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1. Introduction

Consider a space-time white noise W (dx, dt) on [0, T ] 3 [0, 1], based on dx dt (see

Walsh 1986, p. 269). Denote by (E, d) a Polish space endowed with a positive ®nite

measure q, and by N (dt, dz) a Poisson measure on [0, T ] 3 E, with intensity measure

dtq(dz), independent of W. Our purpose is to study the following stochastic partial

differential equation (SPDE) on [0, T ] 3 [0, 1]:

@X

@ t
(t, x) � @

2 X

@x2
(t, x)� b(X (t, x))� ó (X (t, x)) _Wx, t �

�
E

g(X (tÿ, x), z) _Nt(dz) (1:1)

with Neumann boundary conditions

@X

@x
(t, 0) � @X

@x
(t, 1) � 0, 8t . 0,

and deterministic initial condition X0(x) 2 C([0, 1]). The symbols _Nt(dz) and _W t,x stand

respectively for the heuristical Radon±Nikodym density of N (dt, dz) and W (dx, dt) with

respect to the Lebesgue measures dt and dt dx. We could also write, with an abuse of

notation, _Nt(dz) dt dx � dxN (dt, dz) and _Wx, t dt dx � W (dx, dt).

We denote by D([0, T ], C([0, 1])) the set of cadlag functions from [0, T ] into C([0, 1]),

endowed with the corresponding Skorokhod topology. In this paper, we characterize the
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support of the law of a weak solution X of equation (1.1) as the closure of a set of weak

solutions of ordinary partial differential equations in D([0, T ], C([0, 1])).

Parabolic SPDEs driven by a white noise, i.e. equation (1.1) with g � 0, were introduced

by Walsh (1981; 1986). Walsh (1986) de®nes his weak solutions, then proves a theorem of

existence, uniqueness and regularity. Various properties of Walsh's equation have since been

investigated: for example, Malliavin calculus, large deviations and the support theorem (see

Bally et al. 1995).

Walsh (1981), however, builds his equation in order to model a discontinuous

neurophysiological phenomenon. He explains that the white noise W approximates a

Poisson point process. This approximation is realistic because there are many jumps, and

the jumps are very small, but in any case the observed phenomenon is discontinuous.

However, SPDEs with jumps are much less well known. In the case of temporal and spatial

jumps, Saint Loubert BieÂ (1998) has studied the existence, uniqueness, regularity, and

variational calculus. See also Fournier (2000) for other results on the same subject.

Nevertheless, no result about the `joint' regularity of the weak solutions has been proved in

this case: we do not really know in which space the weak solution `lives', thus no support

theorem may hold for the moment.

In the case of equation (1.1) with ó � 0, but with q(E) � 1, and with a compensated

Poisson measure, Albeverio et al. (1998) have checked the existence and uniqueness of a

`modi®ed cadlag' weak solution u(t, x): u is almost surely continuous in x; and u is right-

continuous and has left limits in L2(Ù) in the variable t. Again, we do not know in which

space the weak solution almost surely lies.

Since Stroock and Varadhan (1972) established their famous support theorem for

diffusion processes, there have been many investigations on the subject. In particular, Millet

and Sanz-SoleÂ (1994) have considerably simpli®ed the proof of Stroock and Varadhan. But

the only support theorem for jump processes seems to be that of Simon (1999), who studies

a stochastic differential equation driven by a (compensated or not) in®nite Poisson measure.

Finally, let us remark that, as far as we know, no support theorem seems to be known in the

case of equations driven by two independent (but different) random elements.

This paper is organized as follows. In Section 2, we de®ne the weak solutions of (1.1),

following Walsh (1986). Using the method of Ikeda and Watanabe (1979), and applying

Walsh's results, we sketch the proof of an existence and uniqueness result. We de®ne the

`skeleton' associated with (1.1), by using the Cameron±Martin space associated with W and

the set of ®nite counting measures associated with N . Finally, we state our support theorem.

Section 3 is devoted to a simpli®cation of the problem. First, we use a localization

argument in order to obtain weaker assumptions. Then we prove that it suf®ces to check

two simpler support theorems. The ®rst is proved in Section 4, and is related to an equation

similar to (1.1) but without white noise: _W t,x is replaced by _h(t, x), where h is an element

of the Cameron±Martin space associated with W. The second is proved in Section 5, and

deals with an equation without Poisson measure, but with an additional `jump drift'. This

concludes the proof of our main result.

Section 6 is devoted to an extension of our result to the case where the Poisson measure is

almost surely in®nite (q(E) � 1), but where the diffusion coef®cient is constant (ó (x) � ó ).

Finally, some technical results are given in the Appendix.
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2. Framework

Let us ®rst de®ne the weak solutions of (1.1). To this end, we need some assumptions:

Assumption (H). The functions ó and b : R 7! R, satisfy a global Lipschitz condition. The

function g : R 3 E 7! R is measurable on R 3 E and, for each z 2 E, the map g(:, z) is

continuous on R.

We proceed by following Walsh (1986, pp. 311±322). Consider the Green kernel Gt(x, y)

associated with the deterministic system

@u

@ t
� @

2u

@x2
,

@u

@x
(t, 0) � @u

@x
(t, 1) � 0: (2:1)

This kernel can be explicitely computed:

Gt(x, y) � 1��������
4ðt
p

X
n2Z

exp
ÿ(yÿ xÿ 2nL)2

4t

� �
� exp

ÿ(y� xÿ 2nL)2

4t

� �� �
: (2:2)

If ö belongs to C([0, 1]), we set

Gt(ö, x) �
ö(x) if t � 0,�1

0

Gt(x, y)ö(y) dy if t . 0:

8<: (2:3)

The Appendix contains technical results about this kernel. We endow our probability space

(Ù, F , P) with the canonical ®ltration associated with the independent random elements W

and N :

F t � ófW (A); A 2 B ([0, 1] 3 [0, t])g _ ófN (B); B 2 B ([0, t] 3 E)g:
A process X (t, x) on [0, T ] 3 [0, 1] is said to be adapted if, for all t > 0, all x 2 [0, 1],

X (t, x) is F t-measurable.

Like Walsh (see also Saint Loubert BieÂ 1998, or Fournier 2000), we de®ne the weak

solutions of (1.1) in the following sense.

De®nition 2.1. Let X0 : [0, 1] 7! R be a continuous deterministic function. Consider an

adapted process X (t, x) on [0, T ] 3 [0, 1], lying almost surely in D([0, T ], C([0, 1])). Then

X is said to be a weak solution of (1.1) if and only if it satis®es the following evolution

equation:

X (t, x) � Gt(X0, x)�
� t

0

�1

0

Gtÿs(x, y)[b(X (s, y)) dy ds� ó (X (s, y))W (dy, ds)]

�
� t

0

�
E

�1

0

Gtÿs(x, y)g(X (sÿ, y), z) dyN (ds, dz), (2:4)

where Gt(X0, x) is de®ned by (2.3), and with the convention that
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�1

0

G0(x, y)g(X (sÿ, y), z) dy � g(X (sÿ, x), z):

We now establish an existence and uniqueness result for such a solution. Since q(E) is

®nite, N ([0, T ] 3 E) is almost surely ®nite, and thus N can almost surely be written as

N (dt, dz) �
Xì
i�1

ä(Ti , Zi)(dt, dz),

with ì 2 N, 0 , T1 , . . . , Tì , T , and Z1, . . . , Zì 2 E. Hence, (2.5) can be written as

X (t, x) � Gt(X0, x)�
� t

0

�1

0

Gtÿs(x, y)[b(X (s, y)) dy ds� ó (X (s, y))W (dy, ds)]

�
Xì
i�1

1f t>Tig

�1

0

GtÿTi
(x, y)g(X (Tiÿ, y), Zi) dy:

Working recursively on the time intervals [0, T1[, [T1, T2[, . . . , [Tì, T ], as in the proof of

Theorem 9.1 in Ikeda and Watanabe (1979, pp. 231±232), using Walsh's theorems of

existence, uniqueness and regularity for (1.1) with g � 0 (see Theorem 3.2 and Corollary 3.4

in Walsh 1986, pp. 313 and 317), and using the well-known estimates of the Green kernel

stated in the Appendix, one can prove the following proposition:

Proposition 2.2. Assume (H). Equation (1.1) admits a unique adapted solution X (t, x) on

[0, T ] 3 [0, 1], lying almost surely in D([0, T ], C([0, 1])). Uniqueness holds in the sense that

if Y is another adapted solution lying in D([0, T ], C([0, 1])), then almost surely,

sup
[0,T ]3[0,1]

jX (t, x)ÿ Y (t, x)j � 0:

We are now interested in the support of the law of X . Let us ®rst recall the de®nition of

the Skorokhod distance on D([0, T ], C([0, 1])). We consider the set of `changes of time':

Ë � fë 2 C([0, T ])jë(0) � 0, ë(T ) � T , ë is strictly increasingg:
For ë 2 Ë, we set

jjjëjjj � sup
0<s , t<T

����ln ë(t)ÿ ë(s)

t ÿ s

� �����:
The Skorokhod distance between two elements ö and ø of D([0, T ], C([0, 1])) is given by

ä(ö, ø) � inf
ë2Ë

sup
[0,T ]3[0,1]

jö(ë(t), x)ÿ ø(t, x)j � jjjëjjj
( )

:

D([0, T ], C([0, 1])), endowed with ä, is a Polish space (see, for example, Jacod and Shiryaev

1987, p. 289).

We now introduce some notation, describing the `supports' of W and N : we denote by
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H � h(t, x) �
� t

0

�x

0

_h(s, y) dy ds

���� _h 2 L2([0, T ] 3 [0, 1])

( )
(2:5)

the Cameron±Martin space associated with W. We also consider the set of the ®nite counting

measures on [0, T ] 3 E, the support of which is contained in [0, T ] 3 supp q:

M � m(dt, dz) �
Xn

i�1

ä( t i,zi)(dt, dz)

����n 2 N, 0 , t1 , . . . , tn , T , z1, . . . , zn 2 supp q

( )
,

with the convention
P0

i�1 � 0. Notice that, for all ù 2 Ù, N (ù) belongs to M. But in

general (with an abuse of notation), _W (ù) =2H , since _W (ù) is not even well de®ned.

The following proposition describes the `skeleton' associated with our evolution equation.

Proposition 2.3. Assume (H). Let h 2H and m 2M be ®xed. The following ordinary

evolution equation admits a unique solution, which we denote by S(h, m), lying in

D([0, T ], C([0, 1])):

S(h, m)(t, x) � Gt(X0, x)�
� t

0

�1

0

Gtÿs(x, y)

3 [b(S(h, m)(s, y)) dy ds� ó (S(h, m)(s, y)) _h(s, y) dy ds]

�
� t

0

�
E

�1

0

Gtÿs(x, y)g(S(h, m)(sÿ, y), z) dym(ds, dz): (2:6)

This proposition can be proved similarly to Proposition 2.2. Equation (2.6) is the same as

(2.4), but we have replaced W (dy, ds) and N (ds, dz) by _h(s, y) dy ds and m(ds, dz).

Finally, we recall the following standard observation:

Remark 2.4. Let Z be a random variable with values in a Polish space A endowed with a

distance á. Recall that the support suppá P � Zÿ1 of the law of Z related to the distance á is

the smallest closed subset F of (A, á) satisfying P(Z 2 F) � 1. Let B be a subset of A, and

let Bá be its closure in (A, á).

(a) If Z 2 Bá almost surely, then

suppá P � Zÿ1 � Bá:

(b) If, for all b 2 B, all å. 0,

P(á(b, Z) , å) . 0,

then

Bá � suppá P � Zÿ1:

In order to establish a support theorem, we need the following assumptions.
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Assumption (S1). The function ó is C3 on R.

Assumption (S2). For each z0 2 E, each n 2 N,

sup
jxj<n

jg(x, z)ÿ g(x, z0)j !
d(z, z0)!0

0:

For each z0 2 E, each n 2 N, there exist a constant î n(z0) . 0 and a function øn
z0

(u) :

R� 7! R�, decreasing to 0 when u decreases to 0, such that, for all jxj < n, jyj < n,

sup
d(z,z0)<î n(z0)

jg(x, z)ÿ g(y, z)j < øn
z0

(jxÿ yj):

Assumption (S1) is nearly the same as that of Bally et al. (1995), who prove a support

theorem in the case where g � 0, and comes from a Taylor expansion of order 3. In fact they

assume that ó is C3
b, but a localization procedure can be done (see the proof of Proposition

3.1 in the next section). Assumption (S2) says that g is locally uniformly continuous. In the

particular case where E is locally compact, (S2) is satis®ed as soon as g is continuous on

[0, T ] 3 E.

Now we can state our main result:

Theorem 2.5. Under (H), (S1) and (S2), if X denotes the unique weak solution of equation

(1.1),

suppä P � Xÿ1 � fS(h, m)jh 2H , m 2Mgä:

3. Simpli®cation of the problem

First, we `delocalize' Assumptions (S1) and (S2), by using a standard argument. Consider the

following assumptions, stronger than (S1) and (S2).

Assumption (S91). The function ó is C3 on R, bounded with its derivatives.

Assumption (S92). For all z0 2 E,

sup
x2R

jg(x, z0)j,1, sup
x2R

jg(x, z)ÿ g(x, z0)j !
d(z, z0)!0

0: (3:1)

For all z0 2 E, there exist î(z0) . 0 and a function øz0
(u) : R� 7! R�, decreasing to 0 when

u decreases to 0, such that, for all x, y 2 R,

sup
d(z,z0)<î(z0)

jg(x, z)ÿ g(y, z)j < øz0
(jxÿ yj): (3:2)

Proposition 3.1. If Theorem 2.5 holds under (H), (S91) and (S92), then it also holds under

(H) , (S1) and (S2).

We will prove this proposition at the end of the section.
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We would now like to check that Theorem 2.5 holds as soon as two easier support

theorems are valid. The ®rst deals with equation (2.4) with a `deterministic' white noise,

and the second with a `deterministic' Poisson measure.

We ®rst introduce some notation. If respectively h 2H and m 2M, then we denote by

X h and Xm the solution of (2.4), where we have replaced W (dy, ds) by _h(s, y) dy ds and

N (dt, dz) by m(dt, dz). In other words,

X h(t, x) � Gt(X0, x)�
� t

0

�1

0

Gtÿs(x, y)[b(X h(s, y)) dy ds� ó (Xh(s, y)) _h(s, y) dy ds]

�
� t

0

�
E

�1

0

Gtÿs(x, y)g(X h(sÿ, y), z) dyN (ds, dz),

Xm(t, x) � Gt(X0, x)�
� t

0

�1

0

Gtÿs(x, y)[b(Xm(s, y)) dy ds� ó (X m(s, y))W (dy, ds)]

�
� t

0

�
E

�1

0

Gtÿs(x, y)g(X m(sÿ, y), z) dym(ds, dz): (3:3)

We could also write, with an abuse of notation, X h � S(h, N ) and Xm � S( _W , m). The next

sections are devoted to the proof of the following propositions.

Proposition 3.2. Assume (H) and (S92). Let h 2H , m 2M, and E. 0 be ®xed. Then

P(ä(S(h, m), X h) < å) . 0:

We now denote by kuk1 � sup[0,T ]3[0,1]ju(t, x)j the supremum norm on [0, T ] 3 [0, 1].

Proposition 3.3. Assume (H) , (S91) and (S92). Let m 2M be ®xed. Then

suppk k1 P � X ÿ1
m � fS(h, m)jh 2H gk k1 :

Let us observe that this second result implies the following weaker one:

suppä P � X ÿ1
m � fS(h, m)jh 2H gä

Assuming for a moment that these propositions hold, we prove our main result.

Proof of Theorem 2.5. Using Remark 2.4, we tackle the proof in two stages.

We ®rst check that X almost surely belongs to fS(h, m)jh 2H , m 2Mgä. Consider the

map from M to [0, 1] de®ned by

ö(ì) � P(Xì 2 fS(h, m)jh 2H , m 2Mgä):

Let us ®rst prove that

P(X 2 fS(h, m)jh 2H , m 2Mgäjó (N )) � ö(N ) (3:4)
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almost surely, where

ó (N ) � ófN (A); A 2 B ([0, T ] 3 E)g:
In order to understand (3.4), let us work with the canonical product space

(Ù, F , P) � (ÙW , F W , PW )
 (ÙN , F N , PN )

associated with W and N . Every element ù of Ù can be written as (ùW , ùN ), where

ùW C([0, T ] 3 [0, 1]) and ùN 2M. Thus,

P(X 2 fS(h, m)jh 2H , m 2Mgäjó (N ))(ù) �
�

1fX (ùW ,ùN )2fS(h, m)jh2H , m2Mgäg dPW (ùW ):

But obviously, X (ù) � X (ùW , ùN ) � XùN (ùW ), where Xì was de®ned by (3.3) for each

ì 2M. Thus,

P(X 2 fS(h, m)jh 2H , m 2Mgäjó (N ))(ù) � PW (XùN 2 fS(h, m)jh 2H , m 2Mgä):

(3:5)

Now, since for each ì 2M, Xì is independent of N , we notice that

ö(ì) � PW (Xì 2 fS(h, m)jh 2H , m 2Mgä): (3:6)

Comparing (3.5) and (3.6), we deduce (3.4). Hence, we obtain

P(X 2 fS(h, m)jh 2H , m 2Mgä) � E(ö(N )):

Finally, it is clear from the de®nition of ö and from Proposition 3.3 that ö � 1. The

conclusion follows easily.

We now ®x h 2H , m 2M and E. 0. We have to check that

P0 � P(ä(X , S(h, m)) < å) . 0: (3:7)

First,

P0 > P(ä(X , X h) < å=2; ä(Xh, S(h, m)) < å=2):

Noticing that Xh is ó (N )-measurable, we see that

P0 > E[1fä(X h,S(h,m))<å=2gP(ä(X , X h) < å=2jó (N ))]:

But we know from Proposition 3.3 that, for all m 2M,

ø(m) � P(ä(X m, S(h, m)) < å=2) . 0:

Working on the canonical product space as in the previous paragraph, and noticing that, for

all ù � (ùW , ùN ) 2 Ù, X (ù) � XùN (ùW ) and Xh(ù) � S(h, ùN ) ± all of this with no

abuse of notation ± we deduce that

P(ä(X , X h) < å=2jó (N )) � ø(N ) . 0

almost surely. Thus, (3.7) holds as soon as

P(ä(X h, S(h, m)) < å=2) . 0,
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which never fails, thanks to Proposition 3.2.

Provided we check Propositions 3.1, 3.2 and 3.3, Theorem 2.5 is proved. h

In order to prove Proposition 3.1, we begin with a lemma.

Lemma 3.4. Consider some functions ó , b and g (ó, b and g) satisfying Assumption (H),

and denote by X (X ) the corresponding unique weak solution of (1.1). Assume that, for some

A 2 R�,

8jxj < A, 8z 2 E, ó (x) � ó (x), b(x) � b(x), g(x, z) � g(x, z):

Then there exists ~Ù � Ù such that P( ~Ù) � 1 and

f~ù 2 Ù; kX (ù)k1 < Ag � fù 2 ~Ù; kX (ù)ÿ X (ù)k1 � 0g:

Proof. We consider the stopping time ô � infft > 0, supxjX (t, x)j > Ag. Then the processes

X ô(t, x) � X (t ^ ô, x) and X ô(t, x) � X (t ^ ô, x) satisfy the same evolution equation:

X ô(t, x) � Gt(X0, x)�
� t^ô

0

�1

0

Gtÿs(x, y)[b(X ô(s, y)) dy ds� ó (X ô(s, y))W (dy, ds)]

�
� t^ô

0

�
E

�1

0

Gtÿs(x, y)g(X ô(sÿ, y), z) dyN (ds, dz):

A uniqueness argument yields that almost surely, say for all ù 2 ~Ù, with P( ~Ù) � 1, X ô � X ô

on [0, T ] 3 [0, 1]. This yields that, for all ù 2 ~Ù, all t < ô, and all x 2 [0, 1], X (t, x) �
X (t, x). This implies that

fù 2 ~Ù; kX (ù)k1 < Ag � fù 2 ~Ù; ô(ù) . Tg � fù 2 ~Ù; kX (ù)ÿ X (ù)k1 � 0g:

Proof of Proposition 3.1. We assume that Theorem 2.5 holds under (H), (S91) and (S92), and

we consider functions b, ó and g satisfying only (H), (S1) and (S2). We need a sequence of

C1b functions ön : R 7! [0, 1], satisfying

ön(x) � 1 if jxj < n,

0 if jxj > n� 1:

�
Then the functions ón(x) � ó (x)ön(x) and gn(x, z) � g(x, z)ön(x) clearly satisfy (S91) and

(S92). Denote by Xn the solution of (2.4) with ó n and gn instead of ó and g. Lemma 3.4

yields that there exists ~Ù � Ù such that P( ~Ù) � 1 and, for all n 2 N,

fù ~Ù; kX (ù)k1 < ng � fù 2 ~Ù; kX (ù)ÿ Xn(ù)k1 � 0g (3:8)

In the same way, we de®ne Sn(h, m), for h 2H and m 2M, as the solution of equation

(2.6) with ón and gn instead of ó and g. We obtain, for all n 2 N,

if kS(h, m)k1 < n or kSn(h, m)k1 < n, then S(h, m) � Sn(h, m):

Since Theorem 2.5 holds under (H), (S91), and (S92), we know that for each n 2 N,
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suppä P � X ÿ1
n � fSn(h, m)jh 2H , m 2Mgä: (3:9)

Using Remark 2.4, Proposition 3.1 will hold if we check, on the one hand, that

P(X 2 fS(h, m)jh 2H , m 2Mgä) � 1 (3:10)

and, on the other hand, that for all h 2H , all m 2M, all E. 0,

P(ä(X , S(h, m)) < E) . 0: (3:11)

Let us ®rst prove (3.10). Let ù 2 ~Ù be ®xed. Since X (ù) belongs to D([0, T ], C([0, 1])),

it is bounded, and there exists n 2 N (depending on ù) such that

n > kX (ù)k1 � 1, (3:12)

which yields X (ù) � Xn(ù). But for all E. 0, we know from (3.9) that, for almost all

ù 2 ~Ù, there exists h 2H and m 2M (depending on ù) such that

ä(Xn(ù), Sn(h, m)) < å:

This and (3.12) yield (if å < 1) that kSn(h, m)k1 < n, and thus that Sn(h, m) � S(h, m).

Hence

ä(X (ù), S(h, m)) < å,

which concludes the proof of (3.30), since P( ~Ù) � 1.

In order to prove (3.31), we ®x h 2H , m 2M and E. 0. We consider n 2 N such that

n > kS(h, m)k1 � 1:

Thus, if å, 1,

P(ä(X , S(h, m)) < E) � P(ä(X , Sn(h, m)) < å)

� P(kXk1 < n, ä(X , Sn(h, m)) < å)

� P(ä(X n, Sn(h, m)) < å)

thanks to (3.8). From (3.9), this probability is strictly positive, which yields (3.11).

Proposition 3.1 is proved. h

4. The case where W is `deterministic'

This section is devoted to the proof of Proposition 3.2. We partially follow here the method

of Simon (1999), who studies the support of Poisson-driven SDEs (without Wiener term).

The extension of his method to SPDEs leads to technical problems, essentially because we

have to control the explosion of the Green kernel Gt(x, y). Another new dif®culty arises

because we have to add a second drift, in which the term _h(s, y) belongs only to

L2([0, T ] 3 [0, 1]).

In this entire section,
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h(t, x) �
� t

0

�x

0

_h(s, y) dy ds 2H and m(dt, dz) �
Xn

i�1

ä( t i,zi)(dt, dz) 2M

are ®xed. We set t0 � 0, tn�1 � T and

æ0 � inf
i�0,...,n

jti�1 ÿ tij. 0:

For simplicity, we set S � S(h, m). We denote by 0 , T1(ù) , . . . , Tì(ù)(ù) the successive

jump times of N (ù), and by Z1(ù), . . . , Zì(ù)(ù) the jump sizes. In other words,

N (ù, dt, dz) �
Xì(ù)

i�1

ä(Ti(ù), Zi(ù))(dt, dz):

We recall that, for all á 2 ]0, æ0[ and all î. 0, the set

Ù(á, î) � fù 2 Ùjì(ù) � n, ti ÿ á, Ti(ù) , ti, d(zi, Zi(ù)) < îg
has a strictly positive probability. We will check that, for all å. 0, there exist á. 0 and î. 0

such that, for all ù 2 Ù(á, î),

ä(X h(ù), S) < å,

which will imply Proposition 3.2.

Also in this entire section, the constant C depends only on h, m and the parameters (ó,

b, g, X0 and T ) of equation (1.1).

From now on, we consider ù 2 Ù(á, î).

First, we choose 0 ,á, æ0=16, and 0 , î, î(z1) ^ . . . ^ î(zn), where î(zi) was de®ned

in Assumption (S92). For some ã 2 ]2á, æ0=8[, to be chosen later, we de®ne the polygonal

change in time ë 2 Ë by ë(0) � 0, ë(T ) � T , and, for all i 2 f1, . . . , ng,
ë(Ti ÿ ã) � Ti ÿ ã, ë(Ti) � ti, ë(Ti � ã) � ti � ã, ë(Ti � 2ã) � Ti � 2ã:

Notice that all the following properties hold:

for all t 2 [Ti, Ti � ã], ë(t)ÿ ti � t ÿ Ti; (4:1)�T

0

1fë(s) 6�sg ds < 3nã; (4:2)

for all t 2 [0, T ], ë(t) > t and 1fë( t)> t ig � 1f t>Tig; (4:3)

këÿ Ik1 < á: (4:4)

Furthermore, it is easy to check that

jjjëjjj < jln(1ÿ á=ã)j _ jln(1� á=ã)j < 2á=ã,

where the last inequality holds because á=ã < 1=2. We have to prove that if á. 0 and î. 0

are small enough then, for some well-chosen ã,

kS(ë(t), x)ÿ X h(t, x)k1 � jjjëjjj < å:
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We now set Së(t, x) � S(ë(t), x). Then, using (4.3), we see that, for any ù 2 Ù(á, î),

Së(t, x)ÿ Xh(t, x) � Gë( t)(X0, x)ÿ Gt(X0, x)

�
� t

0

�1

0

(Gë( t)ÿs(x, y)ÿ Gtÿs(x, y))[b(S(s, y))� ó (S(s, y)) _h(s, y)] dy ds

�
�ë( t)

t

�1

0

Gë( t)ÿs(x, y)[b(S(s, y))� ó (S(s, y)) _h(s, y)] dy ds

�
� t

0

�1

0

Gtÿs(x, y)[fb(S(s, y))ÿ b(Së(s, y))g � fó (S(s, y))ÿ ó (Së(s, y))g _h(s, y)] dy ds

�
� t

0

�1

0

Gtÿs(x, y)[fb(Së(s, y))ÿ b(Xh(s, y))g � fó (Së(s, y))ÿ ó (X h(s, y))g _h(s, y)] dy ds

�
Xn

i�1

1f t>Tig

�1

0

(Gë( t)ÿ ti
(x, y)ÿ GtÿTi

(x, y))g(S(tiÿ, y), zi) dy

�
Xn

i�1

1f t>Tig

�1

0

GtÿTi
(x, y)[g(S(tiÿ, y), zi)ÿ g(S(tiÿ, y), Zi)] dy

�
Xn

i�1

1f t>Tig

�1

0

GtÿTi
(x, y)[g(S(tiÿ, y), Zi)ÿ g(Xh(Tiÿ, y), Zi)] dy

� A(t, x) � . . . � H(t, x):

We compute these terms one by one, still assuming that ù 2 Ù(á, î).

Since ë(t) � t for all t < T1 ÿ ã, and hence for all t < 13æ0=16,

jA(t, x)j < jA(t, x)j1f t>13æ0=16g < kX0k11f t>13æ0=16g

�1

0

jGë( t)(x, y)ÿ Gt(x, y)j dy:

Using (A.3) in the Appendix, and then (4.4), we see that

jA(t, x)j < C
ë(t)ÿ t

(13æ0=16)3=2
< Ckëÿ Ik1 < Cá:

Using the Cauchy±Schwarz inequality, then (A.4), and ®nally (4.4), we obtain
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jB(t, x)j <
� t

0

�1

0

[b(S(s, y))� ó (S(s, y)) _h(s, y)]2 dy ds

 !1=2

3

� t

0

�1

0

[Gë( t)ÿs(x, y)ÿ Gtÿs(x, y)]2 dy ds

 !1=2

< C(
����������������
ë(t)ÿ t

p
)1=2 < Cá1=4

In exactly in the same way, jC(t, x)j < Cá1=4.

Using Assumption (H), we see that

jD(t, x)j < C

� t

0

�1

0

Gtÿs(x, y)jS(s, y)ÿ Së(s, y)j(1� j _h(s, y)j) dy ds:

Thanks to the Cauchy±Schwarz inequality and (A.1),

jD(t, x)j < C

� t

0

sup
y2[0,1]

jS(s, y)ÿ Së(s, y)j2 ds

�1

0

G2
tÿs(x, y) dy

 !1=2

< C

� t

0

1fë(s) 6�sg
ds����������
t ÿ s
p

 !1=2

:

Using the HoÈlder inequality with p � 3 and q � 3=2, we deduce that

jD(t, x)j < C

� t

0

1fë(s) 6�sg ds

� �1=6 � t

0

ds

(t ÿ s)3=4

 !1=3

< C

� t

0

1fë(s) 6�sg ds

� �1=6

< C(3nã)1=6 < Cã1=6

thanks to (4.2). The same computation leads us to

jE(t, x)j < C

� t

0

sup
y2[0,1]

jSë(s, y)ÿ X h(s, y)j2 ds����������
t ÿ s
p

 !1=2

:

Using (4.1), and (3.1) in (S92), we see that

jF(t, x)j < C
Xn

i�1

1f t>Ti�ãg sup
x, y2[0,1]

jGë( t)ÿ t i
(x, y)ÿ GtÿTi

(x, y)j:

Thus, thanks to (A.3),

jF(t, x)j < C
Xn

i�1

1f t>Ti�ãg
j(ë(t)ÿ ti)ÿ (t ÿ Ti)j

[(ë(t)ÿ ti) ^ (t ÿ Ti)]3=2
:
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But t > Ti � ã implies that ë(t)ÿ ti > ë(Ti � ã)ÿ ti � ã. Hence, thanks to (4.4) and since

ù 2 Ù(á, î),

jF(t, x)j < C
këÿ Ik1 � supijti ÿ Tij

ã3=2
< Cá=ã3=2:

Using (A.2), we deduce that

jG(t, x)j <
Xn

i�1

sup
y

jg(S(tiÿ, y), zi)ÿ g(S(tiÿ, y), Zi)j:

Thanks to (3.1) in (S92), recalling that for all i, d(zi, Zi) < î, we see that there exists a

function j(î) from R� into itself, decreasing to 0 when î decreases to 0, depending only on

h, m and the parameters of (1.1), such that

jG(t, x)j < j(î):

In the same way, but using (3.2) and the fact that î < î(z1) ^ . . . ^ î(zn), we easily prove the

existence of a function â(u) : R� 7! R�, decreasing to 0 when u decreases to 0, such that

jH(t, x)j <
Xn

i�1

1f t>Tig 3 â sup
y2[0,1]

jS(tiÿ, y)ÿ X h(Tiÿ, y)j
� �

<
Xn

i�1

1f t>Tig 3 â sup
y2[0,1]

jSë(Tiÿ, y)ÿ X h(Tiÿ, y)j
� �

since ë(Ti) � ti.

Finally, setting

I(t) � sup
y2[0,1]

jSë(t, y)ÿ Xh(t, y)j

and

K(á, ã, î) � á1=4=ã3=2 � ã1=4 � j(î),

we obtain

I(t) < CK(á, ã, î)� C

� t

0

I2(s)
ds����������
t ÿ s
p

 !1=2

�C
Xn

i�1

1f t>Tigâ(I(Tiÿ)):

Hence

I2(t) < CK2(á, ã, î)� C

� t

0

I2(s)
ds����������
t ÿ s
p � C

Xn

i�1

1f t>Tigâ
2(I(Tiÿ)): (4:5)
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Iterating this formula once, we get

I2(t) < CK2(á, ã, î)� C
Xn

i�1

1f t>Tigâ
2(I(Tiÿ))

� C

� t

0

CK2(á, ã, î)� C

� s

0

I2(u)
du�����������
sÿ u
p � C

Xn

i�1

1fs>Tigâ
2(I(Tiÿ))

" #
ds����������
t ÿ s
p : (4:6)

Using Fubini's theorem, and noticing that
� t

u
ds=

����������
t ÿ s
p �����������

sÿ u
p

< 4, we deduce that

I2(t) < CK2(á, ã, î)� C

� t

0

I2(u) du� C
Xn

i�1

1f t>Tigâ
2(I(Tiÿ)): (4:7)

We now apply Gronwall's lemma on [0, T1[. This gives

sup
[0,T1[

I2(t) < CK2(á, ã, î)eCT < CK2(á, ã, î):

Thus, on [0, T2[,

I2(t) < CK2(á, ã, î)� â2(CK2(á, ã, î))� C

� t

0

I2(s) ds:

Thanks to Gronwall's lemma,

sup
[0,T2[

I2(t) < (CK2(á, ã, î)� â2(K2(á, ã, î)))eCT :

Iterating this argument, we deduce the existence of a function ç(u) : R� 7! R�, decreasing to

0 when u decreases to 0, such that

sup
[0,T ]

I(t) < ç(K(á, ã, î)):

Hence, there exists ä. 0 such that if K(á, ã, î) < ä, then sup[0,T ] I(t) < å=2. It now suf®ces

to choose á, ã, î small enough, such that

K(á, ã, î) < ä, 2á=ã < å=2,

which will imply, for all ù 2 Ù(á, î),

ä(X h(ù), S) < kI(ù)k1 � jjjë(ù)jjj < å:

First, we choose î 2 ]0, î(z1) ^ . . . ^ î(zn)[ small enough, in order to get j(î) < ä=3. Then

we choose ã in ]0, (æ0=8) ^ (ä=3)6[. Finally, we choose

0 ,á, ã=2 ^ (äã3=2=3)4 ^ åã=4

Proposition 3.2 is proved.
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5. The case where N is `deterministic'

It remains to prove Proposition 3.3. In this entire section,

m(dt, dz) �
Xn

i�1

ä( t i,zi)(dt, dz) 2M

is ®xed. We set t0 � 0, tn�1 � T .

We have to establish a support theorem for the solution of (3.3). Let us observe that this

equation is not much different from that of Walsh (1986). Indeed, it only contains one

additional term, a `jump drift'. Nevertheless, it is far from possible to use a method similar

to that of Bally et al. (1995), who proved a support theorem for Walsh's equation, in

particular because the solution of (3.3) does not lie in C([0, T ] 3 [0, 1]).

But the jump times of the solution X m of equation (3.3) are deterministic, and the

associated skeleton S(h, m) (m is ®xed) has the same jump times. Thus we do not need the

Skorokhod topology: we will work with the stronger supremum norm on [0, T ] 3 [0, 1].

The method below consists in applying the result of Bally et al. on each time interval

[ti, ti�1[. To this end, we will de®ne some processes X i
m, which equal X m only on

[ti, ti�1[3[0, 1], but also give information about the behaviour of X m after ti�1. We will

also associate with X i
m some deterministic skeletons Si

m(h). But we will apply the result of

Bally et al. (1995) to the conditional law of X i
m with respect to F t i

(for each i). Thus, we

will have to de®ne a non-deterministic `conditional skeleton' T i
m(h). Then we will develop

a technical way to `paste the pieces together'.

Recall that, thanks to Remark 2.4, we have to prove, on the one hand, that for all

h 2H , all å. 0,

P(kX m ÿ S(h, m)k1 < å) . 0,

and, on the other hand, that

P(Xm 2 fS(h, m); h 2H gk k1 ) � 1:

To this end, we introduce some notation. First, if S(t, x) belongs to D([0, T ], C([0, 1])), and

if 0 < u , v < T , then

kSk[u,v] � sup
t2[u,v],x2[0,1]

jS(t, x)j:

We now de®ne recursively, for i in f0, . . . , ng, the processes X i
m(t, x) on [ti, T ] 3 [0, 1],

X 0
m(t, x) � Gt(X0, x)�

� t1^ t

0

�1

0

Gtÿs(x, y)[b(X 0
m(s, y)) dy ds� ó (X 0

m(s, y))W (dy, ds)];

and, for i 2 f1, . . . , ng,
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X i
m(t, x) � X iÿ1

m (t, x)� 1f t> t ig

�1

0

Gtÿ t i
(x, y)g(X iÿ1

m (tiÿ, y), zi) dy

�
� ti�1^ t

ti

�1

0

Gtÿs(x, y)[b(X i
m(s, y)) dy ds� ó (X i

m(s, y))W (dy, ds)]:

Notice that, for all i,

for all t 2 [ti, ti�1[, all x 2 [0, 1], X i
m(t, x) � Xm(t, x): (5:1)

Indeed, it suf®ces to use a standard uniqueness argument. In the same way, we de®ne, for

h 2H , the functions Si
m(h) on [ti, T ] 3 [0, 1], by

S 0
m(h)(t, x)

� Gt(X0, x)�
� t1^ t

0

�1

0

Gtÿs(x, y)[b(S 0
m(h)(s, y)) dy ds� ó (S 0

m(h)(s, y)) _h(s, y) dy ds]

and, for i 2 f1, . . . , ng,

Si
m(h)(t, x) � Siÿ1

m (h)(t, x)� 1f t> t ig

�1

0

Gtÿ t i
(x, y)g(Siÿ1

m (h)(tiÿ, y), zi) dy

�
� t i�1^ t

t i

�1

0

Gtÿs(x, y)[b(Si
m(h)(s, y)) dy ds� ó (Si

m(h)(s, y)) _h(s, y) dy ds]:

Then, for all i,

for all t 2 [ti, ti�1[, all x 2 [0, 1], Si
m(h)(t, x) � S(h, m)(t, x): (5:2)

Finally, we de®ne the `conditional skeleton' associated with the conditional law of X i
m with

respect to F t i
:

T i
m(h)(t, x) � X iÿ1

m (t, x)� 1f t> t ig

�1

0

Gtÿ ti
(x, y)g(X iÿ1

m (tiÿ, y), zi) dy

�
� t i�1^ t

t i

�1

0

Gtÿs(x, y)[b(T i
m(h)(s, y)) dy ds� ó (T i

m(h)(s, y)) _h(s, y) dy ds]:

The function T i
m(h) is de®ned on [ti, T ] 3 [0, 1]. For all t[ti, T ], all x 2 [0, 1], T i

m(h)(t, x)

is F t i
-measurable.

Then one can `nearly' use the theorem of Bally et al. (1995) ± for a more general

setting, see Cardon-Weber and Millet (1999) ± which yields the following result.

Proposition 5.1. Assume (H) and (S91). Then, with the above notation, for all i 2
f0, . . . , ng, the following conditional support theorem on [ti, T ] 3 [0, 1] holds:

suppk k[ t i ,T ]
L (X i

mjF t i
) � fT i

m(h)jh 2H gk k[ t i ,T] :
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In fact, the main theorem in Bally et al. (1995) only yields the result for i � 0, with
� t

0

instead of
� t^ t1

0
. But conditioning is not a problem, and the initial values we obtain, for

example

X iÿ1
m (t, x)�

�1

0

Gtÿ t i
(x, y)g(X iÿ1

m (tiÿ, y), zi) dy � X iÿ1
m (t, x)� Gtÿ t i

(g(X iÿ1
m (tiÿ, :), zi), x),

behave on [ti, T ] exactly as Gt(X0, x) on [0, T ], since they are F t i
-measurable, since

g(X iÿ1
m (tiÿ, :), zi) is continuous on [0, 1], and since X iÿ1

m (t, x) is continuous on [0, T ]

3 [0, 1]. Finally, it is clear that considering the integrals from ti to t ^ ti�1 instead of 0 to t

will not change much.

We now establish a lemma, which will allow us to paste the pieces together. If

kX i
m(ù)ÿ Si

m(h)k[ t i,T] is small, then the initial positions associated with Si�1
m (h) and

T i�1
m (h)(ù) are near, and thus the distance between Si�1

m (h) and T i�1
m (h)(ù) is small. We

need this lemma because Proposition 5.1 gives an idea of the distance between X i
m(ù) and

T i
m(h)(ù), but what we need to control is the distance between Si

m(h) and X i
m(ù).

Lemma 5.2. Assume (H) and (S92). There exists a function ã(x, u) : R� 3 R� 7! R�, such

that, for each x, ã(x, u) decreases to 0 when u decreases to 0, and such that, for all å. 0, all

i 2 f0, . . . , nÿ 1g,
fù 2 Ù; kX i

m(ù)ÿ Si
m(h)k[ ti ,T ] < åg

� fù 2 Ù; kSi�1
m (h)ÿ T i�1

m (h)(ù)k[ t i�1,T] < ã(k _hj[ ti�1, t i�2]kL2 , å)g
where k _hj[ t i�1, t i�2]k2

L2

� t i�2

ti�1
� � 1

0
_h2(s, y) dy ds.

Proof. Let ù belong to fkX i
m ÿ Si

m(h)k[ t i,T ] < Eg. Then, for all t in [ti�1, T ], all x in [0, 1],

using (H),

jSi�1
m (h)(t, x)ÿ T i�1

m (h)(t, x)j < jSi
m(h)(t, x)ÿ X i

m(t, x)j

�
�1

0

Gtÿ t i�1
(x, y)jg(X i

m(ti�1ÿ, y), zi)ÿ g(Si
m(h)(ti�1ÿ, y), zi)j dy

� C

� t i�2^ t

t i�1

�1

0

Gtÿs(x, y)jSi�1
m (h)(s, y)ÿ T i�1

m (h)(s, y)j(1� j _h(s, y)j) dy ds:

We now set

F(t) � sup
x2[0,1]

jSi�1
m (h)(t, x)ÿ T i�1

m (h)(t, x)j:

Using the assumption about ù, Assumption (S92), (A.2) and (A.1), and the Cauchy±Schwarz

inequality, we obtain

F(t) < å� øzi
(å)� C 1� k _hj[ t i�1, t i�2]kL2

� � � t

t i�1

F 2(s)
ds����������
t ÿ s
p

 !1=2
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where øzi
was de®ned in Assumption (S92). Hence,

F 2(t) < Cå2 � Cø2
zi

(å)� C 1� k _hj[ t i�1, t i�2]kL2

� �
2

� t

ti�1

F 2(s)
ds����������
t ÿ s
p :

Iterating this formula once (see the previous section, inequalities (4.30), (4.31) and (4.32), for

more details), we obtain the existence of a function ã, satisfying the assumptions of the

statement, such that

F 2(t) < ã k _hj[ t i�1, t i�2]kL2 , å
� �

� C 1� k _hj[ t i�1, t i�2]kL2

� �2
� t

ti�1

F 2(s) ds:

Gronwall's lemma allows us to conclude the proof. h

In order to simplify notation, we assume in the following that n � 2, i.e. that

m(dt, dz) � ä( t1,z1) � ä( t2,z2):

We ®rst ®x h 2H , and å. 0, and we check that

P0 � P(kX m ÿ S(h, m)k1 < å) . 0: (5:3)

Using (5.7) and (5.10), we see that

P0 > P kX 0
m ÿ S 0

m(h)k[0,T] < å=3, kX 1
m ÿ S1

m(h)k[ t1,T] < å=3, kX 2
m ÿ S2

m(h)k[ t2,T] < å=3
� �

:

Noticing that, for each i, X i
m is F t i�1

-measurable and Si
m(h) is deterministic, we obtain, by

conditioning our probability with respect to F t2
,

P0 > E 1fkX 0
mÿS 0

m(h)k[0,T ]<å=3gIfkX 1
mÿS1

m(h)k[ t1,T ]<å=3gP(kX 2
m ÿ S2

m(h)k[ t2,T ] < å=3jF t2
)

h i
:

On the other hand,

P kX 2
m ÿ S2

m(h)k[ t2,T ] < å=3jF t2

� �
> P kX 2

m ÿ T 2
m(h)k[ t2,T ] < å=6, kT2

m(h)ÿ S2
m(h)k[ t2,T] < å=6jF t2

� �
> 1fkT2

m(h)ÿS2
m(h)k[ t2,T]<E=6gP kX 2

m ÿ T2
m(h)k[ t2,T] < E=6jF t2

� �
,

since S2
m(h) is deterministic and T2

m(h) is F t2
-measurable. Using Proposition 5.1, we also

know that

P kX 2
m ÿ T2

m(h)k[ t2,T ] < E=6jF t2

� �
. 0

almost surely. Hence, it suf®ces that P1 . 0, where

P1 � P kX 0
m ÿ S 0

m(h)k[0,T ] < E=3, kX 1
m ÿ S1

m(h)k[ t1,T ] < å=3, kT2
m(h)ÿ S2

m(h)k[ t2,T ] < å=6
� �

:
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Thanks to Lemma 5.2, we know that, for á. 0 small enough,

kX 1
m ÿ S1

m(h)k[ t1,T ] ,á) kT2
m(h)ÿ S2

m(h)k[ t2,T ] < å=6:

Thus,

P1 > P kX 0
m ÿ S 0

m(h)k[0,T ] < E=3, kX 1
m ÿ S1

m(h)k[ t1,T ] < á ^ å=3
� �

:

Iterating this argument, we see that P0 is strictly positive as soon as P2 . 0, where

P2 � P kX 0
m ÿ S 0

m(h)k[0,T ] < â
� �

for some â. 0 small enough. But it is clear that S 0
m(h) is identically equal to T 0

m(h). Thus,

Proposition 5.1 implies that P2 is strictly positive, and hence that (5.3) holds, which was our

aim.

We still have to check that

P X m 2 fS(h, m), h 2H gk k1
� �

� 1: (5:4)

We know from Proposition 5.1 that, for almost all ù, say for all ù 2 ~Ù, with P(Ù) � 1,

X 0
m(ù) 2 fT 0

m(h), h 2H gk k1 , X 1
m(ù) 2 fT1

m(h)(ù), h 2H gk k1 ,

X 2
m(ù) 2 fT 2

m(h)(ù), h 2H gk k1 :
We now ®x ù 2 Ù. There exists h0

n 2H , h1
n 2H , h2

n 2H (depending on ù), such that, for

i 2 f0, 1, 2g, when n goes to in®nity,

kX i
m(ù)ÿ T i

m(hi
n)(ù)k[ t i,T] ! 0:

We now set

hn,k,q(t, x) � h0
n(t, x)1[0, t1](t)� h1

k(t, x)1[ t1, t2](t)� h2
q(t, x)1[ t2,T ](t):

We ®x å. 0, and we prove that, for n, k, q large enough,

kX m(ù)ÿ S(hn,k,q, m)k[0,T] < å, (5:5)

which will suf®ce. One can easily check, using (5.1) and (5.2), that

kX m(ù)ÿ S(hn,k,q, m)k[0,T ] < A0
n(ù)� A1

k(ù)� A2
q(ù)� B0

n(ù)� B1
k(ù)� B2

q(ù), (5:6)

where (if i � 0, 1, 2 and l 2 N)

Ai
l(ù) � kX i

m(ù)ÿ T i
m(hi

l)(ù)k[ t i,T]

and

Bi
l(ù) � kT i

m(hi
l)(ù)ÿ Si

m(hi
l)k[ ti ,T ]:

Notice that B0
n vanishes identically. Thanks to Lemma 5.2, we know that

B1
k(ù) < ã k _h1

k j[ t1, t2]kL2 , A0
n(ù)

� �
, (5:7)
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B2
q(ù) < ã k _h2

qj[ t2,T]kL2 , A1
k(ù)� B1

k(ù)
� �

: (5:8)

First, we choose q large enough, in order that

A2
q(ù) < å=6: (5:9)

Now that q is ®xed, we consider á. 0 such that

ã k _h2
qj[ t2,T]kL2 , á

� �
< å=6: (5:10)

Then we choose k in such a way that

A1
k(ù) < å=6 ^ á=2 (5:11)

and we consider â. 0 such that

ã k _h1
k j[ t1, t2]kL2 , â

� �
< å=6 ^ á=2: (5:12)

Finally, we choose n such that

A0
n(ù) < å=6 ^ â: (5:13)

We deduce from (5.13), (5.7) and (5.12) that

B1
k(ù) < å=6 ^ á=2: (5:14)

Thanks to (5.14), (5.11), (5.10) and (5.8), we also see that

B2
q(ù) < å=6: (5:15)

Finally, using (5.6), (5.13), (5.11), (5.9), (5.14) and (5.15), we deduce (5.5). We have thus

checked that for each ù 2 ~Ù, all å. 0, there exists h 2H such that

kXm(ù)ÿ S(h, m)k1 < å: (5:16)

Since P( ~Ù) � 1, (5.4) holds and Proposition 3.3 is proved.

6. Extension to the case of an almost surely in®nite number of
jumps when the diffusion coef®cient is constant

We now consider equation (1.1) in the following new setting: the diffusion coef®cient is

constant, ó (x) � ó ; but the positive measure q on E is only assumed to be ó -®nite (a priori,

q(E) � 1). N is still a Poisson measure on [0, T ] 3 E, with intensity measure dtq(dz). The

evolution equation associated with equation (1.1) is still given by (2.4).

We also consider an increasing sequence of subsets Ep of E satisfying

q(Ep) ,1, [ p2N Ep � E:

In order to obtain a result of existence and uniqueness, we state the following hypothesis:

Assumption (A). The function ó is constant. The function b satis®es a global Lipschitz

condition. There exists ç 2 L1(E, q) such that for all x, y 2 R, all z 2 E,
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jg(0, z)j < ç(z), jg(x, z)ÿ g(y, z)j < jxÿ yjç(z):

Proposition 2.2 yields that equation (1.1) with Ep instead of E admits a unique weak solution

X p lying in D([0, T ], C([0, 1])). Under Assumption (A), using strongly the fact that ó is

constant, it is easy to check that there exists an adapted process X such that, when p goes to

in®nity,

E sup
[0,T ]3[0,1]

jX (t, x)ÿ X p(t, x)j
 !

! 0: (6:1)

In this way, we obtain the existence of an adapted weak solution X of (1.1) with our new

setting. See Remark 6.6 for the case where ó is not a constant.

The uniqueness is straightforward under (A), and we can state the following proposition.

Proposition 6.1. Assume (A). Equation (1.1) admits a unique weak solution X (t, x), lying

almost surely in D([0, T ], C([0, 1])), and bounded in L1.

We now consider

M p �

m(dt, dz) �
Xn

i�1

ä( t i,zi)(dt, dz)

����n 2 N, 0 , t1 , . . . , t n , T , z1, . . . , zn 2 suppq \ Ep

( )

and we set M � [ pM p. The Cameron±Martin space H associated with W is still de®ned

by (2.5). For each m 2M and h 2H , we denote by S(h, m) the unique solution of equation

(2.6) (there is no difference between the situation here and in Proposition 2.3, since there

exists p such that m 2M p). Since g is already Lipschitz, we assume (T ) below instead of

(S2):

Assumption (T ). For each z0 2 E, each n 2 N,

sup
jxj<n

jg(x, z)ÿ g(x, z0)j !d(z,z0)!0 0:

For each z0 in E, there exists î(z0) . 0 such that

sup
d(z,z0)<î(z0)

ç(z) ,1: (6:2)

A function g(x, z) � á(z)ç(z) clearly satis®es (A) and (T ) if á is Lipschitz, and ç 2
L1(E, q) is continuous. The aim of this section is to prove the following result.

Theorem 6.2. Under (A) and (T), if X denotes the unique weak solution of equation (1.1),

suppä P � Xÿ1 � fS(h, m)jh 2H , m 2Mgä:
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Since the method of Simon (1999), combined with the previous sections, can be easily

applied, we will only sketch the proof.

First, for the same reasons as in the previous sections (see Proposition 3.1), we can

assume, in addition to (A) and (T ), that for all x 2 R, all z 2 E, jg(x, z)j < ç(z), and that

for each z0 2 E,

sup
x2R

jg(x, z)ÿ g(x, z0)j !d(z,z0)!0 0:

Then, we notice that the direct inclusion (�) of Theorem 6.2 is immediate, thanks to

Theorem 2.5 (for X p) and thanks to the convergence (6.1).

We now ®x p 2 N, h 2H , m �Pn
i�1ä( ti ,zi) 2M p and å. 0. We have to prove that

P(ä(X , S(h, m)) < å) . 0:

To do so, we will use three lemmas. The ®rst one is a very particular case of the result of

Bally et al. (1995).

Lemma 6.3. Let á. 0 be ®xed, and let

Ù0(á) � ù 2 Ù; sup
t,x

����� t

0

�1

0

Gtÿs(x, y)fW (dy, ds)ÿ _h(s, y) dy dsg
���� < á

( )
:

Then P(Ù0(á)) . 0.

We now write the restriction Np � N j[0,T ]3Ep (recall that p is ®xed) as

Np(ds, dz) �
Xì
i�1

ä(Ti, Zi)(ds, dz):

The second lemma can be proved by using the same method as that of Proposition 3.2

(see Section 4). The only difference comes from the fact that X p(ù) depends on W , but

since ó is constant, Lemma 6.3 allows us to deal with this problem easily.

Lemma 6.4. Let â. 0 be ®xed. There exists a set

Ù1(â) 2 ófN (A); A 2 B ([0, T ] 3 Ep)g
such that P(Ù1(â)) . 0, such that for each ù 2 Ù1(â),

ì(ù) � n, 8i, d(zi, Zi(ù)) < î(zi),

and such that for some á. 0 small enough, every ù 2 Ù0(á) \Ù1(â) satis®es

ä(X p(ù), S(h, m)) < â:

The third lemma we require, along with its proof, is as follows.

Lemma 6.5. Let ã. 0 be ®xed, and let
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Ù2(ã) � ù 2 Ù;

�T

0

�
E=Ep

ç(z)N (ds, dz) < ã

( )
:

Then P(Ù2(ã)) . 0.

Proof. We set

èp �
�T

0

�
E=Ep

ç(z)N (ds, dz)

and, for q . p,

èq
p �

�T

0

�
Eq=Ep

ç(z)N (ds, dz):

We see that èp � èq
p � èq, that for all q, P(èq

p � 0) . 0, and that when q goes to in®nity, èq

goes to 0 in probability. Since, for each q, èq
p is independent of èq, we can write

P(èp < ã) > P(èq
p � 0)P(èq < ã)

and the lemma follows easily. h

We ®nally sketch the proof of Theorem 6.2. An easy independence argument yields that

for every á. 0, â. 0, ã. 0, the set

Ù3(á, â, ã) � Ù0(á) \Ù1(â) \Ù2(ã)

has strictly positive probability. We now have to to choose á, â, ã in such a way that, for all

ù 2 Ù3(á, â, ã),

ä(X (ù), S(h, m)) < å:

Let ù 2 Ù3(á, â, ã) be ®xed. If á is small enough, we know from Lemma 6.4 that

ä(X (ù), S(h, m)) < kX (ù)ÿ X p(ù)k1 � ä(X p(ù), S(h, m))

< kX (ù)ÿ X p(ù)k1 � â:

We now set

V p(t) � sup
x2[0,1]

jX (t, x)ÿ X p(t, x)j:

Using the Appendix and Assumptions (A) and (T ), since jg(x, z)j < ç(z), and since ù
belongs to Ù3(á, â, ã), we see that

V p(t) < C

� t

0

V p(s) ds� C
Xn

i�1

1f t>TigV
p(Tiÿ)ç(Zi)�

�T

0

�
EnEp

ç(z)N (ds, dz)

< C

� t

0

V p(s) ds� C
Xn

i�1

1f t>TigV
p(Tiÿ)� ã:
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For the second term, we have used (6.2) in Assumption (T ), and the fact that for all i, Zi

belongs to fz 2 E, d(zi, z) < î(zi)g.
Applying Gronwall's lemma successively on the time intervals [0, T1[, . . . , [Tn, T ], we

deduce that, for all ù 2 Ù3(á, â, ã),

sup
[0,T]

V p(ù, t) < Cã:

The conclusion follows easily.

Remark 6.6. Of course, we are also interested in the case where q(E) � 1 and ó is a

function. In this case, it is possible to prove (under certain assumptions) that the sequence X p

of weak solutions of (1.1) where we have replaced E by Ep, converges to an adapted process

X (t, x) in the following sense:

sup
t,x

E(jX (t, x)ÿ X p(t, x)j)! 0:

Once X is constructed, it might be possible to check that it admits a modi®cation lying in

D([0, T ], C([0, 1])), by using the fact that X satis®es the evolution equation, but this is not

immediate. If so, it seems natural to think that our support theorem extends to this case.

However, everything will become much more technical. In particular, the direct inclusion is

no longer obvious, since (6.1) no longer seems to hold.

Appendix

We collect here well-known estimates for the Green kernel Gt(x, y) associated with the

deterministic system (2.1), and given by (2.2). In all the inequalities below, the constant C

depends only on the terminal time value T . The ®rst three estimates can be found in Walsh

(1986) and the last three are either easy consequences or classical estimates.

First, for all x, y 2 [0, 1] and all t 2 [0, T ],

1��������
4ðt
p exp

ÿ(yÿ x)2

4t

� �
< Gt(x, y) <

C��
t
p exp

ÿ(yÿ x)2

4t

� �
:

For all 0 , t , T , all x 2 [0, 1], �1

0

G2
t (x, y) dy <

C��
t
p (A:1)

and �1

0

Gt(x, y) dy � 1: (A:2)

For all 0 , s , t , T , all x, y 2 [0, 1] (see Chenal and Millet 1997, Lemma A3)

jGt(x, y)ÿ Gs(x, y)j < C
jt ÿ sj

s3=2
(A:3)
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and (see Bally et al. 1995, Lemma B1)� s

0

�1

0

(Gtÿr(x, y)ÿ Gsÿr(x, y))2 dy dr �
� t

s

�1

0

G2
tÿr(x, y) dy dr < C

����������
t ÿ s
p

: (A:4)

Finally, for all ö 2 C([0, 1]), the map

(t, x) 7! Gt(ö, x)

is continuous on [0, T ] 3 [0, 1] (for a similar result, see Bally et al. 1995, Lemma A2).
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