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SUPPORT THEOREMS FOR TOTALLY GEODESIC RADON
TRANSFORMS ON CONSTANT CURVATURE SPACES
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Abstract. We prove a relation between the fc-dimensional totally geodesic

Radon transforms on the various constant curvature spaces using the geodesic

correspondence between the spaces. Then we use this relation to obtain im-

proved support theorems for these transforms.

Introduction

Let J7n be an «-dimensional simply connected Riemannian manifold of

constant curvature k . Normalizing the metric so that k = -1, 0, or +1 we
must deal only with the hyperbolic space H" (k = -1), the Euclidean space
Rn   (k = 0), and the sphere Sn   (k = +1 ).

For a fixed k (1 < k < n - 1) let ¿; be an arbitrary totally geodesic sub-
manifold of J7n of dimension k . The fc-dimensional totally geodesic Radon

transform Rf of f e L2(J7n) is defined by

(0.1) Rf(ç) = j fi(x)dx,

where dx is the surface element on £ induced by the metric of J7n [6].
Our first goal in this paper is to prove a link between these Radon trans-

forms taken on different constant curvature spaces. The proof is based on the

geodesic correspondence between the spaces [10]. The idea to use projection
from constant curvature spaces to Euclidean spaces also appeared in [3, 11].

The connection established in Theorem 2.1 allows one to transpose results
from one space to the other; hence, it can be used to get inversion formulas,

range characterizations [1], and so on. We shall use it to obtain support theo-
rems.

Roughly speaking a support theorem states that if the function / is in a
suitable function space of J7n and the support of Rfi, supp Rf, is bounded,

then supp f ç P supp Rf, where P maps the set of total geodesies into Jt"1

so that the total geodesies correspond to their point closest to the origin. For
more information about the applications of support theorems we refer to [4, 5,

]]■_
Received by the editors April 11, 1991 and, in revised form, January 4, 1993.
1991 Mathematics Subject Classification. Primary 44A05, 53C65.
Key words and phrases. Radon transform, constant curvature spaces.

© 1994 American Mathematical Society

0002-9939/94 $1.00 + $.25 per page

429

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



430 ARPAD KURUSA

We consider the cases k = n - 1 and k < n-2 separately, because of their

principal differences.
In the case k = n - 1, Helgason's support theorem for the Euclidean space

[5] via Theorem 2.1 implies significant improvement on his support theorem

for the hyperbolic space [5] replacing the rapid decrease by a decrease of order
n. Transposing Helgason's support theorem to the sphere we find the support

theorem for C°° functions vanishing with all their derivatives at the equator.

For the case k < n - 2, we use Schneider's result [12] to obtain a support

theorem on the sphere. After transposing this to the other spaces we find the

support theorem on all the constant curvature spaces supposing only a finite

order decrease on the functions, instead of the rapid decrease.

1. Preliminaries

In this section we give the most necessary preliminaries and theorems upon
which §2 is based. Most of the facts listed here are proved in [5, 8, 9, 10, 14].

The Riemannian metric on J7n, one of the three spaces of constant cur-
vature, is completely described by the 'size function' v : R+ -> R+ . The size
function v determines the radius u(r) of the Euclidean sphere in W that is
isometric to the geodesic sphere of radius r in J7n [14].

An other important function on the constant curvature spaces is the 'projector

function' p : R+ -♦ R+. This function generates a geodesic correspondence

between the constant curvature spaces and the Euclidean space via the geodesic
polar coordinatization [10]. Take a fixed point in J7n , say O, and the origin
in W. Then the map that makes the geodesic correspondence between these
spaces is

(1.1) /i:^"—R"       (Exp0rtu t-* p(r)co),

where co is a unit vector in ToJ7n , r e R+ , and R" is identified with ToJ7n ■

Further on we shall use only the open half sphere P" having the center point
O rather than the whole sphere S" because the odd functions obviously have

zero Radon transform on the sphere [5].
From Figure 1 one can easily read off the entries of Table 1.
The point is that the geodesies in J7n are precisely the nonempty intersec-

tions of J7n with the two planes through the origin of R"+1.

We shall need the following easy consequence of Schneider's result and Hel-

gason's support theorem for the Euclidean space, which we recall after the proof.

Lemma 1.1. Let k < n -2, B be a spherical cap, and the function f e C(S")

be symmetric. If the integral of f is zero over all the k-dimensional great
subspheres ¿; not intersecting the spherical cap B, then f is zero outside B
and its antipodal spherical cap.

Proof. Let Sk+X be such an intersection of S" with a (k + 2)-dimensional

subspace of En+1 that does not intersect the spherical cap B. Then no k-
dimensional great subsphere £, of Sk+X intersects B ; hence, all the integrals

of f e C(S") over the hypersubspheres of Sk+X vanish. Therefore, / = 0 on
$k+x fry [12], which proves the lemma.   □

Theorem 1.2 [5, Theorem 2.6]. Let f e C(W) satisfy the following conditions:

(1) For each integer m > 0, \x\mfi(x) is bounded on M." .

(2) For each hyperplane Ç outside the unit ball, \x\ < 1, Rf(!7) = 0.

Then f(x) = 0 for \x\>l.
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Figure 1. The geometric meaning of the function p.
can be read off this figure, where the quadratic model

of the hyperbolic space and the sphere in R"+1 [5] is

'projected' to the hyperplane R", determined by the

equation x„+x = 1, by the straight lines through the

origin of R"+1. For further details see the subject of
the projective realization of constant curvature spaces

in standard textbooks.

Table 1

J7n      K v p

W    -1    sinhr   tanhr

R"      0        r r

P"    +1     sinr     tanr

Note that counterexamples of Helgason show that condition (1) is necessary
for the result.

2. Link between the Radon transforms

In this section we prove Theorem 2.1, which makes a connection between the

Â>dimensional Radon transform on the Euclidean space and the A:-dimensional
totally geodesic Radon transform on the constant curvature space J7n (1 <

k < n - 1). Recently and independently this connection was discovered for the
hyperbolic spaces in [1], where it is used to get range characterizations.

For convenience we use geodesic polar coordinatization for all the constant

curvature spaces considered. For this reason, after fixing a point O e J7n we

write the function / in the form f(co, r) = f(Exp0rœ), where co e ToJ7n
is a unit vector and r is the distance coordinate. For a /c-dimensional totally

geodesic submanifold £, (1 < k < n — 1) we shall use the notation |£| to denote

the distance of ¡7\ from O.

Theorem 2.1. If fi e L2(W) and g(p~l(x)) = f(x)(l + K\x\2)^k+xy2, then

(2.1) (Rkf)(0 = Jl+m1 \k\g)(fi-l(0),

where 1 < k < n — 1, Rk (resp. R^) denotes the k-dimensional Radon trans-
form on R" (resp. J7n); £ is a k-dimensional hyperplane in R", x e Rn ;

p~x is the inverse of p ; and k e {-1, 0, +1} is the curvature of J(n . In the

hyperbolic case we require supp f c B", where B" is the unit ball in Rn .
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Proof. Taking the (k+1 )-dimensional totally geodesic submanifold in R" (resp.

J7n) spanned by O and £ (resp. /2_1(£)) and restricting the Radon transform

to this spanned submanifold one can assume that k + 1 = n . We do this and

omit the index k of R and R.
According to [10, Theorem 4.1] for g e L2(J7n) we have

(2.2)
5  ,-  Us      f (       -x ( Mh)  \\ ((œ,œ)/p2(h) + K)-"/2 ;
Rg(œ,h)= g [to, p '._■)--      ,\!-■-dœ,

Jsi->   ti     \ \(o},co)JJ v(h)

where we used the polar coordinates (W,h) of the point Exp0(hœ) of £ near-

est to the origin O. Further on we shall call (W, h) the polar coordinates of
£ . Sn~x is the unit sphere in ToJ7n , and dco is the surface measure on it.

For r e [-1, +1)

(2.3) S7L-J = {œeSn-l:(co,œ)>t},

where (•, •) is the standard scalar product in T0^7n identified with E" . Finally

ao(h) is the half of the angle that the submanifold £ subtends at the origin O.
(Let y be the unique geodesic through O perpendicular to ¿,. For any point

Peí, let y(P) denote the geodesic joining P and O. The angle of y and
y(P) will tend to a0(h) if P goes to a "farthest" point of £. Thus a0(h) = §
for k = +1 or k = 0, and ao(h) = arccostanh/z for k = -1.) p, v and
k e {-1, 0, +1} are set according to J7n , of course.

As is well known, or take equation (2.2) for the special entries k = 0, p(r) =
r, and i>(r) = r, the Euclidean Radon transform R is

(2.4) Rfi(W,h)= [     fi (oj,—^—]-^—-dœ.
Jsi->    V      ((o,co)J (co,œ)"

ü).0

Let the polar coordinates of £ be (W, h) in R", and then observe that
the polar coordinates of p~'(£) are (ctJ, p~x(h)). Substituting into equation

(2.2) the function g(œ, r) = f(co, p(r))(l + Kp2(r))"/2, which is g(p~x(x)) =

fi(x)(l + K\x\2)(k+Xî/2 in polar coordinates, we obtain

(2.5)
=   ,_,./• ,/ h     \(l+Kh2/(co,œ))n/2        1 j
Rg(co, h)= f [co, -.-—-   -^--_, , ,-T-FT—;—rrr^àco.

Jsi-> V      (a>,a>)J  ((co,co)/h2 + K)"t2 u(p~x(h))
cy.coseiQ(A)

Since ^A = \/l +Kp2(r), this equation immediately gives (take r = p~x(h))

the formula of the theorem. (Note that ao(h) can be less than f only in the

hyperbolic case, but then the support of / is appropriately restricted to this
angle.)   D

We note here that by Beltrami's theorem the only Riemannian manifolds that

have geodesic correspondences between each other are the spaces of constant

curvature; therefore, similar connections between Radon transforms on more

general spaces are unlikely.

3. The support theorems

In principle, in this section we only transpose the known results Lemma 1.1

and Theorem 1.2 from their spaces to other spaces via Theorem 2.1.
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Theorem 3.1. Let k < n - 2, and assume g e C(J7n) satisfies the following

conditions:
(i) The function g(co, r)uk+x(r) tends to a finite number G(oj) for each co e

Sn~x c ToJ7n as

r-*§    iftc = +l,

r-+oo   if k = 0, -1

and G(co) = G(-co).

(ii) Rkg(Ç) = 0 for each k-dimensional totally geodesic £ with |£| > 1.

Then g(co, A) = 0 for h > 1.

Proof. If k = +1, consider the function h : S" —> R defined on the open upper
half of S" by g(co, r), on the open bottom half of S" by the reflection of
the upper half with respect to the center of Sn , and on the equator by G(co).

Then h is a symmetric continuous function on S" because of (i) and because

i/(|) = 1 ; hence, Lemma 1.1 gives the assertion.

If k = 0, consider the function h : F" -» R defined by

h(p-x(x)) = g(x)(l + \x\2t+^2,

where p corresponds to P". By Theorem 2.1, then, (Rkg)(Ç)y/l +1£|2 =

(Rkh)(p~x(Q) derives. Thus to get the statement of the theorem we only have to

verify if the function h satisfies our theorems'condition (i). Using its definition

in polar coordinates, h(co, r) = g(co, tanr)( 1 + tan2r)(i:+1)/2, this is done by

lim h(co, r) sin^1 r =  lim g(co, tanr)(l + tan2r)(/c+1)/2
r—>n/2 r—*n/2

= lim g(co, 0(1 + t2){k+l)/2 = lim g(co, t)tk+x = G(co),
t—»OO /—KX>

where the last equation comes from just the condition (i) on g.
If K as — 1, consider the function h: Bn -> R defined by g(p~x(x)) =

h(x)(l - \x\2)(k+xV2. Then

h«o, tanhr)= g{(°'r)
(l-tanh2r)(*+n/2

in polar coordinates and Theorem 2.1 gives (Rkh)(Ç)y/l - \Ç\2 = (Rkg)(p~x(Ç)).
Thus the statement of the theorem will follow after the verification of our the-

orem's condition (i) on h . To do this an easy observation is

limA(co, /) = Urn-ií^ill-
í-l r-.oe(1_tanb2r)(*+l)/2

= lim g(tû, r) cosh*"1"1 r = lim g(co, r) sinh^"1"1 r = G(co).
r—»oo r—>oo

Thus h can be extended to a function /?» onto the closed unit ball so that it is
uniformly continuous. Then /z» extends continuously on to R" by the Tietze

extension theorem so that the extended function A», has compact support. This
function, A»,, obviously satisfies condition (i) of our theorem, which completes

the proof.   D

Now we turn to the Radon transforms integrating on the 1-codimensional

total geodesic submanifolds.
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Theorem 3.2. Let g e C(J7n) satisfy the following conditions (k = n-1):

(i~)  If k = -1, the function g(co, r)sinh"(r) tends to a finite number for
each co e Sn~x C T0Hn as r -> oo.

(i+)  If k = 0, +1, the function g(a>, r)pm(r) is bounded for each integer
rn>0.

(ii)   Rg(Ç) = 0 for each (n - l)-dimensional totally geodesic Ç if \Ç\> I.

Then g(co, h) = 0 for h> 1.

Proof. Let /: R" -► R be given by g(p~x(x)) = f(x)(l + k\x\2)"/2 or in polar
coordinates g(co, r) = f(co, p(r))(l + Kp2(r))n/2 . Then by the continuity of

p~x and g the function / is continuous. Note that in the hyperbolic case this

continuity is meant only in the open unit ball B" cRn .

If k = -1, the proof goes in the same way as in the previous theorem, so
we leave it to the reader.

If k = 0, 1, condition (i+) directly guarantees the first condition of Theo-

rem 1.2. To see this one only has to observe k = 1. Then f(co, tanr)tanmr =

g(co, r)cosn rtanm(r), and this with condition (i+) gives the boundedness of

fi(co, t)tm for each integer m > 0.

By Theorem 2.1

(Rf)(Z)yJi + K\Z\2 = (Rg)<ß-l(Z));

hence, the function / also satisfies the second condition of Theorem 1.2 for
p(l). Namely, if |¿;| > p(l), then |/¿-1(£)l > 1 since the function p~x is

strictly increasing. Therefore, for such an (n - l)-dimensional hyperplane £,

|f| > p(i), we have Rg(p~x(£,)) = 0 by condition (ii), so Rf(Ç) = 0, too.
Now Theorem 1.2 implies that f(x) must be zero for |x| > p~x(l) ; hence,

g(co, r) = 0 follows for \r\ > 1. This proves the theorem.   D

Note that Theorem 3.1 is just Lemma 1.1 in the case of the sphere (k = +1)
and Theorem 3.2 is equivalent to Theorem 1.2 in the case of the Euclidean
space (k = 0).

For the hyperbolic space Theorem 2.2 gives a considerable improved version

of Helgason's similar theorem [4-7] requiring only a decrease of order n if

k as n — 1. I do not know any other result for k < n - 2. It is interesting to

note that there is no difference between the cases k = n - 1 and fc < n — 2!
For the sphere our condition in the case k — n — 1 is equivalent to the

function being C°° at the equator, formed by the points having | distance

from the point O, and all of its derivatives being zero there. This condition
cannot be omitted, because the decay condition in Theorem 1.2 is known to be
necessary. Theorem 3.2 therefore shows that the condition imposed in [6, 7]—

that g should vanish on the equator along with its odd order derivatives (since

g is symmetric)—is not sufficient for the conclusion. As is known, support
theorems on the sphere had been proved before only with the assumption that

the function vanishes in some belt around the equator [9, 11].

In the most classical case, on the Euclidean space, Theorem 3.1 gives the

support theorem for k < n-2, requiring the function to decrease only of order
k + 1, which seems to have connection with Solmon's [13, Theorem 7.7]. This

relation will be detailed in a forthcoming paper of Berenstein, Casadio Tarabusi,
and Kurusa.
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