Support for the Process Engineer:
The Spearmint Approach to Software Process Definition
and Process Guidance

Ulrike Becker-Kornstaedt”, Dirk Hamann™, Ralf Kempkens™,
Peter Rosch®, Martin Verlage™, Richard Webby*, Jorg Zettel”

*Fraunhofer Institute for Experimental Software Engineering (IESE),
Sauerwiesen 6, D-67661 Kaiserslautern, Germany
{becker, hamann, kempkens, roesch, verlage, zettel }@iese .fhg.de

*Center for Advanced Empirical Software Research (CAESAR), School of Information Systems
The University of New South Wales, Sydney 2052, Australia
r.webby@unsw.edu.au

Abstract The software development process and its related activities are
described, implemented, analyzed, and changed by so-called Process Engineers.
Process Engineers provide descriptions of software development processes to
Process Performers. Because the processes usually are complex, support is
needed for both Process Engineers and Process Performers. This paper reports
the development and application of the process modeling environment Spear-
mint!. The architecture of Spearmint allows for a flexible definition and addition
of views which are used for retrieving filtered and tailored presentations of the
process models. One distinct view, namely the Electronic Process Guide used for
dissemination of process information and guidance of Process Performers, is dis-
cussed in more detail. The Spearmint environment has been validated in indus-
trial process engineering cases.

Keywords: Process Engineering, Process Guidance

1 Introduction

Besides product development, software engineering includes engineering of the soft-
ware development process. Process improvement and process programming, deal with
explicit process representations (i.e., process models) in order to analyze process
behavior, guide Process Performers, enforce rules, or automate process steps. The pro-
cess model is the basis for specifying how the process is carried out. It is a vehicle for
enabling better understanding and communication of software processes. Various
research groups and workshops are addressing process modeling issues under terms

1. Spearmint is a registered trademark of Fraunhofer IESE, Kaiserslautern, Germany.

M. Jarke, A.Oberweis (Eds.): CAISE’99, LNCS 1626, pp. 119-133, 1999.
© Springer-Verlag Berlin Heidelberg 1999

120 Ulrike Becker-Kornstaedt et al.

like process-centered software engineering environments and software process man-
agement environments.

A Process Engineer is responsible for eliciting process knowledge from experts, cap-
turing the processes and process steps in a process model, analyzing both the process
models and the real process, disseminating process changes, and for implementing sys-
tems to provide automated support to Process Performers. From our experience gained
in industrial process modeling case studies, we have found that a typical software pro-
cess will require modeling up to a hundred entities: process steps, documents, and
roles [6]. This cannot be achieved without a well-defined set of guidelines, concepts,
and tool support for the Process Engineer.

Software development processes are performed by a large number of people. These
processes are very unlikely to be as ‘straightforward’ as existing process models, for
example, the waterfall lifecycle model [6]. Analysis of real software development pro-
cesses has uncovered, for example, that control flow in software development projects
is complicated [16]; the number of process steps high and they are strongly interrelated
by means of product flow and control flow [17]. Also, personal interpretation of offi-
cial process documents may lead to process variants and inconsistent performances by
different people [4]. Therefore, support for Process Performers is crucial for the coor-
dination of software development processes.

Most work on support for Process Performers has focused on automated support of the
software process (‘enactment’). Many approaches for the support of Process Perform-
ers are influenced by workflow systems. However, experience from industrial projects
indicates that automation is only achievable for fine grained, tool-related activities
[1,10]. In the context of real-world industrial projects, the understanding of processes,
communication and their analysis have much more relevance.

We investigated the capabilities of a number of existing approaches, but found that
they all had significant limitations for the purpose of providing practical support for
the Process Engineer. This was one major reason why we decided to develop a new
approach which we called Spearmint (Software Process Elicitation, Analysis, Review,
and Measurement in an INTegrated Modeling Environment) [19]. Spearmint provides
an integrated modeling environment using a visual domain-specific process modeling
language which is used to describe and define real-world software processes. Among
others it supports the generation of a browseable process description (Electronic Pro-
cess Guide) which is a support tool for Process Performers when performing their
tasks.

This paper is structured as follows: Section 2 clarifies tasks and requirements for pro-
cess engineering. In Section 3 we introduce Spearmint. Section 4 gives an overview of
related work. Section 5 discusses the results gained in the application of Spearmint.
Section 6 concludes with a summary and an outlook to future work.

2 Support for Process Engineering

The role of a Process Engineer is ideally performed by someone outside of the devel-
opment team. This may be a member of a software engineering process group

Support for the Process Engineer 121

(SEPG) [11], or the Project Manager may be given a set of additional tasks involved

by this role, or it may simply refer to a portion of the quality management in an organi-

zation. In any case, the Process Engineer deals with more or less formal descriptions of

the process, transforms and manipulates them, analyzes them, and packages them for

use by other people in his organization. The most relevant tasks the Process Engineer

is responsible for are the following (compare also to [15] and [11, page 290]):

+ elicitation of process information from both humans and existing process docu-
mentation,

+ definition of the process as a process model using more or less formal approaches,

+ analysis of the process model to check for consistency and dynamic properties,

* design of process models carrying the results of a process change,

« implementation of the process either as a process program or by definition of orga-
nizational mechanisms (e.g., measurement forms),

+ provision of process models to Process Performers for guidance or enforcement.

To perform these tasks, different approaches to define a process are needed. For exam-
ple, descriptive process models are used to capture the actual software development
process in an organization, whereas prescriptive process models, like standards and
guidebooks, require a different approach to the modeling of processes. Using a fine
grain process programming language to implement process fragments that are exe-
cuted or interpreted by a process engine requires other capabilities from a Process
Engineer than when re-designing an existing process to reflect changes. Process engi-
neering is often aggravated by the complexity of real-world software processes — and
consequently the complexity of their process models.

3 The Spearmint Environment

Spearmint is an integrated environment for modeling, analyzing, and measuring pro-
cesses (http://www.iese.thg.de/spearmint). It supports Process Engineers during elici-
tation, editing, review, and analysis of process models by providing navigation and
abstraction support. Internet-browseable views, which constitute the Electronic Pro-
cess Guide (EPG), for guidance of Process Performers can be generated easily from
Spearmint process models. The conceptual schema of Spearmint was influenced by
existing approaches (e.g., [2]) as well as experience gained in industrial process mod-
eling case studies.

Experiences from industrial process modeling cases formed the driving forces behind
identifying the major requirements for our tools: a comprehensive conceptual schema,
a graphical and easily understandable user interface, consistent management of differ-
ent views of process models, a graphical notation, and the possibility to provide a sup-
port for Process Performers during execution.

Section 3.1 introduces a number of requirements for tools aiming at support for pro-
cess engineers. Section 3.2 describes the main conceptual and user interface aspects of
the Spearmint modeling environment. Section 3.3 explains the EPG in more depth.
Section 3.4 discusses the integration of the modeling environment and the EPG.

122 Ulrike Becker-Kornstaedt et al.

3.1 Views on Process Models

A means to manage the inherent complexity of models of real-world software pro-
cesses is to divide a process model into views [17]. In general, views on a process
model can be seen as overlapping subsets of the overall information represented in a
process model. Views might be used to concentrate on certain aspects of a process, like
control flow, or work breakdown structure (i.e., process hierarchy). Role-specific
views, for example, may show only a subset of the process model, namely exactly the
information relevant to a particular role. For the Process Engineer, the usage of role-
specific views allows to have less complex process models to deal with. For the Pro-
cess Performer, role-specific views aid in understanding, since they focus only on
those parts relevant to the role. Conceptually, we consider a view on a process to be
comprised of five characteristics:

* Objects: the data to be used for presentation, e.g., activities, artifacts, or roles. A
schema is used to represent the objects and their relationships [18].

* Aspect: the portion or slice of the process model selected for representation, e.g,
product flow, or decomposition. The aspect can be expressed as a subset of the pro-
cess model schema which is used to represent the objects.

* Style: the way in which the data is represented to the user. For the same data set,
different representation styles are possible, e.g., product flow between activities
and artifacts could for instance be represented using a diagrammatic representation
or a table.

* Synthesizer: set of functions over the object types that transform the objects for
purposes of the required abstraction level. An example for a synthesizer is summa-
rizing effort data from sub-activities into the data of a compound high-level activ-
ity.

* Mechanism: set of procedures to modify the representation that can be invoked by
the user, e.g., simple cut/copy/paste services.

Aspect, style, synthesizer, and mechanism describe a View Type. A view type is a gen-

eral description of what type of objects should be presented to the user, and how they

should be presented. View types are instantiated by assigning objects to them.

Process Engineers may use process modeling environments to create and maintain pro-

cess models. In addition to general requirements (e.g., domain specific schema) which

are listed in [9] we consider the following requirements as important in order to cope
with process models in industrial environments. These requirements explicitly take
into account the use of views.

R1: The process modeling environment must provide and manage different views
of a process model. Views filter information (e.g., by not showing all objects) or make
it more dense (e.g., show more abstract artifact types than actually accessed by the
activity displayed). Hence they reduce complexity.

R2: The process modeling environment must offer predefined view types as well as
services to define view types. There is no best set of views available. In our experience
it is likely that a new view type is required (e.g., display the relationship between roles
and artifacts) when dealing with a new problem.

Support for the Process Engineer 123

R3: The process modeling environment must provide concurrent updating mecha-
nisms of objects to keep consistency across views.

R4: The process modeling environment must provide visual cues to track relation-
ships among views, for example, marking process elements in all other views when
selected in one view only.

RS: The process modeling environment must provide mechanisms to generate pro-
cess descriptions, i.e., to export views which are used for guidance of Process Perform-
ers.

3.2 Conceptual Schema and Modeling Environment

Spearmint is a new development concentrates on mechanisms to provide different
views of a process model to Process Engineers and Process Performers. Spearmint is
based on a domain-specific and canonical conceptual schema of process model ele-
ments [18]. The most important elements of this schema, the user interface to access
process models, and the architecture of Spearmint will be described in this section.
The most important information units needed to describe a real-world software process
are mapped onto the following elements of the conceptual schema:

+ Artifacts are abstractions of any documents or products that are accessed in a
project, as a desired or intermittent result of the project or as an input to an activity
in some other form.

+ Activities are process steps which may cover software development and mainte-
nance activities as well as project management or quality assurance. Activities con-
sume and/or produce artifacts (product flow).

* Roles are abstractions for a set of responsibilities or skills necessary to perform an
activity.

+ Tools represent computer programs, or other means that are used to support or
automate an activity.

In addition to the concepts mentioned here, the comprehensive conceptual schema

contains entities, such as organization, or measurement concepts. (They are discussed

in detail in [18]).

The schema is used to define the structure of the comprehensive process model which

is the union of the objects of all views [17]. The views are used for creating, modify-

ing, and displaying the comprehensive process model or subsets of it. For example, the

Process Engineer creates a new, empty part of the comprehensive process model by

instantiating an artifact decomposition view type in order to first enter the hierarchy of

all artifacts. Whenever he modifies the view displayed (i.e., adding, or renaming an
artifact, or specifying an aggregation relationship between artifacts), the comprehen-
sive process model is updated.

The number of concurrently existing views is limited only by available system

resources. All views are kept consistent automatically by the system. The view types

defined so far in Spearmint are:

124 Ulrike Becker-Kornstaedt et al.

» product flow view,

* properties view,

* decomposition view, and
o textual view.

The product flow view is a graph-like interface to the process model, which uses sim-
ple icons for entities, connected by lines for relationships. Figure 1 shows an example
product flow view. It contains an activity Implement, the artifacts used in that activity,
arole and a tool assigned to that activity.1

T |

@@@@ @ [¥] follow global selection

Artifact IT\ 4 = modifies
] L —
A System_Requirements]
| — External_Specifications / N
Q e L] Activity
consumes —[=—- ‘ @ ﬁ// E
Eystem_Requ\remenls_ﬁ\iys\s_an _Des\qn___. -
== Integration_Plan
uses —— = g
— N
i/{d\tor Systerns_Analyst \ assumes
Tool — |5 —+—
= B Role

il) T

Figure 1. Spearmint: Product flow view

Details of a process model element can be entered using a properties view. This is a
dialog, in which general properties like name and description of the element can be
edited (see Figure 2). It also supports the flexible definition of attributes. Attributes
can be dynamically added to and removed from an element. If used in the context of
measurement, values can be associated with the attributes. In order to better be able to
consider the needs for EPGs the Spearmint modeling environment has an extra set of
EPG attributes which can be attached to activities, artifacts, or roles. These attributes
allow for instance to describe the detailed steps of activities, or to attach links to tem-
plate documents to artifacts.

Modularity, as a concept for structuring a process model, is supported by the decompo-
sition view (Figure 3). This view allows the user to define and browse the hierarchical
decomposition of artifacts, activities, and roles in a representation style familiar to
him. The textual view is strongly related to the Electronic Process Guide and will be
discussed in Section 3.4.

1.This view can be described as follows: Objects = {System_ Requirements Analysis_and -
Design, External Specifications, System Requirements, Integration Plan, Systems Analyst,
Editor}; Aspect = {Activity, Artifact, Role, Tool, Product Flow, Role Assignment, Tool
Usage}; Style = {Artifact = |, Role =%, Activity = ¢ , Tool = &, Product Flow =5 };
Synthesizer = <none>; Mechanisms = {Create Activity, Create Artifact, Create Tool, Create
Role, Link, Delete, Cut, Copy, Paste, Print}

Support for the Process Engineer 125

general attributes

settings

& Prd

STEPS

= [ONG_DESCRIPTION — 1
PURROSE D5 attribute
LONG_DESCRIPTION Description

i thic activity the actual state s to [=| name and
be recordsc the weak points and the ..
description

reasons for those weak points have to
be identified (actual recording

INVARIANTS ot
, and the possible threats
land risks have to be analyzed. Based
add/remove __}— |_add || Remove | lon this, the System Requirements will
! - e specified. Parsllel o the
attributes Add EPG Attributes | requirements definition the system [<|

attributes
list

\ add special attributes for EPG

Figure 2. Spearmint: Properties View

_—
4§ SE: decomp RTINS e B
s 2]>]a
§ () System_Requirements_Analysis_and_Design
¢ System_actual_Recerding_or_analysis
L. & Technical_System_Desian
act1v1ty — ¢ Threat_and_Rizk_aAnalysis
decomposition & Specification_of_System_Integration
& Allocation_of_System_Requirements
& Investigation_of _Feasibility
B system
SW_Architecture
B Interface_Desian
System_Requirements
[E DP_segment
@ [System_#rchitecture
B sw_Requirements
Sw_Design
% Systems_analyst
§ Support_consultant
$ DP_Designer

<

artifact
decomposition

[] follow global selection

Figure 3. Spearmint: Decomposition View

The implementation of Spearmint uses Java as the technological basis. The integrated
software architecture of Spearmint consists mainly of three layers: the Process Model
Layer, the Partial Model Layer, and the User Interface Layer. Figure 4 explains the
interplay among these in detail.

The bottom layer (Process Model Layer) contains the comprehensive process model,
i.e., all process model elements, their attributes, and relationships. This layer is inde-
pendent from the notation chosen in a specific diagram and forms the canonical basis
for all views. The Process Model Layer stores process models using the schema intro-
duced above. In the example used here, the Process Model Layer would comprise the
activity Implement, the role Author, the tool Editor, the artifacts used in the product
flow and all the relationships among these, and the attribute Effort (depicted in Figure
2). We are currently using ObjectDesign/PSE, a simple public-domain file-based
object-oriented database, to implement data access services to that layer. This can eas-
ily be upgraded to the full functionality of the ObjectStore database system.

126 Ulrike Becker-Kornstaedt et al.

View 1 .. View 2 [— View 3 g
activity Implement I 4]
ttribut i O E
attributes Implement Implement e
effort; k | =
. L 8
end attributes / \q S
een [—
o) g
end activity * 0 Author A 0 Code chtivity Leg 2
Partial Model 1 Partial Model 2 Partial Model 3 g
=2
cE
: * ig
assigned-to - a
e -
Comprehensive Process Model Role Author =z a3
» 50
< 26
Artifact ActivityLog Activity Implement Artifact Code S e %

Figure 4. View Management in Spearmint

The Partial Model Layer bridges the gap between the user interface and the compre-
hensive process model (i.e., Process Model Layer). It is responsible for managing the
objects and aspects of a view. They are subsets of the comprehensive process model.
The Partial Model Layer translates process model elements into objects, which are
more convenient for supporting a specific notation. Therefore this layer has to perform
transformations like composing multiple objects into single container objects. In the
figure, for example, Partial Model 2 contains an activity Implement, the role Author,
and the assigned-to relationship between them. The schema to store the objects is the
same as for the comprehensive process model.

The User Interface Layer performs the visualization of process models. The User
Interface Layer creates views by assigning view types to Partial Models, manages the
views, and provides the user interface. According to the information in the view type
the objects of the Partial Model Layer are mapped onto symbols of the presentation
which are displayed to the Process Engineer. In addition to the objects and aspects pro-
vided by the Partial Model Layer, the User Interface Layer defines the style in which
the information is to be presented and provides transformation functions over the data
types (synthesizer) as well as modification procedures (mechanism). Each view in the
User Interface Layer is related to one Partial Model. In our example, View 2 displays
the objects contained in Partial Model 2, but in a user-defined iconic notation, and pro-
vides editing services to modify the representation.

Spearmint maintains the consistency between views, Partial Models and the compre-
hensive process model automatically. This is the basis for a rich set of powerful inter-
active features at the user-interface level, which are described in more detail in [19].
This architecture allows easy addition of new view types. We found this kind of flexi-

Support for the Process Engineer 127

bility very important because in process engineering tasks tailored representations
were required (e.g., when Process Performers were accustomed to a particular repre-
sentation style).

What view types are needed for what process engineering situations is subject to fur-
ther investigation. Experience with the tool in industrial improvement programs will
therefore be incorporated into future increments of the prototype environment.

3.3 Electronic Process Guide

An important process engineering activity is the dissemination of process knowledge.
An Electronic Process Guide (EPG) aims to support Process Performers [13]. Typical
problems occurring during process performance are related to one of the following:

+ staff turnover is high, new team members must become familiar with the process,

+ team members must perform activities which they may be unfamiliar with, which
may be infrequently performed, or involve many interrupts and context switches,

* communication is impeded due to large development teams or different geographi-
cal locations.

In order to overcome these problems and to provide concrete guidance, process-rele-
vant information has to be made accessible to Process Performers in a way that is easy
to use for them. In contrast to approaches which use an explicit enactment mechanism
and a process engine, the EPG gives guidance to the user, that is, it provides the Pro-
cess Performer with information about the actual state, history, context, and future
steps of the process to make informed decisions. The user himself decides what infor-
mation to access and at what level of detail. This complies with [1] and [10] which
advocate that strict enforcement of a prescribed process imposed by many of the enact-
ment mechanisms is not adequate for all tasks in software development.

The technical implementation of the EPG is based on Web-technology. On the one

hand this provides a tool and appearance which is already familiar to Process Perform-

ers and does not involve a huge investment in new tools. On the other hand this allows
to benefit from already existing browser features, like setting bookmarks, or using
hyperlinks. In addition to being a web-based process guidebook the EPG provides ser-

vices like managing personal annotations or links to example and template files. A

computer-based guidebook allows fast updating and therefore ensures that Process

Performers use a consistent version of the process handbook and the process informa-

tion needed. Typical usage scenarios for an EPG are:

* A Process Performer familiar with the process needs help in unexpected situations
or complex or infrequently performed activities. The EPG may provide additional
information, such as manual pages, links to example or template files.

* A novice who joined the team recently needs to become familiar with the most fre-
quent activities and artifacts. The EPG would enable him to navigate and explore
the process by following the links and relationships.

* Process performers working at different sites are expected to use a consistent defi-
nition of the process. Updated process descriptions can be easily provided even to
different geographical sites.

128 Ulrike Becker-Kornstaedt et al.

Activities, artifacts, and roles are described on main pages. Figure 5 depicts such a
main page for the activity Implement generated from the example shown in the previ-
ous section. The graphical decomposition frame (top left) shows the position of the
activity within the decomposition tree. This interactive graphic facilitates navigation.
The description (on the right) provides the main information, such as artifacts used. In
the description glossary information is integrated as tool-tip information, i.e., when he
user rests the mouse pointer on the @ -icons. Clicking on the on the @ -icon navigates
the user to a whole page providing glossary information. The overview section (bot-
tom left) provides access to the description section via links. In order to provide sup-
plementary information within the same window, the glossary (on the bottom) contains
brief descriptions of items referred to in the description section, for instance the arti-
facts used. Main pages for artifacts and roles have the same structure.

Fle Edi View Go Communicabr Heo
< ¥ A B . B 3 & B
Buk Fowel Rowd Home Senh Nelscye Pt Suty Sl

'j ¢ Bookmars & GoTo: il /EPG/Systen_F ¥ henl /| @37 Whats Reizied
'J £ Merbers £ WeoMail g Connecions 2 Bizloumal 4 SmariUpdate 4 Mkiolace
Description A
Inthis activity the actual state is to be recorded; the weak points and the reasons
Appl for those weak points have to be identifed (actual recarding /analysis), and the
pplet possible threats and risks have to be analyzed. Based on fhis, the System
Requirements wilbe specifed Paralle o the requrerents donton e Syster
must be structured according to user—level requirements. The function and data
Siructure as el 2 he nction and cata deschptons Nave 1o be set Up m a
detailed vay, depending on the complesity of the System. With regard to thi L.
Siggestons or & posshie techical systet STuchre (Stuctured Sub Sysxems Descrlptlon
or segments or for softvare systems of lover cormplexity in SWCI's) and
ety damcapthen v t he decignoe. Taey ol e Svaluated baoed an
{easbilly assecstents, A selected proposal vl e refineq and a ot alocaton of
vill take piace for the I's. In the case
where the selection of a solution s not realized here and several solutions remain
apen, the following activiies have to be carried out for each version of a solution.
The defniton of the System Architecture ends vith the design of the Interfaces
(interfaces between the system and its environment as well as Interfaces between
, segrents or SWCI's).
Productflow
activity: The fol the artifacts that d, produced, or modifed by th
i e folloving are the artfacts that are consumed, produced, or modied by the
System_Requirements_ | The !
£ DescHaton Consumed artifacts:
ubaciiviles o E -
baliiles External_Speciications ®
* Used Tools Produced artifacts:
Close] o Manual_Information ®
« Interface Design @
* System_Architecture @
- o System Requirements ®
etz i) Modified artifacts:

. - « Integration_Plan @ Glossary
Overview/ A ontains rules for the composttion of the Systern : 1 d
Tabl f - the DP Segment, or the SWCI from atechnical point ~_LIl ——— mp emented as

€0 Subactivities of view. tool ti
Contents e e, d a tool tip)
=] [nmmmwmmm.ynmwnm {56 e 3P 2

Figure 5. Screenshot of an EPG Activity page

3.4 Technical Integration of Spearmint and Electronic Process Guide

Web-technology used for the EPG allows for updates of the process model in a consis-
tent and cost-effective way, even for multi-site projects and organizations.

We have developed an integrated architecture which addresses the needs of the model-
ing environment of Spearmint as well as those for the EPG. Figure 6 presents this
architecture, showing how the potentially distributed tasks of process definition and
process guidance access a common database. On the right side of the figure, a web
server provides the EPG as HTML files which are generated from the Spearmint data-
base. Whether the generation is done on a regular basis or dynamically on demand is

Support for the Process Engineer 129

arbitrary and depends on the application context of the EPG. On the left side, Spear-
mint provides a special textual view which is a light-weight combination of an EPG
generator and a web server. This view provides both an immediate update after process
changes as well as navigation features between web browsers showing the EPG and
views in the Spearmint environment. Thus the textual view is an excellent aid for the
Process Engineer when discussing a process model with one or more Process Perform-
ers, or when guiding them through a process. In combination with a telephone, this can
even be done over long distances and/or multiple sites.

iE B

IR

Process I Process
Engineer \HTTP / | Performers
TCP/IP |
View c
Vie Textual S | o HTTP
W I| view | | View s | &
g_ R
Object Access/Retrieval o | WWW Server
|
|

Generator

-

Figure 6. Spearmint and EPG System Architecture

4 Related Approaches

The Process Engineer may be supported by a number of different tools ranging from
the very simple to the sophisticated:

Graphic editors provide simple definition and placement of nodes and edges to cre-
ate diagrams depicting properties of process models.

CASE tools and meta-CASE tools (frameworks or generators to create CASE
tools) may be used because they provide better drawing capabilities. Sometimes
CASE tools have been extended to address process needs, mainly for business pro-
cess re-engineering, can be also used for software process modeling.

Simulators, like those based on the idea of System Dynamics [14], may be used to
analyze dynamic aspects of processes.

Specific product development tools, like STATEMATE [12], may be used to sup-
port one or a small set of tasks of the Process Engineer, like process analysis by
simulating processes.

Process-sensitive software engineering environments (PSEEs), like Process
WEAVER [3], or Workflow Management systems provide some services to create

130 Ulrike Becker-Kornstaedt et al.

and manipulate process models. However, often the user interface does not support
the Process Engineer adequately and comprehensively, and the focus is not on
guidance but on automation.

+ Process tools are designed for special tasks of the Process Engineer. For example,
the tool Balboa [8] is designed to identify control flow patterns out of event data
taken from the actual process performance.

Achievements have also been made in developing a common understanding about

what elements should be covered by any of these languages (e.g., the schema by

Armitage and Kellner [2]). What has not been tackled extensively in the past is the

management of complex process models and especially support by multiple views.

S Validation of Concepts and Prototype

Spearmint was used to capture a multi-site development process for the evolution of a
large telecommunications product where more than 200 developers work on a base
product and special extensions like applications for call centers. The process model
was used within an overall measurement project to improve the process. The views
were used to prepare role-specific views for review with interviewees as well as site-
specific process models to cope with variants and interfaces between sites. The views
reduced the model’s complexity which in turn reduced effort for creating the model
compared to former projects. An EPG has been installed recently at the organization’s
intranet. First feedback is very encouraging.

A major industrial validation of the Spearmint approach to descriptive process model-
ing was performed recently within the context of a software process improvement
effort with an organization developing space software. The company wanted to
develop a systematic measurement plan in order to improve its development processes.
Based on role-specific interviews a process model was created. It contained some fifty
activities, artifacts, and people responsible for the activities, plus the relationships
among them. The view concept proved to be very helpful in reducing the complexity
of the process model. The resultant descriptive model allowed us to recommend
improvements to the current process, which are currently being implemented.
Spearmint and its predecessor MVP-E [5] have been used to formalize prescriptive
processes as described in a variety of standards and guidebook, like the IEEE Standard
1074, ISO 12207. Our process modeling environment had been used to review a draft
version of a national German standard. Based on the outcome of the consistency
checks, major improvements were suggested which have been incorporated into the
final version of the standard.

Spearmint was used to analyze the completeness of a real-time systems development
process as described in a book in order to determine whether it is possible to create
process models out of a technology description [5]. The case was based on [7] which
documents the Structured Design Technique (SDL). The purpose was to transform the
contents of the book into a formal process to check for consistency and completeness.
Using the analysis functions, it was found that major information is lacking (e.g., doc-
uments are produced but never used).

Support for the Process Engineer 131

The full text of the 1997 version of a national German standard, called ‘Das Vorge-
hensmodell’ (V-Modell), was prepared as an EPG and is available on-line (http://
www.iese.thg.de/VModell). In addition to the public web site, several copies of this
instance of the V-Modell EPG are installed at German companies. Positive feedback
from the users encourages us to further enhance and improve this technology.

6 Summary and Outlook

The Process Engineer needs support in managing complex process models. In this
paper we presented the Spearmint approach which especially focuses on helping in
creation of process models and their dissemination. Existing tools seldom address
these two responsibilities of the Process Engineer.
The services provided by Spearmint stem from requirements which came up during
industrial process modeling cases where tool support was missing. Commercially
available tools have been found inadequate at including domain knowledge about soft-
ware development processes. Especially they often lack sophisticated services to ana-
lyze process models and to check for consistency. Research prototypes in contrast are
too specific in the tasks of the Process Engineer they support. Spearmint tries to bridge
the gap between commercial process tools and research prototypes. In summary, the
unique features of Spearmint are:

* A comprehensive domain-specific schema based on a combination of sophisticated
approaches and experience gained in industrial process engineering tasks (e.g. [2,
9]). It also adds its own innovations - for example our schema allows the ability to
define parallel abstraction hierarchies for multiple views [17].

* An architecture allowing rapid definition of new view types. Spearmint is not lim-
ited to predefined view types, but is easily extendible when the need for a new type
of view becomes apparent.

+ Concurrent updating of model information. A mechanism for change propagation
sends model repository changes to all interested views.

* Visual cues aiding orientation in large process models.

* The possibility to generate EPGs which can be used by Process Performers to nav-
igate through complex process information.

This paper has described how Spearmint supports the Process Engineer when creating
a process model and disseminating process knowledge using Intranet technology. The
future development topics to be addressed in Spearmint include further exploitation of
Web-technologies and the improvement of the conceptual schema aimed at supporting
process performance in a more explicit way.

Web-technology helps support the communication of process knowledge among the
(potentially geographically dispersed) people performing and studying software pro-
cesses. Web-based documents are easy to distribute among Process Performers and are
accepted because they integrate well at the computer's desktop level. The process
model is always up-to-date. Therefore it is more likely to be used than a heap of dust-
covered documents on the shelf.

132 Ulrike Becker-Kornstaedt et al.

So far, interviews with Process Performers in industrial settings strongly support our
preference to concentrate first on a visual, communicative and understandable repre-
sentation of process models. Our second aim, which is to support process performance,
is achieved by providing detailed descriptions of process elements which can be
accessed using the EPG. In addition, we will implement services around the EPG like
mechanisms for attaching annotations to elements of a process model or search [13]
which will be used as a target for the HTML pages generated by Spearmint.

Further research is needed to fully understand the role of the Process Engineer and the
potential for process technology such as Spearmint to support this role. Our future
research will concentrate on additional view types and other user interface features for
dealing with process complexity.

Acknowledgments

We would like to thank Marc Kellner, and Bill Riddle for very fruitful discussions
about the EPG. We also thank Andrew Beitz, Lionel Briand, and Louise Scott for their
comments, which led to significant improvements to the structure of the paper. We
very much appreciate the work by all the students within the development of Spear-
mint.

References

[1] Jim Arlow, Sergio Bandinelli, Wolfgang Emmerich, and Luigi Lavazza. A fine-grained Pro-
cess Modelling Experiment at British Airways. Software Process—Improvement and Practice,
3(3):105-131, November 1997.

[2] James W. Armitage and Marc I. Kellner. A conceptual schema for process definitions and
models. In Dewayne E. Perry, editor, Proceedings of the Third International Conference on
the Software Process, pages 153—165. IEEE Computer Society Press, October 1994.

[3] Denis Avrilionis, Pierre-Yves Cunin, and Christer Fernstrom. OPSIS: A view mechanism for
software processes which supports their evolution and reuse. In Proceedings of the Eigh-
teenth International Conference on Software Engineering, pages 38—47. IEEE Computer
Society Press, March 1996.

[4] Sergio Bandinelli, Alfonso Fuggetta, Luigi Lavazza, Maurizio Loi, and Gian Pietro Picco.
Modeling and improving an industrial software process. IEEE Transactions on Software
Engineering, 21(5):440-454, May 1995.

[5] Ulrike Becker, Dirk Hamann, Jiirgen Miinch, and Martin Verlage. MVP-E: A Process Model-
ing Environment. I[EEE TCSE Software Process Newsletter, (10):10-15, Fall 1997.

[6] Ulrike Becker, Dirk Hamann, and Martin Verlage. Descriptive Modeling of Software Pro-
cesses. In Proceedings of the Third Conference on Software Process Improvement (SPI ’97),
Bargelona, Spain, December 1997.

[7]R. Brek and O. Haugen. Engineering Real-time Systems: An object-oriented Methodology
using SDL. Prentice Hall, New York, London, 1993.

[8]J.E. Cook and A.L. Wolf. Balboa: A framework for event-based process data analysis. In Pro-
ceedings of the Fifth International Conference on the Software Process, pages 99—110, Chi-
cago, IL, USA, June 1998. ISPA Press.

Support for the Process Engineer 133

[9] European Computer Manufacturers Association. Reference model for frameworks of soft-
ware engineering environments. Technical Report TR-55, ECMA, 114 Rue du Rhone, 1204
Geneva, Switzerland, June 1993.

[10] Volker Gruhn and Juri Urbainczk. Software process modeling and enactment: An experience
report related to problem tracking in an industrial project. In Proceedings of the Twentieth
International Conference on Software Engineering, pages 13-21, Kyoto, Japan, April 1998.
IEEE Computer Society Press.

[11] Watts S. Humphrey. Managing the Software Process. Addison Wesley, Reading, Massachu-
setts, 1989.

[12] Marc I. Kellner. Software process modeling support for management planning and control.
In Mark Dowson, editor, Proceedings of the First International Conference on the Software
Process, pages 8-28. IEEE Computer Society Press, August 1991.

[13] Marc 1. Kellner, Ulrike Becker-Kornstaedt, William E. Riddle, Jennifer Tomal, and Martin
Verlage. Process guides: Effective guidance for process participants. In Proceedings of the
Fifth International Conference on the Software Process, pages 11-25, Chicago, IL, USA,
June 1998. ISPA Press.

[14] Chi Y. Lin, Tarek Abdel-Hamid, and Joseph S. Sherif. Software-engineering process simua-
tion model. Journal of Systems and Software, 38(3):263—-277, September 1997.

[15] Jaques Lonchamp. A structured conceptual and terminological framework for software pro-
cess engineering. In Proceedings of the Second International Conference on the Software
Process, pages 41-53. IEEE Computer Society Press, February 1993.

[16] Dewayne E. Perry, Nancy A. Staudenmayer, and Votta, Jr., Lawrence G. Understanding and
improving time usage in software development. In Alfonso Fuggetta and Alexander Wolf,
editors, Software Process, Trends in Software, chapter 5, pages 111-135. John Wiley & Sons,
1996.

[17] Martin Verlage. An approach for capturing large software development processes by inte-
gration of views modeled independently. In Proceedings of the Tenth Conference on Software
Engineering and Knowledge Engineering, pages 227-235, San Francisco Bay, CA, USA,
June 1998. Knowledge Systems Institute, Skokie, Illinois, USA.

[18] Richard Webby and Ulrike Becker. Towards a Logical Schema Integrating Software Process
Modeling and Software Measurement. In Rachel Harrison, editor, Proceedings of the Nine-
teenth International Conference on Software Engineering Workshop: Process Modelling and
Empirical Studies of Software Evaluation, pages 84-88, Boston, USA, May 1997.

[19] Richard Webby, Peter Rosch, and Martin Verlage. Spearmint - a prototype tool for visualis-
ing complex software processes. In Proceedings of the Third Biennial World Conference on
Integrated Design & Process Technology (IDPT’98), volume 4, pages 297-304, Berlin, Ger-
many, July 1998.

	1 Introduction
	2 Support for Process Engineering
	3 The Spearmint Environment
	3.1 Views on Process Models
	3.2 Conceptual Schema and Modeling Environment
	3.3 Electronic Process Guide
	3.4 Technical Integration of Spearmint and Electronic Process Guide

	4 Related Approaches
	5 Validation of Concepts and Prototype
	6 Summary and Outlook

