask. Five feature sets are extracted from
the masked spectral bands of the input image, using five different arithmetic
operations. Two operations take a single band at a time, while the other three
operate on all pairs of bands. The two single-operand operations are the identity
function, which just pass the image data through, and the pixel-wise base-10
logarithm. The other three operations find the pixel-wise difference, product

4.3. Parallelization Strategies 39

Figure 4.3: Overview of immediately available parallelism in the application.

and quotient of all pairs of spectral images. Each pair is considered only once,
e.g. if Ia − Ib is calculated, Ib − Ia is not. If the input image has n spectral

bands, the operations produce 2n+ 3n(n−1)
2 data sets.

The features of each feature set are extracted from the data sets produced
by the arithmetic operations by finding the 1st, 5th, 10th, 30th, 50th, 70th,
90th, 95th and 99th percentiles of the pixel values. Determining the percentiles
requires the data sets to be sorted individually.

4.3 Parallelization Strategies

This section will discuss the parallelization and the OpenMP implementation
of the algorithm described in Sec. 4.2. The image processing algorithm differs
from traditional high performance computing applications, such as matrix mul-

40 4. Parallelization of an Image Processing Application

tiplication and physics simulation by having a significantly smaller data set and
shorter execution time. Thus, the parallelization overhead can not be neglected.

The algorithm has two main parts as illustrated in Fig. 4.3. The pre-
processing and mask generation part is governed by data dependencies, while
the arithmetic feature extraction has parallelism immediately available between
the feature sets, but also within the individual sets.

Profiling a sequential implementation of the algorithm revealed that 95%
of the execution time is spent in feature extraction. Thus, it is the target for
parallelization.

To summarize the task parallelism illustrated in Fig. 4.3, five independent
feature sets are computed, which each produce n or n(n−1)/2 data sets for which
the features are extracted by finding certain percentiles in the data sets. This
means that the processing required for each feature set differs significantly. The
feature extraction within each feature set should, in theory, be possible to split
into parallel and equally sized tasks. However, non-uniform memory latencies
caused by the target architecture may cause the execution time of each such
parallel task to differ. The term task is used throughout this study to denote
separate pieces of work and should not be confused with the recently introduced
OpenMP task construct. Scaling properties are discussed in Sec. 4.3.1 without
considering architectural effects which are discussed in Sec. 4.3.2.

4.3.1 Scaling Properties

The running times of the feature sets differ by up to a factor of (n − 1)/2
leading to load imbalance problems if different feature sets are run in parallel.
This study therefore concentrates on extracting parallelism of each individual
feature set.

As mentioned earlier, each feature set has n or n(n−1)/2 equally sized tasks
immediately available, which can be run in parallel. But if n is less than the
number of available processors |P |, in processor set P , more parallelism must be
extracted from these tasks. This is also advantageous to reduce the imbalance
slack for the feature sets containing n(n− 1)/2 tasks, as this may not match a
multiple of |P |.

Additional parallelism can be extracted by splitting data sets into subsets
that can be computed independently and then recombined. This means adding
an extra nested level of parallelism. The arithmetic operations of all feature sets
have no inter-pixel dependencies, which means that the processing of spectral
bands into data sets can be split without creating any subset border synchro-
nization issues. The sorting involved in the percentile calculation can be done

4.3. Parallelization Strategies 41

on each subset separately followed by a merge of the sorted subsets before the
percentiles are found. This allows the arithmetic operations to scale further,
but with the overhead of merging the sorted subsets. It should be noted that
the execution time of sorting each subset decreases by d × log(d), where d is
the number of pixels in the subset. The execution time of merging the sorted
subsets increases proportionally with the number of subsets generated by the
data set decomposition. This means that the amount of parallel work decreases
and the sequential part increases with an increasing number of subsets. Thus,
the gain of increasing parallelism is diminishing. In addition, the parallelization
overhead, such as spawning threads and synchronization, may be significant at
this level as the subsets are small.

The two levels of parallelism within each feature set, among data sets and
among subsets, are denoted as l0 and l1 respectively. In the implementation,
the parallelism at each level s0 and s1, can be adjusted independently, though
the parallelism at l0 is limited. The total number of subsets across all data
sets w is given by w = s0 × s1 and constitutes the total number of tasks in
the application. Subset processing time is defined as the wall clock time spent
performing arithmetic operations on the parts of the spectral band data that
corresponds to the subset and time spent sorting the subset.

In order to avoid load imbalance, s0 and s1 should be determined such that
w is equal to or slightly less than a m×|P |, where m is a multiple of the number
of available processors |P |. If w is slightly larger than m×P , only one or a few
processors will be involved in processing the last remaining subsets while the
majority of processors are idle, causing a large slack. The slack can be reduced
by increasing w. But as mentioned earlier, s0 is limited by n or n(n−1)/2 and s1
is limited by the merge sort overhead, which causes diminishing parallelization
gain. Hence, determining s0 and s1 is a trade-off between load imbalance and
parallelization overhead.

4.3.2 Non-uniform Memory Latency

The discussion in the previous section holds under the assumption that the
execution time of equally sized tasks do not differ. This assumption will not
hold for architectures with non-uniform memory latencies. Threads running on
processors which have long memory latency will have longer subset processing
times than threads with short memory latency.

In this application, all spectral bands of the image are loaded into memory
sequentially and then processed in parallel. Assuming a first touch memory
placement policy in a hierarchical memory system, all image data will be located

42 4. Parallelization of an Image Processing Application

in the part of main memory local to the processor loading in the images, e.g. in
the local memory on the Uniboard processor board, in a Sun Fire architecture
system. A thread running on a processor associated with a different branch
of the memory hierarchy, e.g. a processor on a different Uniboard than the
one holding the main memory containing the image data, will access all data
through the global memory interconnect and therefore have a significantly longer
memory latency. This is not easily solved through parallel loading of the spectral
images due to the fact that the data set processing requires all combinations
of spectral bands. Thus, the effective subset processing time depends on the
location of the processor.

Combining this effect with the scaling properties means that even though the
total number of subsets w matches the number of available processors, linear
speedup can not be obtained. Consider a system with |P | processors, where
Pl ⊂ P is the subset of processors having local memory access to the image
data and Pr ⊂ P is the subset of processors having remote memory access to
the image data through global memory interconnect. The execution times of a
subset on pi ∈ Pl and pj ∈ Pr are tl and tr respectively, where tr > tl.

In the case of uniform memory latency, where P = Pl and w = m × |Pl|,
the total execution time is given by T = m × tl, ignoring the parallelization
overhead. In the non-uniform case where P = Pl ∪ Pr, T depends on the task
scheduling. Consider the case where w equals the number of processors |P |. In
this case, every processor will process one subset each. Thus the total execution
time is given by T = max(tl, tr) = tr, if the parallelization overhead is assumed
to be negligible. The processors in Pl finish before the processors in Pr, but
the final result is not available until all processors have finished processing their
subset. In the case where w = 2 × |Pl| + |Pr|, assuming dynamic scheduling,
T = max(2tl, tr) as the processors in Pl will finish two subsets. If 2tl > tr the
remote memory access of Pr, will not influence T . This is illustrated in Fig. 4.4.
As a consequence of these two cases, resolving load imbalance may not result
in the speedup outlined in Sec. 4.3.1. This applies to scaling both the number
of processors and subsets, as these are both parameters that influence the load
imbalance. Increasing the number of processors, such that w = 2× |Pl|+ |Pr1|
becomes w = |Pl|+ |Pr2|, where |Pr2| = |Pr1|+ |Pl|, results in T = tr. Thereby
the total execution time reduction is only 2× tl − tr, and not tl.

The effect of load imbalance due to non-uniform memory latency also de-
creases significantly when w becomes much larger than the number of proces-
sors. Then again, the amount of parallelism available in the application may
be limited and comes at a high cost in terms of parallelization overhead. The
optimum solution is a trade-off between parallelization overhead and load im-

4.4. OpenMP Implementation 43

Processors

t
l

t
r

Figure 4.4: Different task execution times caused by non-uniform memory la-
tency.

balance, where load imbalance is caused both by the algorithm itself, but also
the architecture of the target execution platform. It should be noted that this
is based on dynamic task scheduling. Static task scheduling will perform worse,
due to varying execution times among the tasks.

4.4 OpenMP Implementation

The application was originally implemented in Matlab, and then ported to C
using standard libraries only and without OpenMP parallelization in mind. All
Matlab functions used in application were re-implemented using standard C-
libraries to allow verification of the C-implementation by direct comparison to
the results obtained using the original Matlab implementation. Subsequently,
it was modified to meet the requirements for OpenMP parallelization.

In the sequential algorithm implementation, arithmetic feature extraction is
implemented as a loop, where each iteration performs the arithmetic operation
on a spectral band or pair of spectral bands, to form a new data set from
which features are extracted. Unary arithmetic operators are applied to each
individual spectral band in feature sets 1 and 2. These are implemented by a
single loop through all the pixels in the spectral band. The feature sets 3, 4 and
5 are based on binary arithmetic operations between two spectral bands. First
a list of pairs to be processed is generated. Then all pairs are processed using
a loop. Similarly to the unary operations, the binary arithmetic operations are
applied pixel by pixel in a single loop. Hence, the feature sets are implemented
using two nested loops.

Three different parallel versions of the application have been implemented
using OpenMP. One implementation uses nested parallelism, while the two other
variants do not make use of nested parallelism.

44 4. Parallelization of an Image Processing Application

4.4.1 Nested Implementation

The nested version exploits the two levels of nested parallelism discussed in Sec.
4.3.1. The first level of parallelism, l0, consists of the aforementioned loop over
the data sets, which is already present in the sequential implementation. This
loop is parallelized using the OpenMP [81] for work sharing construct with
dynamic scheduling, which is illustrated as the first thread fork in Fig. 4.5a.

Within each l0-thread the data set is further split into subsets processed
by another loop, which adds an extra loop to the implementation and forms
the nested parallelism level l1. This is illustrated as the second thread fork in
Fig. 4.5a. Sorting each individual subset before they are merged as described in
Sec. 4.3.1 requires complete control over the subset partitioning, which prevents
the use of the existing pixel loop for this purpose. When all nested threads have
finished and reached the implicit barrier of the OpenMP work sharing construct,
the l0-thread will continue by merging the subsets and extracting the features.

Since the assignment of the nested threads can not be managed dynamically
as proposed in Duran et al. [27] and it is generally not possible to assign the
same number of threads to each nested parallel section while having one thread
per processor, one thread is created for every subset without considering the
total number of threads. Balancing the load optimally may require one thread
to process iterations from two different nested loops, which is not possible in
OpenMP 2.5. Thus, creating more threads than processors will enable operating
system schedulers capable of dynamic thread migration to load balance the
processors. However, spawning more threads than processors may also induce
a large scheduling overhead in the operating system.

4.4.2 Non-nested Implementation

To avoid relying on the operating system thread load balancing capabilities a
non-nested version has been made. To flatten the two levels of parallelism, all
s1×n or s1×n(n− 1)/2 subsets are enumerated and then processed in a single
parallelized for loop, as shown in Fig. 4.5b. The number of threads is thereby
completely independent of how many subsets the data sets are split into.

However, removing the two level hierarchy from the implementation and
allowing subsets to be processed in any order means that it is no longer known
when all subsets of each data set has been processed. Thus, merging can only
take place when all subsets of all data sets have been processed. This is in
contrast to the nested implementation where subsets are merged as soon as
all nested threads belonging to a given data set have finished. Hence, merging

4.4. OpenMP Implementation 45

Figure 4.5: Thread utilization in the three OpenMP implementations: a) Nested
parallelism, b) non-nested parallelism, c) improved non-nested parallelism using
locks. Only two data sets are shown.

and percentile determination must be implemented as a second parallelized loop
executed afterwards. This is illustrated by the second thread fork in Fig. 4.5b
after all threads in the first thread fork have finished.

This implementation has the advantage of having only one thread per pro-
cessor, but separating the subset processing and merging in two parallel sections
has great influence on the application memory access pattern and thus also the
cache performance.

The processed subsets of a given data set can to a great extent be found
in the caches of the processors that processed them. But implementing merg-
ing as a second loop, Fig. 4.5b, means that there is no guarantee that any of
these processors will perform the merging of the data set and exploit that one
subset is located in its local cache. In the nested implementation illustrated in
Fig.4.5a, however, the l0-thread will be one of the nested threads and thus cache
performance will be better.

Furthermore, by first processing all subsets and then merge them later, some
of the subset data may be evicted from the cache due to limited cache capacity
before they are merged. Merging the data set as soon as its subsets have finished,
improves the probability of finding the subset data in the caches. However, this
is very dependent on the cache size.

4.4.3 Improved Non-nested Implementation

To avoid the cache performance disadvantages of the initial non-nested imple-
mentation, a second improved non-nested version has been implemented. This

46 4. Parallelization of an Image Processing Application

implementation merges subsets as soon as all subsets of a data set have been
completed and improves locality and thus cache performance.

Subsets are enumerated like in the first non-nested implementation, but
instead of merging the data sets in a second loop, it is integrated into the subset
processing. The thread finishing the last subset of a data set is responsible for
merging all the subsets of the data set before it can process another subset as
illustrated in Fig. 4.5c. This is implemented by assigning an OpenMP lock and
a counting variable to each data set, illustrated by the “L” in Fig. 4.5c, which
keeps track of how many subsets of the data set that have been processed.

A drawback of this version is that the subset processing times are not equal.
Though dynamic scheduling is used for the work sharing construct, it can not
be expected to counter this effect completely.

A similar implementation could be done using OpenMP tasks, which were
introduced in OpenMP 3.0 [82]. Subset processing can be implemented using the
new task construct. However, the OpenMP 3.0 specification does not support
task data dependency notation. Thus the taskwait construct must be used
to determine when the subset processing has finished and the subsets can be
merged, which is similar to using the lock in the proposed implementation. The
number of tasks to be processed is known, so the application will not generate
tasks dynamically. In all, the net advantage of using OpenMP tasks is estimated
to be slightly simpler code.

4.5 Results and Discussion

This section presents results obtained by running the nested and the two non-
nested parallelized algorithm implementations using 16 processor cores on the
test platform and compares these with the scalability issues discussed in Sec. 4.3.

4.5.1 Test Setup

In the presented results, the algorithm has been used to calculate all arithmetic
feature sets of the input images. The input images are ten images, each contain-
ing nine spectral bands in a resolution of 777 × 776 pixels. The light intensity
of each pixel is represented by a double precision floating point number.

The test platform used for producing the results in this study is a Sun Fire
E6900. The machine has 48 UltraSPARC IV CPUs. Each processor has two
cores running at 1200 MHz and has 8 MB L2 cache per core. The machine is

4.5. Results and Discussion 47

running Solaris 10. Compilation has been done using the Sun C compiler ver-
sion 5.9 patch 124867-01 using these options: -fast -xarch=sparcvis2 -m32

-xopenmp=parallel -lm.
The image loading time has been excluded from the measurements by loading

all ten images, one by one, into main memory before they are processed. Warm
up is done by processing all ten images once. To increase the accuracy of the
measurements the presented results are based on the average execution times
of ten or twenty consecutive runs of each feature set, where all ten images are
processed. The number of runs is determined by the execution time of the
particular test case. Using larger input images is not representative for the
practical use of the algorithm and will lead to unrealistic results.

The average sequential execution times for feature sets 2 and 3 are 35 s and
127 s respectively, processing all ten multi-spectral images.

4.5.2 Parallel Efficiency

All tests have been limited to a maximum of 16 processor cores. Several par-
allelization approaches have been tested to investigate how the two levels of
parallelism, l0 and l1, influence the parallel efficiency. It should be noted that
even though all tests have 16 processors available, they may not all be utilized,
depending on the number of threads in the particular test case. The nested
version creates more than 16 threads in some tests. In order to prevent the
threads to use more than 16 processor cores in these cases, a 16 core processor
affinity set was specified using the SUNW MP PROCBIND environment variable for
all runs with the nested version. This method may potentially lead to uneven
load on the cores, but dynamic task scheduling counters this effect and no nega-
tive effects are observed in the results. Even though the main focus of the tests
is parallel efficiency, scalability trends can also be extracted from the results of
the nested version.

Figs. 4.6 and 4.7 illustrate the speedup obtained in feature sets 2 and 3 for
the nested version by increasing the number of threads at l0 with different data
set partitioning at l1. As mentioned in Sec. 4.4, one l1-thread is created for
each subset. The measurements of feature set 1, 4 and 5 are not significantly
different from what can be observed in feature set 2 and 3, thus they are not
shown.

Parallelization at l0 does not impose any parallelization overhead except for
thread creation overhead. However, parallelism is limited to nine l0 threads in
feature set 2. Linear relative speedup should be expected, when more threads
can be created to utilize more processors. This can be observed in Fig. 4.6 for

48 4. Parallelization of an Image Processing Application

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

l
0
−threads

S
p

e
e

d
u

p

Subsets = 1

Subsets = 2

Subsets = 4

Subsets = 8

Subsets = 16

Figure 4.6: Speedups for the nested
version of feature set 2 with 16 pro-
cessors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

l
0
−threads

S
p

e
e

d
u

p

Subsets = 1

Subsets = 2

Subsets = 4

Subsets = 8

Subsets = 16

Figure 4.7: Speedups for the nested
version of feature set 3 with 16 pro-
cessors.

one to eight threads with no data set partitioning for feature set 2, which means
w = 9. As discussed in Sec. 4.3.2, going from eight to 16 threads would double
the theoretical speedup since load imbalance is improved. However, a speedup
of only 1.5 is obtained, because tr > tl meaning that data has to be fetched
from a remote Uniboard leading to higher memory latency.

This effect has been confirmed by measuring the execution time of each
l0-thread, when running three and nine threads in parallel without any nested
l1-threads. The Sun Fire E6900 UltraSPARC IV Uniboards have four processors
each with two cores, which means that if more than eight threads are used, some
of them will be running on different processor boards. Fig. 4.8 and 4.9 show
histograms of thread execution time using three and nine threads. It can be seen
that using three threads, the histogram has a narrow range, while the histogram
of nine threads is spread out. The lower part represents threads running on the
board that holds the main memory containing the images, while the upper part
is slow threads running on a different board. The ratio between a fast and a
slow thread match the speedup obtained going from eight to 16 l0-threads in
Fig. 4.6.

As discussed in Sec. 4.3.1 parallelization at l1 has sequential overhead. This
can be observed in Figs. 4.6 and 4.7 when comparing the speedups of tests with
one l0-thread and increasing the number of l1 threads. Even though more pro-
cessors are utilized, the sequential merge eventually outweighs the parallelization
speedup. Having more threads than processors also adds thread switching over-
head as several threads share a single processor core. It can be observed on both

4.5. Results and Discussion 49

350 400 450 500 550
0

50

100

150

200

250

Execution time [ms]

F
re

q
u
e
n
c
y

Figure 4.8: Thread execution time
histogram when running 3 threads.

350 400 450 500 550
0

20

40

60

80

100

120

140

160

180

Execution time [ms]
F

re
q
u
e
n
c
y

Figure 4.9: Thread execution time
histogram when running 9 threads.

Figs. 4.6 and 4.7 that matching s0 × s1 = |P | leads to best results in general.

The effects observed in the results of feature set 2 can also be seen for
feature set 3. However, the amount of parallelism available at l0 is potentially
36 data sets. This leads to better parallel efficiency as less parallelism needs
to be extracted at the l1 level, where the sequential parts are limiting. The
efficiency observed in feature set 2 is considered more realistic for real uses of
this application, as only a subset of the features is typically needed [19].

The relation between work partitioning and the number of threads is removed
in the non-nested versions. The number of threads is completely independent
of the subset partitioning. Splitting the data sets creates more tasks that may
lead to better work balancing among the threads. In Figs. 4.10 and 4.11, it can
be observed that the improved non-nested version performs up to 24% better
than the nested version. Comparing speedup of the two implementations, when
the number of subsets increases, shows the overhead of having more threads
than processors. With few threads, the two implementations have very similar
performance, while the improved nested version performs significantly better
with many subsets. The graphs representing the nested version in Figs. 4.10
and 4.11 show the best performing thread configuration with the corresponding
number of subsets. However, it can be seen that when increasing the number
of threads, parallelization overhead counters any speedup gained by increased
parallelism. The effect of the parallelization overhead at l1 can also be observed
clearly for the improved non-nested implementation, as it is the cause of the
decreasing speedup when having 8 and 16 subsets.

50 4. Parallelization of an Image Processing Application

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

Subsets

S
p
e
e
d
u
p

Imp. non−nested

Non−nested

Nested

Figure 4.10: Speedups for all imple-
mentations of feature set 2 with 16
processors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

Subsets

S
p
e
e
d
u
p

Imp. non−nested

Non−nested

Nested

Figure 4.11: Speedups for all imple-
mentations of feature set 3 with 16
processors.

The performance of the initial non-nested implementation is difficult to pre-
dict due to its issues with regard to cache utilization. At best it can reach
the performance of the improved version, but the real performance depends on
the thread scheduling done at run-time and the OpenMP library implementa-
tion. When having only one or two subsets per data set, the impact of thread
scheduling is large, as merging data on a processor without any of the subsets
in its cache, will perform significantly worse than if it had a subset present in
its cache. This effect will diminish as the number of subsets increases, since
the subsets become smaller. The difference of accessing all data in other caches
or main memory and having one small subset in the local cache becomes very
small. This effect is shown in Figs. 4.10 and 4.11, where the speedup of the
initial non-nested implementation approaches the improved one for larger num-
bers of subsets. The observed speedup of the initial non-nested implementation
stresses the importance of considering cache utilization in parallel programming.

4.6 Summary

The case study of the image processing application has analyzed and discussed
three different parallelization strategies for the OpenMP shared memory pro-
gramming model. Each strategy puts an increasing amount of effort into paral-
lelization to optimize for caches and non-uniform memory access latency. The
study has revealed some of the challenges that might be encountered when par-

4.6. Summary 51

allelizing embedded application for many-core architectures.
The main challenges encountered are limited data set size and non-uniform

memory access latency. Small data sets limit the directly exploitable parallelism
due to the parallelization overhead. The non-uniform memory access latency
found in many shared memory systems makes it difficult to manage parallel
tasks efficiently. The threads of OpenMP are scheduled by the operating sys-
tem. It is therefore difficult to detect the locations of data and treads in the
system. This has been illustrated in this case study by the different execution
times experienced by threads with and without local access to image data. Also,
the importance of reuse of cached data by different threads has been illustrated
by the three parallelization strategies. The operating system does not know the
cache contents of the processors when it schedules new threads. It is therefore
likely that the operating system makes poor scheduling decisions in this re-
spect. Overall, the study indicates that better control over the location of data
and threads can lead to better usage of the memory system in shared memory
applications.

52 4. Parallelization of an Image Processing Application

Chapter 5

Clupea: A Many-core

Architecture with

Configurable Support for

Programming Models

Parallelization and on-chip communication are fundamental issues in NoC-based
MPSoCs that must be addressed by the programming model. The amount of
available parallelism and how it can be exploited varies from application to ap-
plication. It is therefore virtually impossible to find a programming model that
is suitable for all applications. The broad selection of programming models for
both traditional multiprocessor applications and emerging many-core platforms
attests to the complexity of this issue. On top of this is the issue of providing suf-
ficient architectural support for a feasible implementation of the programming
model.

This chapter presents the Clupea many-core architecture, which targets fu-
ture embedded computing platforms with hundreds of cores. The central idea
behind the Clupea architecture is to support a plethora of programming mod-
els and avoid the situation where the programming model is dictated by the
hardware platform architecture. An overview of the architecture has previously
been presented in [87].

The chapter is structured into the following subsections: Sec. 5.1 gives an

53

54 5. Clupea: Configurable Support for Programming Models

introduction to the central ideas behind the Clupea architecture. Sec. 5.2 de-
scribes the system architecture and Sec. 5.3 describes the Clupea network in-
terface, which is the central component of the architecture. Sec. 5.4 describes
possible programming model implementations using the Clupea architecture.
Sec. 5.5 describes a detailed implementation of the cache coherent shared mem-
ory programming model. The evaluation of the architecture is presented in
Chap. 6.

5.1 Introduction

Following the current trends in MPSoC and CMP design, future many-core sys-
tems are likely to be tile-based architectures interconnected by a NoC, where
each tile contains a processing core along with some form of local memory to
reduce the impact of the increasing communication latency. Facing on-chip com-
munication latencies of tens or hundreds of cycles in NoC-based interconnects,
caching data locally is crucial for performance. While this overall architecture
is conceptually trivial to envision, it remains a challenge to determine the pro-
gramming model support needed in such architecture.

The implementation of a programming model is a hardware/software trade-
off as previously illustrated in Fig. 2.6. In general, increasing the hardware
support for the programming model leads to less software complexity and bet-
ter performance. On the other hand, implementing the programming model
mainly through software is much more flexible and can be adapted to the ap-
plication requirements. The Clupea architecture addresses this trade-off while
considering how to support a plethora of programming models in a flexible way
that can be extended to support a heterogeneous set of processing cores. The
architecture is based on the concepts of configurable support for programming
models and allocatable processing resources, which will be introduced in the
following subsections.

5.1.1 Configurable Programming Model Support

Hardware implementation of a range of different programming models can be a
prohibitively expensive solution in terms of hardware resources and leads to a
trade-off between few complex tiles and a larger number of simpler tiles. The
aim of the Clupea architecture is to support application-specific programming
models and also, to a great extend, support programming models not known
at the platform design time. Additionally, to support architectures with a het-

5.1. Introduction 55

erogeneous set of processor cores the programming model support can not rely
solely on software implementation using the tile processing cores. Taking this
into account, the Clupea architecture is based on configurable programming
model support. This is offered by a specialized programmable network inter-
face processor, NIP, in each tile. The NIP is tightly integrated with the cache
controllers and the processor core. Basic hardware primitives in the NIP allow
efficient interfacing to the NoC and management of the local memory resources
in the tile. Support for new programming models is implemented by reprogram-
ming the NIP of the tiles. Further details about the NIP architecture are given
later in this chapter.

5.1.2 Allocatable Processing Resources

The expected increase in the number of processor cores in future many-core
system will lead to a situation where the number of cores is equivalent to the
number of tasks in the application. This calls for a new perspective on on-chip
processing resource management. When the number of cores is lower than the
number of application tasks, tasks must share processing resources. However,
the vast number of cores in many-core architectures means that sharing is no
longer a fundamental requirement. Tiles with processing cores can be viewed
as allocatable resources, similar to memory, which are dedicated exclusively to
an application as illustrated in Fig. 5.1. Based on this approach, there is a
clear separation between tasks belonging to different applications that might
be executing simultaneously. Tiles allocated by two different applications never
have access to the same data and never communicate. The operating system can
be simplified by giving the application direct control of the tiles when they have
been allocated. Application tuning, such as cache optimization, is not impacted
by interference between applications or unpredictable scheduling of tasks as it
was observed in Chap. 4. However, the vital advantage of this approach is that
there is no need to consider interoperability between programming models used
by applications executing simultaneously. The programming model used in tiles
allocated by one application does not need to consider the programming model
used in tiles allocated by other applications. This property is essential for the
Clupea architecture.

Tiles can be configured on allocation to support any application-specific
programming model requested by the application, e.g., one application may use
a message passing programming model while another uses cache coherent shared
memory. Furthermore, since tiles allocated by different applications will never
communicate directly, separation of applications for improved system security

56 5. Clupea: Configurable Support for Programming Models

Figure 5.1: Tiles are allocated by applications, which gain exclusive access to
their allocated tiles. Applications 1 and 2 use two distinct sets of allocatable
tiles. Memory interface tiles are shared.

can naturally be done at the tile level. This thesis focuses on programming
model support and the memory system. Therefore, system security aspects will
not be considered further.

5.2 System Architecture

The Clupea system architecture basically consists of tiles and a NoC intercon-
nect that interconnects all tiles as illustrated in Fig. 5.2. A tile-oriented operat-
ing system is assumed to handle tile allocation. When tiles are allocated by an
application, the operating system will configure and initialize the tiles according
to the need of the application before they can be used. The application is not
allowed to modify the tile configuration itself. The following subsections will
describe the tile architecture, the memory system, and the NoC architecture.

5.2.1 Tile Architecture

The system consists of tiles of different types. The main type of tiles is processor
tiles, which are allocatable tiles used for executing applications. The internal
architecture of a basic processor tile is centered around the Clupea NIP as illus-
trated in Fig. 5.2. The in-tile memories, i.e., caches and scratch-pad memory,
are assumed to have a combined size which is equivalent to the private tile
memories in recent tile-based architectures [53, 46]. The NIP interfaces all tile
components in addition to the NoC as described below. The NIP architecture

5.2. System Architecture 57

is discussed in Sec. 5.3.

• Processor core: The Clupea architecture has no restrictions on which
type of processor core that may be used in a tile. However, the application
allocating the tile must use a programming model that is compatible with
the capabilities of the core. Specialized processor tiles may have com-
putational accelerators attached or replacing the general processor core.
Exploration of processor cores and accelerator architectures are not con-
sidered in this thesis. Thus, a general purpose in-order 64-bit processor
core with co-processor interface that supports co-processor generated in-
terrupts is assumed.

• Scratch-pad memory: The scratch-pad memory, SPM, is a private
memory mapped into the address space of the local processor core and
can not be referenced directly be other tiles. Both the processor core and
the network interface have arbitrated direct access to the SPM.

• Instruction and data caches: The instruction and data caches are
private caches, which may cache both global memory and the local SPM.
The caches are partially managed by dedicated hardware cache controllers,
which are capable of handling accesses to addresses in the private SPM
and accesses to global addresses that results in cache hits only. Cache
misses are handled by the NIP, which is informed about the event in
a fashion inspired by previous works of Horowitz et al. [45] and Zeffer
et al. [109]. Only cache misses to global addresses require consistency
and coherence considerations. Thus by servicing these using the NIP, the
memory architecture can be altered by simply reprogramming the NIP
while cache hits and SPM caching are managed efficiently by the hardware
cache controller. The NIP has full access to read and modify the internals
of the cache, such as cache line data, tags and status bits. On a cache
miss, the caches block their processor core interface while the NIP updates
the cache contents.

5.2.2 Memory System

The memory system is based on the in-tile caches, the SPM, and special memory
interface tiles, which provide access to off-chip main memory. The number of
memory interface tiles is limited by the pin count of the chip. Memory interface
tiles can not be allocated, as it can not be assumed that the system has enough

58 5. Clupea: Configurable Support for Programming Models

Figure 5.2: Internal tile architecture of processor tile consisting of a processor
core with instruction and data caches (I$, D$) and scratch-pad memory (SPM).

memory interface tiles to provide one exclusively for each application. Main
memory is shared and mapped into the address space of all tiles, but how it
is accessed is determined by the programming model support offered by the
NIP configuration. The NIP implements the lower levels of the programming
model by transforming memory accesses and messages into packets which are
transferred across the NoC as illustrated in Fig. 5.3.

Servicing both global cache misses and all inter-tile communication in the
NIP means that the memory system is configurable for each tile independently
of the configuration of other tiles. Only the configurations of tiles allocated to
the same application must be compatible. The NIP controls where missing cache
lines are fetched from and thus implements both the memory consistency model
and the cache coherence protocol. For accesses to main memory the NIP must
explicitly fetch data from the memory interface tiles and insert it into the local
cache or SPM. This may happen implicitly on cache misses or when requested
explicitly by the processor core depending on the configuration of the NIP.
Through this configurability, the NIP can support a plethora of programming
models as shown in Fig. 5.3, including future programming models.

Virtual memory is assumed to be managed internally in the processor core
and the caches are physically tagged to avoid managing virtual address trans-
lation in the NIP.

5.2. System Architecture 59

Figure 5.3: NIP programming model configuration. The tiles allocated by Ap-
plication 1 have their NIPs programmed for shared memory support. At the
same time, the tiles allocated by Application 2 are programmed for message
passing programming model support through the NIP. Main memory is accessed
through non-allocatable memory interface tiles.

60 5. Clupea: Configurable Support for Programming Models

5.2.3 NoC Architecture

The NoC interfacing is a central part of the NIP architecture and thus the
NoC architecture has great impact on the NIP architecture. Many different
NoC architectures have been proposed with different characteristics [23, 14, 33].
The Clupea architecture attempts to be as NoC architecture independent as
possible. To reduce the NoC router complexity and implementation costs, only
very basic services from the NoC are assumed. The NoC routers are assumed
to be simple packet forwarding units without support for resource reservations
or virtual channels. The Clupea architecture can be easily adapted to take
advantage of NoCs that provide more elaborate services.

The NoC used in the Clupea architecture is a connection-less packet-switched
source-routed network that supports two packets sizes, one which can be used for
requests and one that can contain an entire cache line as payload. The packets
are serialized and transferred as a stream of phits. The topology of the NoC
does not influence the Clupea architecture, but for the purpose of illustration,
a two dimensional mesh is assumed.

Flow Control

Message dependent deadlocks are major issues in NoCs [1], which can be avoided
by careful buffer sizing, using multiple virtual networks or end-to-end flow con-
trol. The former two approaches require design time knowledge about the exact
communication pattern generated by the applications and are thereby incom-
patible with the aim of a flexible many-core architecture. Instead, deadlocks
must be solved through end-to-end flow control implemented in the NIP.

The flow control scheme used in the Clupea architecture is based on packet
acknowledgements and time-outs. Packets may be dropped to reduce network
congestion and prevent buffer overflows in the NIPs. This scheme has minimal
best case latency. In contrast, credit-based flow control has an inherent issue
of distributing credits to potential senders and the size of the NoC buffer for
incoming packets must match the number of credits. The packet acknowledge-
ment scheme implies no restrictions on the NoC buffers, however, packet loss
must be considered in the communication protocol or handled by the NIP. For
instance, this can be done in the Clupea NIP using a retransmission buffer in
the SPM to store copies of all outgoing packets until they have been acknowl-
edged. Furthermore, an added benefit of this flow control scheme is integrated
support for fault-tolerance, where faulty packets are dropped by the NoC.

5.3. Network Interface Processor Architecture 61

Packet field Description

Route The encoded route to the destination
generated by the sending NIP.

Destination The identity of the destination tile.
Source The identity of the source tile.
Reply The identity of a third party tile, which

may be the destination of a subsequent
reply message

Type Message type identification.
Address A reference to a global address.
Sequence number Packet flow control sequence number.
Data payload Optional payload data that has the size

of a cache line.

Table 5.1: NoC packet layout.

Packet Layout

The packet layout is essential for fast packet processing in the NIP and proper
support for the flow control scheme. The packet fields are listed in Tab. 5.1.
The NoC routers only make use of the encoded route, the remaining fields are
used by the NIP at the destination. Thus, the use of the remaining fields is
optional and they may be used for other purposes than the listed descriptions.
It is assumed that all caches use the same cache line size.

5.3 Network Interface Processor Architecture

The NIP is the most essential part of the Clupea architecture as it is the key
component for configurable support for programming models. The NIP archi-
tecture must therefore provide great flexibility while it must allow efficient data
transfers between caches, SPM and the NoC at the same time. On top of this,
the NIP should have low hardware complexity. Using an extra general purpose
processor core as a dedicated communication processor is overly expensive and
lacks interfaces to manage the caches and access the NoC. Efficient access to
these interfaces is essential for providing a low NIP latency. To address this,
the NIP architecture is based on a specialized domain-specific processor pipeline
to provide flexibility while maintaining a reasonable hardware implementation
cost.

62 5. Clupea: Configurable Support for Programming Models

The NIP pipeline supports a limited instruction set, which allows execution
of basic control algorithms and is highly optimized for moving data between the
NoC, the SPM and the caches. To facilitate these data transfers, the pipeline has
integrated interfaces to the caches, SPM, and NoC. Data can be moved directly
between these interfaces using special instructions. Based on this approach,
programming model support can be configured when the tile is allocated by
simply programming the NIP. The overall architecture is illustrated in Fig. 5.4
and will be discussed in more detail in the following subsections.

5.3.1 Processor Pipeline

The basic idea behind the NIP pipeline is to avoid moving data through registers
as much as possible and only support the basic arithmetic and logic operations
that are needed to perform address manipulation and manage simple data struc-
tures. The pipeline supports two word sizes to reduce the hardware costs. The
basic word size is 24 bits and allows the entire SPM to be mapped into the ad-
dress space of the NIP. The arithmetic/logical unit, ALU, in Fig. 5.4 supports a
range of operations on basic words. The extended word size is 64 bits and is in-
tended to be used for global addresses. The “E-logic” unit supports only simple
shifting, bit masking and logical operations on extended words. The pipeline
includes a set of general purpose registers of both word sizes which are labelled
“GP regs” in Fig. 5.4. Special instructions allow data to be moved between the
basic and extended registers. In addition to these, a number of special purpose
registers, “SP regs”, are associated with the caches, processor core co-processor
interface and the NoC. These will be described later.

The NIP code is stored in a dedicated instruction memory, which is popu-
lated by the operating system when the tile is configured on allocation. This
ensures that NIP instructions can be fetched in a single cycle and avoids con-
tention for accessing the SPM. The instruction memory is assumed to hold a
few thousands of NIP instructions. The NIP pipeline supports four hardware
threads with individual program counters and private general purpose registers.
The special purpose registers are globally shared along with a small number of
general purpose registers that allow data to passed between the threads. The
NIP architecture uses special hardware semaphores, called lock variables, for
synchronization and thread scheduling. The hardware threads and lock vari-
ables will be further discussed later.

The NIP supports four types of instructions: i) Basic arithmetic and logic
instructions, ii) control instructions such as branch and jump, iii) load and store
operations that can access the SPM, and iv) special instructions that include

5.3. Network Interface Processor Architecture 63

D
a
ta

Ta
g

B
it

s

I$

D
a
ta

Ta
g

B
it

s

V
ic

ti
m

 b
u
ff

e
r

D
$

In

O
u
t

Phit

Phit

N
o
C

S
P
M

D
a
ta

E
x
te

n
d
e
d

B
a
s
ic

G
P
 r

e
g
s
.

S
P
 r

e
g
s
.

ALU E-logic

M
.

ty
p
e

S
.

b
it

s
C

.
s
e
t

D
$

 M
.

a
d
d
r.

D
$

I$
 M

.
a
d
d
r.

N
o
C

 i
n

H
e
a
d
e
r

fi
e
ld

s

N
o
C

 o
u
t

H
e
a
d
e
r

fi
e
ld

s

C
o
-p

ro
c
.

in

C
o
-p

ro
c
.

o
u
t

S
P
M

 p
tr

S
P
M

 p
tr

E
x
t.

 e
v
e
n
t

S
W

 c
o
n
tr

o
ll
e
d

L
o
c
k
 v

a
ri

a
b
le

s

T
h
re

a
d

S
c
h
e
d
u
le

r

N
IP

 c
o
d
e

P
C

 0
P
C

 1
P
C

 2
P
C

 3

D
a
ta

 p
a
th

c
o
n
tr

o
l

T
h
re

a
d

c
o
n
tr

o
l

T
im

e
r

Figure 5.4: NIP architecture overview. Duplicate register files for thread private
registers are omitted.

64 5. Clupea: Configurable Support for Programming Models

instructions for manipulating caches, data movement, NoC packet header en-
coding and thread synchronization. The former three types of instructions may
operate on general purpose registers and special purpose registers. However,
only logical instructions and instructions for moving data to and from basic
word registers can operate on extended registers. The SPM allows both basic
and extended words to be loaded and stored. The purpose of the specialized
instructions will be discussed in the following subsections.

5.3.2 Interfaces

The interfaces between the NIP and the NoC and internal tile components are
different by nature and they are therefore integrated into the NIP architecture
in different ways. The interfaces are generally controlled through special NIP
instructions and special purpose registers.

The NoC interface of the NIP consists of two FIFO buffers for incoming and
outgoing packets, which provide direct access to the NoC. The width of the
FIFO buffer interface matches the phit width of the NoC. Combined with phit
sized access to the NIP interfaces this ensures that data can be moved efficiently
between the NoC and the internal tile components. However, this also means
that phits can not be loaded directly into NIP registers. Instead, the packet
header of incoming packets is explicitly decoded into a set of special purpose
registers using a single header decode instruction. The NIP architecture has a
special purpose register for each of the NoC packet header fields listed previously
in Tab. 5.1 to ensure fast packet decoding. Similarly, the header of outgoing
packets is constructed by setting up the header fields in special purpose registers
and encoding them into a header phit which is inserted in the outgoing NoC
FIFO using a single instruction. Packet payload phits are explicitly moved to
or from the caches or the SPM to the NoC buffers using special data movement
instructions, which will be discussed later in Sec. 5.3.5.

The NoC is assumed to be source routed and based on a route table set
up in the SPM by the operating system. The packet route is loaded into the
NoC buffer by the NIP. There is no hardware support for the end-to-end flow
control scheme. Flow control is implemented through NIP code which generates
acknowledgement messages and stores copies of all outgoing packets in the SPM
until they have been acknowledged by the receiver. This approach allows the
buffers to be resized to match the needs of the application and thus potentially
saves hardware resources compared to hardware buffers.

The cache interfaces are shared with the processor core, which is blocked
on cache misses. The NIP has additional access to manipulate the internal

5.3. Network Interface Processor Architecture 65

bookkeeping information in the caches to allow it to handle cache misses. On
data cache miss, the data cache special purpose registers, shown in Fig. 5.4,
are loaded with the cache miss address, the cache miss type, and the status
bits and the cache way of the cache line, if it is already present in the cache,
i.e., in case of insufficient write permissions. Using special instructions, the
NIP can manipulate cache status bits, update tags, control the cache victim
buffer and transfer cache lines directly between the caches and the NoC buffers.
Full control over the victim buffer means that the cache replacement policy is
implemented by the NIP. The instruction cache has a slightly simpler interface
as instructions are typically read-only. Thus, the instruction cache only loads
the miss address into the NIP special purpose register.

The processor core interface contains two pairs of extended special purpose
registers for transferring data between the NIP and the co-processor interface
of the processor core. These allow extended word sized data and pointers to
be passed directly between the NIP and the processor core. Transfers from the
NIP to the processor core cause an interrupt in the processor core to allow the
processor core to detect new data in the co-processor interface registers.

5.3.3 Hardware Threads

The NIP has support for four hardware threads as mentioned earlier. The
reason for this aggressive approach is the fact that four components may request
services from the NIP at any given time.

• Instruction cache: Instruction cache misses to instructions stored on
global addresses. The NIP must fetch the missing instructions and insert
them into the instruction cache.

• Data cache: Data cache misses to data stored on global addresses. The
NIP must locate the missing cache line or upgrade the cache line permis-
sions to match the memory operation.

• Processor core: The local processor core can generate explicit requests
to the NIP through its co-processor interface.

• NoC: Any incoming packet must be processed by the NIP to determine
its message.

Using four hardware thread contexts, large context switching overheads can
be avoided by dedicating a thread to handle a particular source or interface. The

66 5. Clupea: Configurable Support for Programming Models

Figure 5.5: NIP thread states (left) and example on execution of two threads
(right).

hardware thread context allows the NIP to switch from processing, for instance,
a data cache miss to processing an incoming NoC packet in a few cycles.

Each thread has its own program counter and private general purpose reg-
ister file. Thread scheduling is non-preemptive and done in hardware. Thread
context switching incurs only the overhead caused by starting up the NIP
pipeline with a new stream of instructions. The thread execution model is
based on three states: Executing, blocked or ready as shown in Fig 5.5. Only
one thread can be executing at any time and this thread will continue execution
until it is blocked by an access to a lock variable. These will be described shortly.
Blocked threads can not be scheduled for execution until their unblock condi-
tions are met and they enter the ready state. The next thread that is scheduled
for execution is selected among the threads in the ready state. The main advan-
tage of this scheduling scheme is the fact that it ensures that threads are never
blocked unexpectedly and thus the need for synchronization between threads is
reduced to a minimum. For example, there is no need to coordinate accesses to
the NoC buffer to avoid interference between threads, since the threads can not
be pre-empted.

5.3.4 Lock Variables

External requests to the NIP and internal synchronization between NIP threads
are based on lock variables in the NIP architecture. Lock variables are special-
ized hardware locks that can be set, read and cleared. Each variable is either
associated with an external event or controlled by the NIP threads. Examples
of external events that are associated with lock variables are cache misses in the
data cache and the arrival of a new packet in the incoming NoC packet buffer.

5.3. Network Interface Processor Architecture 67

The external event lock variables are set by hardware whenever the associated
event occurs. Software controlled lock variables are used for synchronization
among the NIP threads and are set using a special NIP instruction.

A NIP thread can read lock variables through polling and blocking instruc-
tions, which may specify one or more lock variables to be read in parallel.
Blocking access to a lock variable which has not been set will block the NIP
thread and put it into the blocked state as illustrated in Fig. 5.5. The thread is
unblocked and scheduled for execution when all the accessed lock variables have
been set. Thus, the lock variables offer an efficient mechanism for suspending
NIP threads until a certain set of events have occurred. For example, a thread
responsible for handling data cache misses can block itself until the next data
cache miss occurs. Most lock variables are unset by the NIP thread, while a few
are unset by hardware, such as the lock variable indicating a full outgoing NoC
buffer.

5.3.5 Data Movement

Efficient primitives for moving data between interfaces is essential for the NIP
architecture. Since data only needs to be moved rather than processed, there is
no need to pass the data through the main data path of the NIP. Instead, the
NIP architecture supports direct data movement for this purpose.

Phit-sized data can be transferred directly between the interfaces using spe-
cial NIP instructions in a single cycle. The supported data sources and desti-
nations are: The NoC buffers, cache lines in the instruction and data caches,
and the SPM, which all provide phit sized data access as illustrated in Fig. 5.4.
Packet payload phits can be moved directly into cache lines and the NoC packet
route header phit can be loaded directly from the route table in the SPM to
the outgoing NoC buffer. The source and destination addresses of the SPM
handle is controlled through two special purpose pointer registers. Phit-sized
data movement is only possible between the NoC buffers and other interfaces
to minimize the hardware costs.

5.3.6 Configuration Example

To understand the NIP architecture and programming better, the following
example in Alg. 1 and 2 illustrate the pseudo-codes for two NIP threads that
are involved in handling data cache misses. The threads use lock variables to
wait for a new cache miss and the incoming reply packet from the memory
interface tile. Data movement instructions are used for copying the cache line

68 5. Clupea: Configurable Support for Programming Models

directly into the cache. The first thread, Alg. 1, generates a NoC message to
the memory interface tile and the other thread, Alg. 2, receives incoming NoC
messages and inserts the missing cache line into the data cache.

Algorithm 1 NIP thread pseudo-code example for handling data cache misses.
Write back of victim cache line and retransmission buffering are omitted.

{Block thread until data cache miss}
start: wait(Data cache miss lock variable)
{Set NoC packet header fields}
set msg header out destination = memory tile id;
set msg header out address = data cache miss address;
set msg header out type = memory read;
set msg header out reply id = tile id;
{Load route into outgoing NoC buffer}
load phit(memory tile id) → NoC out buffer;
{Create packet header. The packet has no payload}
noc header assemble → NoC out buffer;
jump → start

5.4 Support for Programming Models

The generic NIP architecture does not provide support for any default program-
ming model and does not enforce any basic programming model. The NIP must
be programmed before the tile can be used. This section will briefly discuss
how a few example programming models can be supported on the Clupea ar-
chitecture. A more thorough discussion on implementation of one programming
model, cache coherent shared memory, is given Sec. 5.5.

5.4.1 Shared Memory Models

Non-coherent shared memory can be supported directly by the NIP architec-
ture. Cache misses are handled by the NIP using the lock variables associated
with the caches. The NIP sends a request packet to the memory interface tile
to fetch the missing cache line as it was previously described in Alg. 1 and
2. In this configuration the NIP provides transparent access to main memory
through the caches and thus provides a shared memory programming model to
the application executing on the allocated processor tiles.

5.4. Support for Programming Models 69

Algorithm 2 NIP thread pseudo-code example for handling incoming NoC
messages.

{Block thread until a NoC message is received}
start: wait(Incoming NoC buffer not empty lock variable.)
noc header disassemble ← NoC in buffer;
{Check message type}
if msg header in type == memory reply then

{Move packet payload, the cache line, into the data cache phit by phit.}
move phit NoC in buffer → data cache 0;
...
move phit NoC in buffer → data cache n;

else

{Other message type}
end if

jump → start

A simple implementation of cache coherent shared memory is to emulate
a snooping cache coherence protocol by sending cache lines requests to all al-
located tiles and the memory interface tile. If any of the allocated tiles reply
with a cache line it can be assumed to be the most recent copy. Otherwise, the
cache line will be provided by the memory interface tile. Due to the pseudo-
broadcasting, this approach scales poorly as the number of tiles increases. Other
more sophisticated alternatives scale better. One example of these will be de-
scribed in Sec. 5.5.

Support for address space partitioning and thread private data can also be
provided by the NIP. Based on the cache miss address the NIP may perform dif-
ferent actions depending on which memory partition it belongs to. This concept
is known from thread private and thread shared variables in OpenMP [81, 82]
and partitioned global address space programming models [28, 21]. For instance,
memory that is thread private requires no coherence, while global memory that
is shared by multiple threads requires coherence. In this case the NIP can han-
dle the two situations differently and thereby optimize cache misses on accesses
to private data rather than treating all cache misses as coherent. This model
must be supported by the programming language or the compiler.

70 5. Clupea: Configurable Support for Programming Models

Processor core

Application

Tile x0

SPM

Retrans.
buffer

Route
table

Private
App. data

Message
buffer

thread
NoC

Processor

thread

NIP

Unused

Unused

1. Msg dest.
Payload ptr.

2. Payload

3. Ack

Processor core

Application

SPM

Retrans.
buffer

Route
table

Private
App. data

Message
buffer

thread
NoC

Processor

thread

NIP

Unused

Unused

5. Msg payload

6. Msg recv.

7. Ack

Tile x1

4. Msg

Figure 5.6: Message passing using the NIP as a message passing co-processor.
Two hardware threads are used to support message passing. Caches are omitted
for clarity. The unused NIP threads may be used to support the caches.

5.4.2 Message Passing Models

Simple message passing between allocated tiles can be supported using the direct
processor core/NIP interface, which makes the NIP appear as a message passing
co-processor to the processor core. Messages are send by the processor core by
passing a pointer to the message payload in either the data cache or the SPM to
the NIP through co-processor interface registers along with additional message
header information such as destination tile and messages size. Based on this
information the NIP constructs and sends the messages. Completion of the
message transfer is acknowledged to the processor core by the NIP through the
co-processor interface to indicate safe reuse of the payload memory space. These
steps are illustrated in Fig. 5.6.

Incoming messages are stored in the SPM by the NIP in a pre-allocated
message buffer. The processor core is notified of the message arrival through
the co-processor interface, which interrupts the processor core. The processor
core acknowledges the messages to the NIP through the co-processor interface to
signal safe reuse of the message buffer to the NIP. Message reordering and han-
dling of outstanding asynchronous send and receive operations is implemented
by higher level software layers running on the processor core.

Additionally, it is possible to support single word messages where the mes-
sage payload is passed directly between the NIP and the processor core through

5.5. Implementing Cache Coherent Shared Memory 71

the co-processor interface registers. This approach will support very low latency
message transfers suitable for fast inter-tile signaling as buffer management is
completely avoided. Support for single word messages is also possible combined
with a shared memory programming model.

DMA transfers [53] can also be supported by the Clupea architecture. Pass-
ing a pointer from the processor core to the NIP through the co-processor inter-
face, the NIP takes care of copying data from main memory to the local SPM
by sending one or a series of memory requests to the memory interface tile.
Similarly, data transfers from the local SPM to main memory can be handled
by the NIP.

Transfers between tiles can also be supported by mapping the SPMs into a
global shared memory map. In this case the NIP would determine the desti-
nation tile based on the memory mapped SPM address and support the global
memory space view.

5.5 Implementing Cache Coherent Shared Mem-

ory

To evaluate the capabilities and the configurable support for programming
model of the Clupea architecture, this section will discuss implementation of
cache coherent shared memory in more detail. This implementation will be
used in Chap. 6 as basis for performance modeling and evaluation of the Clu-
pea architecture. Other programming models could likewise be implemented on
the Clupea architecture, however, this work will only consider cache coherent
shared memory in detail. The shared memory model is used in a wide range of
systems and is the foundation of many programming models.

5.5.1 Introduction

The Clupea architecture targets many-core systems and therefore requires a
scalable implementation of cache coherent shared memory. Previous large-
scale cache coherent shared memory multiprocessors are multichip multipro-
cessors based on processor nodes with local caches [64, 59, 91, 6, 62], a portion
of main memory and a protocol processor that implements a directory-based
cache coherence protocol. The Clupea architecture shares the basic architec-
ture with these systems, i.e. distributed processors with private caches and a
non-broadcasting interconnect, and thus it is obvious to use those of the im-

72 5. Clupea: Configurable Support for Programming Models

plementation concepts known from these systems that can be applied in the
Clupea architecture.

Implementation Challenges

The memory system of the Clupea many-core architecture is fundamentally
different from the memory systems of previous multichip multiprocessors in two
ways:

1. Main memory is off-chip and accessed through memory interface tiles as
discussed in Sec. 5.2.2. The number of memory interface tiles is limited by
the pin count of the chip and will lead to a high processor tile per memory
interface tile ratio.

2. Accessing off-chip main memory is always orders of magnitude slower than
accessing on-chip caches and SPMs. This is true for both caches and SPMs
in both the local tile and in remote tiles.

Due to these conditions it is crucial for the Clupea cache coherent shared
memory implementation to keep any important data on-chip [16]. Off-chip mem-
ory should be accessed as little as possible to avoid the latency and minimize the
memory contention caused by the high number of processor cores per memory
interface.

The previous multichip multiprocessors [59, 91, 6] are based on distributed
directories implemented by complex protocol processors that store the directory
information in the local portion of main memory. This approach is unsuitable for
on-chip architectures since accessing directory information in main memory is
too expensive for resolving cache misses that may only require an on-chip cache-
to-cache transfer. CMP architectures with shared last-level caches address this
issue by maintaining directory information at the last-level cache. However, it
is a prerequisite of this approach that the last-level cache must include copies
of cache lines of all other caches. Thus, scarce on-chip memory resources are
spent on the duplicate cache lines.

The Clupea architecture has no shared last-level caches and only limited
on-chip memory resources, so it is not possible to hold all directory information
on-chip. Furthermore, the processing capabilities of the Clupea NIP can not
match the previous protocol processor chips and it is therefore infeasible to
have a directory in every tile. Hence, the main challenge of implementing cache
coherent shared memory on the Clupea architecture is to implement coherence
directories with the available on-chip resources, i.e. allocatable processor tiles.

5.5. Implementing Cache Coherent Shared Memory 73

Figure 5.7: Allocated tiles for cache coherent shared memory applications. Each
application allocates a number of tiles to become either application or DTs.

Adding dedicated hardware for this purpose will increase hardware costs and
conflict with the aim of having flexible programming model support.

Implementation Overview

The proposed cache coherent shared memory implementation for the Clupea
architecture is based on a directory-based cache coherence protocol. Using the
limited memory and processing resources of each tile to implement a distributed
directory in every tile allocated by the application is expensive. Instead, di-
rectories are implemented using ordinary allocatable processor tiles, which are
dedicated to implement directories. The directories serve as coordination points
and hold no cache line copies locally. This means a clear separation between
the configurations of processor tiles that execute the application and processor
tiles that are used as directories. These will be referred to as application tiles,
AT, and directory tiles, DT, respectively. An application that assumes cache
coherent shared memory needs to allocate both ATs and DTs for programming
model support as illustrated in Fig. 5.7. The configuration of ATs and DTs is
assumed done by the operating system when the application is loaded.

The pressure on the DTs can be adjusted to fit the needs of the application by
changing the ATs per DT ratio. Memory intensive applications which generate
many cache misses may benefit from having more DTs, while the number of
DTs can be reduced for less demanding applications.

The cache coherence protocol is inspired by the write-invalidate MOESI SMP
directory protocol implementation in the GEMS [71] multiprocessor simulator.

74 5. Clupea: Configurable Support for Programming Models

The protocol has been reimplemented and modified to suit the Clupea architec-
ture. The protocol states have been reduced to Modified, Shared, Owned and
Invalid to simplify the protocol. Directories forward cache lines between on-chip
caches whenever possible instead of accessing main memory. Furthermore, main
memory write acknowledgement has been introduced to avoid race-conditions
caused by the fact that the directories are not co-located with memory inter-
faces.

The cache coherence protocol implementation consists of two main parts: i)
the local NIP configuration in the ATs and ii) the configuration of DTs. The
overall behavior of these two parts are illustrated by the simplified state dia-
grams in Fig. 5.8. Transition states, acknowledgement messages and messages
related to cache line write-back are omitted for clarity.

Cache lines in the data caches of the ATs contain status bits that determine
the cache line state. The cache line state is either modified, shared or invalid:
Modified cache lines have read-write permission, shared cache lines are read-
only and invalid cache lines do not hold valid data. The cache controller checks
the cache line permissions for every cache access and generates a cache miss
event in the NIP if the referenced cache line is not present in the cache or if the
processor core attempts to write to a shared cache line. Depending on the cache
miss type, the NIP sends a request for either a read-only or a writable copy of
the cache line to the DT. A shared read-only copy is requested by a “GETS”
request and an exclusive read-write copy is requested by a “GETX” request as
illustrated in Fig. 5.8a. Cache lines are invalidated either as a part of a cache
line replacement or by request from the DT. The DT can request a cache line
copy to be send to another AT using a “Fwd GETS” or “Fwd GETX” message.
“Fwd GETX” and “Inv” requests from the DT invalidates the cache line.

The DTs keep track of the cache copies using a list of current sharers and
four states: Modified, shared, owned and invalid. Cache lines in the modified
state reside exclusively in one cache and this cache has read-write permission.
Shared cache lines are read-only and may reside in several caches. Cache lines
in the owned state are similar to shared cache lines, but have been modified
previously. Thus, the last copy of this cache line must be written back to main
memory when it is evicted from the AT data cache. Invalid cache lines are not
currently cached in any AT in the system. The actions of the directory depend
on both the directory state of the cache line and the request as illustrated in
Fig. 5.8b.

Cache misses generally involve a series of messages and at least three tiles:
The local AT, the DT and a remote tile that may be either another AT or a
memory interface tile. For instance, a data cache read miss in an AT causes

5.5. Implementing Cache Coherent Shared Memory 75

M

S

I

W ⇒ GETX→

R, Fwd_GETS←

Fwd_GETS←

Inv←,

Fwd_GETX←,

Replacement

Fwd_GETX←,

Replacement

R ⇒ GETS→

W ⇒ GETX→

W, R

Incoming message←
Outgoing message→

I

M

S

O

GETS← ⇒ Fwd_GETS→

GETX← ⇒

Fwd_GETX→

GETX← ⇒ Fwd_GETX→

GETS← ⇒ Fwd_GETS→

GETS← ⇒ Fwd_GETS→

GETX← ⇒

Fwd_GETX→, INV→

GETX← ⇒

Fwd_GETX→, INV→
GETS← ⇒

Fwd_GETS→

a) Application tile b) Directory tile

Figure 5.8: Overview of cache line states and messages in the cache coherence
protocol: a) The local part of the protocol in the ATs, and b) the directory
protocol. Messages and state transitions in the directory related to cache line
write-back are omitted.

the NIP to send a “GETS” request to a DT. The DT sends a “Fwd GETS”
request to either a remote AT which holds a copy of the requested cache line
or the memory interface tile if no copies exist on-chip. The remote AT, or
memory interface tile, replies by sending a cache line copy directly to the original
requesting AT. Meanwhile, the NIP in the local AT determines the victim cache
line and moves it to the victim buffer. Following this, the NIP sends an eviction
request to the DT. Depending on the state of the victim cache line it is either
deleted or written back to main memory. The eviction process is not shown in
Fig. 5.8.

The cache coherence protocol assumes reliable communication, which is not
provided by the NoC. Thus, all messages must be stored in a retransmission
buffer and the receiver must acknowledge reception of all messages.

The following two subsections will cover the implementation details of the
ATs and DTs.

5.5.2 Application Tile Configuration

The configuration of the NIP in the ATs implements the AT part of the cache
coherence protocol in Fig. 5.8a to provide support for the cache coherent shared
memory programming for the application executing on the processor cores.

76 5. Clupea: Configurable Support for Programming Models

Figure 5.9: Overview of the data structures and NIP threads in the ATs. Arrows
indicate data structure access. Accesses to the retransmission buffer and route
table are omitted for simplicity.

Cache misses to global addresses are handled by the NIP which request the
missing cache line from a DT. Also, the NIP must forward and invalidate cache
lines in the local cache on request by the directories. Fig. 5.9 illustrates how
this is implemented.

Thread Configuration

The NIP configuration uses only three of the four NIP threads. These manage
the instruction cache, data cache and NoC interfaces respectively. The aim of
this threading approach is to reduce inter-thread synchronization and thread
switching by using one thread to handle all actions related to a cache miss or an
incoming message. All threads that send or receive messages from the NoC must
also implement the necessary flow control mechanisms. These will be discussed
later.

• Data cache thread: The purposes of this thread is to send cache line
requests to the DTs and to manage cache line replacements. The data

5.5. Implementing Cache Coherent Shared Memory 77

cache thread awaits data cache misses using the associated lock variable.
Sending a cache line request involves a number of steps:

1. The first step is to determine the cause of the miss, i.e. if it requires
a read-only or read-write copy of the cache line.

2. When using multiple DTs, the responsible directory is selected based
on the address of the missing cache line.

3. Send a request for a cache line copy to the DT.

4. Move victim cache line to victim buffer if replacement is necessary.
Replacement is not necessary if the cache miss is due to a write to a
shared state cache line.

5. The final step is to send an eviction request to the responsible DT if
a victim cache line has been placed in the victim buffer.

Subsequently, the data cache thread blocks itself while waiting for the next
data cache miss. Replies from the DT and the insertion of the missing
cache line into the data cache are handled by the NoC thread.

• NoC thread: The NoC thread handles all incoming NoC messages. The
NoC thread awaits incoming NoC packets using the associated lock vari-
able. The first step of the NoC thread is to decode the message header to
determine the message type. The following actions depend on the message
type of the received message:

1. Incoming cache lines that have been requested by the data cache
thread or the instruction cache thread are inserted into the caches.
The completion of the cache miss is confirmed by sending a confir-
mation message to the directory. This indicates to the directory that
the AT now holds a copy of the cache line.

2. Cache line copy requests from DTs are handled by sending a reply
message containing the cache line to the AT specified in the DT re-
quest. “Fwd GETX” requests require the cache line to be invalidated
afterwards.

3. Invalidation requests from DTs are handled by setting the status bits
of the specified data cache line to invalid.

• Instruction cache thread: The instruction cache thread is similar to
the data cache thread with a few exceptions. Instructions do not require
any cache coherence considerations. Instruction cache misses are therefore

78 5. Clupea: Configurable Support for Programming Models

processed by the instruction cache thread by sending a request for a cache
line copy directly to the memory interface tile. Furthermore, eviction
requests are not necessary as the instruction cache lines are never modified.

Flow Control and Routing

To ensure that messages can be retransmitted in case of packet loss in the
NoC, as discussed in Sec. 5.2.3, all threads must store a copy of all outgoing
messages in the retransmission buffer in the SPM. The retransmission buffer is
managed as a software controlled circular buffer. All packets are identified by
their destination and a sequence number. Separate sequence number counters
are maintained in the SPM for all destination tiles. All incoming messages
that are received by the NoC thread, except acknowledgement messages, are
acknowledged by sending an acknowledgement message to the sender. Incoming
acknowledgement messages are handled by the NoC thread, which clears the
corresponding entry in the retransmission buffer. Message retransmission is
based on time-outs signalled by a hardware timer in the NIP that is accessible
as a lock variable. If a message has not been acknowledged before the time-out,
it is assumed lost and it will be retransmitted by the NoC thread. Duplicate
messages due to false time-outs are detected by the receiver using the message
sequence numbers. If the retransmission buffer is full, incoming requests packets
are dropped to ensure that acknowledgements can get through and free up
retransmission buffer space.

Routes to all tiles involved in executing the application are maintained in
the route table in the SPM as illustrated in Fig. 5.9. The route table is indexed
by the destination tile identity and the route is copied to the outgoing NoC
buffer.

5.5.3 Directory Tile Configuration

The DTs are processor tiles dedicated to supporting the cache coherent shared
memory programming model. Hence, all in-tile resources of the DTs, including
the processor core, can be used to implement the directory part of the cache
coherence protocol. The directory is an inherent point of contention in the sys-
tem that may lead to queuing of requests in the incoming NoC buffer during
contented periods. According to Little’s law [67], the size of the queue is pro-
portional to the directory latency. Increasing the directory latency will not only
increase the latency of the directory itself, it will also increase the time spent
queuing at the directory significantly. Both the queuing time and the latency

5.5. Implementing Cache Coherent Shared Memory 79

Figure 5.10: Overview of the data structures and NIP threads in the DTs.
Arrows indicate data structure access. Accesses to the retransmission buffer
and route table are omitted for simplicity.

of the directory itself contribute to the cache miss latency experienced by the
ATs. It is therefore important to minimize the directory latency.

To mitigate this issue, the DTs use both the NIP and the local processor
core to process directory request. Similar to the LimitLESS cache coherence
protocol of the MIT Alewife multiprocessor [17], common case directory requests
are handled by the NIP, while corner cases are off-loaded to the processor core.

Directory Data Structures

The Clupea architecture has no dedicated memory for storing directory infor-
mation. Instead, the directory information, i.e., the state and the list of sharers
of all cache lines currently cached by data caches of the ATs, must be stored
in main memory and the SPMs of the DTs. To take advantage of the spa-
tial and temporal locality of the directory accesses, the SPM is used to hold a
software-managed directory cache, DC. The DC caches the directory data stored
in off-chip main memory as illustrated in Fig. 5.10.

The DC is managed by the processor core and the NIP can only access

80 5. Clupea: Configurable Support for Programming Models

directory information in the DC. Thus, on DC misses, the NIP hands over the
request to the processor core, which processes the request and updates the DC.
By using the processor core to manage the DC, the data cache of the DT is
used to cache the directory data stored in main memory. Hence, the cache line
directory data can be found in three locations: i) the DC in the SPM, ii) the
data cache in the DT, or iii) the off-chip main memory. Increasing the number
of DTs will decrease the number of cache lines handled by each directory and
generally decrease the probability of a DC miss. Furthermore, the DC miss rate
can be improved by selecting a proper DC block size and associativity [72].

The directory data is stored using a two-level scheme [2]. DC entries are
optimized for common case directory accesses and reduced memory usage. Each
entry consists of three parts that can be mapped into 64 bits: i) The cache line
state. ii) A vector of the IDs of the first five ATs that hold a copy of the cache
line, i.e. the sharers. An extra bit is used to indicate if there is more than
five sharers. This is similar to the directory entries of the LimitLESS cache
coherence protocol [17]. iii) A pointer to any waiting requests in the recycle
buffer, which will be described later.

Directory entries in main memory use a bit field to represent sharers to
allow the number of sharers to increase beyond five. As the NIP can only access
directory information in the DC, requests for cache lines with more than five
sharers must also be handled by the processor core.

Incoming requests for cache lines that are currently in a transition state
can not be processed immediately. Instead, they are temporarily stored in the
recycle buffer in the SPM. The size of this buffer is bounded by the number of
possible outstanding cache misses in the system. When the cache line leaves the
transition state, the request is fetched from the recycle buffer and processed.

Similar to the ATs, the DTs have route information and the retransmission
buffer in the SPM.

Thread Configuration

The DT uses all four NIP threads and the processor core to implement the
directory. The NIP threads are responsible for the following tasks:

• NoC thread: The NoC thread handles all incoming messages and im-
plements the part of the cache coherence protocol that is handled by the
NIP. Processing of common case directory requests involve the following
steps:

5.5. Implementing Cache Coherent Shared Memory 81

1. First, directory information is read from the DC using the address of
the requested cache line.

2. If the cache line is not in a transition state, a cache line request is
sent to the first sharer or the memory interface tile, if there are no
current sharers. If the cache line is in a transition state, the request
message is moved to the recycle buffer and processed later.

3. Invalidation requests are sent to all sharers if an exclusive read-write
cache line copy is requested.

4. The directory information in the DC is updated to reflect the new
state of the cache line.

5. If a request in the recycle buffer is pending for the cache line, it is
processed and removed from the recycle buffer.

As mentioned previously, the NIP can only handle request for cache lines
that are shared by five or fewer ATs and that have its directory infor-
mation available in the DC. In the remaining cases, the request is moved
to the SPM and the request is passed on to the processor core using the
co-processor interface. The affected DC line is set to a locked state to
avoid race-conditions between the NIP and the processor core. The DC
line is later unlocked by the processor core, when it has been updated.
Additionally, the NoC thread is also responsible for handling incoming
data and instruction cache lines that have been requested by the data and
instruction cache threads.

• Processor message thread: The processor message thread allows the
processor core to send request and invalidation messages to ATs. The
thread blocks on the lock variable associated with the co-processor in-
terface of the processor core. As a part of handling off-loaded directory
requests the processor core forwards cache line requests and sends invali-
dation messages. These messages are constructed by the message thread
on request by the processor core.

• Data cache thread: The data cache thread awaits data cache misses
caused by the processor core. Only directory information is accessed in
main memory by the processor core. Thus, missing cache lines can be
requested directly from the memory interface tile.

• Instruction cache thread: Similar to the data cache thread, the in-
struction cache thread awaits instruction cache misses and requests miss-
ing cache lines from the memory interface tile.

82 5. Clupea: Configurable Support for Programming Models

Figure 5.11: Cache read miss example. The missing cache line is fetched from
a remote tile through the directory. Acknowledgement messages are omitted.

The processor core executes code that waits for interrupts from the co-
processor interface caused by the NIP. Depending on the input, the processor
core is required to manage the directory cache or process directory requests that
can not be handled by the NIP. Off-loading directory requests to the processor
cores increases the directory latency, but simplifies the NIP programming and
thus improves the common case latency.

Fig. 5.11 illustrates the messages and tiles involved in a cache read miss. The
local NIP sends a request, “GETS”, to the DT. Based on the cache line state
in the DC, the DT forwards the request, “Fwd GETS”, to a remote AT which
holds a copy of the cache line. The cache line is sent directly to the local tile by
the NIP in the remote tile. The local NIP inserts the cache line into the cache.
To complete the cache miss, the NIP sends an acknowledgement message to the
directory to confirm that it now holds a copy of the cache line. This message
and all flow control acknowledgement messages are omitted in the figure.

5.6 Summary

This chapter described the tile-based Clupea many-core architecture, which tar-
gets future many-core platforms for embedded applications. The main focus
of the architecture is platform flexibility through configurable support for pro-
gramming models. The flexibility is achieved through specialized programmable
network interface processors in each tile and an overall system view where tiles
are considered as allocatable resources similar to memory. Allocated tiles are

5.6. Summary 83

dedicated to the application which gives the application full access and con-
trol over the in-tile resources. The memory system is configured independently
for each application by simply reprogramming the network interface processors.
Hence, different programming models may co-exist in the system and program-
ming models can be optimized for the individual application.

The Clupea architecture makes no assumptions about inter-tile communica-
tion patterns and assumes, but is not limited to, simple routers. NoC packets
can be dropped at any time and flow control and retransmission are handled in
the network interface processor to reduce the NoC implementation complexity.

In addition to introducing the Clupea architecture, this chapter has also dis-
cussed the implementation of one programming model: Cache coherent shared
memory. The proposed implementation is based on a directory-based cache
coherence protocol that uses only allocatable tiles. These are used both for
executing the application and to provide programming model support.

Flexibility through programmability comes at the cost of increased latency
compared to fixed hardware approach. On the other hand, the increased flexi-
bility means that the Clupea architecture can easily support optimizations that
exploit application-specific properties without modifying the hardware platform.
The performance impact of the Clupea architecture will be evaluated in the fol-
lowing chapter which discusses modeling of many-core architectures.

84 5. Clupea: Configurable Support for Programming Models

Chapter 6

Modeling and Evaluation

System modeling is an integral part of the design and evaluation of new system
architectures. The complexity of computer systems makes it virtually impossi-
ble to do design space exploration using prototypes. Modeling the performance
of memory system and interconnect of the Clupea architecture therefore consti-
tutes a significant part of the work leading to this thesis. The outcome of this
work is two contributions in the form of memory system performance models
for tile-based many-core architectures:

• An analytical model for early design space exploration that allows fast
evaluation of many-core architectures with little modeling effort.

• The MC sim simulator, which is a detailed trace-driven simulation model,
which captures the behavior of the on-chip memory system at cycle-
accurate level of precision.

The aim of both models is to evaluate the Clupea architecture in the cache
coherent shared memory configuration against similar programming model sup-
port implemented in fixed hardware to determine the performance impact of
the Clupea architecture. However, the models can be used to model other pro-
gramming models or different many-core architectures with some modifications.

The chapter is organized as follows: Sec. 6.1 gives an introduction to the
general modeling approach used for both system models. Sec. 6.2 introduces
the analytical model and present results obtained for the Clupea architecture.
Sec. 6.3 presents the MC sim many-core memory system simulator. Finally,
Sec. 6.4 presents and discusses the evaluation of the Clupea architecture con-

85

86 6. Modeling and Evaluation

Figure 6.1: Many-core memory system model overview.

figured for cache coherent shared memory as described in Sec. 5.5 based on
detailed simulation results obtained using MC sim.

6.1 Introduction

The overall aim of the analytical model and the simulation model developed
in this chapter is to evaluate programming model support for cache coherent
shared memory in terms of impact on application execution time. This section
gives an overview of the components of the system architecture that need to
be modeled and how they interact. The model components are illustrated in
Fig. 6.1, which shows a simplified view of the Clupea architecture.

6.1.1 Application Modeling

The overall application modeling approach used for both models is to consider
the shared memory applications as a set of threads executing on a number
of processor cores. Each thread can be considered as a generator of memory
accesses that must be handled by the memory system as indicated by the in-
teraction arrows in Fig. 6.1. Each access occurs at a certain time and accesses
a certain memory address for either loading or storing data. Collectively, they
generate the memory access pattern of the application. The actual data content
of the memory is not interesting for the modeling objective of the two models.
Only timing and the location and state of the data need to be considered to

6.1. Introduction 87

model the contention in the memory system and the interconnect. The timing
of memory references is not static since different memory latencies of different
memory system implementations affect the processor core stall time on mem-
ory accesses. The timing of memory references can therefore only be related to
the completion of the previous memory reference, i.e. the time spent executing
between two memory reference instructions.

Instruction caches are not modeled since these do not need to consider cache
coherence and they are assumed to have negligible impact on application exe-
cution time.

6.1.2 Memory System Modeling

The focus of the memory system modeling is to determine the latency of a
memory accesses generated by the application model. The latency depends
three factors: i) The cache controller latency, i.e., the NIP latency, in the ATs,
ii) the latency and the location of the cache coherence directories, and iii) the
location of the cache line and the latency retrieving it, i.e., the AT which holds
a cache line copy in its cache or the memory interface tile if the cache line is not
present in any of the caches. The location of the cache line is determined by the
cache coherence protocol and the previous memory accesses to the cache line.
Thus, the model of the memory system must also consider the cache coherence
protocol.

6.1.3 Interconnection Network Modeling

The communication between tiles that takes place as a part of the cache co-
herence protocol uses the NoC interconnect. Thus, the latency of a memory
reference also depends on the NoC latency, which is highly non-uniform for
most NoC topologies. NoCs typically have lower latency between adjacent tiles
than distant tiles. This means that the mapping of application threads to ATs
has influence on the communication latencies. The communication pattern of
the application is the result of the memory access pattern, the application-to-
tile-mapping and the memory system. Furthermore, contention between mes-
sages within the NoC, e.g. for access to router ports, may also influence the
communication latency.

The three models are combined as shown in Fig. 6.1: The memory accesses
generated by the application model are input to the memory system model,
which generates messages that are transferred by the interconnect model.

88 6. Modeling and Evaluation

6.2 Analytical Modeling

Early evaluation is necessary for design space exploration for many-core archi-
tectures due to their complexity. At this stage few design parameters have been
decided and thus it is infeasible to build a simulation model. Instead, an analyt-
ical model can be used to get initial estimates on the performance of the design.
This section presents an analytical model for comparing the average memory
access latency and application execution time of different programming model
implementations in a many-core system. The section is based on a published
paper [88] and first describes the model components and then present results
for the Clupea architecture.

6.2.1 Model Overview

Capturing the exact behavior all the three model components introduced in
Sec. 6.1 in a unified analytical model is very complicated and may require input
data that is not available. Previously proposed models of interconnects and
memory systems are based on extensive sets of model parameters [5, 93, 97].
The aim of the analytical model is to focus on the programming model im-
plementation by comparing different implementations of cache coherent shared
memory using the same cache coherence protocol. More precisely, the model
objective is to evaluate the impact of the processing time of the cache coherence
protocol operations on the application execution time. In this scenario, the
application and the interconnect models are used with the same parameters.
Only timing parameters of the memory system model differ between the shared
memory implementations.

Analytical modeling will inevitably introduce some uncertainties in the re-
sults. In this model, the uncertainties may influence the outcome of the com-
parison in favor of one of the implementations. To avoid that the result is in
favor of the Clupea architecture, the model takes a pessimistic approach by
adding weight to the influence of the implementation differences and favoring
faster reference implementations whenever it is possible.

6.2.2 Application Model

The application execution time is affected by the memory access time and thread
synchronization. Estimating the synchronization impact requires a complex
application model which can not be easily constructed at an early stage in the

6.2. Analytical Modeling 89

design process. Thus, the model neglects synchronization to follow the aim of
using only a small set of obtainable parameters.

Comparing two systems with the same programming model support means
that the only difference is the memory system. The type and amount of the
memory accesses generated by the application is the same. Thus, it is sufficient
to model only the average memory access time and not consider the number
of memory accesses generated by the application. The analytical application
model is reduced to modeling the average memory access pattern. The average
memory access pattern is modeled by the expression in Eqn. 6.1, where m is the
memory access type, cm is the cost of the memory access type in clock cycles
and pm is its probability. These are discussed in detail later.

tmem =
∑

m

cmpm (6.1)

The relative execution time impact of cache coherence protocol implemen-
tation can then be determined as the cycles per instruction ratio, CPI, figures
of the two implementations.

6.2.3 Memory System Model

Each memory access type in Eqn. 6.1 is associated with a number of events
in the memory system. A memory access causes either a cache miss or cache
hit. Cache hits are modeled by a constant memory access time. A cache miss
leads to a number of protocol events, which typically includes sending messages
between tiles. Expanding Eqn. 6.1 using the miss rate per instruction of the
application, Mapp, leads the following equation for comparing the relative ap-
plication execution time impact of memory system implementation A and B.
For simplicity, non-memory instructions are assumed to have a CPI of 1.

rexec =
Mapp(cmissA − cmissB)

MappcmissB + (1−Mapp)chit
(6.2)

The analytical cache coherence protocol model is based on the approach pro-
posed by Srbljic et al. [97]. The cache coherence protocol is modeled as a set of
protocol events, k, which corresponds to fetching cache lines from other caches,
writing cache lines to main memory, and cache line state changes. Some of these
events involves sending messages across the NoC. Each event is associated with
a cost pck in terms of latency and a probability ppk. The average cache miss
latency in cycles is then determined by Eqn. 6.3.

90 6. Modeling and Evaluation

Figure 6.2: Cache miss example for directory-based cache coherence protocol.

cmiss =
∑

k

pckppk (6.3)

ppk is determined by the memory access pattern of the application. The
protocol event latency pck can be decomposed into two parts: i) The network
latency tNoC(F) of the nm messages involved in the event, which depends on
the communication pattern of the application F , and ii) the protocol latency
tprotocol(k) of the nt tiles involved in the event.

pck =
∑

nm

tNoC(F) +
∑

nt

tprotocol(k) (6.4)

Message transfers and protocol latency may be overlapped in time, so only
transactions and protocol latency that contribute to the critical path should be
included in nm, nt and tprotocol(k). The NoC latency is discussed in Sec. 6.2.4.
Comparing two implementations of the same protocol means that only tprotocol(k)
is different for the two implementations.

In the directory-based cache coherent shared memory implementation pro-
posed in Sec. 5.5, cache misses always involve three messages, nm = 3, in the
critical path as illustrated in Fig. 6.2. Cache line eviction requires eviction
permission from the directory, but using a cache line victim buffer this can be
removed from the critical path.

The protocol latency, tprotocol(k), in Eqn. 6.4 has contributions from each of
the three tiles, nt = 3, involved in the cache miss.

6.2. Analytical Modeling 91

• The protocol latency in the local tile is given by tlocal = tloc−req+tloc−rsp.
tloc−req represents the latency from cache miss until the request message
has been send into the NoC, Fig. 6.2(1-2), and tloc−rsp is the latency from
the arrival of the first phit of the reply, Fig. 6.2(5-6), until the cache line
is in place in the cache.

• The directory latency, tdir, represents the DT latency from reception of
the first phit in the request until the first phit of the forward request is
sent into the NoC, Fig. 6.2(3).

• The remote tile latency, trem, is the latency of the remote tile, from the
reception of the forward request until the reply has been send into the
NoC, Fig. 6.2(4).

Contributions to tprotocol(k) caused by contention are not considered in the
model as it is assumed that the cache controllers are only lightly loaded and
that the directory requests are load-balanced across several directories to avoid
saturation.

Assuming that cache lines can always be found on-chip in other ATs and that
tprotocol(k) is the same for all misses, Eqn. 6.3 is reduced to one set of protocol
events. This assumption complies with the pessimistic modeling approach, since
including the latency of off-chip memory reduces the relative influence of the
main focus of the model, tprotocol(k).

6.2.4 Interconnect Model

The latency, tNoC(F), is determined by a number of factors related to the
communication pattern of the application and the NoC topology. The NoC
latency can be considered to have two major contributors: i) The unloaded
network latency, and ii) the added latency caused by link contention.

The unloaded network latency is determined by: The distance (in terms of
link/router “hops”) between the source and destination tiles and the latency
per hop. This is illustrated in Fig. 6.3. The latency of constructing messages
and sending them into the NoC is included in the protocol latency, tprotocol(k),
hence it is not represented in the interconnect model.

The communication pattern is modeled as a probability matrix F , which
describes the probability of communication between all N tiles in the system.
Fsd is the fraction of messages sent by tile s of all messages in the system that
are destined for tile d.

92 6. Modeling and Evaluation

Figure 6.3: Interconnect model overview.

∑

s

∑

d 6=s

Fsd = 1, s, d = 1 . . . N (6.5)

Using the probabilities Fsd and the distances between the communicating
tiles dsd it is possible to determine an average communication distance, which
allows the average interconnect latency for a single phit to be determined using
the hop latency.

hopsavg =
∑

s

∑

d 6=s

Fsddsd, s, d = 1 . . . N (6.6)

tNoC(F) = trouter + hopsavg × (tlink + trouter) (6.7)

Modeling NoC contention analytically requires detailed knowledge about
the temporal communication pattern of the application and a detailed model
of the NoC architecture. This information is not available at an early stage in
design process. Thus, for the reason of simplicity contention is not modeled
in the analytical interconnect model. This means a general underestimation of
the network latency. However, this complies with the overall modeling goal of
taking a pessimistic approach. Reducing the contribution of tNoC increases the
influence of tprotocol(k) in Eqn. 6.4, which is the main focus of the model.

6.2.5 Results and Discussion

This section presents analytical modeling results for comparison of the Clu-
pea architecture configured for cache coherent shared memory and a similar
hardware-based architecture, where the cache coherence protocol and directories
are implemented directly in hardware. The aim is to evaluate the performance
impact of providing support for programming models using the programmable
Clupea NIP compared to a fixed hardware implementation of similar support
for cache coherent shared memory.

6.2. Analytical Modeling 93

Protocol Description Clupea Hardware

tloc−req Miss to message in NoC [cycles] 20 15
tloc−rsp Reply from to data in cache [cycles] 25 20
tdir Intra-tile directory latency [cycles] 40 30
tremote Intra-tile remote tile latency [cycles] 40 35

NoC Parameter

tlink Link latency [cycles] 1
trouter Router latency [cycles] 4

Table 6.1: Model parameters for protocol processing latencies of the Clupea
implementation and the fixed hardware approach.

The model parameters listed in Tab. 6.1 are estimates based on the proposed
Clupea NIP architecture and latency estimates for previous cache coherence
protocol implementations using programmable protocol engines [40, 35]. The
latencies of the hardware approach is based on a minimum message handling
latency of 10 cycles and assume a fixed 10 cycle directory processing latency.
Cache controller processing times are assumed to be 5 and 10 cycles for process-
ing requests and transferring cache lines respectively. The latencies are slightly
pessimistic compared to the average latencies observed for the detailed simu-
lation in Sec. 6.4. The interconnect used in the evaluation is a NoC with a
mesh topology with minimal routing. Messages consists of seven phits. The
communication pattern, F , is assumed to have uniform distribution.

The cache miss latency of the two implementations are compared using
Eqn. 6.3 in Fig. 6.4 to show how the overhead of the protocol processing scales
when the number of tiles increases. The Clupea graph represents the relative
cache miss latency increase for NIP-based implementation compared to the fixed
hardware approach. Fig. 6.4 also includes more pessimistic latency estimates
where the total protocol processing latency is increased by 10 to 40 cycles com-
pared to the Clupea estimate in Tab. 6.1. These illustrate how the cache miss
latency is affected by the protocol processing latency. From the figure it is
clear that the impact of the latency of protocol processing time in Clupea NIP
decreases rapidly as the number of cores increases.

Estimating the application execution time impact using Eqn. 6.2 requires the
knowledge of the cache miss rate per instruction of the application. Figure 6.5
shows the relative application execution time increase of the Clupea implemen-
tation for a range of benchmark applications. The miss rate per instruction for
the applications are based on data previously published by Leverich et al. [65].
The miss rates per instruction are obtained by simulation of a MESI cache co-

94 6. Modeling and Evaluation

64 144 256 400 576 784 1024
0

10

20

30

40

50

C
a

c
h

e
 M

is
s
 L

a
te

n
c
y
 I

n
c
re

a
s
e

 [
%

]

Mesh Size [tiles]

+10

+30

+50

+40

+30

+20

+10

+0

Figure 6.4: Relative increase of the cache miss latency as the number of tiles
increases, which in consequence increases the average communication distance.

herence protocol with 32 kilobyte data caches on multiprocessor with 16 tiles.
Thus, for this comparison it is assumed that the modeled cache coherence pro-
tocol has similar miss rates per instruction. The comparison assumes CPI = 1
for all instructions that do not cause cache miss misses. Figure 6.5 is based on
an average communication distance of 3 hops, which is approximately the av-
erage communication distance in a 16-tile mesh NoC when the communication
pattern is uniform.

The analytical model can also be used for early evaluation of modifications of
the cache coherence protocol. The following example illustrates the potential of
optimizing the programming model implementation using the flexibility of the
Clupea NIP. The optimized protocol assumes knowledge about which data that
is private and shared in the application. Private data can be fetched directly
from the memory without involving the directory. Hence, the latency of one
message and the directory are avoided. The optimized protocol adds an extra
set of events to Eqn. 6.3 and the probability ppprivate that determines if the
missing data is private. It is assumed that the optimization requires 10 cycles
of extra protocol processing in the local tile to determine the type of cache
miss. Fig. 6.6 shows the relative cache miss latency of the optimized protocol
compared to the hardware implementation with a fixed protocol without the
private data optimization. Hence, 0% means equal average cache miss latency
for the optimized Clupea approach and the non-optimized hardware approach.

6.3. MC sim: A Fast Cycle-accurate Memory System Simulator 95

0

10

20

30

40

E
x
e

c
u

ti
o

n
 T

im
e

 I
n

c
re

a
s
e

 [
%

]

M
P

E
G

−
2

H
2

6
4

J
P

E
G

 E
n

c
.

J
P

E
G

 D
e

c
.

R
a

y
tr

a
c
e

S
D

E

2
D

 F
E

M

F
IR

1
7

9
.a

rt

B
.

S
o

rt

M
.

S
o

rt

+0

+10

+20

+30

+40

Figure 6.5: Relative increase of the application execution time for benchmark
applications.

The average communication distance is 10 hops. The graph clearly shows the
potential for optimizing the programming support using the Clupea architecture
for applications with explicit knowledge about private and shared data. The
performance impact of Clupea implementation is cancelled by the private data
optimization as ppprivate increases. This may even lead to situations where the
Clupea architecture has better performance when the ratio of private memory
accesses is high.

6.3 MC sim: A Fast Cycle-accurate Memory Sys-

tem Simulator

The shared memory programming model implies complex interaction between
processors and caches in different tiles in many-core architectures. This is fur-
ther complicated by the packet switched NoC interconnects, which add non-
uniform communication latencies and contention. It is virtually impossible to
capture this interaction in detail in an analytical model. Thus, a simulation
model that captures the behavior of the entire memory system is required to
evaluate the support for programming models in the Clupea architecture in
more detail.

This section describes the MC sim simulator. The objective of the MC sim

96 6. Modeling and Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

10

15

20

C
a

c
h

e
 M

is
s
 L

a
te

n
c
y
 I

n
c
re

a
s
e

 [
%

]

pp
private

Improved protocol

Figure 6.6: Relative cache miss latency of the optimized cache coherence pro-
tocol.

simulator is to model the Clupea architecture configured for cache coherent
shared memory with a cycle-accurate level of detail while maintaining a rea-
sonable simulation performance. MC sim is a stand-alone trace-driven simula-
tor implemented in C++ using a component-based design, which allows easy
customization. Furthermore, fully flexible configuration of the application, di-
rectory and memory interface tiles is supported. Gathering extensive statisti-
cal information during the simulations, MC sim is a valuable tool for studying
memory systems and interconnects for many-core architectures. MC sim is used
for detailed evaluation of the Clupea architecture configured for cache coherent
shared memory in Sec. 6.4.

6.3.1 Model Overview

The architectures targeted by MC sim are tile-based many-core architectures,
such as the Clupea architecture. The objective is to model the detailed behavior
of both the memory system and the NoC interconnect. The simulator is based
on a hierarchy of model components, where the basic components are tiles and
the NoC interconnect. The tile components include models of processor tiles
and tiles that are a part of the memory system. The tiles are decoupled from
the NoC interconnect by a message interface. Messages are transferred between
tiles by the NoC model, which models interconnect aspects such as topology and

6.3. MC sim: A Fast Cycle-accurate Memory System Simulator 97

network contention. Fig. 6.7 shows an overview of the simulator components.
Most components can be configured through parameters to allow easy recon-
figuration of the simulated architecture and all components have parametrized
timing models. While the description of the MC sim focuses on modeling the
Clupea architecture, MC sim can be used to model any tile-based many-core
architecture through the component-based design. Simulator components can
easily be modified or replaced.

Fundamental principles of simulation imply that cycle-accurate simulation
of parallel systems is inherently slow. Detailed execution-driven full system sim-
ulation using simulators such as Simics [104] with GEMS [71] can easily require
several days to simulate even small benchmark applications. MC sim therefore
only focuses on parts of the system that are essential for modeling programming
model support and the memory system. By applying trace-driven simulation
the simulator complexity is significantly reduced and this allows more effort to
be put into a detailed memory system model. Pre-generated traces leads to a
loss in precision compared to execution-driven simulation since thread synchro-
nization is not captured. To mitigate this issue, MC sim uses synchronization
emulation during trace replay to ensure realistic thread synchronization. This
will be discussed in more detail later.

To reduce the simulator complexity further, MC sim does not model in-
struction fetching or instruction caches. Instruction caches require no coher-
ence considerations and are assumed to have negligible impact on the memory
system. Further details about generation of application execution traces will be
discussed in Sec. 6.3.2.

The memory system model captures the detailed cache behavior and the
cache coherence protocol processing timing in a cycle-accurate level of detail.
This includes internal contention, occupancy, and a detailed cache coherence
protocol implementation of the protocol described in Sec. 5.5. Similarly, the
NoC interconnect is also modeled in detail to capture the impact of message
contention. The following subsections will describe the MC sim model compo-
nents in more detail.

6.3.2 Application Model

The MC sim application model is based on memory reference traces to capture
the behavior of the application and the processor cores. The memory reference
trace can be considered as a recording of a particular run of an application.
It is a complete log of all memory accesses generated during execution of the
application with a particular input. Fig. 6.8 shows a memory reference trace

98 6. Modeling and Evaluation

Application

SynchronizationProcessor core

Data cache

Cache coherence protocol Main memory

Message transfer

RoutingTopology

Tiles

NoC

App. model

Mem. model

NoC model

messages

references
memory

Figure 6.7: MC sim component overview.

Figure 6.8: Application memory reference trace example.

6.3. MC sim: A Fast Cycle-accurate Memory System Simulator 99

Exec

Stall

Sync

stall

Mem. access

Wait for mem.

Continue

Sync.

Sync. complete

Generate
mem. access Continue

Wait for mem.

Mem. trace

Synchronizer

Sync

Figure 6.9: Processor core model. During normal execution, the processor core
is either executing or blocked due to a data cache miss. The synchronization
states are used to model thread synchronization.

example containing four memory references and a synchronization indication.
Synchronization is discussed later. Each memory reference is annotated with
the memory access type and a time reference. The time reference is the number
of instructions executed by the processor core since the previous memory access.
Applications executing in parallel on a number of processor cores are represented
by a memory trace for each processor core.

Processor Core Model

Based on the memory reference trace each processor core can be modeled by two
states as illustrated by the “Exec” and “Stall” states in Fig. 6.9. The processor
core is either: i) Executing and waiting for the next memory access to occur, or
ii) stalled while the memory system is serving the memory access. The “Sync”
and “Sync stall” states are used for emulation of synchronization. Fig. 6.10
illustrates how memory accesses are replayed using the memory reference traces.
The processor core is assumed to spend one cycle executing each instruction that
does not cause a data cache miss. The model can be extended to handle multiple
outstanding memory accesses, however, in the current model the processor cores
are assumed to allow only one outstanding memory request.

Modeling Synchronization

Capturing the synchronization between application threads that execute on dif-
ferent processor cores is crucial for the relative timing of memory accesses.
Synchronization is typically based on locks and barriers in shared memory ap-
plications. Ignoring these synchronization primitives can lead to memory access
patterns that can never occur during real executions of the application due to

100 6. Modeling and Evaluation

changes in the execution environment of the simulated systems. This issue is
known as the “global trace problem” [44]. Thus, the simulator must ensure that
the trace replay is synchronized correctly to prevent threads from advancing past
a synchronization point before all threads are synchronized.

Additionally, synchronization leads to periodic memory accesses to the data
structure of the synchronization primitive by each thread to determine when
the synchronization has completed. The number of memory accesses depends
on how long each thread is waiting for the synchronization to complete. The
progress of the threads is affected by the memory system which means that
the number of synchronization memory accesses varies depending on the simu-
lated memory system. Thus, instead of using a pre-determined synchronization
memory access pattern the simulator must construct a new pattern of memory
references that is realistic for the synchronization primitive on the simulated
system. Any memory reference related to the synchronization primitives must
be omitted from the trace. To identify accesses to synchronization primitives,
MC sim uses explicit notation in the memory reference traces to uniquely iden-
tify encountered locks or barriers as shown in Fig. 6.8. MC sim emulates the
memory references of locks by implementing test-test and set-based spin-locks
with exponential back-off in the application model. Barriers are emulated on
basis on lock emulation.

Synchronization is modeled by the “Sync” and “Sync stall” states in Fig. 6.9.
When a lock or barrier is encountered in the trace, the processor core model
switches to the synchronization states. In these states, the processor core model
generates memory references related to the synchronization operation until it
succeeds, i.e., the lock is obtained or the barrier is passed. MC sim does not
include data in the memory model, hence synchronization must be supported by
a global synchronizer component, which coordinates all processor core models.
The synchronizer determines the success of the synchronization operation as
illustrated by the simplified barrier synchronization example in Fig. 6.10. For
every memory access related to the barrier, the processor accesses the synchro-
nizer to check if the synchronization has completed. AT “x” fails to pass the
barrier in the first attempt and must retry until AT “y” has reached the bar-
rier. This example only shows access to one memory location associated with
the barrier, the implemented barrier emulation consist of a series of memory
accesses.

6.3. MC sim: A Fast Cycle-accurate Memory System Simulator 101

Figure 6.10: Simplified barrier synchronization example with two threads. Tim-
ing references are omitted for simplicity.

Tracing Methodologies

Memory traces can be obtained by logging the memory references during execu-
tion of the application on an execution platform. MC sim does not include an
instruction set simulator, thus traces must be obtained from a different source.
Traces from any execution platform can be used as long as they are compatible
with the trace format used by MC sim.

The memory reference trace captures both the application and the internal
processor core architecture. The trace should therefore be obtained using an
execution platform with processor cores similar to the simulated system. The
two following methods can be used to obtain memory traces using physical and
simulated platforms.

• Binary instrumentation: Binary instrumentation tools, such as Pin [47],
allow every instruction of each application thread to be instrumented to
generate memory traces on a physical execution platform. This method
will generate a separate trace for each application thread and not for each
processor core as it is assumed by the MC sim model. Hence, this method
can only be used if the number of threads is equal to the number of pro-
cessor cores in the simulated system. Though, any number of threads can
be traced regardless of the number of cores on the execution platform. Bi-
nary instrumentation traces only virtual memory address accesses of the
application itself and does not include operating system calls.

102 6. Modeling and Evaluation

• Execution-driven simulation: Execution-driven simulators such as Sim-
ics [104] can be used to obtain traces from simulated execution platforms.
The memory references are logged directly from the memory interfaces of
the simulated processor cores. These traces contain physical addresses of
all memory accesses generated by the application and the operating sys-
tem. This method requires an execution platform with the same number
of cores as the simulated system. Synchronization is captured by instru-
menting the application code to notify the execution platform simulator
when a synchronization operation is encountered. The results that will be
presented in Sec. 6.4 are all based on traces obtained using this method
with the Simics [104] simulator and GEMS [71] memory system model.

It is common for all tracing approaches that the memory reference trace only
represents one possible path of execution in the application. Applications with
dynamic thread management and load balancing may generate different traces
depending on the outcome of synchronization. Thus, trace-driven simulation of
this type of application may not always give an accurate picture of the simulated
system.

6.3.3 Memory System Model

The memory system model includes all components of the memory system in-
cluding caches, the cache controller, the NoC interface and memory interface
tiles as shown in Fig. 6.7. The memory system model is partitioned into local
models for each tile that communicate using the NoC model as illustrated in
Fig. 6.11.

• Application tiles: In the ATs, the local memory system model is re-
sponsible for modeling the local data cache, the scratch-pad memory and
the cache controller which includes the NoC interface. Inputs are memory
accesses from the application model and incoming messages from the NoC
model. The functional cache controller model fully implements the cache
coherence protocol proposed for the Clupea architecture.

• Directory tiles: The DT model accepts inputs in the form of directory
requests from the NoC model. The model implements the directory part
of the cache coherence protocol including the directory data structure, the
DC and off-loading to the processor core.

6.3. MC sim: A Fast Cycle-accurate Memory System Simulator 103

Figure 6.11: Memory model overview.

Cache coherence
protocol

Process
message

Wait

Data cache

Mem. access

Hit
Miss

Send DT request

message
Incoming

Response
message

Application model

Interconnect model

Figure 6.12: Local memory system model in each tile.

• Memory interface tiles: The memory interface tile is driven by incom-
ing messages from the NoC model and models the latency of accessing
off-chip main memory.

Fig. 6.12 illustrates the general states of the local memory system model of
the ATs. Memory accesses from the application model are passed to the cache
model to determine if a cache miss has occurred. In case of a cache hit, the
application model continues executing the memory reference trace. If a cache
miss occurs, the application model blocks execution of the local processor core
trace and the cache controller model takes over to service the cache miss and send
a request to the directory. Incoming messages from the NoC are handled by the
cache controller model according to the cache coherence protocol. This includes
forwarding cache lines and unblocking the trace execution when a missing cache
line has been received.

104 6. Modeling and Evaluation

The models of the directory and memory interface tiles follow that of the
application, but have no interaction with the application model. The functional
models of the memory system are combined with a detailed cycle-accurate tim-
ing model that, in contrast to other models [71], determines the latency of all
memory system operations individually based on the actions involved in the op-
eration. The timing model is based on a set of parameters, which specifies the
cycle latency of all basic actions in the memory system model. Occupancy is
modeled by blocking the memory model from processing new inputs for duration
of the action specified by its parameters. Latency is modeled by delaying mes-
sages and cache updates for the duration of their associated latencies. Correct
ordering of events in all model components is ensured by using global simula-
tion time. All model components are invoked once every clock cycle to ensure
consistent time progress in all parts of the simulator.

6.3.4 Interconnect Model

The interconnect model is modeling message transfers between tiles. Each tile is
associated with a NoC port, which enables the tile to send and receive messages.
Tiles are addressed by a unique tile identification number, which is used by the
interconnect model to deliver messages.

Internally the model consists of a set of router models, which are configured
to resemble the modeled NoC topology. Each router is modeled as a set of
queues and a routing algorithm. The NoC model does not model message
dropping as this is assumed to happen only in extreme cases. Instead, the
NoC model avoids deadlock by having unbounded router buffers [1]. Message
acknowledgement and retransmission buffers are still included in the model,
however, retransmission never occurs. The mapping of tiles to NoC ports is
fully configurable.

As discussed earlier, the interconnect latency has two main contributions:
The unloaded latency and the latency caused by contention. Both of these con-
tributions are captured by the simulation model, though, the NoC model does
not model latency related to retransmission. The router latency and throughput
are specified through model parameters. Contention is detected by the router
model and introduces additional router delay to the blocked message.

6.3.5 Simulator Implementation

MC sim has been implemented as a stand-alone simulator in C++ with simplic-
ity in mind to allow easy modifications. Most model parameters, including the

6.4. Results and Discussion 105

timing model, are run-time configurable through parameters and configuration
files. Data and directory caches are fully configurable with regard to size, cache
line size and associativity. Many-core architecture of arbitrary configurations
are automatically configured for a specified number of application, directory
and memory interface tiles. Memory reference traces have been obtained us-
ing Simics and are compressed to reduce disk space utilization. MC sim offers
extensive statistical data collection for each individual tile in the system.

Simulation speed depends on the system configuration. Typical simulation
speeds for a system configuration with 8 ATs, 4 DTs and a single memory
interface tile is approximately 300K cycles/s on a recent high-end x86-processor.
For a configuration with 64 ATs, 32 DTs and a single memory interface tile, the
simulation speed is reduced to approximately 50K cycles/s.

6.4 Results and Discussion

This section presents modeling results for the Clupea architecture using MC sim.
The evaluation of the Clupea architecture is based on the cache coherent shared
memory implementation described in Sec. 5.5. The main purpose of the evalu-
ation is to determine the execution time impact using the Clupea architecture
compared to a fixed hardware cache controller approach, HWC, that implements
similar support for cache coherent shared memory.

6.4.1 System Configuration

The evaluation considers systems with 8 to 64 ATs with 2 to 8 ATs per DT and
a single memory interface tile for both the Clupea architecture and the HWC
approach. It should be noted the AT/DT ratio does not imply any association
between the ATs and the DT. Any AT can potentially access any DT. The
basic system configuration listed in Tab. 6.2 is used for all experiments unless
otherwise stated. The ATs and DTs are assumed to have 256 kilobyte local
memory which is organized into 64 kilobyte data and instruction caches, and a
128 kilobyte SPM. As mentioned earlier, the instruction cache is not modeled.
Assuming a DC entry size of 64 bits the maximum DC size is 8192 entries. The
default DC organization is two way set associative, where each set consists of
eight entries. This organization is further discussed later. Directory requests
are load-balanced using a memory address bit mask to ensure that cache line
requests to a particular cache line always are handled by the same directory.
This distribution method allows DTs to operate independently. The default

106 6. Modeling and Evaluation

address bit mask is placed above the cache line byte index bits and the DC index
bits so that the directory load balancing is independent of the DC organization
to ensure a more fair comparison between different DC organizations. This
means that the directory load balancing is based on 256 kilobyte address space
segments, i.e., all addresses in a 256 kilobyte contiguous memory address space
map to the same DT. A more fine-grained load distribution is discussed later.

6.4.2 Timing Models

As mentioned earlier, the evaluation considers two main system architectures:
The Clupea architecture and the HWC approach.

• Clupea: The Clupea timing model represents the latencies of the NIP.
The timing model is based on the latency estimates listed in Tab. 6.3. The
latency estimates are based on MC sim cache coherence protocol code and
the proposed NIP architecture that has been illustrated earlier in Fig. 5.4.
Every basic block of the protocol code has been associated with latencies
derived from NIP pseudo-code implementing the same functionality. Each
of these latencies are included in the timing model to provide a detailed
picture of all system bottlenecks.

The NoC packet layout is assumed to have routing information in the first
phit and the remaining header fields are encoded in the second phit. This
allows all header fields to be decoded in a single cycle. Moving messages
to the recycle buffer and processor core offloading require most of the
header fields to be stored in the SPM and therefore takes several cycles.
Similarly, updating buffers managed in the SPM requires pointers to be
updated and also involves checking for buffer overflow. Directory cache
access requires several cycles to load and check the directory cache tag
against the request address. The AT and DT latencies are determine by
MC sim by associating the latencies listed in Tab. 6.3 with the operations
in the MC sim simulation model.

• HWC: The HWC timing model is assumed to implement the same func-
tionality as the NIP in the cache coherent shared memory configuration in
the ATs, but it implements the cache controller and the cache coherence
protocol directly in hardware. The latency of most common operations is
therefore reduced. The HWC timing model is based on the Clupea model
where latencies are reduced to reflect potential hardware optimizations.
The DTs in the HWC approach are assumed to have a hardware controller

6.4. Results and Discussion 107

System Configuration

ATs 8-64
ATs per DT 2-8
Memory interface tiles 1
NoC topology 2D mesh
Tile mapping Dir. tiles in center
Cache coherence protocol MOSI

Application and Directory tiles

Processor core In-order execution
Processor core instruction latency 1 cycle/inst.
Data cache size 64 kilobyte
Data cache associativity 4-way
Data cache line size 64 bytes
Data cache replacement policy pseudo-LRU
Data cache eviction buffer size 1 cache line
Data cache hit latency 1 cycle
Scratch-pad memory (SPM) size 128 kilobyte
Scratch-pad memory access latency 1 cycle

Directory Configuration

Directory cache (DC) entries 8192
Directory cache entry size 64 bits
Directory cache associativity 2-way
Directory cache block size 8 entries
Directory cache entry tile IDs 5 (10 bits each)
Directory load balancing 256 kilobyte segments

Memory Interface tile

Outstanding accesses 8

NoC

Link (phit) bit width 128 bits
Link throughput 1 phit/cycle
Request message size 2 phits
Payload message size 6 phits

Table 6.2: Clupea architecture configuration.

108 6. Modeling and Evaluation

which implements the directory controller instead of the NIP, however, it
still uses a processor core for offloading of complex directory operations.
The DTs have dedicated hardware DCs. The DTs can not be reconfig-
ured, thus the number of DTs is fixed at design time. The latencies of
the HWC listed in Tab. 6.3 are comparable to previous detailed studies
on implementations of cache coherent shared memory multichip multipro-
cessors [72, 73]. The cache miss latency of the DCs are assumed equal for
the two approaches. Later it will be clear that this has very small effect
as the directory miss rate is very low for most applications.

In addition to the realistic HWC main reference model, a selection of other
variants will also be included in the comparison to provide a more complete
picture. These are: i) An utopian single-cycle model where the total processing
time of all AT and DT requests are reduced to one recycle, i.e. the response
is always available the cycle after the request has been received. Thus the ef-
fective cache miss latency is reduced to a few cycles. A true single-cycle cache
miss latency is not technically possible in the current MC sim implementation.
The data caches are enlarged to 8 Mb and configured to have 32-way associa-
tivity to emulate infinite fully associative caches. This reduces the number of
cache misses to minimum. The mesh interconnect is replaced with a single-cycle
crossbar. This model serves as the lower bound on the benchmark execution
times. ii) A variant of the utopian model with data caches of the default size.
Compared to the other utopian model, this will show the effect of the data cache
size and associativity. iii) An aggressive implementation similar to the second
model, but with the default mesh interconnect. This reference shows the lower
bound on the execution time that can be achieved by minimizing the AT and
DT latencies. iv) A low-power edition of the HWC implementation, where all
AT and DT controller latencies are 50% longer to model the extended gate-delay
of a low-power implementation.

The NoC latencies are based on a recent CMP implementation [46] and
previously proposed NoC architectures [92]. Tiles are assumed to be separate
clock domains and thus messages must pass through synchronization hardware
when they enter and exit the NoC.

6.4.3 Benchmark Applications

The evaluation is based on traces of eight benchmark applications from the
SPLASH2 [107] benchmark suite. These parallel benchmark applications have
an execution time that makes them suitable for detailed simulation. More com-

6.4. Results and Discussion 109

NIP/Cache controller operations Clupea HWC

Pipeline start-up 2 1
Logic/arithmetic 1 1-0
Conditions 1-2 1-2
Directory cache access (hit) 6-8 2
Message seq. no. check 3 2
Send message acknowledgement 8 5
Send packet header 3 2
Send packet payload 4 4
Recycle message 13 4
Data handle forwarding 1 -
SPM access 1 -
Update retransmission buffer 5 4
Offload to processor core 12 10

Directory processor

Offloaded directory update 20
Send invalidation message 20
Directory cache miss 100

NoC

NoC router 4
NoC link 1
Clock domain synchronization 2

Memory Interface

Main memory latency 200

Table 6.3: Simulation model latencies for Clupea architecture and hardware
controller reference in processor core cycles.

110 6. Modeling and Evaluation

Benchmark Input Instructions Mem. access

Barnes 16384 particles 315× 106 95× 106

Cholesky tk29.0 643× 106 153× 106

FFT 220 data points 94× 106 25× 106

LU (contiguous) 512x512 matrix 168× 106 45× 106

Ocean (contiguous) 258x258 grid 164× 106 49× 106

Radix 223 keys 291× 106 115× 106

Volrend Head (256x256x126 voxels) 1.7× 109 427× 106

Water (spatial) 512 molecules 94× 106 35× 106

Table 6.4: Benchmark applications, benchmark input and trace information in
terms of average instructions and average memory accesses per processor core
for 16-core traces.

plex benchmark applications require weeks of simulation time for a single run.
Since a detailed study requires hundreds of simulation runs, more complex
benchmarks are not feasible options. The benchmark applications and their
inputs are listed in Tab. 6.4. The single-threaded benchmark execution times
for these inputs range from 1.1s to 4.2s on Sun Fire 6900 with 1200 MHz Ultra-
SPARC IV processors. The memory reference traces of the applications have
been recorded using Simics [104] with GEMS [71] configured to emulate a cache
coherent shared memory SPARC architecture multiprocessor system. Locks and
barriers of the benchmark applications were replaced with custom implementa-
tions that allowed synchronization to be detected and replicated in MC sim as
discussed in Sec. 6.3.2. Only the parallel sections of the benchmarks have been
traced. The benchmark applications have been used unmodified and thereby do
not use the SPM of the ATs.

6.4.4 Relative Execution Time

Fig. 6.13 shows the benchmark execution time of the Clupea architecture nor-
malized to the HWC approach execution time for systems with 8 to 64 ATs and
AT/DT ratios of 2, 4 and 8. Results for 1, 2 and 4 ATs could not be produced
due to technical issues related to recording traces. Note that the normalization
considers only the execution time increase caused by the different latencies of
the two approaches, i.e., simulations of the same memory reference trace using
the same number of ATs and DTs, but different timing models. Hence, a relative
execution time of 1 means that the Clupea architecture benchmark execution
time is equal to the execution time on the HWC model. The average relative
execution times for all eight benchmarks with 8, 16, 32, and 64 ATs and 4 ATs

6.4. Results and Discussion 111

per DT are 1.31, 1.48, 1.46, and 1.56 respectively. The individual impacts on
the execution times range from 1.12 to 1.81 for these configurations and show
that the execution time impact of using the Clupea NIP to provide support for
programming models varies significantly with the memory reference pattern of
the benchmark applications. The main reason for this relatively large overhead
is not the Clupea architecture itself, but the result of queuing at the DTs due
to contention. This is discussed in more detail later. Increasing the number
of DTs to distribute the directory load across more DTs reduces the relative
execution time. For instance, for the LU con. benchmark the relative execution
time is reduced to 1.07 by reducing the AT/DT ratio to 2. However, as it will
be discussed later, increasing the number of directories does not work equally
well for all benchmarks.

The relative execution time generally increases slightly as the number ATs
grows even when the AT/DT ratio is kept constant. The cause of this is in-
creasing imbalance between the loads on the DTs as the number of directories
increases, which will be discussed later.

The FFT and Radix benchmarks show interesting behavior in Fig. 6.13 by
showing little improvement going from 8 to 4 ATs per DT with 16 ATs while
a significant improvement can be observed when the ratio is reduce to 2. The
reasons for this are different for the two benchmarks. For the FFT benchmark
the drop is a result of little improvement in the HWC execution time by re-
ducing the AT/DT ratio to 2 while the Clupea approach experiences significant
performance gain. Thus the normalized improvement is significantly better.
The reason for the larger improvement for the Clupea architecture is a major
reduction in the directory contention that leads to a large reduction in queu-
ing time at the DTs. Later it can be seen that this is very high for FFT in
Fig. 6.20. The Radix benchmark has by far the largest DC miss rate as it is
shown later in Fig. 6.27 and thus benefits from reduced DC miss rates when
the number of DTs increases. Increasing the number of DTs both increases the
total directory processing capacity, but also the total DC size as the request are
distributed across more DTs and thus reduces the amount of DC capacity and
conflict misses.

Another interesting observation is the slightly increasing relative execution
time for the Cholesky benchmark with 32 allocated ATs. Cholesky causes an
excessive load on the most contended DT for all directory configurations due
to poor directory load balancing. Hence, the execution time for the Clupea
approach is dictated by the directory latency of the highly contended directory.
The HWC experiences similar contention due to the DT load imbalance and
thus the relative execution time remains largely unchanged. The cause of the

112 6. Modeling and Evaluation

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
8 Application tiles

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
16 Application tiles

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
32 Application tiles

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
64 Application tiles

Bar
ne

s

C
ho

le
sk

y
FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

8 AT/DT

4 AT/DT

2 AT/DT

Figure 6.13: Relative execution time for eight SPLASH2 benchmark application
using the Clupea architecture for 8, 16, 32, and 64 ATs with AT/DT ratios of
8, 4, and 2.

6.4. Results and Discussion 113

of the slight increase from having 8 ATs per DT to 4 ATs per DT is attributed
to a different memory reference interleaving due to the different latencies of the
two approaches.

The simulations generally show the same trends regardless of the number
of ATs. Thus, simulations with 16 allocated ATs are used in the remainder
of this chapter as example for more thorough discussions. In this configura-
tion, the parallelization overheads due to the relatively small input data sets
are not dominant and the number of DTs is still large enough to study the
effects of directory load balancing. Fig. 6.15 and Fig. 6.14 show the absolute
execution times of the benchmark applications for the Clupea and HWC models
for 8 to 64 ATs normalized to the execution of the 8 AT configuration. Several
benchmarks have increasing execution times with larger numbers of ATs due
to the parallelization overhead in the benchmarks. Thus, the limit of feasible
parallelization has been reached and further parallelization makes no practical
sense. However, for 16 ATs the execution times are generally improved com-
pared to executions with 8 ATs for both the Clupea architecture and the HWC
approach. Only Cholesky and Volrend show consistently increasing execution
times. However, this is the case for both timing models. Thus, the Cholesky
and Volrend benchmarks generally show the performance of the two program-
ming model implementation when the memory system is saturated. For the
remaining benchmarks, the memory system is not saturated for 16 ATs and
thus these benchmarks provide a more realistic picture. Comparing the the two
figures shows that higher latencies of the Clupea architecture causes a slight in-
crease in the parallelization overhead. Thus, optimal amount of parallelization
is slightly lower for the Clupea architecture.

Overall, the Clupea architecture shows a trend of slightly increasing rela-
tive execution times compared to the HWC approach when the number of AT
increases. The most significant increases are observed for the Cholesky and
Volrend, which saturate the directories. However, this is the case for both the
Clupea architecture and the HWC approach, thus the relative execution time is
largely constant regardless of the number of ATs for these two benchmarks. The
directory load is discussed in detail later. For the remaining benchmarks, the
relative execution time only increases slightly as the number of ATs increases.
This indicates that the proposed Clupea cache coherent shared memory config-
uration scales well for an increasing number of ATs for most applications. It has
no inherent limitations and has been shown to support cache coherent shared
memory in many-core systems with 64 ATs. Obviously, the Clupea architecture
can not compete on performance when compared to a direct hardware imple-
mentation of the same support for cache coherent shared memory. However, it

114 6. Modeling and Evaluation

0

0.5

1

1.5

2

2.5

3

3.5

4

Bar
ne

s

C
ho

le
sk

y

FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

5
.2

9

5
.3

8

W
at

er
 s
p.

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

8 ATs

16 ATs

32 ATs

64 ATs

Figure 6.14: Benchmark execution times for 8 to 64 ATs and a AT/DT ratio of
4 using the HWC timing model normalized to the 8 AT execution time.

should be noted that the flexibility of the Clupea architecture allows the DTs
to be reconfigured for any purpose in other configurations and that the NIP can
be used to do application-specific optimizations of the programming model sup-
port. Application-specific tuning of the DC is discussed later. More extensive
application-specific optimizations require support from the operating system,
compilers and the run-time. Hence, this will not be considered further in this
thesis.

6.4.5 In-tile Latency

To provide a more complete picture of influence of the AT, DT and NoC la-
tencies, Fig. 6.16 shows the relative execution times for the Clupea and HWC
implementations in addition to the four reference timing models mentioned in
Sec. 6.4.1 for 16 ATs and 4 DTs. The execution times are normalized to the
HWC model with default data cache size. As one would expect, the execution
time increases caused by increasing in-tile latencies are more pronounced for
benchmark applications with high data cache miss rates. Cholesky and Volrend
are both examples of this. The data cache miss rates for the benchmark appli-
cations are shown later in Fig. 6.30. The execution time of the utopian model

6.4. Results and Discussion 115

0

0.5

1

1.5

2

2.5

3

3.5

4

Bar
ne

s

C
ho

le
sk

y

FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

3
.9

9
7

.2
8

6
.0

9
9

.2
3

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

 8 ATs

16 ATs

32 ATs

64 ATs

Figure 6.15: Benchmark execution times for 8 to 64 ATs and a AT/DT ratio of
4 using the Clupea architecture normalized to the 8 AT execution time.

with infinite caches shows that this can potentially be reduced for Cholesky by
altering the data cache organization and size to reduce the data cache miss rate.
However, for Volrend only little improvement is possible which indicates that
these are coherence or cold misses. On the other hand, Ocean con. shows huge
potential in having larger caches with more associativity. However, the data
cache miss rate is already low, thus only a modest execution time increase is
caused by the tile latencies in the more realistic timing models. An interesting
observation in Fig. 6.16 is that Radix has higher relative execution time than
Ocean con. despite the fact that it has lower data cache miss rate. The reason
for this can be explained by the directory queuing times of the two benchmarks
shown in Fig. 6.20, which is almost twice as large for Radix compared to Ocean
con. The reason for this is discussed later.

6.4.6 Directory Tile Load

The previous discussions have indicated that the directory load has large influ-
ence on the benchmark execution time. Fig. 6.17 shows the normalized max.,
min., and average NIP loads in the DTs for the Clupea architecture in a sys-
tem configuration with 16 ATs and 2, 4 and 8 DTs. A load of 100% means

116 6. Modeling and Evaluation

0

0.5

1

1.5

2

Bar
ne

s

C
ho

le
sk

y

FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Utopian w/ inf. D$

Utopian

Aggr. 1−cycle

HWC

LP HWC

Clupea

Figure 6.16: Benchmark execution times for 16 ATs and a AT/DT ratio of 4 for
all timing models normalized to the HWC timing model.

fully loaded, i.e., the DT has no idle cycles. The directories are generally heav-
ily loaded, especially when the AT/DT ratio is high. High DT load leads to
increased contention which means that requests are more likely to experience
queuing time in the incoming NoC buffer of the DT rather than being processed
immediately. Thus, high DT load increases the cache miss latency.

Fig. 6.17 shows a general trend towards an increasing span between the max.
and min. NIP loads in the directories when the number of DTs increases. The
Cholesky and Volrend are two extreme case of this due to their saturation of
the memory system. The observed max. DT load of these benchmarks indicate
that the DT NIP is the bottleneck of the memory system. Saturation of a DT
significantly increases the cache latency due to queuing at the directory. Thus,
the most heavily loaded DT is dominating the cache miss latency. The queuing
effect is discussed in more detail later. Cholesky and Volrend are examples
of this as the average DT NIP load decreases when the AT per DT ratio is
reduced, but the max. DT NIP load and the relative execution time in Fig. 6.13
are largely unchanged. For other benchmarks, reduced max. DT NIP loads as
the AT per DT ratio decreases can be associated with similar decreases in the
relative execution time. Thus, the most effective way to improve the relative
execution time is to minimize the max. DT NIP and not just the average. Load
balancing is discussed in more detail later. For comparison Fig. 6.18 shows the

6.4. Results and Discussion 117

10

20

30

40

50

60

70

80

90

100

N
IP

 l
o

a
d

 [
%

]

Bar
ne

s

C
ho

le
sk

y
FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

8 AT/DT

4 AT/DT

2 AT/DT

Figure 6.17: Directory NIP loads in the Clupea architecture for 16 ATs with
AT/DT ratios of 8, 4, and 2. Each bar indicates max., min., and avg. load.

10

20

30

40

50

60

70

80

90

100

N
IP

 l
o

a
d

 [
%

]

Bar
ne

s

C
ho

le
sk

y
FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

8 AT/DT

4 AT/DT

2 AT/DT

Figure 6.18: Directory NIP loads in the HWC approach for 16 ATs with AT/DT
ratios of 8, 4, and 2. Each bar indicates max., min., and avg. load.

118 6. Modeling and Evaluation

DT NIP loads for the HWC approach for a similar configuration. In spite of the
lower directory latency in the HWC approach the same directory load pattern
can be observed. This confirms that DTs are the bottlenecks of the system.
The max. Cholesky and Volrend directory loads are still close to fully loaded
showing that the rest of the system is able to saturate the DTs.

The DTs also use the processor cores to handle corner cases and DC misses.
Fig. 6.19 shows the normalized loads on the DT processor core in the Clupea
architecture for 16 allocated ATs. The processor core load is modest for most
benchmarks. Radix has the highest processor load due to a high DC miss rate.
Overall, the processor core loads decrease similar to the NIP load in Fig. 6.17,
which indicates that the processor core load generally follows the NIP load in
the DTs.

High DT NIP loads lead to contention and thus queuing of requests which
are waiting for being processed by the DT. Using basic queuing theory [67] it can
be shown that the length of the queue is proportional to the arrival rate of new
requests. However, as the queuing time depends on the number of requests in
the queue and the DT latency, the queuing time will increase dramatically when
the directory reaches saturation. Fig. 6.20 clearly shows this effect illustrated
by the average directory request queuing latency in the NoC buffer of the all
DTs in the Clupea architecture with 16 allocated ATs. The rapid decrease in
queuing time when the AT/DT ratio is decreased is due to the distribution of
the load across more directories, which reduces the queue lengths. Doubling the
number of DTs can reduce the average buffer queuing time more than 50% for
several benchmarks due to the queuing effects, i.e., the queuing time increases
rapidly when the NIP load reaches saturation as incoming requests always find
the DT busy. Similar trends can be observed for the HWC approach, but due to
the shorter DT latency, processing the entire queue takes shorter time and thus
the saturated buffer queuing time is significantly lower and the HWC requires
a higher rate of incoming directory requests to saturate the DTs. It should be
noted that while the average request queuing latency decreases as more DTs
are added in Fig. 6.20, the request queuing time at the most heavily loaded DT
is not necessarily improved due uneven DT load balancing. For the Volrend
benchmark, the queuing time of the most loaded DT stays largely constant as
the AT/DT ratio dicreases. Thus, the max. queuing time is approximately five
times the average for AT/DT ratio of 2. The unchanged max. queuing time is a
direct consequence of the unchanged max. DT NIP load as discussed previously.

Correlating Fig. 6.20 and Fig. 6.17 it can be seen that high NIP load does
not necessarily lead to high directory latency for all cases as one might expect.
This counter intuitive observation is caused by the temporal behaviour of the

6.4. Results and Discussion 119

5

10

15

20

25

30

35

40

45

50

P
ro

c
e

s
s
o

r
c
o

re
 l
o

a
d

 [
%

]

Bar
ne

s

C
ho

le
sk

y
FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

8 AT/DT

4 AT/DT

2 AT/DT

Figure 6.19: Processor core loads in the DTs in the Clupea architecture for 16
ATs with AT/DT ratios of 8, 4, and 2. Each bar indicates max., min., and avg.
load.

benchmark applications. The NIP load is the average with regards to time,
while the directory queuing time is the average with regards to the number of
directory requests. Thus, the directory queuing time will reveal if the directory
experiences contented periods during the execution. Fig. 6.21 illustrates this for
FFT by showing the NIP load over time for one DT in a 16 AT configuration
with 4 DTs. Several periods with full load are interleaved with long periods
of very little activity. These contended periods increase the directory queuing
time significantly, while idle periods causes the load to appear low on average.
Similar observations can be made for the Radix benchmark that also causes
long directory queuing time. For comparison, Fig. 6.22 shows the directory
NIP load over time for the Ocean con. benchmark which has roughly the same
directory NIP load as FFT in Fig. 6.17. In this case, the directory NIP load has
a more uniform temporal distribution, which is confirmed by the lower directory
queuing time in Fig. 6.20.

Similar effects were observed in the Stanford FLASH multiprocessor [40],
but the Clupea architecture mitigates high directory loads by using the addi-
tional flexibility to increase the number of directories according to the needs of
the application. Hence, unused directories are not wasted hardware resources
when they are not needed and the performance of the memory system can be

120 6. Modeling and Evaluation

0

200

400

600

800

1000

1200

1400

Bar
ne

s

C
ho

le
sk

y
FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

D
ir
e

c
to

ry
 b

u
ff

e
r

la
te

n
c
y
 [

c
y
c
le

s
]

8 AT/DT

4 AT/DT

2 AT/DT

Figure 6.20: Average directory buffer queuing time for 16 ATs and AT/DT
ratios of 8, 4, and 2 for the Clupea architecture.

0 1 2 3 4 5

x 10
8

10

20

30

40

50

60

70

80

90

100

10

N
IP

 l
o

a
d

 [
%

]

Cycles

Figure 6.21: Temporal FFT DT NIP load for a single DT for 16 ATs and 4 DTs
in the Clupea architecture.

6.4. Results and Discussion 121

0 1 2 3 4 5 6

x 10
8

10

20

30

40

50

60

70

80

90

100

10

N
IP

 l
o

a
d

 [
%

]

Cycles

Figure 6.22: Temporal Ocean con. DT NIP load for a single DT for 16 ATs and
4 DTs in the Clupea architecture.

matched to the requirement of the application. Though, the number of DTs can
not be changed during the execution of the application in the proposed cache
coherent shared memory implementation. Scaling the number of DTs dynam-
ically leads to a number of directory issues related to dynamically distributing
directory requests which will not discussed further here. The major limitation
of the scalability of the proposed directory implementation is the load balancing
issue, which must be addressed by the compiler and operating system possibly
combined with a more sophisticated directory load balancing function in the
NIP.

6.4.7 Application Tile Load

Fig. 6.23 shows the max., min., and average NIP loads in the ATs for 16 allocated
ATs in the Clupea architecture. The low NIP load shows that the hardware
threaded NIP architecture provides the necessary processing power to manage
both local and remote cache line requests. The potential for improved latency in
the ATs by having multiple NIP pipelines executing simultaneously is therefore
low. Furthermore, complicated thread synchronization and more contention
for shared resources, such as the NoC buffers, are likely to reduce potential
of such an approach even further. Alternatively, hardware resources can be

122 6. Modeling and Evaluation

5

10

15

20

25

30

35

40

45

50

N
IP

 l
o

a
d

 [
%

]

Bar
ne

s

C
ho

le
sk

y
FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

8 A/D

4 A/D

2 A/D

Figure 6.23: Application NIP load in the Clupea architecture for 16 ATs with
AT/DT ratios of 8, 4, and 2. Each bar indicates max., min., and avg. load.

saved by reducing the number of hardware threads in NIP architecture, which
already only uses three of the four hardware threads in the cache coherent shared
memory configuration.

As mentioned earlier, MC sim does not capture instruction cache misses
and neglects the NIP load implied by these. The low NIP utilization shows that
there is sufficient NIP processing time to handle instruction misses without
overloading the NIP.

6.4.8 Memory Interface Tile Load

All experiments have been done with a single memory interface tile regardless of
the number of ATs. The cache coherence protocol is optimized for serving cache
miss on-chip whenever possible. Thus, it is interesting to see the load on the
memory interface. Fig. 6.24 shows the memory interface tile access rate per data
cache miss for the Clupea architecture with 8 to 64 ATs and an AT/DT ratio of
4, i.e., the fraction of directory requests to cache lines which are not found in any
data cache of any AT. While the general rate of memory interface tile accesses
is moderate, the rate is significantly reduced as the number of ATs increases.
The cause of this is the fact that the benchmark input is unchanged, while the
effective on-chip data cache is enlarged by using more ATs. Slight variations in

6.4. Results and Discussion 123

0

5

10

15

20

25

30

35

40

Bar
ne

s

C
ho

le
sk

y

FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

M
e

m
o

ry
 i
n

te
rf

a
c
e

 t
ile

 a
c
c
e

s
s
 r

a
te

 [
%

]

8AT+2DT

16AT+4DT

32AT+8DT

64AT+16DT

Figure 6.24: Memory interface tile access rate per data cache miss for the Clupea
architecture with 8 to 64 ATs and an AT/DT ratio of 4.

the memory access rates for Volrend can be seen for an increasing number of
ATs. This variation is attributed differences in the memory reference pattern
of the memory reference traces. Since the memory interface tile allows multiple
outstanding memory requests, the memory tile access rates shown in Fig. 6.24
do not saturate the memory interface tile. Memory interface tile contention was
observed for 1% to 27% of the time for the benchmarks. Thus, the memory
interface tile is not a major bottleneck in the memory system. It should be
noted that approximately half the memory interface tile accesses are cache line
write-backs that do not contribute to the cache miss latency.

6.4.9 Cache Miss Latency

The DT occupancy has already been identified as a major contributor to the
cache miss latency in the previous discussion. Fig. 6.25 shows all contributions
to the average cache miss across all eight benchmarks for both the Clupea
architecture and the HWC approach with 16 allocated ATs and four DTs. The
illustrated cache miss represent a typical cache miss, where the directory request
is processed in the DT NIP and the missing cache line is obtained from another
“remote” AT. The average directory request queuing time at the DTs constitutes
69% and 45% of the total cache miss latency for the two approaches respectively.

124 6. Modeling and Evaluation

0 100 200 300 400 500 600

Clupea

HWC

Avg. latency [cycles]

Local tile

NoC

Dir. buf.

Dir.

NoC

Remote tile

NoC

Local tile

Figure 6.25: Average latencies contributing to the cache miss latency for 16 ATs
with a AT/DT ratio of 4.

This latency varies significantly across the benchmarks as shown in Fig. 6.20
and decreases rapidly to less than 200 cycles for six of the benchmarks when
more DTs are added. In contrast, the processing in the NIP of the directory
has only a small impact on the cache miss latency.

Based on the latency contributions it is clear that the greatest potential for
cache miss latency reduction is to reduce the DT queuing time. The queuing
time is a result of two factors: The DT latency and the arrival rate of directory
requests. Thus, there are two ways to reduce the DT queuing time. Reducing the
DT latency through a more efficient implementation will reduce the processing
time of each request and thus reduce the latency of processing all requests in
the queue. Alternatively, the arrival rate can be reduced by distributing the
directory requests across more DTs. While the former approach may require
modifications to the NIP architecture, the latter has good potential due to the
significant variance observed in the DT NIP loads. Comparing the DT queuing
time to the NIP latency in the ATs indicates that sacrificing extra cycles in
the AT to implement a better directory request distribution function has great
potential. However, as it is discussed later, fixed mapping of address segments
to DTs does not provide a reasonable distribution of directory requests.

The NIP latencies of the two involved ATs and the NoC only have modest
contributions to the cache miss latency compared to the DT. The above obser-
vations are also valid for the HWC approach, although the directory queuing
time is relatively lower due to the shorter DT latency.

The three NoC messages in the critical path of the cache miss contribute

6.4. Results and Discussion 125

0

5

10

15

20

25

30

35

40

45

Bar
ne

s

C
ho

le
sk

y
FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

N
o

C
 l
a

te
n

c
y
 [

c
y
c
le

s
]

8AT+2DT

16AT+4DT

32AT+8DT

64AT+16DT

Figure 6.26: Average one-way NoC end-to-end latency in cycles for systems with
8, 16, 32, and 64 ATs and 2, 4, 8, and 16 DTs.

with a total of 75 cycles for both approaches. This contribution increases with
the number of ATs, as the average hop distance increases. Fig. 6.26 shows the
average one-way NoC latency for all eight benchmarks with 8 to 64 allocated
ATs and four ATs per DT. For 64 ATs, the NoC latency will be the largest
contributor to the cache miss latency in the HWC approach and this trend is
likely to continue beyond 64 ATs. Thus, the relative impact of the NIP latencies
of the Clupea approach will decrease.

6.4.10 Directory Cache Organization

The previously discussed results have been based on the default DC configura-
tion in Tab. 6.2. The DC miss rate has a significant impact on the directory
latency as DC misses block directory requests for the cache line while the DT
processor core updates the DC. The DC miss rates for the Clupea architecture
are shown in Fig. 6.27 and show significant variance across the benchmarks.
While the general trend shows improved DC miss rates when the number of di-
rectories increases, load balancing issues may lead to more DC misses as it can
be seen for a few benchmarks. Radix has a very high DC miss rate compared
to the other benchmarks as mentioned earlier. The effects of this can be seen
in both in the relative execution in Fig. 6.13 and the DT processor core load in

126 6. Modeling and Evaluation

0

2

4

6

8

10

12

14

16

18

Bar
ne

s

C
ho

le
sk

y

FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

D
ir
e

c
to

ry
 c

a
c
h

e
 m

is
s
 r

a
te

 [
%

]

8 AT/DT

4 AT/DT

2 AT/DT

Figure 6.27: Directory cache miss rates for 16 ATs and 8 to 2 application tiles
per directory.

Fig. 6.19.

Adding more DTs is not the only way to take advantage of the Clupea archi-
tecture. The DC organization can easily be reconfigured to optimize the miss
rate. Fig. 6.28 shows the relative execution time of the benchmark applications
for 16 ATs and four DTs compared to the default DC organization for the Clu-
pea architecture. The DC organization is varied from direct mapped to four-way
associativity and the block size, i.e. the DC line size, is varied from 1 to 16 en-
tries. The DC size is fixed to 8192 entries for all configurations. The default
configuration gives the best overall performance, but the Ocean con., Radix and
FFT benchmarks can reduce their execution times by up to 17% for alternative
organizations. These benchmarks all have high DC miss rates with the default
configuration and thus have good potential for reductions. Generally, increas-
ing the DC block size improves the DC miss rate due to better exploitation
of spatial locality. However, when increasing the block size to 16 and beyond,
the negative effects of conflict and capacity misses start to dominate. For DC
associativity, having 2-way associativity reduces the DC miss rate significantly
compared to a direct mapped DC. Increasing the associativity further to 4-way
associtivity generally improves the DC miss rate slightly for most applications,
but increases the relative execution time. This observation is atributed to the
increased DC latency in the Clupea architecture, which must check more tags

6.4. Results and Discussion 127

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Barnes

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Cholesky

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
FFT

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
LU con.

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Ocean con.

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Radix

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Volrend

B
S

1
B

S
2

B
S

4
B

S
8

B
S

1
6

B
S

1
B

S
2

B
S

4
B

S
8

B
S

1
6

B
S

1
B

S
2

B
S

4
B

S
8

B
S

1
6R

e
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Water sp.

B
S

1
B

S
2

B
S

4
B

S
8

B
S

1
6

B
S

1
B

S
2

B
S

4
B

S
8

B
S

1
6

B
S

1
B

S
2

B
S

4
B

S
8

B
S

1
6R

e
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

A1

A2

A4

Figure 6.28: Relative execution time for different DC configurations for the
Clupea architecture with 16 ATs and four DTs. The DC configuration is varied
across associativity, A, 1 to 4 ways, and block size, BS, 1 to 16 cache entries.

128 6. Modeling and Evaluation

for each DC lookup, and changes to the memory reference interleaving.
The Clupea architecture can exploit optimization through variable DC block

size while the HWC approach must aim for the best overall approach. However,
an average DC miss rate of 2.73% for the default configuration leaves little room
for general improvements.

6.4.11 Data Cache Size

Data cache misses in the ATs is the source of directory requests and thus also
load on the DTs. It is therefore interesting to see if increasing the data cache
size can reduce the data cache miss rate and thereby reduce the DT load and
the execution time. Fig. 6.29 shows the relative execution time for the Clupea
architecture for 16 allocated ATs with data cache sizes from 64 kilobytes to
256 kilobytes per tile normalized to execution time of the default 64 kilobyte
data cache configuration. Increasing the data cache size to 128 kilobytes and
256 kilobytes per tile decreases the relative execution time by 18% and 26% on
average respectively for the two configurations.

Fig. 6.30 shows the max., min. and average data cache misses per 1000
instructions across the ATs for the benchmark applications for the Clupea ar-
chitecture with 16 ATs and 4 DTs for the different data cache sizes. While
the average data cache misses per 1000 instructions of the 16 ATs is largely
unchanged when the data cache size increases, the max. data cache miss rate is
reduced significantly. The effect of the large reductions can be seen directly on
the execution time in Fig. 6.29 suggesting that the execution of the benchmark
applications are determined by the AT with the highest data cache miss rate
per 1000 instructions. Hence, increasing the data caches sizes for all ATs may
be waste of resources. Alternatively, the compiler or the programmer should
attempt to optimize the data accesses to achieve a more uniform data cache
miss rate distribution across the ATs.

6.4.12 Directory Load Balancing

Ideally the directory requests should be distributed according to the number of
requests recieved per DT and not by address segment. However, this is not prac-
tically feasible due to the fact that one DT must be responsible for all requests
to a particular cache line to avoid synchronization of information between di-
rectories. All simulations until now have used directory load balancing based on
256 kilobyte segments. Decreasing the size of these segments intuitively leads to
better load balancing. To investigate this, Fig. 6.31 shows the max., min. and

6.4. Results and Discussion 129

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bar
ne

s

C
ho

le
sk

y

FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

64 Kb

128 Kb

256 Kb

Figure 6.29: Execution time for different data cache sizes for systems with 16
ATs and four DTs normalized to the default 64 kilobyte configuration for the
Clupea architecture. The data cache size is increased from 64 kilobytes to 256
kilobytes.

0

5

10

15

20

25

30

35

D
$

 m
is

s
e

s
 p

e
r

1
0

0
0

 i
n

s
tr

u
c
ti
o

n
s

Bar
ne

s

C
ho

le
sk

y

FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

64 Kb

128 Kb

256 Kb

Figure 6.30: Data cache misses per 1000 instructions for the Clupea architecture
with data caches of 64, 128 and 256 kilobytes.

130 6. Modeling and Evaluation

average number of directory requests per directory for load balancing based on
256 kilobyte segments and 512 byte segments normalized to the average num-
ber of directory requests. Counterintuitively, the 512 byte segments lead to
significantly worse distributions of the directory requests as the max. increases
significantly for all benchmarks. The effect of this can also be observed on the
execution time, which increases by 80% on average. The largest execution time
increases are observed for Cholesky and Volrend, which both increase by over
200%.

The source of this uneven distribution comes from the combination of the
local data caches in the ATs and the memory references in the memory ref-
erence traces. Analysis of the memory reference traces themselves show more
uniform distributions with the 512 byte segments for five of the eight bench-
marks. Fig. 6.32 shows the max. and min. number of memory refences that
map to each DT normalized to the average number of memory refences per DT.
Note that the three benchmarks that have their memory reference distribution
negatively affected by the 512 byte segment approach in Fig. 6.32 are also the
benchmarks which have the worst DT load balancing in Fig. 6.31 using the 512
byte approach.

A key difference between the two segment sizes is the bits used to determine
the DT that should handle the data cache miss. For load balancing based on
256 kilobyte segments, the DT is determined using address bits that belong to
the tag part of the miss address. In contrast, the 512 byte segment approach
must use address bits which are also used as the data cache index. This means
that for the 512 byte segment approach, all cache misses to a particular cache
set always maps to the same DT. Contended data cache sets with a high rate of
conflict misses will therefore lead to increased pressure on a single DT. In the 256
kilobyte segment approach, the cache miss address to DT mapping is determined
by bits in tag part of the address and thus cache misses due to contended
data cache sets are likely to be distributed across several DTs. Reducing the
conflict misses through higher data cache associativity will therefore decrease
this effect. Fig. 6.33 shows the max. and min. requests per DT for the Ocean
con. benchmark for the Clupea architecture normalized to the average requests
per DT as an example. The data cache associativity is increased from 4 to
16 and the cache size is fixed. Increasing the data cache associativity to 8
reduces the distribution skew significantly for the 512 byte segment approach,
while the 256 kilobyte segments approach is only improved slightly. For 16-way
data cache associativity, the 512 byte approach reduces the DT load imbalance
even further and shows a significantly better load balace than the 256 kilobyte
approach which experiences slightly worse load balancing due to the increased

6.4. Results and Discussion 131

0

0.5

1

1.5

2

2.5

3

3.5

4

N
o

rm
a

liz
e

d
 r

e
q

s
.

p
e

r
D

T

Bar
ne

s

C
ho

le
sk

y

FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

256 Kb

512 b

Figure 6.31: Directory requests per DT for Clupea architecture using 16 ATs
and 4 DTs for directory load balancing based on 256 kilobyte and 512 byte
address segments. The figure shows the max. and min. directory requests per
DT normalized to the average requests per DT.

associativity. Similar trends can be observed for all the benchmark applications.

6.4.13 Interconnect Latency

The NoC latencies of listed in Tab. 6.3 assume that the NoC operates a the
processor core clock frequency. Operating at this frequency may not be feasible
in lower-power systems. Lowering the NoC clock frequency and thus increasing
the NoC latency will influence the execution time negatively for all implemen-
tations of the programming model support. However, since the NoC latency
contribution to the total cache miss latency is relatively smaller for the Clu-
pea approach as shown in Fig. 6.25, the Clupea architecture is less affected by
the increasing NoC latency. Fig. 6.34 shows the relative execution time of the
Clupea architecture normalized to the HWC approach with the same NoC clock
frequency for NoC clock frequencies divided by 2 and 4 for a 16 AT configuration
with 4 DTs. The decreasing relative execution time of the Clupea approach is
due to the fact that both implementations are affected equally by the increasing
NoC latency. Furthermore, the DT load may be lowered by the fact that NoC
messages spend more time in flight and thus the rate at which ATs generate new

132 6. Modeling and Evaluation

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

N
o

rm
a

liz
e

d
 m

e
m

.
re

fs
.

p
e

r
D

T

Bar
ne

s

C
ho

le
sk

y
FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

256 Kb

512 b

Figure 6.32: Memory reference trace address distribution. Max. and min.
references per DT normalized to the average number of references per DT.

4 8 16
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D$ associativity

N
o

rm
a

liz
e

d
 r

e
q

s
.

p
e

r
D

T

256 Kb

512 b

Figure 6.33: Directory requests per DT in Ocean con. for the Clupea architec-
ture for directory load balancing based on 256 kilobyte and 512 byte address
segments with 4, 8 and 16-way data cache associativity. The figure shows the
max. and min. directory requests per DT normalized to the average requests
per DT.

6.5. Summary 133

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Bar
ne

s

C
ho

le
sk

y

FFT

LU
 c
on

.

O
ce

an
 c
on

.

R
ad

ix

Vol
re

nd

W
at

er
 s
p.

f = f
noc

/f
tile

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

f = 1

f = 0.5

f = 0.25

Figure 6.34: Relative execution time for the Clupea architecture with 16 ATs
and four DTs compared to the HWC approach where the NoC clock frequency
is divided by 2 and 4.

directory requests is lower. Overall, the relative execution time of the Clupea
architecture drops from an average of 1.48 across all benchmarks to 1.27 when
the NoC clock frequency is reduced to 0.25 of the processor core clock frequency.

6.5 Summary

This chapter has introduced an analytical model for early evaluation of shared
memory many-core systems and the MC sim simulator which allows detailed
simulation that models the complex interaction between tiles in tile-based many-
core architectures. Both models were used to evaluate the previously described
cache coherent shared memory configuration of the Clupea architecture and
compare it to a fixed hardware implementation of the same programming model
support.

The analytical model provided early estimates of the overhead of the NIP
compared to a direct hardware implementation showing a cache miss latency
increase of 8 to 41% and an application execution time increase of 2% to 35%.
Exploiting the flexibility of the Clupea architecture by handling private and
shared data differently in the NIP showed potential for a significant reduction
in the overhead and even reduction in application execution time for applications

134 6. Modeling and Evaluation

with a high rate of access to private data.
The MC sim provided detailed simulation results for eight SPLASH2 bench-

mark applications on the Clupea architecture. Compared to a direct hardware
implementation of the same programming model support, the Clupea architec-
ture incurs an average relative execution time increase of 18% to 61% on average
for 8 to 64 ATs compared to fixed hardware programming model support, how-
ever, overheads below 10% are observed for several benchmarks. The directory
implementation is the main cause of this increase, however, scalability is ensured
by allocating additional DTs. High and uneven DT loads lead to long queuing
latency at the DTs. This latency can be addressed by reducing the DT latency
or by reducing the arrival rate of directory requests.

The Clupea cache coherent shared memory configuration has been shown
to scale up to 64 ATs with a relative execution time increase of less than 81%
for configurations with 4 ATs per DT. Only load imbalance between the DTs
is limiting the scalability. Experiments showed that better load balancing is
achieved when the load balancing is based on 256 kilobyte address segments
compared to 512 byte segments. Furthermore, experiments show that lower
NoC clock frequencies reduce the Clupea relative execution time even further.

Compared to the analytical modeling results, MC sim shows larger execution
time overheads. This is due to lack of contention modeling in the analytical
model. MC sim simulations show that DT contention contributes by far the
largest contribution to the cache miss latency. Thus, the relative execution
time remains largely constant with the number of ATs instead of decreasing as
estimated by the analytical model.

The modest execution time increase of as low as 18% on average for the
Clupea architecture should be considered in relation to the flexibility that is
offered. In the hardware approach a significant fraction of the tiles are fixed for
the purpose of being cache coherence directories. In contrast, the Clupea ar-
chitecture provides a platform of generic tiles that can be used for any purpose
including support for programming models. While the Clupea architecture can
not compete with fixed hardware support for cache coherent shared memory,
it has the potential to exploit application-specific optimizations and allows the
programmer to choose a suitable programming model for the application. Fur-
thermore, the Clupea architecture is a valuable platform for common ground
comparison of programming models.

Chapter 7

Future Research Directions

The work in this thesis has focused on support for the cache coherent shared
memory programming model using configurable network interface processors in
NoC-based many-core systems.

A major question that remains to be answered concerns how much can be
gained by having configurable support for a plethora of programming models.
Comparison of programming models is often difficult as evaluation platforms
typically only have support for one programming model. Platforms with more
generic support for programming models, such as the Clupea architecture, are
needed for further studies and comparisons of programming models. Further
studies of alternative programming models are necessary to answer this question.
Message passing and data streaming programming models are good alternative
candidates that avoid the contention caused by the directories in the cache
coherent shared memory programming model. Thus, towards this end, the
Clupea architecture offers an excellent reference platform for further studies of
programming models.

Another interesting question that remains unanswered is the hardware im-
plementation cost of the Clupea network interface. Increasing the complexity
of the network interface and the NoC itself means fewer resources for processor
cores and on-chip memories. On the other hand, having no programming model
support in the network interface may lead to longer communication latencies
and counter any advantages of having more processor cores or memories. As a
result of this, the network interface design and support for programming mod-
els can be considered as a trade-off between efficiency and simplicity which also
has to consider the need for supporting a plethora of programming models to

135

136 7. Future Research Directions

support future applications. The Clupea architecture emphasises flexible sup-
port for programming models while keeping complexity in mind by having a
single specialized network interface processor in each tile. Prototyping the ar-
chitecture would give more insight into the costs and allow comparison to other
approaches.

Generally, many-core systems are an emerging area where many questions
needs to be answered and many aspects need to be investigated. One of them is
how to design and program heterogeneous many-core architectures. In this di-
rection one could look into using the programmable network interface processor
in each tile to implement an abstraction layer between the processor core and
the rest of the system. This flexibility could allow processor cores of different
architecture to be fitted seamlessly together.

Another aspect is to look into operating systems for many-core architectures.
Traditional multiprocessor capable operating systems are more or less extensions
to operating systems that were originally designed for uniprocessor systems.
This view is fundamentally changed in many-core systems where processor cores
are an abundant resource and thus require strong emphasis on parallelism.

Chapter 8

Conclusions

This thesis has addressed the challenge of providing support for programming
models in future many-core architectures with Network-on-Chip interconnects.
Providing support for programming models is a non-trivial problem due to the
large number of parallel programming models and the fact that none of these are
suitable for all applications. Addressing this challenge has lead to three main
parts of this thesis: i) A case study of parallelization of an image processing ap-
plications. ii) The Clupea many-core core architecture which offers configurable
support for programming models. iii) Modeling and evaluation of the Clupea
architecture using both analytical modeling and detailed simulation.

Parallelization of an Image Processing Application: The case study
has considered parallelization and scalability issues for a potential embedded
image processing application. The application has been parallelized using the
OpenMP shared memory programming model and evaluated on a multiprocessor
system to study the limitations of parallelization caused by the application and
the execution platform. Results showed issues related to non-uniform memory
access and cache utilization caused by lack of control of the distribution of tasks.
These results inspired the configurable support for programming models in the
Clupea architecture.

The Clupea Many-core Architecture: The Clupea architecture has
been presented as a flexible tile-based many-core architecture with configurable
support for programming models. The architecture features specialized pro-
grammable network interface processors which enable individual support for
programming models for each application that executes on the system. The
network interface processor architecture has been designed with the limited on-

137

138 8. Conclusions

chip hardware resources in mind, which distinguishes the Clupea architecture
from previous multiprocessor architectures. Tight integration of the network
interface processor into the local caches allows the memory system to be fully
configurable. The Clupea is not intended to, and can not, compete with fixed
hardware support for programming models. Instead, it provides a flexible hard-
ware platform that can exploit application-specific characteristics and allow the
programmer to choose a suitable programming model for the particular appli-
cation. Possible implementations of a selection of programming models using
the Clupea architecture have been discussed and a detailed implementation of
cache coherent shared memory has been presented.

The Clupea cache coherent shared memory implementation shows a highly
flexible implementation of a directory-based cache coherence protocol. Directo-
ries are implemented using generic processing tiles and take advantage of both
the network interface processor and a general purpose processor. Using generic
processor tiles as directories allows the cache coherent shared memory imple-
mentation be easily matched to demands of the application and scale to a large
number of tiles by allocating more tiles to implement directories. Thus, hard-
ware resources are not wasted on unnecessary support for programming models
in the Clupea architecture.

Modelling and Evaluation: To aid the evaluation of many-core architec-
tures, two models have been developed which complements each other by offering
early analytical modeling and thorough cycle accurate simulation respectively.
The analytical model offers valuable early estimates based on a small set of
architectural model parameters that are obtainable early in the design process.
In contrast, the MC sim simulator offers cycle accurate modeling of the mem-
ory system and interconnect which captures contention and occupancy. The
trace-driven simulation approach enables fast simulation which is essential for
thorough analysis of many-core architectures. Detailed modeling of the cache
coherence protocol and extensive simulation statistics enable detailed analysis
of the memory system.

Evaluation of the Clupea architecture showed modest execution increases for
a range of parallel benchmark applications when compared to fixed hardware
support for the cache coherent shared memory programming model. MC sim
simulation has shown execution time increases ranging from 4% to 81% for dif-
ferent configurations of the programming model support for many-core systems
with 8 to 64 processor tiles executing the benchmark applications. Request
queuing at the directories due to contention has been identified as the main
contributor to this increase. Evaluation of several optimizations of the direc-
tory implementation have shown that this overhead is generally hard to reduce

139

due to the behavior of the applications. However, for most benchmarks the
effect can be significantly reduced by adding more directories to distribute the
load. Generally, the relative execution time increases only slightly as the num-
ber of processor tiles increases. The Clupea shared memory implementation
is sensible to the data cache miss rate, thus the execution times can be sig-
nificantly reduced by increasing the data cache size and associativity. Overall,
the execution times on the Clupea architecture shows that configurability has
a price when comparing support a single programming model, however, the ar-
chitecture offers a good potential for application-specific optimizations. Thus,
major improvements are expected if the Clupea architecture is combined with
software tools that can take advantage of its configurability.

140 8. Conclusions

Bibliography

[1] K. Goossens A. Hansson and A. Radulescu. Analysis of message-
dependent deadlock in network-based systems on chip. VLSI Design, 2007.

[2] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. A two-level
directory architecture for highly scalable cc-numa multiprocessors. IEEE
Trans. Parallel Distrib. Syst., 16(1):67–79, 2005.

[3] Advanced Micro Devices Inc. Family 10h AMD Phenom II Processor
Product Data Sheet, April 2010. http://www.intel.com.

[4] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A
tutorial. IEEE Computer, 29:66–76, 1995.

[5] S.V. Adve, V.S. Adve, M.D. Hill, and M.K. Vernon. Comparison of hard-
ware and software cache coherence schemes. Int. Symp. on Computer
Architecture, 1991.

[6] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Ku-
biatowicz, B. Lim, K. Mackenzie, and D. Yeung. The mit alewife ma-
chine: architecture and performance. In ISCA ’95: Proceedings of the
22nd annual International Symposium on Computer Architecture, pages
2–13, New York, NY, USA, 1995. ACM.

[7] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation of
directory schemes for cache coherence. SIGARCH Comput. Archit. News,
16(2):280–298, 1988.

[8] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The landscape of parallel computing research: A view

141

142 BIBLIOGRAPHY

from berkeley. Technical Report UCB/EECS-2006-183, EECS Depart-
ment, University of California, Berkeley, Dec 2006.

[9] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: a scalable archi-
tecture based on single-chip multiprocessing. In ISCA ’00: Proceedings
of the 27th annual International Symposium on Computer Architecture,
pages 282–293, New York, NY, USA, 2000. ACM.

[10] L. Benini and G. De Micheli. Networks on chips: A new soc paradigm.
Computer, 35(1):70–78, 2002.

[11] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
and G. De Micheli. Noc synthesis flow for customized domain specific
multiprocessor systems-on-chip. Parallel and Distributed Systems, IEEE
Transactions on, 16(2):113 – 129, feb. 2005.

[12] P. Bhojwani and R. Mahapatra. Interfacing cores with on-chip packet-
switched networks. In VLSI Design, 2003. Proceedings. 16th International
Conference on, pages 382 – 387, jan. 2003.

[13] T. Bjerregaard, S. Mahadevan, R. G. Olsen, and J. Sparsø. An OCP com-
pliant network adapter for GALS-based soc design using the MANGO
network-on-chip. In Proceedings of the International Symposium on
System-on-Chip (SoC’05), pages 171–174. IEEE, nov 2005.

[14] T. Bjerregaard and J. Sparsø. A router architecture for connection-
oriented service guarantees in the mango clockless network-on-chip. In
DATE ’05: Proceedings of the conference on Design, Automation and
Test in Europe, pages 1226–1231, Washington, DC, USA, 2005. IEEE
Computer Society.

[15] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny. The power of
priority: Noc based distributed cache coherency. In NOCS ’07: Proceed-
ings of the First International Symposium on Networks-on-Chip, pages
117–126, Washington, DC, USA, 2007. IEEE Computer Society.

[16] J. A. Brown, R. Kumar, and D. Tullsen. Proximity-aware directory-based
coherence for multi-core processor architectures. In SPAA ’07: Proceed-
ings of the nineteenth annual ACM symposium on Parallel algorithms and
architectures, pages 126–134, New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 143

[17] D. Chaiken, J. Kubiatowicz, and A. Agarwal. Limitless directories: A
scalable cache coherence scheme. SIGPLAN Not., 26(4):224–234, 1991.

[18] X. Chen, Z. Lu, A. Jantsch, and S. Chen. Supporting distributed shared
memory on multi-core network-on-chips using a dual microcoded con-
troller. In DATE ’10: Proceedings of the conference on Design, automation
and test in Europe, 2010.

[19] L. H. Clemmensen, M. E. Hansen, J. C. Frisvad, and B. K. Ersbll. A
method for comparison of growth media in objective identification of peni-
cillium based on multi-spectral imaging. Journal of Microbiological Meth-
ods, 69(2):249 – 255, 2007.

[20] F. Clermidy, R. Lemaire, Y. Thonnart, and P. Vivet. A communication
and configuration controller for noc based reconfigurable data flow archi-
tecture. In NOCS ’09: Proceedings of the 2009 3rd ACM/IEEE Interna-
tional Symposium on Networks-on-Chip, pages 153–162, Washington, DC,
USA, 2009. IEEE Computer Society.

[21] UPC Consortium. Upc language specifications, v1.2. Technical re-
port, Lawrence Berkeley National Lab Tech Report LBNL-59208, 2005.
http://upc.gwu.edu.

[22] D. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture:
A Hardware/Software Approach (The Morgan Kaufmann Series in Com-
puter Architecture and Design). Morgan Kaufmann, August 1998.

[23] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini.
xpipes: a latency insensitive parameterized network-on-chip architecture
for multi-processor socs. In ICCD ’03: Proceedings of the 21st Interna-
tional Conference on Computer Design, page 536, Washington, DC, USA,
2003. IEEE Computer Society.

[24] W. Dally and B. Towles. Principles and Practices of Interconnection Net-
works. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[25] W. J. Dally and B. Towles. Route packets, not wires: on-chip intecon-
nection networks. In DAC ’01: Proceedings of the 38th annual Design
Automation Conference, pages 684–689, New York, NY, USA, 2001. ACM.

[26] J. Duato, S. Yalamanchili, and N. Lionel. Interconnection Networks: An
Engineering Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

144 BIBLIOGRAPHY

[27] A. Duran, M. Gonzalez, and J. Corbalan. Automatic thread distribu-
tion for nested parallelism in openmp. Proceedings of the International
Conference on Supercomputing, pages 121–130, 2005.

[28] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: Programming for hierar-
chical parallelism and non-uniform data access. In International Workshop
on Language Runtimes, OOPSLA, 2004.

[29] R. Esser and R. Knecht. Intel paragon xp/s - architecture and software
enviroment. In Supercomputer ’93: Anwendungen, Architekturen, Trends,
Seminar, pages 121–141, London, UK, 1993. Springer-Verlag.

[30] I. Foster. Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1.3 edition, 1995.
http://www.mcs.anl.gov/∼itf/dbpp/.

[31] P. Francesco, P. Antonio, and P. Marchal. Flexible hardware/software
support for message passing on a distributed shared memory architecture.
In Design, Automation and Test in Europe, 2005. Proceedings, pages 736
– 741 Vol. 2, March 2005.

[32] K. Gharachorloo, M. Sharma, S. Steely, and S. Van Doren. Architecture
and design of alphaserver gs320. SIGPLAN Not., 35(11):13–24, 2000.

[33] K. Goossens, J. Dielissen, and A. Rădulescu. The Æthereal network on
chip: Concepts, architectures, and implementations. IEEE Design and
Test of Computers, 22(5):414–421, Sept-Oct 2005.

[34] K. Goossens, A. Radulescu, and A. Hansson. A unified approach to con-
strained mapping and routing on network-on-chip architectures. 2005
Third IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS’05), pages 75–80, 2005.

[35] H. Grahn and P. Stenström. Efficient strategies for software-only protocols
in shared-memory multiprocessors. SIGARCH Comput. Archit. News,
23(2):38–47, 1995.

[36] S. Han, A. Baghdadi, M. Bonaciu, S. Chae, and A. A. Jerraya. An effi-
cient scalable and flexible data transfer architecture for multiprocessor soc
with massive distributed memory. In DAC ’04: Proceedings of the 41st
annual Design Automation Conference, pages 250–255, New York, NY,
USA, 2004. ACM.

BIBLIOGRAPHY 145

[37] A. Hansson and K. Goossens. Trade-offs in the configuration of a network
on chip for multiple use-cases. In NOCS ’07: Proceedings of the First
International Symposium on Networks-on-Chip, pages 233–242, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[38] A. Hansson and K. Goossens. An on-chip interconnect and protocol
stack for multiple communication paradigms and programming models.
In CODES+ISSS ’09: Proceedings of the 7th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, pages
99–108, New York, NY, USA, 2009. ACM.

[39] N. Hardavellas, M. Ferdman, B. Falsafi, and A Ailamaki. Reactive nuca:
near-optimal block placement and replication in distributed caches. In
ISCA ’09: Proceedings of the 36th annual International Symposium on
Computer architecture, pages 184–195, New York, NY, USA, 2009. ACM.

[40] M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J. Baxter, J. P. Singh, R. Si-
moni, K. Gharachorloo, D. Nakahira, M. Horowitz, A. Gupta, M. Rosen-
blum, and J. Hennessy. The performance impact of flexibility in the stan-
ford flash multiprocessor. In Proc. of ASPLOS-VI, pages 274–285, New
York, NY, USA, 1994. ACM.

[41] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative
approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

[42] T. Henriksson and P. van der Wolf. Ttl hardware interface: A high-level
interface for streaming multiprocessor architectures. In ESTMED ’06:
Proceedings of the 2006 IEEE/ACM/IFIP Workshop on Embedded Sys-
tems for Real Time Multimedia, pages 107–112, Washington, DC, USA,
2006. IEEE Computer Society.

[43] W. D. Hillis and L. W. Tucker. The cm-5 connection machine: a scalable
supercomputer. Commun. ACM, 36(11):31–40, 1993.

[44] M. A. Holliday. Techniques for cache and memory simulation using address
reference traces. Int. J. Comput. Simul, 1:129–151, 1990.

[45] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith. Informing
memory operations: memory performance feedback mechanisms and their
applications. ACM Trans. Comput. Syst., 16(2):170–205, 1998.

146 BIBLIOGRAPHY

[46] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenk-
ins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob,
S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,
G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson. A
48-core ia-32 message-passing processor with dvfs in 45nm cmos. In Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International, pages 108 –109, 7-11 2010.

[47] Intel Corp. Pin, 2009. http://www.pintool.org.

[48] Intel Corp. Intel Core i7-900 Desktop Processor Extreme Edition Series
and Intel Core i7-900 Desktop Processor Series - Datasheet, february 2010.
http://www.intel.com.

[49] ITRS. International techonolgy roadmap for semiconductors - system
drivers, 2009. http://www.itrs.net.

[50] J. Jaehyuk Huh, C. Changkyu Kim, H. Shafi, L. Lixin Zhang, D. Burger,
and S.W. Keckler. A NUCA substrate for flexible CMP cache sharing.
IEEE Trans. on Parallel and Distributed Systems, 18(8), 2007.

[51] A. Jalabert, S. Murali, L. Benini, and G. De Micheli. ×pipescompiler: A
tool for instantiating application specific networks on chip. In DATE ’04:
Proceedings of the conference on Design, automation and test in Europe,
page 20884, Washington, DC, USA, 2004. IEEE Computer Society.

[52] A. A. Jerraya, A. Bouchhima, and F. Pétrot. Programming models and
hw-sw interfaces abstraction for multi-processor soc. In DAC ’06: Proceed-
ings of the 43rd annual Design Automation Conference, pages 280–285,
New York, NY, USA, 2006. ACM.

[53] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM Journal of Re-
search and Development, 49(4-5):589–604, 2005.

[54] R. Kalla, B. Sinharoy, W.J. Starke, and M. Floyd. Power7: Ibm’s next-
generation server processor. Micro, IEEE, 30(2):7 –15, March-April 2010.

[55] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel. Rigel: an ar-
chitecture and scalable programming interface for a 1000-core accelerator.
SIGARCH Comput. Archit. News, 37(3):140–151, 2009.

BIBLIOGRAPHY 147

[56] K. Keutzer, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli.
System-level design: orthogonalization of concerns and platform-based
design. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 19(12):1523 –1543, dec 2000.

[57] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches. SIGPLAN Not.,
37(10):211–222, 2002.

[58] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: architectural sup-
port for fine-grained parallelism on chip multiprocessors. In ISCA ’07:
Proceedings of the 34th annual International Symposium on Computer
Architecture, pages 162–173, New York, NY, USA, 2007. ACM.

[59] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosen-
blum, and J. Hennessy. The stanford flash multiprocessor. In ISCA ’94:
Proceedings of the 21st annual International Symposium on Computer Ar-
chitecture, pages 302–313, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[60] S. Kwon, Y. Kim, W. Jeun, S. Ha, and Y. Paek. A retargetable parallel-
programming framework for mpsoc. ACM Trans. Des. Autom. Electron.
Syst., 13(3):1–18, 2008.

[61] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess program. Computers, IEEE Transactions on, C-
28(9):690 –691, Sept. 1979.

[62] J. Laudon and D. Lenoski. The sgi origin: a ccnuma highly scalable server.
SIGARCH Comput. Archit. News, 25(2):241–251, 1997.

[63] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hen-
nessy, M. Horowitz, and M. S. Lam. The stanford dash multiprocessor.
Computer, 25(3):63–79, 1992.

[64] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and
J. Hennessy. The dash prototype: implementation and performance. In
ISCA ’92: Proceedings of the 19th annual International Symposium on
Computer Architecture, pages 92–103, New York, NY, USA, 1992. ACM.

148 BIBLIOGRAPHY

[65] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, M. Horowitz,
and C. Kozyrakis. Comparing memory systems for chip multiprocessors.
Int. Symp. on Computer Architecture, 2007.

[66] D. J. Lilja. Cache coherence in large-scale shared-memory multiprocessors:
issues and comparisons. ACM Comput. Surv., 25(3):303–338, 1993.

[67] J. D. C. Little. A proof for the queuing formula: L= w. Operations
Research, 9(3):383–387, 1961.

[68] P. Magarshack and P. G. Paulin. System-on-chip beyond the nanometer
wall. Proceedings - Design Automation Conference, pages 419–424, 2003.

[69] R. Marculescu, U.Y. Ogras, Li-Shiuan Peh, N.E. Jerger, and Y. Hoskote.
Outstanding research problems in noc design: System, microarchitecture,
and circuit perspectives. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 28(1):3 –21, jan. 2009.

[70] G. Martin. Overview of the mpsoc design challenge. In DAC ’06: Proceed-
ings of the 43rd annual Design Automation Conference, pages 274–279,
New York, NY, USA, 2006. ACM.

[71] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s gen-
eral execution-driven multiprocessor simulator (GEMS) toolset. Computer
Architecture News, 33(4), 2005.

[72] M. M. Michael and A. K. Nanda. Design and performance of directory
caches for scalable shared memory multiprocessors. In HPCA ’99: Pro-
ceedings of the 5th International Symposium on High Performance Com-
puter Architecture, page 142, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[73] M. M. Michael, A. K. Nanda, and B. Lim. Coherence controller architec-
tures for scalable shared-memory multiprocessors. IEEE Trans. Comput.,
48(2):245–255, 1999.

[74] M. Monchiero, G. Palermo, C. Silvano, and O. Villa. An efficient syn-
chronization technique for multiprocessor systems on-chip. SIGARCH
Comput. Archit. News, 34(1):33–40, 2006.

BIBLIOGRAPHY 149

[75] S. Murali, L. Benini, and G. de Micheli. Mapping and physical planning
of networks-on-chip architectures with quality-of-service guarantees. Pro-
ceedings of the ASP-DAC 2005. Asia and South Pacific Design Automa-
tion Conference 2005 (IEEE Cat. No.05EX950C), (Vol. 1):27–32 Vol. 1,
2005.

[76] S. Murali and G. De Micheli. Bandwidth-constrained mapping of cores
onto noc architectures. In DATE ’04: Proceedings of the conference on
Design, automation and test in Europe, page 20896, Washington, DC,
USA, 2004. IEEE Computer Society.

[77] A. Nieuwland, J. Kang, O. P. Gangwal, R. Sethuraman, N. Bus,
K. Goossens, R. Peset Llopis, and P. Lippens. C-heap: A heterogeneous
multi-processor architecture template and scalable and flexible protocol
for the design of embedded signal processing systems. Design Automation
for Embedded Systems, 7(3):233–270, 2002.

[78] B. W. O’Krafka and A. R. Newton. An empirical evaluation of two
memory-efficient directory methods. In ISCA ’90: Proceedings of the
17th annual International Symposium on Computer Architecture, pages
138–147, New York, NY, USA, 1990. ACM.

[79] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The
case for a single-chip multiprocessor. SIGPLAN Not., 31(9):2–11, 1996.

[80] Open Handset Alliance. Android SDK, May 2010.
http://code.google.com/android/.

[81] OpenMP Architecture Review Board. OpenMP Application Program In-
terface 2.5, 2005. http://www.openmp.org.

[82] OpenMP Architecture Review Board. OpenMP Application Program In-
terface 3.0, 2008. http://www.openmp.org.

[83] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, O. Benny,
D. Lyonnard, B. Lavigueur, and D. Lo. Distributed object models for
multi-processor soc’s, with application to low-power multimedia wireless
systems. In DATE ’06: Proceedings of the conference on Design, automa-
tion and test in Europe, pages 482–487. European Design and Automation
Association, 2006.

150 BIBLIOGRAPHY

[84] P.G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, and G. Nico-
lescu. Parallel programming models for a multi-processor soc platform
applied to high-speed traffic management. In Hardware/Software Code-
sign and System Synthesis, 2004. CODES + ISSS 2004. International
Conference on, pages 48 – 53, sept. 2004.

[85] F. Poletti, A. Poggiali, D. Bertozzi, L. Benini, P. Marchal, M. Loghi, and
M. Poncino. Energy-efficient multiprocessor systems-on-chip for embed-
ded computing: Exploring programming models and their architectural
support. Computers, IEEE Transactions on, 56(5):606 –621, may 2007.

[86] A. Radulescu, J. Dielissen, S.G. Pestana, O.P. Gangwal, E. Rijpkema,
P. Wielage, and K. Goossens. An efficient on-chip ni offering guaranteed
services, shared-memory abstraction, and flexible network configuration.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 24(1):4 – 17, jan. 2005.

[87] M. S. Rasmussen, S. Karlsson, and J. Sparsø. Adaptable support for
programming models in many-core architectures. In Workshop on New
Directions in Computer Architecture, 2009.

[88] M. S. Rasmussen, S. Karlsson, and J. Sparsø. Performance analysis of
a hardware/software-based cache coherence protocol in shared memory
mpsocs. In Programming Models for Emerging Architectures, 2009.

[89] M. S. Rasmussen, M. B. Stuart, and S. Karlsson. Parallelism and scal-
ability in an image processing application. In IWOMP, pages 158–169,
2008.

[90] M. S. Rasmussen, M. B. Stuart, and S. Karlsson. Parallelism and scalabil-
ity in an image processing application. International Journal of Parallel
Programming, 37(3):306–323, 2009.

[91] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and typhoon:
user-level shared memory. In ISCA ’94: Proceedings of the 21st annual
International Symposium on Computer Architecture, pages 325–336, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[92] E. Salminen, A. Kulmala, and T. D. Hämäläinen. Survey of network-on-
chip proposals. Technical report, OCP-IP, March 2008.

BIBLIOGRAPHY 151

[93] H. S. Sandhu and K. C. Sevcik. An analytic study of dynamic hardware
and software cache coherence strategies. Performance Evaluation Review,
23(1):167–177, 1995.

[94] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore. Exploiting ilp, tlp, and dlp with the
polymorphous trips architecture. In ISCA ’03: Proceedings of the 30th
annual International Symposium on Computer Architecture, pages 422–
433, New York, NY, USA, 2003. ACM.

[95] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture for
visual computing. ACM Trans. Graph., 27(3):1–15, 2008.

[96] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vencentelli. Addressing the system-on-a-chip intercon-
nect woes through communication-based design. In DAC ’01: Proceedings
of the 38th annual Design Automation Conference, pages 667–672, New
York, NY, USA, 2001. ACM.

[97] S. Srbljic, Z.G. Vranesic, M. Stumm, and L. Budin. Analytical predic-
tion of performance for cache coherence protocols. IEEE Transactions on
Computers, 46(11):1155–1173, 1997.

[98] M. B. Stensgaard and J. Sparsø. Renoc: A network-on-chip architecture
with reconfigurable topology. In NOCS ’08: Proceedings of the Second
ACM/IEEE International Symposium on Networks-on-Chip, pages 55–64,
Washington, DC, USA, 2008. IEEE Computer Society.

[99] P. Stenstrom. A survey of cache coherence schemes for multiprocessors.
Computer, 23(6):12 –24, jun 1990.

[100] T. Suh, D. Kim, and H.-H.S. Lee. Cache coherence support for non-
shared bus architecture on heterogeneous mpsocs. In Design Automation
Conference, 2005. Proceedings. 42nd, pages 553 – 558, june 2005.

[101] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal.
The raw microprocessor: A computational fabric for software circuits and
general-purpose programs. IEEE Micro, 22(2):25–35, 2002.

152 BIBLIOGRAPHY

[102] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and
G. Essink. Design and programming of embedded multiprocessors: an
interface-centric approach. In CODES+ISSS ’04: Proceedings of the 2nd
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, pages 206–217, New York, NY, USA, 2004.
ACM.

[103] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote,
N. Borkar, and S. Borkar. An 80-tile sub-100-w teraflops processor in
65-nm cmos. Solid-State Circuits, IEEE Journal of, 43(1):29 –41, jan.
2008.

[104] Virtutech. Simics, 2009. http://www.virtutech.com.

[105] W. Wolf. Modern VLSI Design: System-on-Chip Design. Prentice Hall
Press, Upper Saddle River, NJ, USA, third edition, 2002.

[106] W. Wolf. The future of multiprocessor systems-on-chips. In DAC ’04:
Proceedings of the 41st annual Design Automation Conference, pages 681–
685, New York, NY, USA, 2004. ACM.

[107] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The splash-2
programs: characterization and methodological considerations. Proceed-
ings 22nd Annual International Symposium on Computer Architecture,
pages 24–36, 1995.

[108] Z. Yu, M. J. Meeuwsen, R. W. Apperson, O. Sattari, M. A. Lai, J. W.
Webb, E. W. Work, T. Mohsenin, and B. M. Baas. Architecture and eval-
uation of an asynchronous array of simple processors. J. Signal Process.
Syst., 53(3):243–259, 2008.

[109] H. Zeffer, Z. Radović, M. Karlsson, and E. Hagersten. Tma: a trap-
based memory architecture. In ICS ’06: Proceedings of the 20th annual
international conference on Supercomputing, pages 259–268, New York,
NY, USA, 2006. ACM.

[110] M. Zhang and K. Asanovic. Victim replication: Maximizing capacity while
hiding wire delay in tiled chip multiprocessors. In ISCA ’05: Proceedings
of the 32nd annual International Symposium on Computer Architecture,
pages 336–345, Washington, DC, USA, 2005. IEEE Computer Society.

