
Support for Recovery in Mobile Systems

Cris Pedregal-Martin, Member,
IEEE Computer Society, and

Krithi Ramamritham, Fellow, IEEE

Abstract—Mobile systems increasingly are being used for production-grade data-

centered applications which require system support for transactional properties.

For mobile applications, transactions can hide, to some extent, the infrastructure

intrinsic to mobile systems, such as disconnection from the network, dozing, and

storage limitations. In this paper, we introduce a framework to understand, specify,

and reason about recovery support for transactional functionality, based on the

notion of guarantees (promises one subsystem makes to another) and protocols

(prescriptions for correct behavior). We apply our framework to a simple mobile

system scenario, yielding an abstract specification that exposes the role of each

component in achieving specific transactional semantics support, such as the

redo-ability of committed updates that might be lost due to a failure; it also reveals

unstated assumptions necessary for the correctness of recovery support. We also

show how to reason about alternative ways of obtaining the desired transactional

support and the requirements on the components to support recovery and

transactions.

Index Terms—Recovery specification, database transactions, mobile systems.

�

1 INTRODUCTION

TRANSACTIONS mask concurrency and failure details from applica-
tions and, on mobile systems, can hide infrastructure shortcomings
such as disconnection from the network, dozing, and limitations
on local memory. However, providing recovery support, essential
for transactions, is challenging, in general, because the semantic
gap between the high-level properties of recovery (e.g., failure-
atomicity, durability) and their implementation (buffer and log
management, disk and network access, etc.) makes it difficult to
reason about the low-level consequences of changes in the desired
high-level properties and the performance consequences of
changes in the underlying infrastructure. Thus, it is hard to both
reuse and gain confidence on the correctness of recovery design
and implementation. As distributed systems, specific challenges
apply to the building of recovery for mobile systems which desire
some variant of database-style transactions,1 including limitations
of communication bandwidth and range, power, storage, and
computation. Also, the topology of the network changes dynami-
cally as a mobile host connects with different base stations.

This paper is aimed at 1) bringing the benefits of abstraction,

and the methodologies abstraction enables, to the characterization

and crafting of recovery functionality and 2) studying how

mobility affects the realization of recovery properties. We intro-

duce a framework to: a) identify the relevant subsystems and their

relationships; b) describe what each subsystem expects from others

—guarantees one subsystem gets from another; and c) specify how

subsystems behave in order to create the conditions for the

guarantees to be useful—protocols that the subsystems follow. We

propose several alternative ways of achieving mobile recovery and
discuss the tradeoffs involved. Using the abstractions of guaran-
tees and protocols, we analyze the recovery-related requirements

imposed by these alternatives on the infrastructure.

2 SYSTEM MODEL AND FL FRAMEWORK

In this section, we first characterize the mobile systems under
study with an informal system model and assumptions. We then
introduce the elements of the Failure Liveness (FL) framework,
including the formal definitions of guarantees and protocols.

We consider systems comprised of fixed hosts and mobile
hosts. Fixed hosts are always connected via network; some or all of
them are base stations which can communicate (e.g., wirelessly)
with nearby mobile hosts. Mobile hosts move and may sequentially
connect to any base station, but at most one at a time. We consider
failures which cause the loss of volatile state (program state and
data in volatile memory) in a host and we assume fail-stop
behavior on all the subsystems. The recovery goal is supporting
Failure Atomicity and Durability, regardless of where the mobile

host was when it 1) issued operation(s) and 2) committed the
corresponding transaction. The system should also be able to
preserve the partial order of operations necessary to commit or
abort transactions, e.g., via some variant of the WAL protocol [1],
[2]. In this paper, “recoverable” means that there exists enough
“recovery information” for an appropriate repair algorithm to
restore state correctly.

We do not delve into concurrency control, instead making the
simplifying assumption that, if the home server of a data item
allows a data item to migrate to a mobile host, then the mobile host
can perform operations on the item. We make no assumptions
about who initiates or manages failure recovery and when: It could
be the mobile host itself as part of its own recovery protocol.

We describe recovery using the FL framework to: 1) identify the
relevant subsystems and their relationships; 2) describe (via
guarantees and forced protocols) what each subsystem expects from
another or accomplishes in spite of failures; and 3) specify (via
protocols) how subsystems behave in order to create the conditions
for the guarantees to be useful or applicable. Next, we formalize

these concepts via histories.

2.1 History and Events

H is a partial order on events (actions) which denotes the complete

history of the system, with < , the partial order predicate relation
“happens before” on H. To state that an event must take place, we
simply require that the event appear in H.

p, q, send, . . . are events (actions) in the history H. (We use
greek letters �; �; . . . for event variables.) Events can be data events

(e.g., write, update), transaction/recovery (commit) events, and
ad hoc (handoff). When relevant, we indicate event parameters in
italics and where it takes place with the subsystem’s name
subscripted (see Table 1).

2.2 Pre and Postactions

Let �; � be events in H:

PreActionð�Þ ¼ � �def � 2 H) � 2 H ^ � < �:

This says that if � occurs, then � must have occurred also and
before �.

PostActionð�Þ ¼ � �def � 2 H) � 2 H ^ � < �:

Once � occurs, then eventually � will also occur. We also introduce
ExclAction:

ExclActionð�Þ ¼ � �def � 2 H) :� 2 H:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002 1219

. C. Pedregal-Martin is with the Department of Computer Science,
University of New Mexico, Albuquerque, NM 87131.
E-mail: cris@cs.unm.edu.

. K. Ramamritham is with the Department of Computer Science and
Engineering, Indian Institute of Technology, Bombay, India.
E-mail: krithi@cse.iitb.ac.in.

Manuscript received 15 July 2001; revised 15 May 2002; accepted 30 May
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 116661.

1. In the sequel, we refer to these as simply mobile systems.

0018-9340/02/$17.00 � 2002 IEEE

The occurrence of � precludes that of �.

2.3 Guarantees

A requestor requests a guarantee from a guarantor subsystem which,
in response, may enable the guarantee. If enabled, the requestor
may later invoke an action that triggers the guarantee. Once the
guarantee has been triggered, the guarantor must (eventually)
perform the discharge action. Formally, a guarantee is a relation on
a 4-tuple of events

GuaranteeðGenable;Gdisable;Gtrigger;GdischargeÞ
�def PreActionðGtriggerÞ ¼ Genable ^ ExclActionðGtriggerÞ
¼ Gdisable ^ PostActionðGtriggerÞ ¼ Gdischarge:

With each of the actions we associate a predicate which
becomes true if and only if the corresponding action takes place.
Thus, for a guarantee G, enabledG is true only after the action
Genable occurs and similarly for the other three predicates. We
abuse notation and mix actions and their predicates when
convenient.

2.4 Protocols and Forced Protocols

A protocol constrains the order of events and is defined:
� ! � �def PreActionð�Þ ¼ �. This says that if � takes place, � must
have taken place before �. A forced protocol stipulates forward
causality of events. Formally: � 7!� �def PostActionð�Þ ¼ �. This
statement says that once � takes place, then, eventually, � takes
place after �.

With these elements, we specify a recovery scheme in the
following sense: Stating a guarantee means that the subsystem that
offers it supports its semantics, e.g., the ability to deliver the
recovery information in spite of failures (when appropriately
triggered and assuming the guarantee had been enabled). A
protocol means that the scheduling component of the appropriate
subsystem will allow only event sequences that conform to the
protocol. Both guarantees and protocols are thus requirements for
the subsystems that support them as much as assumptions for
those that use them.

3 RECOVERY IN MOBILE SYSTEMS

We consider the following scenario: Mobile host M does some
operations at fixed A, then is handed off to fixed B, and possibly
needs recovery at B. M expects the same recovery support whether
at A or at B. We specify this by stating that a handoff requires that
B obtain a new guarantee from A, promising that A will supply B

with the recovery information necessary to honor A’s guarantee to
M should M require it.

3.1 Eager Scheme: Recovery Information Follows Mobile

An obvious approach to satisfying the mobile recovery require-
ment is to make recovery information follow the mobile, thus all
recovery information generated by the mobile at all base stations

must be available at the current base station. We specify2 this eager
scheme via 1-4 (here, A;B are base stations and M a mobile):

1. A adheres to PslogsendðA;MÞ, to ensure recovery informa-
tion is stored at A and M adheres to PslogðM;AÞ.

2. M obtains GslogðA;MÞ from A, which is all that is
necessary to support recovery for M as long as M remains
in A. This is enabled by PslogsendðA;MÞ and by PslogðMÞ.

3. A adheres to PhndfEðA;M;BÞ to ensure recovery informa-
tion is available at the destination base station of a handoff.

4. B obtains GhndfEðA;BÞ from A, enabled by complying
with PhndfEðA;M;BÞ. This is the guarantee that the
recovery information will be at B while M is at B. (See
also Tables 1, 2, and 3).

We can demonstrate that mobile recovery is ensured by the
above specifications by considering the cases of M at A (before the
handoff) and M at B (after). Before the handoff, M counts on
having GslogðA;MÞ enabled and can trigger it by starting recovery.

After the handoff, B can recover p because the handoff enabled
GhndfEðA;BÞ. (The handoff is an atomic action, so this analysis
suffices.) Notice that, in this “eager” approach, as soon as M leaves
A for B (i.e., the handoff is complete), A no longer needs to keep
any recovery information for M . In particular, if M disconnects
and then reconnects, requesting recovery assistance, the system
will have to locate the last base station M visited before failure as
that is where the recovery information is.

Fig. 1 portrays how the recoverability of operation p is
supported in the eager handoff scheme case. The relationships
between subsystems and the protocols they follow and guarantees
they offer and use are represented for the two situations, before
and after a handoff. The top level indicates the events at the
mobile’s level of abstraction, namely the execution of p while at A
and the subsequent migration (indicated by a handoff) to B. The
next level indicates the respective recovery properties, i.e., that p

be recoverable while M is at each of A and B. For each level down,
we indicate how the current level’s guarantee is supported by
guarantees and protocols at the subsystem in the level below. (The
type of subsystems is indicated by the leftmost column.)

For example, on the right side of the figure (below and to the
right of the heading “M migrates to B”), we depict the top levels of
the support for recoverability for the same operation p that took
place in A, once M is at a different base station B. The handoff is
done adhering to eager handoff protocol PhndfEðA;M;BÞ.
Recoverability is achieved by adherence to this protocol and the
eager guarantee GhndfEðA;BÞ which it enables.

We indicate in the next level how GhndfEðA;BÞ is supported by
the same guarantee GslogðA;MÞ at A, coupled with the two
communication guarantees (to and fro A and B) and their protocols.
All these are at the same mobile host/base station level as the
guarantees they support, showing an example of composition of

1220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002

TABLE 1
Example Mobile Events/Actions

2. We omit “well-formedness” protocols, see Section 3.2.1.

guarantees and protocols. Guarantee GhndfEðA;BÞ is completed
by guarantee GloghndfB, which ensures the logged handoffs
survive failures.

This figure also shows how handoffs present another example
of composition of guarantees. To illustrate: A mobile M obtains a
high-level (“central”) guarantee while, at base station A’s cell, and,
while M stays within A, the guarantee may be supported locally.
When M moves to B, the system must, in effect, construct a new
guarantee to maintain its promise to M . This new guarantee,
usable in B, is a composition of the original guarantee in A and
guarantees about A’s reachability from B (through the fixed
network).

In this eager scheme, the cost of the handoff grows with the
length of the mobile’s trajectory in the system. The next section
considers this and other dimensions that give rise to variants for
the mobile systems.

3.2 Alternatives to the Eager Approach

We consider here whether the recovery information is stored in
persistent storage at some node or nodes within the fixed network.

1. Lazy. Recovery information is made persistent at the base
station where mobile was when the operation was carried
out and propagated only if and when necessary.

2. Eager, to central server. Recovery information is always
propagated from a base station to a central server S at
handoff time at the latest.

3. Lazy, to central server. Recovery info is propagated on
demand from the base station to the central server S. This
admits several variants: a) Propagation is done in batches,
under the control of a buffer-management subsystem at
the base station (e.g., triggered by a transaction commit
event); b) propagation is triggered by resource or time

events, e.g., a low watermark for free memory at the base
station; c) propagation is triggered by request for recovery
information from other base stations (possibly via the
central server S).

Here, the mobile communicates directly with the fixed network;
however, recovery info may reach the fixed network via a second
mobile host M 0. M 0 in turn can do that in a lazy or eager manner.
Once the data reaches the fixed network, the cases are as described
in the preceding list.

3.2.1 Mobile Protocols and Guarantees

The scenarios outlined above share many characteristics. We show
that they can be specified by different instantiations (for different
subsystems) of a small set of guarantees and protocols, which we
describe here (see also Tables 2 and 3).

GcommðA;BÞ expresses the expectation that communication
between hosts is reliable. It includes mobile hosts, encoding
the assumption that a mobile host will eventually communicate.

GslogðAÞ means that host A is endowed with its own recovery
support, e.g., stable storage. Stable logging is just a possible
implementation.

GslogðA;MÞ is similar to GslogðAÞ but from A to M.

GvlogðA;MÞ is the version of GslogðAÞ for a host A lacking stable
storage.3 See Section 3.4.

GhndfLðA;BÞ is the lazy handoff guarantee, a promise from A that
it will supply recovery information for operation p 4 if and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002 1221

TABLE 2
Mobile System Guarantees

3. A need not have persistent storage, it suffices that A not fail when M
fails.

4. To reduce clutter we do not list operation p as a parameter.

TABLE 3
Mobile System Protocols

when B assumes M’s recovery (see Section 3.3). Thus, A

remains obligated to keep the recovery information around.

GhndfEðA;BÞ is the eager handoff guarantee, which ensures that

the recovery information has been furnished to the base station

(B). Contrast to GhndfLðA;BÞ.
To avail themselves of the guarantees, subsystems must follow

protocols. The classic database case is WAL, which mandates

logging an update (to obtain the recovery guarantee from the

recovery system) before applying the update. Although obvious,

we include the first two protocols below (Psend, Pinpt) to show

their role in prescribing well-formedness. The remaining protocols

are related to guarantees in that they ensure that certain operations

only happen after the enable action of some appropriate guarantee

(see also Table 3):

PsendðMÞ;PinptðA;MÞ. These are “well-formedness” protocols:

They prescribe where an operation (p at M) may originate: from

an input or from a message from another host.

PslogðM;AÞ. Companion to GslogðA;MÞ. Ensures log is stably

written before an operation (WAL).

PvlogðM;AÞ. Like the previous protocol, this one (which pairs with

GvlogðA;MÞ) ensures that a volatile log is written before an

operation.

PslogsendðA;MÞ. Specific to some mobile system schemes in which

messages containing operations are logged by the base station

before sending them on to their destination mobile host (see

[3]).

PhndfEðA;M;BÞ. Ensures that M’s (p) recovery information is sent

from A to B eagerly at the handoff, which contributes to

enabling GhndfEðA;BÞ.
PhndfEðA;M;B; SÞ. A variant of the eager handoff protocol (see

the previous one) in which the information is sent to a central

server S instead.

PhndfLðA;M;BÞ. Prescribes that the handoff itself be logged at

destination host B so that B knows later to ask A for the needed

recovery information. See GhndfLðA;BÞ above and Section 3.3.

3.3 Lazy Scheme: Recovery Information Remains at
Original Base Stations

In Section 3.1, we specified an eager approach in which recovery

information was always propagated at handoff. The lazy variant

leaves the recovery information at the base stations where it

originated (say, A), relying on them later to support recovery if and

when it is necessary. We assume here that recovery is managed by

the base station last associated with a Mobile host prior to the
initiation of recovery. Instead of receiving the mobile’s recovery
information at handoff, the destination host (say, B) obtains a
guarantee that it will be available from A. Of course, B must be
able to communicate with A after the handoff, but that is a given in
our system model (see Section 2 and Table 2). The specification for
this lazy case is given by (cf. Section 3.1) 1-5:

1. A follows PslogsendðA;MÞ, and M to PslogðM;AÞ, ensur-
ing that recovery information is stored at A.

2. M adheres to PslogðMÞ, write-ahead logging.
3. A grants M GslogðA;MÞ, enough to support recovery for

M as long as M remains in A. This is enabled by
PslogsendðA;MÞ and by PslogðMÞ.

4. Those protocols also enable GslogðAÞ, guaranteeing that A
will have access to the recovery information (with the goal,
in this case, of passing it to B).

5. B can get recovery information RðpÞ from A because B and
A can always communicate. This is given by the two
instances, GcommðB;AÞ for B and GcommðA;BÞ for A,
which hold for all the hosts.

Recovery in the pre-handoff portion (while M at A) is the same
as in the eager case, so we omit it from the discussion. After the
handoff, we rely on the communication guarantees Gcomm and
A’s own persistence guarantee GslogðAÞ to show that B can help
recover M. Unlike the eager case, because no transfer of recovery
information takes place at handoff, we do not specify a protocol on
handoffs (i.e., with handoff as its righthand side (cf.
PhndfEðA;M;BÞ in Table 3).

Let us now compose GslogðAÞ and Gcomm to transfer RðpÞ from
A to B and attempt to prove that B can always obtain RðpÞ.
Suppose there is a failure of B after the handoff and before M’s
recovery. It is possible that B may forget that M had visited A

earlier and that A was holding RðpÞ. Without this knowledge, the
recovery engineered by B will be incomplete, so we add the
following protocol and guarantee, defined in Tables 2 and 3:

6. B adheres to the handoff protocol PhndfLðA;M;BÞ to
ensure handoff information is available (see next item).

7. B guarantees M’s recovery via GhndfLðA;BÞ, enabled by
PhndfLðA;M;BÞ.

With this addition, the lazy scheme specification is complete in
that it ensures recovery in spite of failures. Strictly, Gcomm and
Gslog are no longer necessary. GhndfL subsumes Gcomm and
Gslog, which suggests that the two can implement it, which is
exactly the misleading intuition that overlooks the need for
stabilizing the handoff chain. Of course, Gcomm and Gslog are

1222 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002

Fig. 1. Operation recoverability in terms of underlying guarantees and protocols.

indeed useful to achieve GhndfL, but that more is needed is

apparent by examining their respective enables (see Table 2).

3.4 Storing Recovery Information at a Central Server

Previously, we examined two schemes (eager and lazy) in which

the base stations have the capability to store recovery information

and manage recovery. In some mobile systems, base station hosts

are little more than conduits between a wireless and a wired

network protocol, lacking much by way of storage and computing

power. We consider here a scenario in which a separate central

server host S is in charge of managing recovery.5

Because base stations and server are connected, recovery

information can propagate from base stations to server at handoff.

Before handoff, the propagation is lazy (e.g., driven by resources or

transaction events). The specification is similar to the eager case

(see Section 3.1):

1. M adheres to GvlogðA;MÞ (volatile logging at A).
PvlogðM;AÞ makes sense because of the guarantee A

offers to M, which requires A to stabilize its log (next item).
2. GvlogðA;MÞ guarantees M recovery at A. This imposes a

requirement on A of preserving the recovery information,
but leaves undefined how A satisfies it, e.g., by using its
own disk or by shipping it elsewhere.

3. A adheres to PhndfEðA;M;B; SÞ to ensure recovery
information is available at server S.

4. B obtains GhndfEðA;SÞ from A, enabled by following
PhndfEðA;M;B; SÞ. This guarantees that the recovery
information will be at B while M is at B.

Before the handoff, M has guarantee GvlogðA;MÞ from A

which is enabled by the WAL variant GvlogðA;MÞ. After the

handoff, M would request recovery assistance to B, which relies on

GhndfEðA;SÞ, i.e., B will go to S for the recovery information.
This scheme is similar to the lazy scheme of Section 3.3 in that

the recovery information is not at the base station, but it is simpler

in that its location is well-known.

3.5 Transferring Recovery Information to Another Mobile

We outline here a scenario in which mobile host M may transfer

recovery information to another mobile host M 0, which in turn will

forward it to a base station. We assume M sends its recovery

information to M 0 and we ignore the specification of M’s own

operations so that we can treat the recovery information passed on

by M as the operations M 0 is keeping recoverable. We only show

here (1-4) how the recovery is maintained while at the original base

station A, omitting the treatment of handoffs, which can be done in

any of the ways developed in the previous examples.

1. M obtains guarantee GvlogðM 0;MÞ ensuring volatile
logging of its operations at M 0. PvlogðM;M 0Þ makes M 0

responsible for stabilizing its log (see next item).
2. M adheres to PslogðM;M 0Þ, write-ahead logging, to avail

itself of the guarantee GvlogðM 0;MÞ.
3. M 0 obtains GslogðA;MÞ from A, which is all that is

necessary to support recovery for as long as M remains
in A. This is enabled by PslogsendðA;MÞ and by PslogðM 0Þ.

4. M 0 adheres to PslogðM;AÞ, and treats RðpMÞ as its own pM 0

to ensure recovery info from M is logged at A.

This outline suffices to indicate the similarities and differences

with the previous examples. A complete specification requires

adding events for powerdown, fade, etc.

4 RELATED WORK AND CONCLUSIONS

Building recovery in transactional database systems is well-studied

[1], [4], [5], [2], with much less work in both extending it to other

domains and formalizing and abstracting its well-understood

underlying principles. Examples of extending recovery beyond

databases include [6], [7] (applications), [8], [9] (workflows). For

mobile systems specifically, work includes [10], [11] (transactional

support), [12], [13], [14] (database consistency), [15], [16] (con-

currency control and correctness). The scenarios in this paper

follow [3] (mobile recovery) and [17] (logging messages). There is

little work on formalizing recovery [18], [19] and it does not

address introducing abstraction.
In this paper, we discussed and specified mobile system

recovery, showing how operations by a mobile host are recover-

able under different strategies. The variants depend on where the

data and the recovery information are stored, how they are

propagated through the system, where operations on data, normal,

and repair recovery actions take place. The solutions varied

according to these dimensions, which are, in fact, implementation

dimensions. The central requirement of recoverability was assured

by different combinations of lower-level guarantees and protocols.
By describing the mobile system and its behavior in terms of

guarantees and protocols, we obtained the following benefits: First,

we used abstraction to separate what a component can expect from

another, e.g., the mobile host’s (recovery) expectations of the fixed

hosts. This also shows what the system and each component must

provide to others and documents precisely the challenges of

providing recovery under mobility. For example, in showing

handoff handling in terms of protocols and guarantees, we

exposed assumptions that were implicit in the discussion of

recovery of [3].
Second, in describing the alternatives for handoffs, we used

abstraction to characterize the broad requirement (a more abstract

guarantee) that all solutions must satisfy and then precisely

showed how that requirement is satisfied by the eager and the lazy

approach.
Third, we briefly showed how the guarantees and protocols

used to decompose and synthesize the higher-level recovery

properties can themselves be decomposed into guarantees and

protocols cast in terms of the lower levels of implementation

(Fig. 1). A complete unraveling of guarantees and protocols down

to the infrastructure can be found in [20], [21].

REFERENCES

[1] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques. San
Mateo, Calif.: Morgan Kaufmann, 1993.

[2] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “ARIES: A
Transaction Recovery Method Supporting Fine-Granularity Locking and
Partial Rollbacks Using Write-Ahead Logging,” ACM Trans. Database
Systems, vol. 17, no. 1, pp. 94-162, Mar. 1992.

[3] D.K. Pradhan, P. Krishna, and N.H. Vaidya, “Recoverable Mobile
Environments: Design and Trade-Off Analysis,” Technical Report 95-053,
Dept. of Computer Science, Texas A&M Univ., College Station, 1995.

[4] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and
Recovery in Database Systems. Reading, Mass.: Addison-Wesley, 1987.

[5] L.-F. Cabrera, J.A. McPherson, P.M. Schwarz, and J.C. Wyllie, “Implement-
ing Atomicity in Two Systems: Techniques, Tradeoffs and Experience,”
IEEE Trans. Software Eng., vol. 19, no. 10, pp. 950-961, Oct. 1993.

[6] D.B. Lomet and M.R. Tuttle, “Logical Logging to Extend Recovery to New
Domains,” Proc. ACM SIGMOD Conf., pp. 73-84, June 1999.

[7] R.S. Barga and D.B. Lomet, “Phoenix: Making Applications Robust,” Proc.
ACM SIGMOD Conf., pp. 562-564, June 1999.

[8] M.U. Kamath and K. Ramamritham, “Failure Handling and Coordinated
Execution of Concurrent Workflows,” Proc. 14th IEEE Int’l Conf. Design Eng.
(ICDE), Feb. 1998.

[9] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, “Specification and
Implementation of Exceptions in Workflow Management Systems,” ACM
Trans. Database Systems, pp. 405-451, Sept. 1999.

[10] R. Alonso and H.A. Korth, “Database System Issues in Nomadic
Computing,” Proc. 1993 ACM SIGMOD Conf., pp. 388-392, 1993.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002 1223

5. We assume there is a single server to keep the treatment simple.

1224 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002

[11] D. Barbara, “Mobile Computing and Databases—A Survey,” IEEE Trans.
Knowledge and Data Eng., vol. 11, no. 1, pp. 108–117 Jan./Feb. 1999.

[12] P.K. Chrysanthis, “Transaction Processing in Mobile Computing Environ-
ment,” Proc. IEEE Workshop Advances in Parallel and Distributed Systems,
pp. 77-83, 1993.

[13] G.D. Walborn and P.K. Chrysanthis, “Supporting Semantics-Based Trans-
action Processing in Mobile Database Applications,” Proc. Symp. Reliable
Distributed Systems, pp. 31-40, 1995.

[14] S. Mazumdar and P.K. Chrysanthis, “Achieving Consistency in Mobile
Databases through Localization in PRO-MOTION,” Proc. Int’l Conf. and
Workshop Database and Expert Systems Applications (DEXA), pp. 82-89, 1999.

[15] S.K. Madria and B.K. Bhargava, “A Transaction Model for Mobile
Computing,” Proc. Int’l Database Eng. and Application Symp., pp. 92-102,
1998.

[16] S.K. Madria and B.K. Bhargava, “On the Correctness of a Transaction
Model for Mobile Computing,” Proc. Int’l Conf. and Workshop Database and
Expert Systems Applications, pp. 573-583, 1998.

[17] B. Yao, K.-F. Ssu, and W.K. Fuchs, “Message Logging in Mobile
Computing,” Proc. Symp. Fault-Tolerant Computing, pp. 294-301, 1999.

[18] D. Kuo, “Model and Verification of a Data Manager Based on Aries,” ACM
Trans. Database Systems, vol. 21, no. 4, pp. 427-479, Dec. 1997.

[19] C. Wallace, Y. Gurevich, and N. Soparkar, “A Formal Approach to
Recovery in Transaction-Oriented Database Systems,” Springer J. Universal
Computer Science, vol. 3, no. 4, pp. 320-340, Apr. 1997.

[20] C. Pedregal-Martin and K. Ramamritham, “Guaranteeing Recoverability in
Electronic Commerce,” Proc. Third Int’l Workshop Advanced Issues of
E-Commerce and Web-Based Information Systems, pp. 144-155, June 2001.

[21] C. Pedregal-Martin, “Transaction Recovery in Databases and Beyond,” PhD
thesis, Univ. of Massachusetts, Amherst, 2001.

Multiversion Data Broadcast

Evaggelia Pitoura, Member, IEEE Computer Society,
and Panos K. Chrysanthis, Member, IEEE

Abstract—Recently, broadcasting has attracted considerable attention as a

means of disseminating information to large client populations in both wired and

wireless settings. In this paper, we consider broadcasting multiple versions of data

items to increase the concurrency of client transactions in the presence of

updates. We introduce various techniques for organizing multiple versions on the

broadcast channel. Performance results show that the overhead of supporting

multiple versions can be kept low while providing a considerable increase in

concurrency. Besides increasing the concurrency of client transactions,

multiversion broadcast provides clients with the possibility of accessing multiple

server states in a single broadcast cycle. Furthermore, multiversioning increases

the tolerance of client transactions of disconnections from the broadcast channel.

Index Terms—Mobile computing, broadcast, transaction management,

versioning, consistency.

�

1 INTRODUCTION

ALTHOUGH the concept of broadcast delivery is not new, recently,
data dissemination by broadcast has attracted considerable
attention due to the physical support for broadcast provided by
an increasingly important class of networked environments such
as by most wireless computing infrastructures, including cellular
architectures and satellite networks [10]. The use of broadcast for
disseminating information to large client populations is also
motivated by the explosion of data intensive applications created
by the dramatic improvements in global connectivity and the
popularity of the Internet. In such a setting, the server repetitively
broadcasts data to a number of clients without any specific data
request. Clients monitor the broadcast channel and retrieve the
data items that they may need as they appear on the broadcast
channel. Applications typically involve a small number of servers
and a much larger number of clients with similar interests,
operating in read-only mode. Examples include stock trading,
electronic commerce applications, such as auction and electronic
tendering, and networks of sensors.

As broadcast-based systems continue to evolve, more and more

sophisticated client applications will require reading current and

consistent data, despite updates at the server. In most related

research, updates are mainly treated in the context of caching at the

client (e.g., [4], [2]). In this case, the focus is on cache coherency;

there are no transactional semantics. Transactions and broadcast

were first discussed in the Datacycle project [5], where special

hardware was used to detect changes of values read by

transactions and thus ensure consistency. Recent work involves

the development of new correctness criteria for transactions in

broadcast environments [12], as well as the deployment of the

broadcast medium for transmitting concurrency control related

information to clients so that part of transaction management can

be undertaken by them [3]. In our previous work [8], we proposed

and comparatively studied a suite of invalidation-based techniques

to ensure the consistency of client read-only transactions.

. E. Pitoura is with the Department of Computer Science, University of
Ioannina, GR 45110 Ioannina, Greece. E-mail: pitoura@cs.uoi.gr.

. P.K. Chrysanthis is with the Department of Computer Science, University
of Pittsburgh, Pittsburgh, PA 15260. E-mail: panos@cs.pitt.edu.

Manuscript received 15 July 2001; revised 15 May 2002; accepted 4 June
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 116692.

0018-9340/02/$17.00 � 2002 IEEE

