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We study the weak solution X of a parabolic stochastic partial differential equation driven by two
independent processes: a Gaussian white noise and a finite Poisson measure. We characterize the
support of the law of X as the closure in D([0, T, C([0, 1])), endowed with its Skorokhod topology,
of a set of weak solutions of ordinary partial differential equations.
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1. Introduction

Consider a space-time white noise W(dx, df) on [0, T] X [0, 1], based on dxdf (see
Walsh 1986, p. 269). Denote by (E, d) a Polish space endowed with a positive finite
measure ¢, and by N(dt, dz) a Poisson measure on [0, 7] X E, with intensity measure
dtg(dz), independent of W. Our purpose is to study the following stochastic partial
differential equation (SPDE) on [0, T] X [0, 1]:

0X 02X . .
o7 (%) =55 (LX) + bX(t, %) + o (X(L, )W + JEg(X(t—, x), ) N(dz) ~ (1.1)

with Neumann boundary conditions

oX 0X
P (t,0)= Ee (t, ) =0, V>0,
and deterministic initial condition .2y(x) € C([0, 1]). The symbols N,(dz) and W, stand
respectively for the heuristical Radon—Nikodym density of N(d¢, dz) and W(dx, df) with
respect to the Lebesgue measures df and dsdx. We could also write, with an abuse of
notation, N,(dz)dtdx = dxN(dt, dz) and W, ,d¢dx = W(dx, di).

We denote by D([0, T], C([0, 1])) the set of cadlag functions from [0, 7] into C([0, 1]),
endowed with the corresponding Skorokhod topology. In this paper, we characterize the
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support of the law of a weak solution X of equation (1.1) as the closure of a set of weak
solutions of ordinary partial differential equations in D([0, T'], C([0, 1])).

Parabolic SPDEs driven by a white noise, i.e. equation (1.1) with g = 0, were introduced
by Walsh (1981; 1986). Walsh (1986) defines his weak solutions, then proves a theorem of
existence, uniqueness and regularity. Various properties of Walsh’s equation have since been
investigated: for example, Malliavin calculus, large deviations and the support theorem (see
Bally et al. 1995).

Walsh (1981), however, builds his equation in order to model a discontinuous
neurophysiological phenomenon. He explains that the white noise W approximates a
Poisson point process. This approximation is realistic because there are many jumps, and
the jumps are very small, but in any case the observed phenomenon is discontinuous.
However, SPDEs with jumps are much less well known. In the case of temporal and spatial
jumps, Saint Loubert Bi¢ (1998) has studied the existence, uniqueness, regularity, and
variational calculus. See also Fournier (2000) for other results on the same subject.
Nevertheless, no result about the ‘joint’ regularity of the weak solutions has been proved in
this case: we do not really know in which space the weak solution ‘lives’, thus no support
theorem may hold for the moment.

In the case of equation (1.1) with ¢ =0, but with g(E) = oo, and with a compensated
Poisson measure, Albeverio et al. (1998) have checked the existence and uniqueness of a
‘modified cadlag’ weak solution u(z, x): u is almost surely continuous in x; and u is right-
continuous and has left limits in L?(Q) in the variable 7. Again, we do not know in which
space the weak solution almost surely lies.

Since Stroock and Varadhan (1972) established their famous support theorem for
diffusion processes, there have been many investigations on the subject. In particular, Millet
and Sanz-Solé (1994) have considerably simplified the proof of Stroock and Varadhan. But
the only support theorem for jump processes seems to be that of Simon (1999), who studies
a stochastic differential equation driven by a (compensated or not) infinite Poisson measure.
Finally, let us remark that, as far as we know, no support theorem seems to be known in the
case of equations driven by two independent (but different) random elements.

This paper is organized as follows. In Section 2, we define the weak solutions of (1.1),
following Walsh (1986). Using the method of Ikeda and Watanabe (1979), and applying
Walsh’s results, we sketch the proof of an existence and uniqueness result. We define the
‘skeleton’ associated with (1.1), by using the Cameron—Martin space associated with W and
the set of finite counting measures associated with N. Finally, we state our support theorem.

Section 3 is devoted to a simplification of the problem. First, we use a localization
argument in order to obtain weaker assumptions. Then we prove that it suffices to check
two simpler support theorems. The first is proved in Section 4, and is related to an equation
similar to (1.1) but without white noise: Wt,)c is replaced by iz(t, x), where & is an element
of the Cameron—Martin space associated with W. The second is proved in Section 5, and
deals with an equation without Poisson measure, but with an additional ‘jump drift’. This
concludes the proof of our main result.

Section 6 is devoted to an extension of our result to the case where the Poisson measure is
almost surely infinite (g(£) = oo), but where the diffusion coefficient is constant (o (x) = o).

Finally, some technical results are given in the Appendix.
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2. Framework
Let us first define the weak solutions of (1.1). To this end, we need some assumptions:

Assumption (H). The functions o and b : R — R, satisfy a global Lipschitz condition. The
function g : RX E +— R is measurable on R X E and, for each z € E, the map g(., z) is
continuous on R.

We proceed by following Walsh (1986, pp. 311-322). Consider the Green kernel G,(x, y)
associated with the deterministic system
ou  0%u
ot 0x2’
This kernel can be explicitely computed:

—(v—x-2 2 _ ) 2
Gi(x, y) = \/%mz {exp (O}Z—tnl‘)> + exp <(y+);—tnl‘)>} ) (2.2)

neZ

ou Ou
5.0 =7-(.)=0. 2.1)

If ¢ belongs to C([0, 1]), we set
o(x) if t=0,
Gi(¢, x) = J‘ (2.3)

G(x, y)p(v)dy if t>0.
0

The Appendix contains technical results about this kernel. We endow our probability space
(Q, .7, P) with the canonical filtration associated with the independent random elements W
and N:

T =0{W(A);, A4 € .2(0, 1] X[0, ]} Va{N(B); B € .#([0, {] X E)}.
A process X(t, x) on [0, T]T X [0, 1] is said to be adapted if, for all =0, all x € [0, 1],
X(t, x) is .7 ;-measurable.

Like Walsh (see also Saint Loubert Bié 1998, or Fournier 2000), we define the weak
solutions of (1.1) in the following sense.

Definition 2.1. Let 2y : [0, 11— R be a continuous deterministic function. Consider an
adapted process X(t, x) on [0, T] X [0, 1], lying almost surely in D([0, T], C([0, 1])). Then
X is said to be a weak solution of (1.1) if and only if it satisfies the following evolution
equation:

t el
ﬂnm:auﬁm+LLaﬂmwwamymww+dmmwwmxmn

t 1
+JJJGHWWﬂﬂPw&ﬂ®M®JA 2.4)
0JEJO

where G2, x) is defined by (2.3), and with the convention that
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1
L Go(x, »)g(X(s—, »), 2)dy = g(X(s—, ), 2).

We now establish an existence and uniqueness result for such a solution. Since ¢(F) is
finite, N([0, 7] X E) is almost surely finite, and thus N can almost surely be written as

u
N(dt, dz) =Y Or,.2)(dt, dz),
i=1
with u €N, 0<T<...<T,<T,and Z,, ..., Z, € E. Hence, (2.5) can be written as

t el
X(t, %) = G2, x) + “0 Gy, VDX (s, ) dyds + o (X(s, y)W(dy, ds)]

I 1
+ 3 em| G DeC(Tim, ). Z)dy,
i=1

Working recursively on the time intervals [0, T'[, [T1, T2[, ..., [Ty, T, as in the proof of
Theorem 9.1 in lkeda and Watanabe (1979, pp. 231-232), using Walsh’s theorems of
existence, uniqueness and regularity for (1.1) with g = 0 (see Theorem 3.2 and Corollary 3.4
in Walsh 1986, pp. 313 and 317), and using the well-known estimates of the Green kernel
stated in the Appendix, one can prove the following proposition:

Proposition 2.2. Assume (H). Equation (1.1) admits a unique adapted solution X(t, x) on
[0, T] X [0, 1], lying almost surely in D([0, T], C([0, 1])). Uniqueness holds in the sense that
if Y is another adapted solution lying in D([0, T], C([0, 1])), then almost surely,

sup | X(t, x) — Y(t, x)| = 0.
[0,7]X[0,1]

We are now interested in the support of the law of X. Let us first recall the definition of
the Skorokhod distance on D([0, 7], C([0, 1])). We consider the set of ‘changes of time’:

A ={1€ C(0, TDH|A0) =0, A(T) = T, A is strictly increasing}.

m{w}'
t—s

The Skorokhod distance between two elements ¢ and v of D([0, 7], C([0, 1])) is given by

For A € A, we set

1Al = sup

Oss<t<T

6(¢,w)=}n£{ sup ¢(i(t),x)—w(t=X)+llill}-
€A | 10,71X[0,1]

D([0, T, C([0, 1])), endowed with 9, is a Polish space (see, for example, Jacod and Shiryaev
1987, p. 289).
We now introduce some notation, describing the ‘supports’ of W and N: we denote by
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0J0

H = {h(t, x) = ”xh(s, y)dyds|h € L*([0, T] X [0, 1])} (2.5)

the Cameron—Martin space associated with . We also consider the set of the finite counting
measures on [0, 7] X E, the support of which is contained in [0, 7] X supp g:

= {m(dt, dz) =) 01,z)(dt, d2)
i=1

neN,0<t1<...<tn<T,z|,...,zn€suppq},

with the convention Z?:l = 0. Notice that, for all w € Q, N(w) belongs to .7Z. But in
general (with an abuse of notation), W(w) ¢ .7, since W(w) is not even well defined.
The following proposition describes the ‘skeleton’ associated with our evolution equation.

Proposition 2.3. Assume (H). Let h € 7 and m € % be fixed. The following ordinary
evolution equation admits a unique solution, which we denote by S(h, m), lying in

D([0, T1, C([0, 1])):

t el
S(h, m)(t, x) = Gi( 2, x) + LLGHo@ »)

X [b(S(h, m)(s, y)) dyds + o (SCh, m)(s, y))h(s, y)dyds]

t 1
+ j J j Gyoy(x, )g(S(h, m)(s—, ), 2)dym(ds, d2). 2.6)
0JEJO

This proposition can be proved similarly to Proposition 2.2. Equation (2.6) is the same as
(2.4), but we have replaced W(dy, ds) and N(ds, dz) by A(s, y)dyds and m(ds, dz).
Finally, we recall the following standard observation:

Remark 2.4. Let Z be a random variable with values in a Polish space 4 endowed with a
distance a. Recall that the support supp, P o Z~! of the law of Z related to the distance « is
the smallest closed subset F' of (4, o) satisfying P(Z € F) = 1. Let B be a subset of 4, and
let B* be its closure in (4, a).

(a) If Z € B* almost surely, then
supp, Po Z~' c B~
(b) If, for all b € B, all £>0,
P(a(b, Z)<e)>0,
then

B* C supp, Po Z7\.

In order to establish a support theorem, we need the following assumptions.
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Assumption (S1). The function o is C> on R.

Assumption (S2). For each zy € E, each n € N,
sup | g(x. 2) — g z0)|

0.
|x|<n 20)—0
For each zy € E, each n € N, there exist a constant §"(z0) >0 and a function ] (u) :
Rt — R", decreasing to 0 when u decreases to 0, such that, for all |x| < n, |y| < n,

sup  |g(x, 2) — gy, 2| < YL (|x = y].
d(z,20)<&"(z0)

Assumption (S1) is nearly the same as that of Bally et al. (1995), who prove a support
theorem in the case where g = 0, and comes from a Taylor expansion of order 3. In fact they
assume that o is Ci, but a localization procedure can be done (see the proof of Proposition
3.1 in the next section). Assumption (S2) says that g is locally uniformly continuous. In the
particular case where E is locally compact, (S2) is satisfied as soon as g is continuous on
[0, T] X E.

Now we can state our main result:

Theorem 2.5. Under (H), (S1) and (S2), if X denotes the unique weak solution of equation
(1.1),

supps Po X' = {S(h, m)lh € 7, me 7}°.

3. Simplification of the problem

First, we ‘delocalize’ Assumptions (S1) and (S2), by using a standard argument. Consider the
following assumptions, stronger than (S1) and (S2).

Assumption (S'1). The function o is C3 on R, bounded with its derivatives.

Assumption (S'2). For all z, € E,

Suplg(xa ZO)| < o0, Sup‘g(x> Z) - g(xs ZO)' - 0. (31)
xeR xeR d(z, z9)—0

For all zy € E, there exist §(zo) >0 and a function y,,(u) : RT — R, decreasing to 0 when
u decreases to 0, such that, for all x, y € R,

sup | g(x, 2) — (1, 2| < Y (|x — y). (3.2)
d(z,z0)<&(z0)

Proposition 3.1. [f Theorem 2.5 holds under (H), (S'1) and (S'2), then it also holds under
(H), (S1) and (S2).

We will prove this proposition at the end of the section.
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We would now like to check that Theorem 2.5 holds as soon as two easier support
theorems are valid. The first deals with equation (2.4) with a ‘deterministic’ white noise,
and the second with a ‘deterministic’ Poisson measure.

We first introduce some notation. If respectively & € .77 and m € .7, then we denote by
X, and X, the solution of (2.4), where we have replaced W(dy, ds) by h(s, y)dyds and
N(dt, dz) by m(dt, dz). In other words,

t el
Xolt, ) = G T, %) + LLGHm WIBXGs, ) dyds + o (Xi(s, )iGs, y)dyds]

t 1
+ J J J Gy, 7)g(Xa(s—, ¥), 2)dyN(ds, d2),
0JEJO

t el
Xon(t, %) = Gl Ly %) + LL Gy, DIBXn(s, 1) dyds + 0(X,u(s. Y)W (dy, ds)]

t 1
+ ” J Gooy(s 1) g(Xn(s—, ), 2) dym(ds, dz). (33)
0JEJO

We could also write, with an abuse of notation, X, = S(h, N) and X,, = S(W, m). The next
sections are devoted to the proof of the following propositions.

Proposition 3.2. Assume (H) and (S'2). Let h € 74, m € .7, and ¢ >0 be fixed. Then
P(O(S(h, m), X;) < ¢&)>0.

We now denote by ||u|l = supyo,rjxjo.17]u(t, x)| the supremum norm on [0, 77 X [0, 1].

Proposition 3.3. Assume (H), (S'1) and (S'2). Let m € % be fixed. Then

suppy .. Po X! = {S(h, m)|h € 77} =,

Let us observe that this second result implies the following weaker one:

supps Po X, = {S(h, m)|h € 7 }°
Assuming for a moment that these propositions hold, we prove our main result.
Proof of Theorem 2.5. Using Remark 2.4, we tackle the proof in two stages.

We first check that X almost surely belongs to {S(k, m)|h € .7, m € .7}°. Consider the
map from .7 to [0, 1] defined by

() = P(X, € {S(h, m)|h € T, m € .7}°).

Let us first prove that

P(X € {S(h, m)|h € 7, m e .7}°|o(N)) = ¢(N) (3.4)
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almost surely, where
o0(N)=0{N(4); 4 € (0, T1 X E)}.
In order to understand (3.4), let us work with the canonical product space
Q, 7, P=Q", 77, Py ", 7V, PY)

associated with W and N. Every element w of Q can be written as (0", w"), where
o C([0, T]1 X [0, 1]) and ™ € .#. Thus,

dP" (™).

P(X € {S(h, m)|h € 7, m € Z}°|o(N)(w) = Jl{xw,ww)emﬂ

But obviously, X(w) = X(0", o) = X,~(w"), where X, was defined by (3.3) for each
u € 7. Thus,

P(X € {S(h, m)[h € 7, m e .7}Y°|o(N)w) = P"(X,x € {S(h, m)|h € T, me 7}°).
(3.5)

Now, since for each ¢ € .7, X, is independent of N, we notice that

o) = PY(X, € {S(h, m)|h € 7, m e #}°). (3.6)
Comparing (3.5) and (3.6), we deduce (3.4). Hence, we obtain

P(X € {S(h, m)|h € X, m e .7}°) = E(p(N)).

Finally, it is clear from the definition of ¢ and from Proposition 3.3 that ¢ = 1. The
conclusion follows easily.
We now fix h € 7, m € .7 and ¢>0. We have to check that

Py = P(O(X, S(h, m)) < €)>0. (3.7)
First,
Py = P(O(X, X;) < ¢€/2; (X, S(h, m)) < ¢/2).
Noticing that X, is o(/N)-measurable, we see that
Po = E[lysx,,s(hmy=e/2} PO(X, Xp) < &/2|0(N))].
But we know from Proposition 3.3 that, for all m € .7,
W(m) = P(O(X, S(h, m)) < &/2) > 0.

Working on the canonical product space as in the previous paragraph, and noticing that, for
all o = (0", ") e Q, X(w) =X, n(@") and X,(w) = S(h, ®") — all of this with no
abuse of notation — we deduce that

P(O(X, X)) < £/2|0(N)) = p(N)>0
almost surely. Thus, (3.7) holds as soon as

P(O(Xy, S(h, m)) <¢g/2)>0,
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which never fails, thanks to Proposition 3.2.
Provided we check Propositions 3.1, 3.2 and 3.3, Theorem 2.5 is proved. U

In order to prove Proposition 3.1, we begin with a lemma.

Lemma 3.4. Consider some functions o, b and g (&, b and g) satisfying Assumption (H),
and denote by X (X) the corresponding unique weak solution of (1.1). Assume that, for some
A € RT,

Vx| <4, Vz€eE, o(x) =a(x), b(x)=>bx), g z)= g, 2).
Then there exists Q C Q such that P(Q) =1 and

{0 € Q; | X(0)]x < 4} C {w € Q; | X(») — X(®)||« = 0}.

Proof. We consider the stopping time 7 = inf {t = 0, sup,| X (¢, x)| = A}. Then the processes
X%(t, x) = X(t N1, x) and X7(¢, x) = X(t A\ 1, x) satisfy the same evolution equation:

INT pl
X7t %) = Gi( Ly ) + JO JO Gy B (s, y) dyds +T(X(s, Y)W (dy, ds)]

INT 1
+ J J J G s(x, Y)g(X(s—, »), z)dyN(ds, dz).
o Jelo

A uniqueness argument yields that almost surely, say for all w € Q, with P(Q) =1, X" =X’
on [0, 7T X [0, 1]. This yields that, for all w € Q, all t <17, and all x € [0, 1], X(¢, x) =
X(t, x). This implies that

{w e Q; |X(@)]| < 4} C{weQ; q(0)>T} C {weQ; || X(®) — X(w)|| = 0}.
Proof of Proposition 3.1. We assume that Theorem 2.5 holds under (H), (S'1) and (S'2), and

we consider functions b, 0 and g satisfying only (H), (S1) and (S2). We need a sequence of
Cy functions ¢, : R — [0, 1], satisfying

1 if |x| <n,
‘p"(x)_{o if |x| = n+ L.

Then the functions ¢,(x) = o (x)¢,(x) and g,(x, z) = g(x, z)¢,(x) clearly satisfy (S’1) and
(8'2). Denote by X, the solution of (2.4) with o, and g, instead of o and g. Lemma 3.4
yields that there exists Q C € such that P(Q) = 1 and, for all n € N,

{0Q; | X(0)]|x < n} C {w € Q; | X(0) — X,(@)] = 0} (3.8)

In the same way, we define S, (4, m), for h € .77 and m € .7, as the solution of equation
(2.6) with o, and g, instead of 0 and g. We obtain, for all n € N,

if ||S(h, m)||oo < n or ||Sy(h, m)||oc < n, then S(h, m) = S,(h, m).
Since Theorem 2.5 holds under (H), (S'1), and (S'2), we know that for each n € N,
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supps Po X' = {S,(h, m)|h € 7, m e . /Y°. (3.9)
Using Remark 2.4, Proposition 3.1 will hold if we check, on the one hand, that
P(X € {S(h, m)[he 7, me . 7#}°)=1 (3.10)
and, on the other hand, that for all 2 € .7#, all m € .7, all ¢>0,
P(O(X, S(h, m)) < ¢)>0. (3.11)

Let us first prove (3.10). Let w € Q be fixed. Since X(w) belongs to D([0, 77, C([0, 1])),
it is bounded, and there exists n € N (depending on w) such that

n= || X (@)l + 1, (3.12)

which yields X(w) = X,(w). But for all ¢>0, we know from (3.9) that, for almost all
o € Q, there exists 7 € .7 and m € .7 (depending on w) such that

(X (w), Sy(h, m)) < e.

This and (3.12) yield (if ¢ < 1) that [|S,(A, m)HDO < n, and thus that S,(h, m) = S(h, m).
Hence

O(X(w), S(h, m)) < ¢,

which concludes the proof of (3.30), since P(Q) =1.
In order to prove (3.31), we fix h € 7, m € .7 and €>0. We consider n € N such that

n = |SCh, m)oc + 1.
Thus, if e<1,
P(O(X, S(h, m)) < ¢) = P(O(X, Sy(h, m)) <e¢)
= P(|| X||oo < n, 0(X, Sy(h, m)) <¢)
= P(O(Xy, Su(h, m)) < &)

thanks to (3.8). From (3.9), this probability is strictly positive, which yields (3.11).
Proposition 3.1 is proved. O

4. The case where W is ‘deterministic’

This section is devoted to the proof of Proposition 3.2. We partially follow here the method
of Simon (1999), who studies the support of Poisson-driven SDEs (without Wiener term).
The extension of his method to SPDEs leads to technical problems, essentially because we
have to control the explosion of the Green kernel G;(x, y). Another new difficulty arises
because we have to add a second drift, in which the term A(s, y) belongs only to
L*([0, T] X [0, 1]).

In this entire section,
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trx n
h(t, x) = J J h(s, y)dyds € 7 and m(dt, dz) =Y 0(,z)(dt, d2) € ./
0J0 =1

are fixed. We set 10 =0, ¢, = T and

,,,,,

For simplicity, we set S = S(4, m). We denote by 0 < T'(w) < ... < Tyu)(w) the successive
jump times of N(w), and by Zi(w), ..., Zyw)(®) the jump sizes. In other words,

u(w)

N(w, dt, dZ) = Z 6(T,(w),Z,-(w))(dt, dZ)

i=1
We recall that, for all a € 10, §o[ and all £>0, the set
Q(a, &) ={w € Qu(w) = n, t; —a<Ti(w) <t d(z;, Zi{w)) <&}

has a strictly positive probability. We will check that, for all £ > 0, there exist @ >0 and £ >0
such that, for all w € Q(a, &),

O(X(w), S) < ¢,

which will imply Proposition 3.2.

Also in this entire section, the constant C depends only on %, m and the parameters (o,
b, g, %o and T) of equation (1.1).

From now on, we consider w € Q(a, &).

First, we choose 0 <<a <gy/16, and 0 <E<&(z)) A ... A &(z,), where &(z;) was defined
in Assumption (S’2). For some y € 12a, §o/8[, to be chosen later, we define the polygonal
change in time A € A by 4(0) =0, A(T) =7, and, for all i € {1, ..., n},

ML —y)=T;—v, MT)) = t, MTi+vy)=ti+vy, MT; +2y)=T; 4 2y.
Notice that all the following properties hold:
for all ¢ € [Ty, T; + ], AMt)y—t;i=t— Ty 4.1)
T
Jo L5y ds < 3ny; (4.2)
for all ¢ € [0, T7], /l(l‘) =t and l{l(t)Zt,-} = l{tBT,-}; 4.3)
12— 1l < a (44

Furthermore, it is easy to check that
A1 < 01 = a/y)] v [In(1 + /)| < 2a/7,

where the last inequality holds because a/y < 1/2. We have to prove that if ¢ >0 and £§>0
are small enough then, for some well-chosen ¥y,

ISA(1), x) — Xn(t, )l + [[IA]]] < &
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We now set S;(z, x) = S(A(¢), x). Then, using (4.3), we see that, for any w € Q(a, &),

Si(t, x) — Xi(1, x) = Gy (Lo, x) — G20, x)

¢l .
+ OL(GmH(x, ¥) = Gies(x, YIIDS(s, y) + 0 (S(s, ¥)h(s, y)]dyds

A1) ol )
+ JO G5, WIB(S(s. ) + 0(S(s, y)i(s, )] dyds

trl
+ OJO Gy, MH{BS(s, 1)) = b(Si(s, YD} + {0 (S(s, 1) = 0 (Sals, ) }als, »)]dyds

tpl )
+ OL Grs(x MILBS(s, 1) = b(Xi(s, YD)} +{0(Si(s, ¥) = 0(Xi(s, y)}h(s, y)]dyds

n 1
+ =1y (Ga-i(x, ) = G y)E(S(ti=, ), 20)dy
i=1

n 1
+> le=ry Grr(x, DE(S(tims ). 2) = g(S(ti= ), Z)1dy
i=1

n 1
+ Zl{fzri} OGFT’(X’ WeS(ti—, ), Zi) — g(Xu(Ti—, ), Z)]dy
i=1

= A(t, x) + ...+ H(t, x).

We compute these terms one by one, still assuming that w € Q(a, &).
Since A(#) = ¢ for all + < T} — 7, and hence for all ¢ < 13§,/16,

1

wl{t213§9/16}J0|Gl(t)(xa y) — Gi(x, y)|dy.

|A(t, x)| < |A(t, ©)|1{=135,/16) < |

2o

Using (A.3) in the Appendix, and then (4.4), we see that

AMt)—t

|A(t, x)\ = CW

< C|A - I|| < Ca.

Using the Cauchy—Schwarz inequality, then (A.4), and finally (4.4), we obtain



Support theorem for a parabolic SPDE with Poisson jumps 177

. . 12
|B(t, )| = (J J [B(S(s, 1))+ 0(S(s, Y)i(s, VP dy ds)

0J0o

0J0

< C(VA(t) — n'* < Cca'l*

In exactly in the same way, |C(¢, x)| < Cal/*.
Using Assumption (H), we see that

‘ol 1/2
x (j J [y ) — Gs(ts WP dy ds)

£l )
ID(1, ) = CJOL Gy, WIS(s, ¥) — Sa(s, MI(L + s, y)]) dyds.

Thanks to the Cauchy—Schwarz inequality and (A.1),

0 y€[0,

‘ | 1/2
|D(t, x)| < C (J SI[lopl]lS(s, y) — Si(s, )2 dSL G7_y(x, y) dy>

. q 1/2
S
< | 1gpn —— | .
(L {A)#s) r*—“'t_s>

Using the Holder inequality with p =3 and ¢ = 3/2, we deduce that

‘ 16 (et g 173
D(t, )| < C( | 13002 d 2
|D(t, x)| (JO {A(s)#s} S) JO (t— S)3/4

t 1/6
< c(le#s} ds) < CQ3ny)"/* < Cy'/°

thanks to (4.2). The same computation leads us to

1/2
! ds
E(t, ) = C J sup [S3(s. ) — Xi(s, )P .
| | < Oy€[0,1]| 1 h | —

Using (4.1), and (3.1) in (S'2), we see that

|F(t, x)| < CZ L=14p) Su[lo)l]‘Gﬂ(t)—ti(Xa ») = Gi_r(x, y)|.
- xyelo,

i=1

Thus, thanks to (A.3),

(A1) — 1) — (1 — T))|
[(A() — t;)) A (¢t — T2

F(t, 0| < CY Mp=riy)
i=1
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But 1 = T; + y implies that A(f) — t; = A(T; + y) — t; = y. Hence, thanks to (4.4) and since
w € Q(a, &),

|4 = 1|0 + supi|t; — Ti|
y32

|F(t,x)| < C < Ca/y*?.

Using (A.2), we deduce that
1G(t, x)] <> suplg(S(ti—, y), ) — g(S(ti—, y), Z))|.
i=1 Y

Thanks to (3.1) in (S’2), recalling that for all i, d(z;, Z;) < &, we see that there exists a
function ¢(&) from RT into itself, decreasing to 0 when & decreases to 0, depending only on
h, m and the parameters of (1.1), such that

|G, )| < @(8).

In the same way, but using (3.2) and the fact that £ < &(z;) A ... A &(z,), we easily prove the
existence of a function B(u) : RT — R™, decreasing to 0 when u decreases to 0, such that

i=1

n
|H(ta )C)| = Z 1{1‘27}} X ﬁ( S];)pl]|S(ti_) J’) - Xh(Ti_7 J’)|)
i— yelo,

= Zl{tan} X B( sup |Si(Ti—, y) — Xu(Ti—, y)|
= yelo,1]

=

since A(T;) = t;.
Finally, setting

1(1) = sup [S(t, y) — Xa(t, y)|

ye[0,1]
and
K(a, 7,8 =a'* [y 4y + (),
we obtain
d ds i "
I(t) < CK(a, y, &) + C(Lﬁ(s) m) +C; 1 =1, BU(Ti-)).
Hence

t d n
(1) < CKX(a, 7, &) + CLIZ(S) \/t—s:—s + C; L) B2 U(Ti-))- (4.5)
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Iterating this formula once, we get

n

P() < CK*(a, 7, §) + CY =1y A U(Ti-))

i=1

! s du z ds
+ C| |CK*(a, y, +CJ12 +CS 1= UT-)| ——. 4.6
J,| e o cf Pa s €3 tenpuoy| e @o
Using Fubini’s theorem, and noticing that fut ds//t — s\/s —u < 4, we deduce that
t n
I*(t) < CK*(a, y, &) + CJ Puydu+ CY  1y=ry BAU(T-)). 4.7
0

i=1
We now apply Gronwall’s lemma on [0, 7[. This gives

sup 1%(t) < CK*(a, v, £)eT < CK*(a, v, &).
[0,71[

Thus, on [0, T3],
I*(H) < CK*(a, y, &) + BA(CK*(a, v, &) + Cjtlz(s) ds.
0

Thanks to Gronwall’s lemma,

sup 1%(1) < (CK*(a, v, &) + BA(K*(a, v, &))"
(0,75

Iterating this argument, we deduce the existence of a function 7(u) : RT — R™, decreasing to
0 when u decreases to 0, such that

sup I(1) < n(K(a, y, §)).
[0.7]

Hence, there exists 0 > 0 such that if K(a, y, §) < 0, then supyo 7 1(#) < &/2. It now suffices
to choose a, v, & small enough, such that

K(a, y, 8 <o, 2a/y < ¢/2,
which will imply, for all w € Q(a, &),
0(Xn(w), S) < [[{(»)]lec + [|[A(@)|]| < &

First, we choose & € 10, &(z1) A ... A &(z,,)[ small enough, in order to get ¢(&) < &/3. Then
we choose y in 10, (§o/8) A (6/3)°[. Finally, we choose

0<a<y/2A©OV?)3)* Ney/s

Proposition 3.2 is proved.



180 N. Fournier

5. The case where N is ‘deterministic’

It remains to prove Proposition 3.3. In this entire section,

m(dt, dz) =Y 0,z)(dt, dz) € 4

i=1

is fixed. We set 10 =0, t,.1 =T.

We have to establish a support theorem for the solution of (3.3). Let us observe that this
equation is not much different from that of Walsh (1986). Indeed, it only contains one
additional term, a ‘jump drift’. Nevertheless, it is far from possible to use a method similar
to that of Bally et al. (1995), who proved a support theorem for Walsh’s equation, in
particular because the solution of (3.3) does not lie in C([0, T] X [0, 1]).

But the jump times of the solution X,, of equation (3.3) are deterministic, and the
associated skeleton S(%4, m) (m is fixed) has the same jump times. Thus we do not need the
Skorokhod topology: we will work with the stronger supremum norm on [0, 7] X [0, 1].

The method below consists in applying the result of Bally ef al. on each time interval
[#:, tixi[. To this end, we will define some processes X in, which equal X,, only on
[#:, ti1[X]O0, 1], but also give information about the behaviour of X, after #;,;. We will
also associate with X! some deterministic skeletons S’ (k). But we will apply the result of
Bally ez al. (1995) to the conditional law of X! with respect to .7, (for each i). Thus, we
will have to define a non-deterministic ‘conditional skeleton’ T ’;n(h). Then we will develop
a technical way to ‘paste the pieces together’.

Recall that, thanks to Remark 2.4, we have to prove, on the one hand, that for all
he 7, all €>0,

and, on the other hand, that

P(X,, € {S(h, m); h e 77} =) =1.

To this end, we introduce some notation. First, if S(¢, x) belongs to D([0, 77, C([0, 1])), and
if0<su<v =T, then

HSH[u,v] = sup ]|S(t, x)\

te[u,v],x€[0,1

We now define recursively, for i in {0, ..., n}, the processes Xi,l(t, x) on [¢;, T]1 X [0, 1],

At pl
X0 (1, %) = Gl Zoy %) + L L Gy, VDX (s, ) dyds + (X (s, ) W(dy, ds)];

and, for i € {1, ..., n},
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1
le(t’ X) = Xi;;l(t’ X) + 1{t>ti}J Gl‘—t[(x’ y)g(leil(tifs y)a Zi) dy
0

tisi At pl ) )
+ J | L Gi—s(x, Y)B(X (s, ¥)dyds + o (X, (s, ¥)W(dy, ds)].

Notice that, for all i,
for all ¢ € [¢;, tiq[, all x €0, 1], Xin(t, x) = X,u(t, x). (5.1)

Indeed, it suffices to use a standard uniqueness argument. In the same way, we define, for
h € 7, the functions S’ (k) on [#;, T] X [0, 1], by

SO (h)(t, x)

HAL pl .
— G L 1) + L JOGHu, DB (s, 7)) dyds + o (S (A)(s, y)iCs, ) dyds]

and, for i € {1, ..., n},

1
Syu(h)(t, x) = 83, ()1, X) + l{téti}JOthti(xa &S, (W(ti=, ), z)dy

tipi At pl ) . .
+ J L Gs(x, YI[B(S,,(h)(s, y)dyds + o (S, (h)(s, y)h(s, y)dyds].

Then, for all i,
for all ¢ € [#;, tiy1[, all x € [0, 1], St (h)(t, x) = S(h, m)(t, x). (5.2)
Finally, we define the ‘conditional skeleton’ associated with the conditional law of X! with

respect to .7,

1
T ()t x) = X0, ) + l{tzfl}joGHxx, DX b=, v), z)dy

tig At pl ) . .
[ | o s smayas-+ o, s, ydyas)
7
The function T’;n(h) is defined on [z;, T] X [0, 1]. For all #[z;, T], all x € [0, 1], Tﬁn(h)(t, X)
is .7 ;,-measurable.

Then one can ‘nearly’ use the theorem of Bally ef al. (1995) — for a more general
setting, see Cardon-Weber and Millet (1999) — which yields the following result.

Proposition 5.1. Assume (H) and (S'1). Then, with the above notation, for all ic
{0, ..., n}, the following conditional support theorem on [t;, T] X [0, 1] holds:

SUPD| |, n £ (X 1, 70) = {T,(W|h € 727} T,
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In fact, the main theorem in Bally et al. (1995) only yields the result for i = 0, with fol
instead of fow‘. But conditioning is not a problem, and the initial values we obtain, for

example

1
Xl;;l(t’ )C) + JO Gt*fi(xﬂ y)g(Xiy;l(ti_s y), Zi) dy = Xi;l(l, )C) + Gt*fi(g(Xiryjl(ti_a ')’ Z,'), )C),
behave on [#;, T] exactly as G,(#(, x) on [0, T], since they are .7, -measurable, since
g(X " Y(t;—, .), z;) is continuous on [0, 1], and since X !(¢, x) is continuous on [0, 7]
X [0, 1]. Finally, it is clear that considering the integrals from #; to ¢ A t;;; instead of 0 to ¢
will not change much.

We now establish a lemma, which will allow us to paste the pieces together. If
| X (@) — S (h)||j,.r7 is small, then the initial positions associated with S*"(4) and
T " (h)(w) are near, and thus the distance between S’''(k) and TM(h)(w) is small. We
need this lemma because Proposition 5.1 gives an idea of the distance between X! (w) and
T ’;n(h)(a)), but what we need to control is the distance between Sjn(h) and X' (w).

Lemma 5.2. Assume (H) and (S'2). There exists a function y(x, u) : RT™ X RT — R*, such
that, for each x, y(x, u) decreases to 0 when u decreases to 0, and such that, for all € >0, all
ief{0,...,n—1},

{weQ; X, () =S, (D <€}
C{w € Q; |85 () — TH (WY @)lr11 < YAl 2 ©)}
where ||h|[ti+l~fi+2]‘|iz = .[()1 hz(s’ y)dyds.

iy

Proof. Let o belong to {||X{ — S’ (h)|
using (H),

|85 ()8, x) = T ()2, x)| < |85, (h)(, x) — X,(, %))

[t,77 < €}. Then, for all ¢ in [#;1, T], all x in [0, 1],

1
+ LGHM(x, Xt Y0, 2) — (8" (b1 1), 2| d

tigaAt pl ) ) .
+ cj JG,_s(x, PISE (s, y) — T (W), WL+ [is, y)])dyds.

it 0

We now set

F(t)y= sup |ST(h)(t, x) — T2 (h)(2, %).
x€[0,1]

Using the assumption about @, Assumption (S'2), (A.2) and (A.1), and the Cauchy—Schwarz
inequality, we obtain

, d 1/2
. S
F(t)sng,.(s)w(l+||h|[,i+],zi+z]||Lz)<J F(s) m)
iyl -
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where 1., was defined in Assumption (S’'2). Hence,

. ! ds
FX(1) < Ce + Cy (e +C(1+h - >2J F2(s .
( ) wz,( ) || |[fx+|,fx+2]||L2 - ( )m

Iterating this formula once (see the previous section, inequalities (4.30), (4.31) and (4.32), for
more details), we obtain the existence of a function y, satisfying the assumptions of the
statement, such that

t

. . 2
0 <y (Il €) + (14 lal) | Frods

liv1

Gronwall’s lemma allows us to conclude the proof. O

In order to simplify notation, we assume in the following that n = 2, i.e. that
m(dt, dz) = 01, z) + O(ty.0)-
We first fix 4 € 77, and € >0, and we check that
Py = P(|| X — S(h, m)||so < €)>0. (5.3)
Using (5.7) and (5.10), we see that
Py = P(IX5, = 85,Mlon < &/3, 11X}, = SyWllin < &/3, 1X% = S, (0en < &/3).

Noticing that, for each i, X’ is .7, -measurable and S’ (%) is deterministic, we obtain, by
conditioning our probability with respect to .7,

2 2 7
Py = E[1{||X2,7S2,<h)|\[o,r]Se/3}”{Hxlm_slm(h)u[,lﬂsg/s}P(||Xm = Sty < 8/3|»“/r2)}-
On the other hand,

P(I1X2, = S (Wln < /317, )
= P(IX2 = T2y < /6, | T%(0) = Sl < £/6177,)

= l{ur;(h)fsiﬂ(h)u[,zﬂsqs}P(HX%n — T Wl < e/6|.%2>,

since S%n(h) is deterministic and T fn(h) is .7, -measurable. Using Proposition 5.1, we also
know that

P(||X§n — T2 Wl < 6/6|-7:z> >0
almost surely. Hence, it suffices that P; >0, where

Py= P(IX5, = S5 0lon < /3, 11X}, = ShWllin.r < /3, 1T500) =S40 ry < €/6).
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Thanks to Lemma 5.2, we know that, for a >0 small enough,
1X ), = SM . <a = T30 = S5(W)lin.n < €/6.

m

Thus,
p = P(IIX(,’,, = 85Wllon < /3, 11X, = (Ml < @A 8/3)-
Iterating this argument, we see that P is strictly positive as soon as P, >0, where

P = P(||X?n — S0 Mo < ﬁ)

for some >0 small enough. But it is clear that S (k) is identically equal to T gn(h). Thus,
Proposition 5.1 implies that P; is strictly positive, and hence that (5.3) holds, which was our
aim.

We still have to check that

P(Xm e {S(h, m), he 7} Hm) =1 (5.4)

We know from Proposition 5.1 that, for almost all w, say for all w € Q, with P(Q)=1,

X% () € {TO(h), he 7} =, X! (w) € {T" (h)(w), h € 7} I,

X2 (w) € {T2(h)w), he 7}~

We now fix @ € Q. There exists hg e H, hll e, hzn € .7 (depending on w), such that, for
i €{0, 1,2}, when n goes to infinity,

15 (@) = T, () (@)1 — 0.
We now set
Ponkg(ts X) = ho (8, )110,0,1(8) + Ayt ) 01(0) + h(t, )1, 1(0).
We fix ¢ >0, and we prove that, for n, k, g large enough,
[ Xm(@) = S(hy g, Mo, < &, (5.5
which will suffice. One can easily check, using (5.1) and (5.2), that
[Xm(@) = S kg, Moy < AN (@) + A}(@) + 45(@) + B)() + Bi(w) + Bi(w), (5.6)
where (if i =0, 1,2 and / € N)
AYw) = | X(@) = T, (h)(@)|gr,7)
and
Bi(w) = || T, (h)(@) = S5, (hD s, 1y-

Notice that B% vanishes identically. Thanks to Lemma 5.2, we know that

B1@) = 7 (Il AY@)), (5.7)
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B@) =y (I1i2)n.nll2, 43@) + By(@)). (5.8)
First, we choose ¢ large enough, in order that
2
Ay (w) = /6. (5.9)
Now that ¢ is fixed, we consider o> 0 such that
y(12lunlle, @) < e/6. (5.10)
Then we choose & in such a way that
A (w)<e/6 Naj2 (5.11)

and we consider >0 such that

V(Hh}cht],tz]HLZ,ﬁ) <e/6Na/2. (5.12)

Finally, we choose n such that

A%w) < e/6 AB. (5.13)
We deduce from (5.13), (5.7) and (5.12) that
Bl(w) <e/6Aa)2. (5.14)
Thanks to (5.14), (5.11), (5.10) and (5.8), we also see that
Bl(w) < /6. (5.15)

Finally, using (5.6), (5.13), (5.11), (5.9), (5.14) and (5.15), we deduce (5.5). We have thus
checked that for each w € Q, all £ >0, there exists # € .7 such that

(| Xm(w) = S(h, m)||o < €. (5.16)
Since P(Q) =1, (5.4) holds and Proposition 3.3 is proved.

6. Extension to the case of an almost surely infinite number of
jumps when the diffusion coefficient is constant

We now consider equation (1.1) in the following new setting: the diffusion coefficient is
constant, o(x) = o; but the positive measure ¢ on E is only assumed to be o-finite (a priori,
q(E) = 00). N is still a Poisson measure on [0, 7] X E, with intensity measure dzg(dz). The
evolution equation associated with equation (1.1) is still given by (2.4).

We also consider an increasing sequence of subsets £, of E satisfying

q(E,) < oo, UpeNnE, = E.
In order to obtain a result of existence and uniqueness, we state the following hypothesis:

Assumption (A). The function o is constant. The function b satisfies a global Lipschitz
condition. There exists 7 € L'(E, q) such that for all x, y € R, all z € E,
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|2(0, 2)| < n(2), |g(x, 2) — gy, 2)| < |x — yIn(2).

Proposition 2.2 yields that equation (1.1) with £, instead of £ admits a unique weak solution
X? lying in D([0, T, C([0, 1])). Under Assumption (4), using strongly the fact that o is
constant, it is easy to check that there exists an adapted process X such that, when p goes to
infinity,

E( sup | X(1, x) — XP(¢, x)|> — 0. (6.1)
[

0,71X[0,1]

In this way, we obtain the existence of an adapted weak solution X of (1.1) with our new
setting. See Remark 6.6 for the case where ¢ is not a constant.
The uniqueness is straightforward under (4), and we can state the following proposition.

Proposition 6.1. Assume (A). Equation (1.1) admits a unique weak solution X(t, x), lying
almost surely in D([0, T], C([0, 1])), and bounded in L'.

We now consider

My =

{ m(dt, dz) =)~ 0;,z)(dt, d2)
i=1

neN,O<t1<...<t,,<T,zl,...,anSuppqﬂEp}

and we set .7# = U,.#/,. The Cameron—Martin space .7 associated with W is still defined
by (2.5). For each m € .7 and h € .77, we denote by S(h, m) the unique solution of equation
(2.6) (there is no difference between the situation here and in Proposition 2.3, since there
exists p such that m € .#,). Since g is already Lipschitz, we assume (7T') below instead of
(S2):

Assumption (T). For each zy € E, each n € N,

sup |g(x7 Z) - g(xa ZO)| —d(z,29)—0 0.

x|=n
For each zy in E, there exists &(zy) >0 such that

sup  7(z) < 0. (6.2)
d(z,20)<&(z0)

A function g(x, z) = a(z)n(z) clearly satisfies (4) and (7) if a is Lipschitz, and 5 €
LY(E, q) is continuous. The aim of this section is to prove the following result.

Theorem 6.2. Under (A) and (T), if X denotes the unique weak solution of equation (1.1),

supps Po X' = {S(h, m)|h € 7, me .7}’
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Since the method of Simon (1999), combined with the previous sections, can be easily
applied, we will only sketch the proof.

First, for the same reasons as in the previous sections (see Proposition 3.1), we can
assume, in addition to (4) and (7), that for all x € R, all z € E, |g(x, z)| < 5(z), and that
for each z, € E,

sup|g(x, 2) — g(x, 20)| —d(zz)—0 O
xeR

Then, we notice that the direct inclusion (C) of Theorem 6.2 is immediate, thanks to
Theorem 2.5 (for X?) and thanks to the convergence (6.1).
We now fix peN, he 7, m=Y" 0u,:) € .7, and €>0. We have to prove that

P(O(X, S(h, m)) < ¢)>0.
To do so, we will use three lemmas. The first one is a very particular case of the result of

Bally et al. (1995).
< }

Lemma 6.3. Let a >0 be fixed, and let

tql )
j J Gy, ){W(dy, ds) — (s, y)dyds}

Qp(a) = w € Q; sup
t,x 0J0

Then P(Q(a))>0.

We now write the restriction N? = N|j,rjxgp (recall that p is fixed) as
u
NP(ds, dz) = Z O(r, z(ds, dz).
i—1

The second lemma can be proved by using the same method as that of Proposition 3.2
(see Section 4). The only difference comes from the fact that X”(w) depends on W, but
since o is constant, Lemma 6.3 allows us to deal with this problem easily.

Lemma 6.4. Let 5 >0 be fixed. There exists a set
Qi(B) € 0{N(A); A€ #(0, T] X E,)}
such that P(Q1(f)) >0, such that for each w € Q(f),
ww) = n, Vi, d(zi, Zi(w)) < &(z)),
and such that for some a >0 small enough, every w € Qy(a) N Q(B) satisfies
o(XP(w), S(h, m)) < p.

The third lemma we require, along with its proof, is as follows.

Lemma 6.5. Let y >0 be fixed, and let
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T

0

Q(y) = {w €L J JE/E n(z)N(ds, dz) < V}-

Then P(L2;(y))>0.

Proof. We set
T
0= | nevs a
0JE/E,
and, for g > p,
T
09, = J J n(z)N(ds, dz).
0JE,/E,

We see that 6, = 69, + 0, that for all g, P(69 = 0)>0, and that when g goes to infinity, 6,
goes to 0 in probability. Since, for each ¢, 9‘; is independent of 6,, we can write

PO, <vy)= PO, =0)P6, <)

and the lemma follows easily. ]

We finally sketch the proof of Theorem 6.2. An easy independence argument yields that
for every a>0, >0, y >0, the set

Qs(a, B, y) = Qo) N Q1(B) N Qa(y)

has strictly positive probability. We now have to to choose «a, 3, v in such a way that, for all
w € Qs(a, B, 7),
O0(X(w), S(h, m)) < e.
Let w € Q;(a, B, y) be fixed. If a is small enough, we know from Lemma 6.4 that
O(X(w), S(h, m)) < || X(w) — XP(0)|o + O(XP (@), S(h, m))
< [ X(@) — XP ()|« + B.

We now set

VE(t) = sup [X(t, x) — XP(t, x)|.
x€[0,1]

Using the Appendix and Assumptions (4) and (7), since |g(x, z)| <#(z), and since w
belongs to Qs(a, B, v), we see that

t n T
Vr(t) < CJ VP(s)ds + C > ey VAT (Z) + J J n(z)N(ds, dz)
0 i=1 0

E,

n

t
< CJ VP(s)ds + CZ L=y VA(Ti—) + y.
0

i=1
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For the second term, we have used (6.2) in Assumption (7T), and the fact that for all i, Z;
belongs to {z € E, d(z;, z) < &(z))}.

Applying Gronwall’s lemma successively on the time intervals [0, Ti[, ..., [T, T], we
deduce that, for all w € Q;(a, S, v),

sup VP(w, t) < Cy.
[0,7]

The conclusion follows easily.

Remark 6.6. Of course, we are also interested in the case where g(E) =00 and o is a
function. In this case, it is possible to prove (under certain assumptions) that the sequence X,
of weak solutions of (1.1) where we have replaced E by E,, converges to an adapted process
X (¢, x) in the following sense:

sup B(|X (1, x) — XP(1, 0)]) — 0.
t,x

Once X is constructed, it might be possible to check that it admits a modification lying in
D([0, T1, C([0, 1])), by using the fact that X satisfies the evolution equation, but this is not
immediate. If so, it seems natural to think that our support theorem extends to this case.
However, everything will become much more technical. In particular, the direct inclusion is
no longer obvious, since (6.1) no longer seems to hold.

Appendix

We collect here well-known estimates for the Green kernel G(x, y) associated with the
deterministic system (2.1), and given by (2.2). In all the inequalities below, the constant C
depends only on the terminal time value 7. The first three estimates can be found in Walsh
(1986) and the last three are either easy consequences or classical estimates.

First, for all x, y € [0, 1] and all ¢ € [0, T],

1 <yx>2} _ _C {<yx>2}
it exp{ 4 < Gix, y) < ﬁ exp |

For all 0<¢<T, all x € [0, 1],

1
C
G*(x, y)dy < — Al
JO ((x, y)dy i (A1)
and
1
J Gi(x, y)dy = 1. (A.2)
0
For all 0<s<t<T, all x, y€[0, 1] (see Chenal and Millet 1997, Lemma A3)
t—s
|Gi(x, y) — Gs(x, y)| < C| | (A.3)

32
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and (see Bally ef al. 1995, Lemma B1)

t

s rl 1
J J (Gi—(x, ¥) — Gs_p(x, y))*dydr +J J G2 ,(x, y)dydr < CVt—s. (A.4)

0J0 s

Finally, for all ¢ € C([0, 1]), the map
(l’ X) = Gt((p’ X)

is continuous on [0, 7] X [0, 1] (for a similar result, see Bally et al. 1995, Lemma A2).
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