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ABSTRACT

Aim The distribution of Onychophora across the southern continents has long

been considered the result of vicariance events. However, it has recently been

hypothesized that New Zealand was completely inundated during the late

Oligocene (25–22 Ma) and therefore that the entire biota is the result of long-

distance dispersal. We tested this assumption using phylogenetic and molecular

dating of DNA sequence data from Onychophora.

Location New Zealand, Australia, South Africa, Chile (South America).

Methods We obtained DNA sequence data from the nuclear genes 28S and

18S rRNA to reconstruct relationships among species of Peripatopsidae

(Onychophora). We performed molecular dating under a Bayesian relaxed

clock model with a range of prior distributions using the rifting of South America

and South Africa as a calibration.

Results Our phylogenetic trees revealed that the New Zealand genera

Ooperipatellus and Peripatoides, together with selected Australian genera

(Euperipatoides, Phallocephale and an undescribed genus from Tasmania),

form a monophyletic group that is the sister group to genera from Chile

(Metaperipatus) and South Africa (Peripatopsis and Opisthopatus). The relaxed

clock dating analyses yielded mean divergence times from 71.3 to 78.9 Ma for the

split of the New Zealand Peripatoides from their Australian sister taxa. The 0.95

Bayesian posterior intervals were very broad and ranged from 24.5 to 137.6 Ma

depending on the prior assumptions. The mean divergence of the New Zealand

species of Ooperipatellus from the Australian species Ooperipatellus insignis was

estimated at between 39.9 and 46.2 Ma, with posterior intervals ranging from

9.5 to 91.6 Ma.

Main conclusions The age of Peripatoides is consistent with long-term survival

in New Zealand and implies that New Zealand was not completely submerged

during the Oligocene. Ooperipatellus is less informative on the question

of continuous land in the New Zealand region because we cannot exclude a

post-Oligocene divergence. The great age of Peripatoides is consistent with a

vicariant origin of this genus resulting from the rifting of New Zealand from

the eastern margin of Gondwana and supports the assumptions of previous

authors who considered the Onychophora to be a relict component of the

New Zealand biota.
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INTRODUCTION

The relative contributions of vicariance and dispersal in the

assembly of the New Zealand biota have been debated for

many years (e.g. Darlington, 1965; Gaskin, 1970; Raven &

Axelrod, 1972; Craw, 1978; Fleming, 1979; Pole, 1994, 2001;

Lee et al., 2001; McGlone, 2005; Waters & Craw, 2006; Trewick

et al., 2007; Landis et al., 2008; Heads, 2009; Michaux, 2009;

Wallis & Trewick, 2009). It is generally accepted that New

Zealand began to split away from the remnants of Gondwana

c. 80 million years ago (Ma), and by 55 Ma the modern

Tasman Sea was fully formed (Gaina et al., 1998; Li & Powell,

2001; McLoughlin, 2001). The Tasman Sea opened first in the

south and then progressively northwards, and direct connec-

tions with Australia were soon severed. There is, however,

growing evidence for land connections or at least island arc

formation between New Zealand and New Caledonia some-

time in the Tertiary, and it is unclear exactly how long the New

Zealand landmass has been isolated for (e.g. Herzer et al.,

1997; Ladiges & Cantrill, 2007; Schellart et al., 2009). During

the early Tertiary, New Zealand was relatively tectonically

inactive and the land slowly subsided and reduced in elevation

and area (Fleming, 1979). By the late Oligocene (25–22 Ma)

the land had reduced to a very small proportion of its current

size (Fleming, 1979; Cooper & Cooper, 1995). Some early

molecular phylogenetic studies showed an increase in speci-

ation rate following the Oligocene, and this was attributed to a

mass extinction event caused by the reduction in land area,

which is referred to as the ‘Oligocene Drowning’ (Cooper &

Cooper, 1995). However, some authors have suggested that

New Zealand was completely submerged during the late

Oligocene and that the entire modern biota is the result of

long-distance dispersal (Pole, 1994; Waters & Craw, 2006;

Trewick et al., 2007; Landis et al., 2008). These arguments have

been in part inspired by the growing number of molecular

dating studies that have inferred long-distance dispersal as the

mechanism by which many lineages, in particular plants,

arrived in New Zealand (e.g. Brown et al., 1999; Winkworth

et al., 2002; Arensburger et al., 2004; Bunce et al., 2005; Perrie

& Brownsey, 2007; Smith et al., 2007). However, there are a

number of lineages in New Zealand for which molecular dating

studies have shown ages greater than the Oligocene and which

are, therefore, more consistent with vicariance (e.g. Barker

et al., 2007; Knapp et al., 2007; Roelants et al., 2007), although

extinction has been invoked to discount these examples (e.g.

Waters & Craw, 2006).

Sanmartı́n & Ronquist (2004) showed a higher degree of

congruence between organismal phylogenies and area phylog-

enies for Southern Hemisphere animals than plants. Therefore,

the inferred recent age of many plant lineages in New Zealand

may not be representative of the biota as a whole. This is an

important point because the biota is dominated by hyper-

diverse groups such as invertebrates for which there are very

few phylogenetic studies with divergence dates estimated using

slowly evolving nuclear genes and methods that do not assume

rate constancy through time (e.g. Arensburger et al., 2004;

Pratt et al., 2008; Buckley et al., 2009). In order to build a

more accurate picture of the biogeographic history of the New

Zealand biota and assess the relative roles of vicariance and

dispersal, further phylogenetic studies on invertebrates are

required.

Onychophora (velvet worms) are excellent candidates for a

study on the vicariant origins of New Zealand fauna for three

reasons. First, Onychophora have a poor tolerance of salt water

and are prone to desiccation, thus being restricted mainly to

microhabitats characterized by high moisture levels (e.g.

Bursell & Ewer, 1950; Monge-Nájera et al., 1993). These

habitats often include those within or under rotting logs,

under stones and within decomposing vegetation (Watt, 1961;

Monge-Nájera, 1995; Gleeson, 1996; Woodman et al., 2007).

This environmental sensitivity, especially to sea water (Monge-

Nájera et al., 1993), has led to the traditional assumption that

Onychophora are poor dispersers (Brinck, 1957; Monge-

Nájera, 1995). Second, they are known to be an ancient group,

with fossil evidence suggesting either Early Cambrian (Krum-

biegel et al., 1980) or Late Carboniferous (Thompson & Jones,

1980; Heyler & Poplin, 1988) origins, indicating that they may

have been widespread on Pangea and later on Gondwana prior

to the separation of the modern continents. Third, among the

extant Onychophora, two families with distinct geographic

distributions, the Peripatidae and the Peripatopsidae, are

present. The Peripatidae are restricted to the Neotropics, the

Antilles, West Africa and areas of Asia including Borneo,

Malaysia and Indonesia (Newlands & Ruhberg, 1978; Storch &

Ruhberg, 1993). The Peripatopsidae display a classic Gondwa-

nan distribution, being present in Australia, New Guinea,

Chile, South Africa and New Zealand (Ruhberg, 1985). The

Peripatopsidae are not known from the remaining Gondwanan

remnants of New Caledonia, Madagascar, India and Antarctica

(Newlands & Ruhberg, 1978; Monge-Nájera, 1995). For the

above reasons, it has often been suggested that the Onycho-

phora have been distributed primarily by vicariance (Brues,

1923; Peck, 1975; Ruhberg, 1985). However, dispersal by

means of rafting within vegetation or logs has also been

suggested (Monge-Nájera, 1995).

The New Zealand Onychophora species are currently placed

within the genera Peripatoides Pocock, 1894 and Ooperipatellus

Ruhberg, 1985 (Fig. 1a,b), the latter being found also in

Australia (Ruhberg, 1985; Gleeson, 1996; Gleeson et al., 1998;

Reid, 1996). Although the name Ooperipatellus insignis

(Dendy, 1890) has been applied to populations from both

New Zealand and Australia, previous authors have shown that

they are almost certainly not conspecific (Tait & Briscoe, 1995;

Reid, 1996; Gleeson et al., 1998). There are currently nine

species described from New Zealand (Hutton, 1876; Dendy,

1894; Gleeson, 1996; Reid, 1996; Trewick, 1998), and further

undescribed species are known (Tait & Briscoe, 1995; Gleeson,

1996; Trewick, 2000). Reid (1996) and Gleeson et al. (1998)

showed that the New Zealand fauna was not monophyletic,

which is consistent with the current division into two genera.

Gleeson et al. (1998) did not include taxa from South Africa or

Chile, and the age of the New Zealand taxa was not explicitly

J. Allwood et al.
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estimated because the phylogenetic signal from the gene

selected (mitochondrial cytochrome c oxidase subunit I) was

probably saturated. We have used sequence data from the

slowly evolving nuclear genes 18S rRNA and 28S rRNA to

reconstruct relationships among Peripatopsidae genera from

all major landmasses from which they are known, with the

exception of New Guinea. We used a biogeographic calibration

that is independent of the geological history of New Zealand to

estimate the age of the New Zealand Onychophora and the

impact of the Oligocene Drowning.

MATERIALS AND METHODS

Taxon sampling

Species of Peripatoides and Ooperipatellus were sampled from

17 locations across New Zealand (Table 1). These samples were

selected to maximize the taxonomic and phylogenetic diversity

within the fauna, as guided by unpublished phylogeographic

data. We also included available species from mainland

Australia, Tasmania, Chile and South Africa (Table 1). An

undescribed species from Tasmania, ‘Tasmania sp. 2’ (Reid,

1996, p. 900), was included because of its putative close

phylogenetic relationship to New Zealand species (Reid, 1996,

fig. 28). Some of the New Zealand Onychophora species

described by previous authors do not have modern taxonomic

descriptions and in some cases type material is absent, so

specimens are very difficult to identify (e.g. Hutton, 1876;

Pocock, 1894; Bouvier, 1907; Watt, 1961; Ruhberg, 1985;

Trewick, 1998, 1999, 2000). Trewick (1998) described four

species of Peripatoides from New Zealand based largely on

allozyme data, but did not include an identification key.

Furthermore, none of these descriptions listed diagnostic

morphological characters, making identification problematic,

especially given the sympatric nature of some taxa in New

Zealand and the presence of undescribed species (Gleeson,

1996). Therefore, we have listed all specimens of Peripatoides as

‘Peripatoides spp.’, pending further taxonomic work. We were

able to identify Ooperipatellus nanus Ruhberg, 1985 and

Ooperipatellus viridimaculatus (Dendy, 1900) using morpho-

logical characters described by Ruhberg (1985); however, this

genus also includes undescribed species, one of which is

included in our study and listed as Ooperipatellus sp. (Table 1).

DNA sequencing

DNA extractions from tissue samples were performed using an

AquaPure Genomic DNA Isolation Kit (Bio-Rad, Hercules,

CA, USA) following the manufacturer’s instructions. A region

of the 28S gene was amplified using the primer pair C1 and D2

(Jamieson et al., 2002). The 18S gene was amplified using the

primers 18SperF (this study) and A1984 (Vawter, 1991). The

primer sequences are: C1, ACCCGCTGAATTTAAGCAT; D2,

TCCGTGTTTCAAGACGG; A1984, TCCCTGGTTGATCCTG-

CCAGTA; 18SperF, GACAAATCGCTCCACCAACT. Polymer-

ase chain reactions (PCRs) were performed on a GeneAmp

PCR System 9700 Thermocycler (Applied Biosystems, Foster

City, CA, USA). Reagent volumes were 25 lL and comprised

1 lL of DNA template, 2.5 lL of FastStart Taq DNA

Polymerase PCR Buffer (10· concentration), 1 lL MgCl2
(25 mm), 2.5 lL dNTP (2 mm), 1 lL of each primer (10 lm)

and 0.3 lL of FastStart Taq DNA Polymerase (Roche, Basel,

Switzerland). The PCR thermal cycling conditions included a

5-min denaturation at 95 �C, followed by 35 cycles of

denaturation for 1 min at 94 �C, 1-min annealing at 60 �C,

followed by 1.5 min at 72 �C. The reactions were completed

with an extension period of 10 min at 72 �C. PCR products

were purified using a High Pure PCR Product Purification Kit

(Roche) and sequenced using BigDye
TM Terminator 3.1

(Applied Biosystems) following the manufacturers’ protocols.

Sequences were electrophoresed using an Applied Biosystems

3100-Avant Automated Sequencer. Sequences were assembled

and manually edited using Sequencher 4.6 (Gene Codes,

(a)

(b)

Figure 1 Representatives of both genera of New Zealand Ony-

chophora. (a) Peripatoides sp., an undescribed ovoviviparous

species from Dunedin (South Island). Specimen length is about

75 mm. (b) Ooperipatellus nanus, a small oviparous species with

13 pairs of legs, the lowest number of leg pairs known among

Onychophora. The specimen photographed was found in Cheviot

Hills (Takitimu Mountains, South Island). Specimen length is

about 10 mm.

Vicariance and the New Zealand Onychophora
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Ann Arbor, MI, USA) and then exported into ClustalX 1.83

(Thompson et al., 1997) for alignment using the default

parameter settings (extension penalties 0.2, gap opening 10).

Alignments for 18S required manual editing, which was

completed using bioedit (Hall, 1999). Once the final align-

ment was obtained, we ran it through gblocks (Castresana,

2000; Talavera & Castresana, 2007) to identify regions of the

alignment that had a large number of contiguous conserved

positions of a minimum length. We used the gblocks server

and implemented the ‘options for a less stringent selection’. All

DNA sequences have been submitted to GenBank (Table 1).

Phylogenetic analyses

We used the Akaike information criterion (AIC, Akaike, 1973)

to select the best-fit substitution model for the concatenated

alignment. The program Modeltest 3.6 (Posada & Crandall,

1998) was used in conjunction with paup*4.0b10 (Swofford,

1998) to calculate AIC values. Phylogenetic analyses were

performed in a Bayesian framework using the program beast

1.4.8 (Drummond & Rambaut, 2007). A log-normally distrib-

uted relaxed clock was used to estimate divergence times and

phylogenetic relationships (Drummond et al., 2006). We used

the following prior distributions: GTR relative rate matrix

(Jeffrey’s prior), a-shape parameter for the gamma distribution

of among-site rate variation (exponential, mean = 1), propor-

tion of invariable sites (uniform = 0–1), mean rate (exponen-

tial = 1.0), coefficient of variation (exponential = 1.0),

covariance (exponential = 1.0), Yule birth rate (Jeffrey’s),

Birth–Death process (Jeffrey’s). A thinning interval of 1000

was used for sampling from the Markov chain Monte Carlo.

We used Tracer 1.4 (Rambaut & Drummond, 2007) to

monitor the convergence of all parameters from the phyloge-

netic model, to ensure that all effective sample sizes were > 200

and to select appropriate burn-in sizes. Each analysis was run

four times for 20 million cycles and then concatenated for

calculation of marginal distributions.

We also performed bootstrap analyses under maximum

likelihood and parsimony. The parsimony analyses were

conducted in paup*, with 1000 pseudoreplicates with 100

stepwise addition trees and tree bisection–reconnection branch

swapping. The maximum likelihood analyses were performed

in RAxML 7.0.4 (Stamatakis, 2006). We used a partitioned

model in which the 28S and 18S genes were assigned separate

GTR+C models. We used the hill-climbing algorithm invoked

with the ‘-f d’ command and 1000 pseudoreplicates in the

bootstrapping.

Divergence time estimation

We used the divergence of the South African Peripatopsis

Pocock, 1894 and the Chilean Metaperipatus Clark, 1913 as a

calibration point in the tree. South America and South Africa

separated in a south to north direction, and there is some

ambiguity as to when exactly this process initiated (McLough-

lin, 2001; Eagles, 2007; Torsvik et al., 2009). The oldest sea-

floor anomalies are estimated to be 135 Ma, indicating that

rifting was underway by this time (McLoughlin, 2001), and by

105 Ma all connections are assumed to have been severed

(McLoughlin, 2001; Torsvik et al., 2009), although slivers of

continental material between northern South America and

Africa may have been present as late as 100 Ma (Eagles, 2007).

Because South American Metaperipatus and South African

Peripatopsis form a monophyletic group, albeit with low

support (see Results), we used a divergence date of between

135 and 105 Ma for these two genera. This assumption was

expressed using two different priors. For the first prior we used

a normal distribution centred on 120 Ma with a standard

deviation of 5 Myr. This distribution had almost all of its mass

in the range 105–135 Ma; however it includes the possibility

that divergence occurred outside these dates. Second, we used

a uniform prior between 105 and 135 Ma. According to this

last prior, the divergence of Metaperipatus and Peripatopsis

might have occurred at any point between 105 and 135 Ma

with equal probability. The comparison of the normal and

uniform priors is critical because it is known that priors with

hard bounds (e.g. uniform) can have detrimental effects on

Bayesian inference in some cases (e.g. Drummond et al., 2006;

Yang & Rannala, 2006; Sanders & Lee, 2007; Ho & Phillips,

2009). Because the prior distribution on tree shape can affect

various aspects of Bayesian inference, including divergence

times (Welch et al., 2005; Drummond et al., 2006; Ho &

Phillips, 2009), we also analysed the data under both Yule

(Yule, 1924) and Birth–Death (Nee et al., 1994; Yang &

Rannala, 1997) priors.

We shifted the calibration deeper in the tree to the common

ancestor of all the sampled South African and Chilean genera

to assess the sensitivity of the results to the phylogenetic

placement of the calibration. This analysis was performed

using the Yule prior with a uniform calibration (105–135 Ma).

We also performed a cross-validation analysis, in which

we posed the question that if both the New Zealand genera

and the South America/South Africa split are the result of

vicariance then placing a vicariance prior on the New Zealand/

Australia split should yield a date estimate on the South Africa/

South America split that is consistent with the age of rifting of

these two continents (105–135 Ma). This analysis was per-

formed by placing a prior on the divergence of Peripatoides

from its Australian sister taxa between 80 and 90 Ma, which

encompasses the range of dates for the initiation of sea-floor

spreading between New Zealand and Australia (e.g. McLough-

lin, 2001). This analysis was performed with a uniform prior

(80–90 Ma) under the Yule speciation prior and all other

settings as above.

RESULTS

Patterns of DNA sequence variation

We obtained 27 partial 28S sequences from the 28S gene, and

20 partial sequences from the 18S gene. The 28S and 18S

alignments were 773 and 1719 base pairs long, respectively. Of

Vicariance and the New Zealand Onychophora
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the 27 individuals sampled, 13 had some missing data. Once

the poorly aligned regions were excluded using the criteria

from gblocks there were 1973 sites, including 337 parsimony-

informative sites and 481 varied sites. The best-fit model under

the AIC for the concatenated data set was the GTR+I+C model

with the following parameter values: base frequencies

(A = 0.2071, C = 0.2925, G = 0.2902, T = 0.2102), Q-matrix

(rAC = 1.3022, rAG = 4.1139, rAT = 1.8824, rCG = 0.5174,

rCT = 5.3045, rGT = 1.000), proportion of invariable sites

(0.6664) and a-shape parameter for among-site rate variation

(0.5925).

Phylogenetic relationships among Peripatopsidae

genera

The log-normally distributed clock model placed the root of

the Peripatopsidae between the Chilean and South African

genera on one side and the Australian and New Zealand genera

on the other. This root position was supported by a posterior

probability of 100%. Within the Chilean and South African

clade, the South African genera were paraphyletic, with

Metaperipatus (Clark, 1913) from Chile grouping with Peri-

patopsis from South Africa to the exclusion of Opisthopatus

(Purcell, 1899) from South Africa. This arrangement was not

well supported, with only the parsimony analysis giving a

nodal support value > 50% (Fig. 2). The New Zealand and

Australian clade was supported as monophyletic, with a

posterior probability of 99% and parsimony and likelihood

bootstraps of 100% (Fig. 2). Within this clade the two New

Zealand genera did not form a monophyletic group. The New

Zealand and Australian Ooperipatellus formed a clade with a

posterior probability of 84% but with bootstrap values lower

than 50% (Fig. 2). Within the Ooperipatellus clade, the New

Zealand species formed a monophyletic group with variable

support (Fig. 2). The New Zealand genus Peripatoides formed

a clade with the Australian genera Euperipatoides Ruhberg,

Figure 2 Bayesian phylogenetic reconstruc-

tion using 18S and 28S genes of Onycho-

phora (Peripatopsidae) under the GTR+I+C
model with the Yule speciation prior and

normal calibration. Branch lengths are drawn

proportional to time and the scale bar is

measured in Ma. Numbers above branches

are posterior probabilities followed by maxi-

mum likelihood bootstraps and then parsi-

mony bootstraps, and support values lower

than 50% were omitted. The calibration

point is indicated with a filled circle.
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1985, Phallocephale Reid, 1996 and ‘Tasmania’ sp. 2, but this

was weakly supported (Fig. 2). Relationships among Peripato-

ides, Euperipatoides, Phallocephale and ‘Tasmania’ sp. 2 were

not well resolved, but Euperipatoides and Phallocephale did

form a well-supported monophyletic group, with all support

values 100% (Fig. 2).

Divergence time analyses

The four combinations of speciation priors and calibrations

gave very similar divergence time estimates (Table 2). The root

of the Peripatopsidae was estimated to range from 173.8 Ma

(105.0–271.8 Ma, Table 2) under the Yule speciation prior with

a uniform calibration to 181.8 Ma (108.0–295.0 Ma, Table 2)

under the Birth–Death speciation prior and normal calibration.

The radiation of the New Zealand and Australian genera

probably occurred in the Cretaceous, with mean estimates

ranging from 85.3 Ma (31.8–152.6 Ma, Table 2) under the

Birth–Death speciation prior with uniform calibration to

93.9 Ma (39.3–162.7 Ma, Table 2) under the Yule speciation

prior with a normal calibration. The Ooperipatellus species from

Australia and New Zealand were estimated to have diverged

from one another 39.9 Ma (9.8–81.7 Ma, Table 2) to 46.2 Ma

(12.6–91.6 Ma) under the Birth–Death speciation prior with

uniform calibration and the Yule speciation prior with normal

calibration, respectively. All of the Ooperipatellus divergences

overlapped with both the Oligocene Drowning and the rifting of

New Zealand from Australia.

The New Zealand species of Peripatoides diverged from the

Australian Euperipatoides, Phallocephale and ‘Tasmania’ sp. 2

at 71.3 Ma (26.6–128.5 Ma, Table 2) under the Birth–Death

speciation prior with uniform calibration, or 78.9 Ma (33.8–

137.6 Ma, Table 2) under Yule speciation prior with a normal

calibration. The estimates of divergence times of Peripatoides

from its Australian sister taxa all pre-dated the peak of the

Oligocene Drowning, which dates back to 25–22 Ma (Landis

et al., 2008), with the single exception of the Birth–Death

speciation prior with the normal calibration. The extreme

lower 0.95 posterior interval of this prior and calibration

combination overlapped the peak of the drowning by 0.5 Myr.

The analysis, in which we placed a uniform prior on the

deeper node uniting Metaperipatus, Opisthopatus and Peripat-

opsis, yielded a date for the divergence of Peripatoides from

Euperipatoides, Phallocephale and ‘Tasmania’ sp. 2 at 70.5 Ma

(124.7–28.7 Ma). The divergence of the New Zealand and

Australia Ooperipatellus was dated at 41.4 Ma (81.9–11.4 Ma).

These dates are all slightly younger than the first calibration we

used, but the Peripatoides divergence still pre-dates the

Oligocene Drowning.

When we placed a calibration of 80–90 Ma on the separa-

tion of Peripatoides from its Australian sister taxa, we obtained

a divergence time of 101.9 Ma (38.5–198.8 Ma) for the

divergence of Metaperipatus from Peripatopsis. This estimate

overlapped with the previously assumed calibration for

Metaperipatus and Peripatopsis of 135–105 Ma.

DISCUSSION

Origins of the New Zealand Onychophora

Our results show that the New Zealand and Australian

Onychophora form a monophyletic clade and are the sister

group to South African Peripatopsis and Opisthopatus and

Chilean Metaperipatus. The two South African genera are not

sister taxa, which is similar to results obtained by Reid (1996)

and Daniels et al. (2009). The biogeographic pattern of South

Africa grouping with South America to the exclusion of New

Zealand and Australia does not perfectly match the accepted

pattern of Gondwana breakup. Although Africa and South

America separated from Australia in the Cretaceous (Up-

church, 2008), biotic connections between South America and

Australia were possible via Antarctica until well into the

Tertiary (Lawver & Gahagan, 1998; Livermore et al., 2005;

Upchurch, 2008; Lagabrielle et al., 2009; Svenson & Whiting,

2009). These potential biotic connections could have been

severed either by the formation of the Southern Ocean between

Australia and Antarctica and the Drake Passage, or by

glaciation in Antarctica, which began close to the Eocene–

Oligocene boundary (Barker & Thomas, 2004). The lack of any

close phylogenetic relationship between the Onychophora of

Australia and South America indicates that this land connec-

tion did not allow the exchange of Onychophora species,

possibly owing to inhospitable conditions across the

Patagonia/Antarctica connection during the Cretaceous

Table 2 Divergence times (Ma) of Onychophora species estimated with a Bayesian relaxed clock with different prior distributions.

Yule speciation prior Birth–Death speciation prior

Uniform calibration Normal calibration Uniform calibration Normal calibration

NZ versus Australian Ooperipatellus 45.8 (12.4–90.8) 46.2 (12.6–91.6) 39.9 (9.8–81.7) 40.4 (9.5–82.2)

Radiation of NZ Ooperipatellus 25.8 (6.1–52.8) 26.0 (5.7–52.5) 21.7 (4.8–44.9) 22.2 (4.9–46.2)

Peripatoides versus Euperipatoides +

Phallocephale + ‘Tasmania’ sp. 2

78.1 (32.3–136.7) 78.9 (33.8–137.6) 71.3 (26.6–128.5) 72.5 (24.5–130.3)

Radiation of NZ Peripatoides 49.5 (19.5–87.6) 50.5 (19.5–89.9) 43.6 (15.5–80.1) 44.3 (15.9–81.5)

New Zealand and Australian genera 92.3 (38.6–159.6) 93.9 (39.3–162.7) 85.3 (31.8–152.6) 87.2 (30.9–156.3)

Root height 173.8 (105.0–271.8) 175.9 (108.4–275.4) 178.6 (105.0–288.5) 181.8 (108.0–295.0)

Vicariance and the New Zealand Onychophora
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(Upchurch, 2008). The inferred relationship between South

Africa and South America instead indicates that the separation

of these two continents from East Gondwana and then their

own rifting beginning 135 Ma was the event that led to the

basal splits in the Peripatopsidae.

Our dating analyses indicate that the New Zealand taxon

Peripatoides probably diverged from its Australian sister taxa in

the late Cretaceous, with the upper and lower posterior

intervals in the range 24.5–137.6 Ma. Although the posterior

distributions on our divergence dates are very broad, possibly

because there is only a single calibration point (Kishino et al.,

2001), they do allow us to assess key dates in the geological

history of New Zealand. The rifting of New Zealand from

Australia is thought to have begun c. 80 Ma (McLoughlin,

2001; Mortimer, 2008) in the south of what is now the Tasman

Sea, and the mean posterior divergence dates of Peripatoides

correspond well with this event. Therefore, it is likely that the

rifting of New Zealand from Australia caused the split of

Peripatoides from its Australian sister taxa.

The mean divergence time of Australian and New Zealand

Ooperipatellus is more recent than that of Peripatoides, with all

of the mean estimates falling in the range 39.9–46.2 Ma.

However, the posterior intervals do encompass the date at

which the rifting of New Zealand from Australia occurred,

and, therefore, we cannot exclude a vicariant origin, as

favoured for Peripatoides. Although dispersal can be invoked

to explain this shallower date for Ooperipatellus, geological

reconstructions suggest that this might not be necessary. It is

currently unknown exactly when land connections between

New Zealand, New Caledonia and other landmasses to the

north-east of New Caledonia were severed (Ladiges & Cantrill,

2007). However, recent authors have found evidence for island

arcs and emergent land between New Zealand and New

Caledonia during the Tertiary (Herzer et al., 1997; Schellart

et al., 2009), and Ladiges & Cantrill (2007) argued for land

connections between Australia and New Caledonia during the

Tertiary. If Ooperipatellus did indeed diverge from Australian

relatives after the rifting of New Zealand from Australia then

this genus may have migrated from Australia to New Zealand

via a landmass such as New Caledonia. This hypothesis would

require us to invoke an extinction event in New Caledonia, as

Onychophora are not known from this area. Given that New

Caledonia was originally part of the Australian plate margin in

the Cretaceous, an extinction event must be invoked in any

case to explain this apparent absence.

Calibration assumptions and testing hypotheses

on vicariance

Selecting a calibration point that matches the true age of

lineage divergence is absolutely essential for obtaining accurate

divergence time estimates (e.g. Thorne et al., 1998; Bromham

& Penny, 2003; Heads, 2005; Ho et al., 2008; Ho & Phillips,

2009). We have assessed the robustness of our divergence dates

by using different prior distributions on the calibration point

and the tree shape. Although these different priors give slightly

different divergence time estimates, they do not significantly

alter our conclusions. We also have used slowly evolving

nuclear genes, which are more suitable for testing hypotheses

on Mesozoic age divergences than rapidly evolving mitochon-

drial genes. Despite this, our dates are conditional on a good fit

of the relaxed clock (Aris-Brosou & Yang, 2002; Lepage et al.,

2007) and nucleotide substitution models (e.g. Arbogast et al.,

2002).

Our analyses explicitly assume that the divergence of

Metaperipatus and Peripatopsis resulted from the rifting apart

of South America and Africa. The paraphyletic nature of

the South African Peripatopsidae raises the possibility that

Metaperipatus formed from a long-distance dispersal event

from South Africa to South America. As with any dispersal

hypothesis, we cannot directly exclude this possibility, but we

consider it unlikely. The assumption that both the Metaperip-

atus and Peripatopsis split and the Peripatoides and Australian

genera split are the result of vicariance predicts that, if we

constrain the Peripatoides and Australian genera node at

the age of the rifting of New Zealand from Australia, the

corresponding divergence of Metaperipatus and Peripatopsis

will match the age of the breakup of South America and Africa.

This prediction is indeed confirmed by our analyses, because

placing a calibration of 80–90 Ma for the split between

Peripatoides and its Australian sister taxa leads to an estimate

of 101.88 Ma (38.5–198.77 Ma) for Metaperipatus and Peri-

patopsis. This posterior distribution encompasses the timing of

the rifting of South America from Africa (105–135 Ma;

McLoughlin, 2001). Therefore, the relative temporal spacing

in the tree of the divergences of Peripatoides and its Australian

relatives and Metaperipatus and Peripatopsis is consistent with

vicariance in both cases.

A further possibility is that Metaperipatus and Peripatopsis

diverged before the split between South America and Africa. In

this event, then, we would expect our dates to be underesti-

mates. This of course would strengthen the argument that the

New Zealand genera are the result of vicariance because the

dates we estimated for the New Zealand and Australian

divergence would be correspondingly underestimated.

Another assumption of our analysis and interpretation of

inferred dates is that the age of divergence of extant taxa from

different landmasses reflects the age of the lineages from those

landmasses. Waters & Craw (2006) pointed out that extinction

of sister taxa can lead to overestimates of the age of a lineage in

a geographic area. Extinction of a more closely related lineage

in Australia than those sampled could have led to inflation in

age of the New Zealand Onychophora lineages. However,

without fossils, hypotheses on extinction are ad hoc, unable to

be tested and can be used to explain almost any biogeographic

pattern. For these reasons, while acknowledging the potentially

confounding effects of extinction, we have no evidence that

this process has misled our biogeographic interpretations. We

also note that although the use of biogeographic calibrations is

open to criticism, fossils also have a number of weaknesses,

including problems with assignment to extant lineages, the fact

that fossils indicate minimum divergence times only, and

J. Allwood et al.

676 Journal of Biogeography 37, 669–681
ª 2009 Blackwell Publishing Ltd



uncertainties in dating strata (Bromham & Penny, 2003;

Magallón, 2004; Heads, 2005; Gandolfo et al., 2008).

New Zealand Onychophora and the Oligocene

Drowning

Most of our dating analyses yielded divergence time estimates

in which the lower limits of the Bayesian posterior intervals for

the divergence of Peripatoides exclude the late Oligocene. The

Birth–Death speciation prior with normal calibration had a

lower posterior interval that only just overlapped with the

upper limit of the Oligocene Drowning. However, this

divergence date estimate does not overlap with the emergence

of land after the drowning (< 22 Ma, Landis et al., 2008),

which is the predicted divergence time, if Peripatoides

colonized New Zealand by long-distance dispersal after the

re-emergence of land. Therefore, our analyses allow us to

exclude an arrival of Peripatoides in New Zealand after the

Oligocene Drowning. The age of New Zealand Ooperipatellus is

somewhat more recent, and under all prior assumptions the

lower divergence time limits cross into the Miocene. Despite

the ancient posterior mean age of Ooperipatellus, we cannot

exclude a post-Oligocene arrival in New Zealand. The result

from Peripatoides implies that there has been emergent land in

the New Zealand region since rifting from the margin of

Gondwana during the Late Cretaceous. The New Zealand

Onychophora, therefore, add to the growing list of taxa with

molecular dates that pre-date the Oligocene Drowning. These

taxa include Toronia and Knightia (Proteaceae, Barker et al.,

2007), Agathis (Araucariaceae, Knapp et al., 2007), ratite birds

(Cooper et al., 2001; Haddrath & Baker, 2001), Sphenodon (e.g.

Rest et al., 2003) and Leiopelma, tailed frogs (Roelants et al.,

2007). All of the above studies use calibrations that are

independent of the date for the rifting of New Zealand from

Australia and, therefore, avoid the circularity outlined by

Waters & Craw (2006).

Waters & Craw (2006) and Landis et al. (2008) listed some

of the above examples and argued that their apparent antiquity

was the result of the extinction of sister taxa in other

landmasses. However, as this list grows with the addition of

taxa such as Peripatoides, these ad hoc arguments become less

tenable. There are also phylogenetic studies that have shown

New Zealand clades to be sister groups to widespread clades

that are strongly suspected or known to be ancient (e.g. Barker

et al., 2001; Ericson et al., 2002; de Kloet & de Kloet, 2005;

Leschen, 2005; Wright et al., 2008; Boyer & Giribet, 2009) or in

which New Zealand clades fall in a phylogenetic position that

matches the breakup sequence of Gondwana (e.g. Pollock,

1995). Furthermore, there are the well-known cases of higher-

level taxa that are found only in New Zealand (e.g. Leschen

et al., 2003, 2005; Driskell et al., 2007), or of post-Oligocene

fossils belonging to lineages not found elsewhere (e.g. Worthy

et al., 2006). Although we do not doubt the importance of

dispersal in the assembly of the New Zealand biota (e.g.

Fleming, 1979; Pole, 2001; Winkworth et al., 2002), given the

mixture of recent and ancient lineages, New Zealand fits the

definition of a ‘fragment island’ (sensu Gillespie & Roderick,

2002). Many more phylogenetic studies on the hyper-diverse

invertebrate fauna need to be completed before statements

about what proportion of the New Zealand biota is the result

of dispersal versus vicariance can be made with any certainty.

CONCLUSIONS

The two New Zealand Onychophora genera, Peripatoides and

Ooperipatellus, were found to fall within separate clades, both

related to Australian genera. Divergence time estimates

between Peripatoides and Australian sister taxa suggest diver-

gence at the time New Zealand rifted from Australia in the late

Cretaceous. The age of this divergence is older than the

Oligocene Drowning, which allows us to exclude the possibility

that New Zealand was completely submerged during the late

Oligocene. The divergence of New Zealand and Australian

Ooperipatellus may have occurred somewhat later, and we

cannot exclude a post-Oligocene age. At least the New Zealand

Peripatoides can be considered an ancient and relict compo-

nent of the New Zealand biota, as has long been maintained

by previous authors (e.g. Watt, 1961; Fleming, 1979; Stevens,

1980).
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Monge-Nájera, J. (1995) Phylogeny, biogeography and the

reproductive trends in Onychophora. Zoological Journal of

the Linnean Society, 114, 21–60.
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