

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 26, 2022

Support for the Logical Execution Time Model on a Time-predictable Multicore
Processor

Kluge, Florian; Schoeberl, Martin; Ungerer, Theo

Published in:
ACM SIGBED Review

Link to article, DOI:
10.1145/3015037.3015047

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Kluge, F., Schoeberl, M., & Ungerer, T. (2016). Support for the Logical Execution Time Model on a Time-
predictable Multicore Processor. ACM SIGBED Review, 13(4), 61-66. https://doi.org/10.1145/3015037.3015047

https://doi.org/10.1145/3015037.3015047
https://orbit.dtu.dk/en/publications/14362872-c9e7-4228-9458-ae7816b1bd11
https://doi.org/10.1145/3015037.3015047

Support for the Logical Execution Time Model on a
Time-predictable Multicore Processor

Florian Kluge
Department of Computer

Science
University of Augsburg

kluge@informatik.uni-
augsburg.de

Martin Schoeberl
Department of Applied

Mathematics and Computer
Science

Technical University of
Denmark

masca@dtu.dk

Theo Ungerer
Department of Computer

Science
University of Augsburg

ungerer@informatik.uni-
augsburg.de

ABSTRACT
The logical execution time (LET) model increases the composi-
tionality of real-time task sets. Removal or addition of tasks does
not influence the communication behavior of other tasks. In this
work, we extend a multicore operating system running on a time-
predictable multicore processor to support the LET model. For
communication between tasks we use message passing on a time-
predictable network-on-chip to avoid the bottleneck of shared mem-
ory. We report our experiences and present results on the costs in
terms of memory and execution time.

1. INTRODUCTION
Modern multicore processors exhibit similarities to distributed

systems. The cores on such processors are connected through net-
works-on-chip (NoCs), over which they can exchange messages.
Increasing numbers of cores in modern processors enable the inte-
gration of new software features in safety-critical systems (SCSs).
Initially, such new architectures posed some problems to develop-
ers of SCSs [19]. In the meantime, efforts have been made to over-
come these problems by appropriate hardware and software design
(see e.g. [24, 33, 34]). A time-predictable execution of tasks re-
quires that both the cores and the NoC have a time-predictable
behaviour. Furthermore, the operating system (OS) plays a key
role in making the performance of multicore processors available
to safety-critical applications in a predictable manner.

Another problem lies in the aspect of compositionality of such
systems, a problem that is not restricted to multicores, but already
exists for single-core processors. If, at some time during the de-
velopment process, a new task is added to the system, the actual
task schedules and important properties like task response times
may change. If the design of application software depends on the
respone times, the changes of the schedule may require that the ap-
plication design is revised, as can be the case for control algorithms
implemented in software. The concept of LET, as introduced in
Giotto [13], provides a solution to this problem by fixing input and

RTN 2016, Toulouse, France
Copyright retained by the authors

output times of tasks. Thus, compositionality of a task system is
ensured, as long as schedulability can be guaranteed.

In this paper, we report our experiences on the integration of the
LET execution model in a time-predictable multicore platform. As
hardware we use the Patmos multicore processor [29] from the T-
CREST project [27]. We port MOSSCA [21], a research prototype
of a manycore operating system for safety-critical applications, to
this platform and extend it by communication primitives for the
NoC that are mapped into the LET model. The results reported in
this paper give a first impression of the costs in terms of memory
and execution time that can be expected from such extensions.

The remainder of this paper is structured as follows: Section 2
presents related work. Section 3 recalls the basic properties of the
Patmos multicore processor, the NoC. The port of MOSSCA to the
Patmos multicore processor is described in section 4. Section 5 in-
troduces the extensions of MOSSCA to support LET. Quantitative
results are reported in section 6. We conclude the paper in section 7.

2. RELATED WORK
Epiphany is a high-performance energy-efficient multicore pro-

cessor [25] featuring a distributed memory architecture. Each core
contains 32 KB of local memory that is mapped into a global ad-
dress space. The processors contain no caches. Accesses to mem-
ory of a remote core is performed over a NoC. The NoC is orga-
nized as a mesh and favors writes over reads.

In contrast to Epiphany, our Patmos multicore processor contains
a NoC with explicit support for message passing. Processor-local
memories are only accessible from the local processor. Further-
more, Patmos supports, additionally to local memory, caches for
instruction and data.

For time-predictable on-chip communication, a NoC with time-
division multiplexing (TDM) arbitration allows bounding the com-
munication delay. Æthereal [10] is such a NoC that uses TDM
where slots are reserved to allow a block of data to pass through
the NoC router without waiting or blocking traffic. Slot tables with
routing information are contained in the routers and no arbitration
or link-to-link flow control is required. Instead, a credit-based flow
control is applied for end-to-end control, saving buffer space be-
tween links. aelite, a light version of Æthereal, only offers guaran-
teed services resulting in a simpler router design with source rout-
ing [11].

In contrast to the Æthereal family of NoCs our NoC implements
TDM arbitration from end-to-end. I.e., access to the scratchpad
memory (SPM) is scheduled with the NoC TDM schedule. There-
fore we do not need any credit-based flow control.

Theoretical approaches for calculating maximum response times
of a NoC are network calculus [3, 4, 22] and response-time anal-
ysis [30]. Network calculus is used to compute bounds on buffer
sizes and bounds on latencies. With traffic shaping, i.e., rate control
at the message source, delays and buffer sizes can be bounded. The
Kalray multicore processor [9] is especially designed to support
time-predictable message passing with rate control in the sender
and no further flow control [8]. The NoC response time analysis
can be combined with task schedulability analysis to produce an
end-to-end schedulability test for multicores [16].

When comparing TDM with network calculus [26], TDM re-
sults in shorter worst-case latencies while network calculus leads
to higher bandwidth. However, TDM leads to simpler routers and
network interfaces than support for a dynamically scheduled NoC.
Therefore, a TDM based NoC is used in the Patmos multicore pro-
cessor.

The time-composable operating system TiCOS [2] has been port-
ed to Patmos [36]. TiCOS is a light-weight RTOS, which is a fork
of the open-source POK project [7]. TiCOS conforms with ARINC
653 including the ARINC 653 events and ports for synchroniza-
tion and inter-partition communication. In contrast to MOSSCA,
TiCOS supports only a single processor core and therefore does
not use the NoC for task communication.

3. BASELINE

3.1 Patmos
For safety-critical systems we need a time-predictable platform

that allows for worst-case execution time (WCET) analysis. The
Patmos processor [29] and the multicore version of Patmos devel-
oped within the T-CREST project [27] is designed to enable and
simplify WCET analysis.

Patmos is a dual-issue RISC processor designed with the main
objective to allow WCET analysis and is optimized for a low WCET
bound. A main focus on Patmos is the memory hierarchy and
the organization of local memories. For code Patmos contains a
so-called method cache [6] and an instruction scratch-pad mem-
ory (ISPM). The method cache caches whole methods/functions to
simplify WCET analysis. When caching whole functions all in-
structions except call and return are guaranteed hits. Cache misses
can only happen on a call or return instruction. The method cache
is integrated in the aiT [12] and platin [15] WCET analysis tools.
The ISPM can be used for functions that shall be always loaded in
a local memory, e.g., operating system services.

For data, Patmos contains a normal data cache, a stack cache [1],
and a data scratch-pad memory (DSPM). The data cache is orga-
nized as write-through cache, as this is the form of data cache that
is best supported by WCET analysis tools. Standard data caches
hold data from different memory areas that are differently hard to
analyze with respect to WCET. E.g., heap allocated data is practi-
cally impossible to analyze as addresses are not known statically
for the analysis. However, stack allocated data is relatively easy
to analyze. Therefore, stack data is cached in Patmos in the stack
cache. Data that shall always be loaded in local memory, e.g., op-
erating system data or data that shall be sent via the NoC, can be
allocated in the data SPM.

3.2 Multicore Communication
The multicore version of Patmos is connected to two networks-

on-chip (NOC): (1) a memory tree to access the shared external
memory [28] and (2) the Argo message passing NoC [17]. The
memory tree provides TDM arbitration to the main memory and
is therefore time-predictable. However, communication between

cores through main memory is very expensive as the memory is the
bottleneck. The message passing Argo NoC is especially designed
to allow time-predictable communication between processor cores.

Argo uses TDM for accessing the NoC and performs data move-
ment from the sender SPM to the receiver SPM. A message is sent
via the Argo NoC by a DMA inserting packets into the NoC. The
novelty in Argo is that the DMA is shared by all message chan-
nels via TDM that is synchronous to the NoC TDM [32]. This
mechanism allows for end-to-end TDM based transfer of the mes-
sages without any buffering (except pipeline registers) and flow
control. Therefore, the worst-case transfer time can easily be com-
puted [31].

3.3 MOSSCA
The design of MOSSCA is inspired by the factored operating

system (fos) [35]. Its central concept is to distribute functionali-
ties over a multicore processor, e.g., by assigning each application
or thread a separate core. All communication is strictly based on
explicit messages that are sent over the NoC. The implementation
of MOSSCA assumes a multicore processor where each core pos-
sesses local memories where OS and application code and data can
be stored. For communication, the NoC connecting the cores must
be able to provide hard real-time guarantees.

For the application developer, MOSSCA provides three abstrac-
tions, namely nodes, communication channels, and servers. Nodes
represent the primary execution resources for applications. Each
MOSSCA node maps directly to a physical node of the multicore
processor. A MOSSCA node acts as container for the binary im-
ages of applications and executes the program defined in this im-
age. Communication channels represent the basic means for inter-
action between threads. A communication channel in MOSSCA
provides unidirectional communication between a sender (channel
source) and a receiver node (channel sink). Channels can be used
to implement more sophisticated communication patterns on top.
A channel policy defines limits on the usage of channels to pre-
vent overload of the NoC and the channel sink. MOSSCA servers
provide services that are used by multiple applications or threads
but need to be executed in a centralized manner. Examples are the
multiplexing of I/O devices, or OS services that may afflict multi-
ple nodes and therefor must be centralized. Also, applications may
define servers that provide library services for computations used
in several threads. MOSSCA servers implement non-interruptible
transactions. Once a server has started processing an application
request, it will finish this request without interruption by other ap-
plication requests.

Figure 1 gives an overview of the MOSSCA system architec-
ture. The hardware base is formed by nodes. These are connected
by a real-time interconnect that provides predictable traversal times
for messages. Additionally, some nodes have special facilities, e.g.
for off-chip I/O. OS functionalities are split into several parts to
run in a distributed manner and to achieve high parallelism. An
identical kernel on each node is responsible for configuration and
management of the node’s hard- and software. OS functionalities
that require a centralized execution or need to coordinate between
several nodes are provided by OS servers. Nodes possessing an off-
chip connection that is used by at least one of the applications act as
I/O servers. For inter-partition communication, MOSSCA allocates
dedicated communication servers. Additionally, MOSSCA sup-
ports the implementation of application-specific servers that pro-
vide e.g., library services used by several threads. Stubs on applica-
tion nodes provide convenient methods to issue requests to servers.

In the actual implementation of MOSSCA, two kernel images
are generated: The boot kernel is loaded first to a dedicated node

Real-time NoC I/O

Node

Kernel

Node

Kernel

Node

Kernel

Node

Kernel

Node

Kernel

Stubs

Application Application
Library

IPC
Server

OS
Server

I/O
Server

Figure 1: MOSSCA System Architecture

and coordinates the startup of the multicore processor. The stan-
dard kernel runs on any other node, it is loaded via the boot kernel.
Loading of the kernel is managed by a small BIOS that is executed
when the processor starts operation. For each application, a sep-
arate image is generated. The advantage of this approach is that
the (standard) kernel image must be loaded from ROM only once
and then can be distributed to all cores, thus speeding up the boot
process [20]. The MOSSCA reference implementation is devel-
oped to run on a multicore simulator [23] that implements several
instruction set architectures.

4. MOSSCA ON PATMOS
MOSSCA was ported to the Patmos multicore implementation

with four cores for the Altera DE2-115 FPGA board. An imple-
mentation with nine cores is also available for the same board. In
both implementations of the multicore processor, core 0 is con-
nected to serial port of the board. The serial port is used both for
loading of kernel and application images, and for text output. Re-
quests for code images or output from other cores must be mediated
by core 0.

The main challenge in porting MOSSCA to Patmos was the as-
signment and use of address spaces for the different parts of the
kernel and application images. For our first implementation, we
decided to leave the local SPMs free to be used by applications,
as we expect the amount of application code executed to be much
larger than the amount of OS code. Therefore, the MOSSCA ker-
nel is placed in global memory. Kernel code exists only once and
is used by all cores. For each core a separate kernel data section
is allocated in global memory. Applications may use both global
memory and the local SPMs for code and data.

To improve kernel performance, we performed a second imple-
mentation where kernel code is placed in the local instruction SPM
(ISPM). In this implementation, application code must be executed
from global memory, as most of the ISPM is taken by the kernel,
and the ISPM could not be enlarged further due to synthesis restric-
tions. Kernel data is still kept in partitions of the global memory,
while the DSPM is fully available to applications.

Communication between cores is performed using the message
passing libraries from the T-CREST project [31]. MOSSCA chan-
nels are mapped directly to message passing channels defined in
the libraries. These use a DMA engine to transfer data between the
communication SPMs of two cores. Therefore, the data must be
copied from the data SPM to the communication SPM.

In both implementations, the application running on core 0 on
top of the boot kernel has two responsibilities: First, it loads and
distributes the kernel and application images of all other nodes dur-
ing bootstrapping of the processor. Second, during regular opera-
tion, it acts as a I/O server for access to the serial port of the board.
Output routines for debugging (printf etc.) on other cores write
their output data to buffers that are located in the global memory.
The I/O server takes completed output messages from the buffers
and sends them over the serial line to the connected computer.

Task period = LET

Job execution

Logical read Logical write

Figure 2: Logical execution time

5. LET SUPPORT IN MOSSCA
LET, as introduced in Giotto [13], abstracts from the physical

execution of periodic tasks. The concept is illustrated in Figure 2.
A task’s LET is equal to its period. Input data is logically read at
the start of the period, i.e. a job can only read data that was already
available at the start of its period. Output data is made logically
available just at the end of the period. Actual job execution may
take place anywhere inside the period. Thus, the availability of
data is independent from the physical execution of the tasks, as
long as a given task set is feasible at all. This approach has two
advantages: First, it increases the compositionality of application
software. Adding new tasks does not change the communication
behaviour of the tasks, as long as the system is still schedulable.
Once the parameters for e.g. a software controller have been tuned
for the communication schedule defined by LET, they can be kept
regardless of additional tasks. Second, with the same argument, the
software can easily be ported to other hardware platforms as long
as the periods and schedulability can be kept.

An extension of Giotto for distributed system is proposed in [14].
A priori, timing interfaces are defined for tasks that determine the
time slots that the tasks can use for computation and communica-
tion. The task implementations must adhere to these. For commu-
nication between tasks running on different nodes, the underlying
network must be able to give timing guarantees such that the pre-
defined time slots can be met. Additionally, a time synchroniza-
tion between the different nodes is required, which can be achieved
through the predictable network. Actual implementations of the
tasks can be performed independently from each other.

A more general concept has been defined for OASIS [5]. Here, a
task is subdivided into subtasks that are executed sequentially. Each
subtask has its own LET. Evolution of the logical time is performed
explicitly by an advance instruction adv(time) that is called at the
end of each subtask.

The Patmos multicore processor with the Argo NoC provides a
good hardware platform for the implementation of the LET model.
Both enable a time-predictable execution, thus allowing to fix time
slots for computation and communication a priori. The Argo NoC
can supply a global timing signal that can drive time counters for
physical time on each node synchronously. The counters are syn-
chronized by the bootstrap reset sequence of the NoC [18].

To support the LET model, the OS has to provide special com-
munication primitives to the application(s). Traditionally, data sent
by a task to another one is available as soon as it has been physi-
cally received. LET requires that a task instance can only read data
that was already available at the task’s activation. This behaviour
must be reflected by the communication primitives of the OS.

5.1 Implementation in MOSSCA
In our implementation, we borrow the idea of the adv instruc-

tion from OASIS. The kernel manages a logical clock that is im-
plemented as a counter variable. Each time the application issues

an adv call, the counter is advanced and execution of the applica-
tion is suspended until the physical time matches the logical time.

For communication, a read/write semantic is implemented, i.e.
only the most recent value received over a communication channel
is relevant, older values can be discarded. The term “most recent”
in this context means the value that is available at the start of a
subtask’s time slot, regardless when the read operation is performed
during the time slot. For each communication channel, a cyclic
buffer is allocated on the receiver node. A single element in the
buffer consists of its logical availability time and the actual data.
The size sB of the buffer depends on the periods of the sender and
receiver tasks PS and PR. The buffer must be able to hold as many
elements as can arrive during one period of the receiver task, plus
the element that arrived just before the start of the period. This is
to ensure that even if the receiver physically reads the data just at
the end of its period, the relevant element is still available. Thus,
the buffer size is calculated as:

sB =

⌈
PR

PS

⌉
+1 (1)

The write locations in the buffer are managed by the sender node
using a counter. The send command (see alg. 1) can be issued at
any time during the sender’s execution. The command copies the
data to the communication SPM and marks the message for send-
ing. The actual transmission of the data is deferred until the sender
issues an adv call (alg. 2), as just then the availability time can be
determined. On receiver side, reading from the buffer returns the
element that was available at the start of the reader’s current time
slot, i.e. its current logical time (recall that the LET is advanced
just at the end of a job).

Algorithm 1: Send command

1 Function send_message(message, dest)
2 select send channel buffer bdest;
3 copy data to bdest;
4 mark bdest for sending;

Algorithm 2: adv command

1 Function adv(time)
2 ltime← ltime+ time;
3 foreach outgoing channel c do
4 if Message m buffered for sending over c then
5 Setup DMA for transfer of m;
6 end
7 end
8 while physical_time < ltime do
9 end

If both sender and receiver thread are executed periodically with
periods PS resp. PR, then a direct access to the buffer is possible. In-
stance n of the receiver (n = 0,1, . . .) reads the value from instance
k of the sender, where

k =
⌊

nPR

PS

⌋
(2)

Then, the buffer offset ob is:

ob = k mod sB (3)

If the more general execution model from OASIS is used, where
subsequent segments of tasks can have different LETs, either a

t

Slot length l

App. Execution

adv(l)

adv DMA transfer

Figure 3: Time slot

more complex calculation is necessary, or the correct element can
be found by simply looping through the buffer. The execution time
of the loop is bounded by the size of the buffer.

5.2 Length of Time Slots
The slot durations, i.e., the parameters of the advance calls, are

derived from application requirements. However, they must also
take into account the additional work of the adv call (see fig. 3).
First, the handling of the advance call itself takes some time. Dur-
ing this time, especially the send operations are started. Second,
the DMA transfers for the send operations must be finished at the
end of the time slot, as then the data must be available at the re-
ceiver nodes. Finally, ongoing DMA transfers may slow down the
setup of further transfers (line 5 in alg. 2). Therefore, additional
time must be provided inside the time slot.

The minimum slot length could be reduced, if the OS knows the
length of the slot already at its beginning. Then, the availability
time of data can already be determined when a send command is
issued. Thus, transmission of data could already be started when
the send command is executed, and the DMA transfer could overlap
with further computations.

6. QUANTITATIVE PROPERTIES
The following results are based on a small sample application

consisting of three nodes that mimic a sensor/computation/actuator
system, where every second a message is passed through all three
nodes. Each message has a size of 16 bytes.

6.1 Code Size
In the current implementation, the functions for management of

LET and LET communication increase the size of the MOSSCA
kernel code section by about 2 kB. The whole code section has a
size of about 25 kB. As the current implementation is a proof of
concept, it is not yet optimized for size. We expect that the size
can be reduced strongly through optimizations. For comparison,
the text sections of the MOSSCA reference implementation on a
ARMV6-M ISA take only around 7.5 kB of memory, with about
2.3 kB for output functions. A part of this large difference between
the Patmos and the ARMV6-M code sizes stems from the fact, that
the ARMV6-M images mostly uses Thumb instructions, most of
which have a width of only 16 Bits, whereas Patmos instructions
have at least 32 Bits. Also, the implementation for Patmos uses
some additional libraries for NoC access that are not needed in the
MOSSCA reference implementation.

Concerning kernel data, only a counter variable must be added.
For management of the channels, another integer variable that holds
the size of the receive buffer is added to the management structures.
As we expect only few channels to be managed on a single node,
this memory overhead for data is negligible in our view.

6.2 Execution Time of LET Extension
We have measured the execution times of relevant parts of our

extensions. Table 1 shows the numbers for the first implementa-

Table 1: Minimum and maximum execution times of important
code parts (kernel executed from global memory)

min max

send command 3,201 6,257
recv command 4,276 4,279
adv check 3.171 3,255
adv DMA setup 2,352 2,520

tion of MOSSCA, where kernel code is executed from the global
memory. Although minimum and maximum values span a larger
interval for some operation, the actual behaviour is quite regular.
For the send command (algorithm 1), the extreme values occur only
once, while all other instances take 6,173 cycles. Similar behaviour
is exhibited by the receive command which loops through receive
buffer. Here, most executions take 4,279 cycles. The adv check
times are calculated from the execution time of the whole loop in
the adv function (lines 3-7 in algorithm 1), with the times for set-
ting up the DMA channels (line 5) deducted. In our experiments,
the time for the check is constant on each node and depends only
on the actual position of the node. The minimum value of 3,171
cycles is found on node 1, while the check on node 3 always takes
3,255 cycles. The execution times for setting up the DMA channels
alternate between the shown minimum and maximum values on
any node. This is due to the organisation of the actual send buffer,
which has provides two places. When both places have been used,
some additional management work is performed by the software.

The high execution times stems mostly from cache misses and
the necessity for off-chip memory accesses. In the Patmos 4-core,
a burst fetch of four 32-bit words from external memory takes in
the worst case 104 clock cycles. Thus, even though the functions
are rather short, e.g. < 128 instructions for the send call, they have
a high execution time.

If kernel code is executed from the ISPM, the execution times de-
crease drastically. Table 2 shows the measured execution times for
the same functions as described above. Aside from the reduction,
the execution shows the same regular behaviour as in implementa-
tion using global memory for storing kernel code.

The worst-case transmission time of a message is bounded and
can be computed as shown in [31].

7. CONCLUSIONS AND OUTLOOK
We have ported the MOSSCA operating system to the Patmos

multicore processor and enhanced the implementation by commu-
nication mechanisms that adhere to the LET concept. Thus, the
compositionality of applications is increased, as changes in a task
set no longer influence the other tasks’ communication behavior.
The LET extensions of MOSSCA use the Argo message passing
NoC of the multicore processor. Messages are passed to buffers on
the receiver node, and made available to the application only after
their logical arrival time. As the Argo NoC uses time-division mul-
tiplexing for arbitration, the maximum transfer time of a message
can be bounded. Furthermore, the Argo NoC provides a global time
base that is used to drive the clock counters of all cores.

Runtime measurements of the LET extensions mainly point out
the disadvantages of execution code from a global memory with
long access latencies. Even code sequences of only a few hundred
instructions take thousands of cycles to execute. We could achieve
a drastic reduction of execution times by executing the kernel code
from ISPM.

Table 2: Minimum and maximum execution times of important
code parts (kernel executed from ISPM)

min max

send command 429 675
recv command 751 836
adv check 159 273
adv DMA setup 533 751

The LET extensions to MOSSCA increase the code size by less
than 10 %. We expect that we will reduce this overhead in the future
through an optimization of the MOSSCA implementation. Thus,
we will be able use the SPMs of the single cores more efficiently,
and especially make more space available for applications.

8. REFERENCES
[1] S. Abbaspour, F. Brandner, and M. Schoeberl. A

time-predictable stack cache. In Proceedings of the 9th
Workshop on Software Technologies for Embedded and
Ubiquitous Systems, 2013.

[2] A. Baldovin, E. Mezzetti, and T. Vardanega. A
time-composable operating system. In WCET, pages 69–80,
2012.

[3] R. L. Cruz. A calculus for network delay. I. Network
elements in isolation. IEEE Transactions on Information
Theory, 37(1):114–131, Jan 1991.

[4] R. L. Cruz. A calculus for network delay. II. Network
analysis. IEEE Transactions on Information Theory,
37(1):132–141, Jan 1991.

[5] V. David, J. Delcoigne, E. Leret, A. Ourghanlian,
P. Hilsenkopf, and P. Paris. Safety properties ensured by the
oasis model for safety critical real-time systems. In
W. Ehrenberger, editor, Computer Safety, Reliability and
Security, volume 1516 of Lecture Notes in Computer
Science, pages 45–59. Springer Berlin Heidelberg, 1998.

[6] P. Degasperi, S. Hepp, W. Puffitsch, and M. Schoeberl. A
method cache for Patmos. In Proceedings of the 17th IEEE
Symposium on Object/Component/Service-oriented
Real-time Distributed Computing (ISORC 2014), pages
100–108, Reno, Nevada, USA, June 2014. IEEE.

[7] J. Delange and L. Lec. Pok, an arinc653-compliant operating
system released under the bsd license. 13th Real-Time Linux
Workshop, 10 2011.

[8] B. Dupont de Dinechin, Y. Durand, D. van Amstel, and
A. Ghiti. Guaranteed services of the NoC of a manycore
processor. In International Workshop on Network on Chip
Architectures (NoCArc), pages 11–16, New York, NY, USA,
Dec. 2014. ACM.

[9] B. Dupont de Dinechin, D. van Amstel, M. Poulhiès, and
G. Lager. Time-critical computing on a single-chip massively
parallel processor. In Conference on Design, Automation and
Test in Europe, DATE ’14, pages 97:1–97:6, 3001 Leuven,
Belgium, Belgium, 2014. European Design and Automation
Association.

[10] K. Goossens and A. Hansson. The AEthereal network on
chip after ten years: Goals, evolution, lessons, and future. In
Proceedings of the 47th ACM/IEEE Design Automation
Conference (DAC 2010), pages 306 –311, 2010.

[11] A. Hansson, M. Subburaman, and K. Goossens. aelite: a
flit-synchronous network on chip with composable and

predictable services. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE 2009), pages
250–255, Leuven, Belgium, 2009.

[12] R. Heckmann and C. Ferdinand. Worst-case execution time
prediction by static program analysis. Technical report,
AbsInt Angewandte Informatik GmbH. [Online, last
accessed November 2013].

[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a
time-triggered language for embedded programming.
Proceedings of the IEEE, 91(1):84 – 99, Jan. 2003.

[14] T. A. Henzinger, C. M. Kirsch, and S. Matic. Composable
code generation for distributed giotto. In 2005 ACM
SIGPLAN/SIGBED Conference on Languages , Compilers,
and Tools for Embedded Systems, LCTES ’05, pages 21–30,
New York, NY, USA, 2005. ACM.

[15] B. Huber, S. Hepp, and M. Schoeberl. Scope-based method
cache analysis. In Proceedings of the 14th International
Workshop on Worst-Case Execution Time Analysis (WCET
2014), pages 73–82, Madrid, Spain, July 2014.

[16] L. S. Indrusiak. End-to-end schedulability tests for
multiprocessor embedded systems based on
networks-on-chip with priority-preemptive arbitration.
Journal of Systems Architecture, 60(7):553–561, 2014.

[17] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. T. Müller,
K. Goossens, and J. Sparsø. Argo: A real-time
network-on-chip architecture with an efficient GALS
implementation. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 24:479–492, 2016.

[18] E. Kasapaki and J. Sparsø. Argo: A time-elastic
time-division-multiplexed noc using asynchronous routers.
In Proc. IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), pages 45–52, May 2014.

[19] L. M. Kinnan. Use of multicore processors in avionics
systems and its potential impact on implementation and
certification. In 28th IEEE/AIAA Digital Avionics Systems
Conference, 2009 (DASC ’09), pages 1.E.4–1–1.E.4–6, Oct.
2009.

[20] F. Kluge, M. Gerdes, and T. Ungerer. The boot process in
real-time manycore processors. In 22nd International
Conference on Real-Time Networks and Systems, RTNS ’14,
pages 77:77–77:86, New York, NY, USA, 2014. ACM.

[21] F. Kluge, M. Gerdes, and T. Ungerer. An operating system
for safety-critical applications on manycore processors. In
17th IEEE International Symposium on Object Oriented
Real-Time Distributed Computing (ISORC), 2014, pages
238–245. IEEE, June 2014.

[22] J.-Y. Le Boudec. Application of network calculus to
guaranteed service networks. IEEE Transactions on
Information Theory, 44(3):1087–1096, May 1998.

[23] S. Metzlaff, J. Mische, and T. Ungerer. A Real-Time Capable
Many-Core Model. In Work-in-Progress Session of the 32nd
IEEE Real-Time Systems Symposium (RTSS 2011), Vienna,
Austria, Nov. 2011.

[24] J. Nowotsch and M. Paulitsch. Leveraging multi-core
computing architectures in avionics. In Ninth European
Dependable Computing Conference, Sibiu, Romania, pages
132–143. IEEE Computer Society, May 2012.

[25] A. Olofsson, T. Nordström, and Z. ul Abdin. Kickstarting
high-performance energy-efficient manycore architectures
with epiphany. In M. B. Matthews, editor, ACSSC, pages
1719–1726. IEEE, 2014.

[26] W. Puffitsch, R. B. Sørensen, and M. Schoeberl.
Time-division multiplexing vs network calculus: A
comparison. In Proceedings of the 23th International
Conference on Real-Time and Network Systems (RTNS
2015), Lille, France, November 2015.

[27] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley,
R. Capasso, J. Garside, K. Goossens, S. Goossens,
S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jordan,
E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Puffitsch,
P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Tocchi.
T-CREST: Time-predictable multi-core architecture for
embedded systems. Journal of Systems Architecture,
61(9):449–471, 2015.

[28] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø. A
time-predictable memory network-on-chip. In Proceedings
of the 14th International Workshop on Worst-Case Execution
Time Analysis (WCET 2014), pages 53–62, Madrid, Spain,
July 2014.

[29] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner,
C. W. Probst, S. Karlsson, and T. Thorn. Towards a
time-predictable dual-issue microprocessor: The Patmos
approach. In First Workshop on Bringing Theory to Practice:
Predictability and Performance in Embedded Systems (PPES
2011), pages 11–20, Grenoble, France, March 2011.

[30] Z. Shi and A. Burns. Real-time communication analysis for
on-chip networks with wormhole switching. In
Networks-on-Chip, 2008. NoCS 2008. Second ACM/IEEE
International Symposium on, pages 161–170, April 2008.

[31] R. B. Sørensen, W. Puffitsch, M. Schoeberl, and J. Sparsø.
Message passing on a time-predictable multicore processor.
In Proceedings of the 17th IEEE Symposium on Real-time
Distributed Computing (ISORC 2015), pages 51–59,
Auckland, New Zealand, April 2015. IEEE.

[32] J. Sparsø, E. Kasapaki, and M. Schoeberl. An area-efficient
network interface for a TDM-based network-on-chip. In
Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’13, pages 1044–1047, San Jose, CA,
USA, 2013. EDA Consortium.

[33] T. Ungerer, C. Bradatsch, M. Frieb, F. Kluge, J. Mische,
A. Stegmeier, R. Jahr, M. Gerdes, P. Zaykov, L. Matusova,
Z. J. J. Li, Z. Petrov, B. Böddeker, S. Kehr, H. Regler,
A. Hugl, C. Rochange, H. Ozaktas, H. Cassé, A. Bonenfant,
P. Sainrat, N. Lay, D. George, I. Broster, E. Quiñones,
M. Panic, J. Abella, C. Hernandez, F. Cazorla, S. Uhrig,
M. Rohde, and A. Pyka. Parallelizing industrial hard
real-time applications for the parMERASA multicore. ACM
Transactions on Embedded Computing Systems (TECS),
15(3):53:1–53:27, May 2016.

[34] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov,
C. Rochange, E. Quinones, M. Gerdes, M. Paolieri, J. Wolf,
H. Cassé, S. Uhrig, I. Guliashvili, M. Houston, F. Kluge,
S. Metzlaff, and J. Mische. MERASA: Multicore execution
of HRT applications supporting analyzability. IEEE Micro,
30:66–75, 2010.

[35] D. Wentzlaff and A. Agarwal. Factored operating systems
(fos): the case for a scalable operating system for multicores.
SIGOPS Oper. Syst. Rev., 43:76–85, Apr. 2009.

[36] M. Ziccardi, M. Schoeberl, and T. Vardanega. A
time-composable operating system for the Patmos processor.
In The 30th ACM/SIGAPP Symposium On Applied
Computing, Embedded Systems Track, Salamanca, Spain.,
April 13–17 2015. ACM Press.

