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Introduction

Quillen's geometric approach to the cohomology of finite groups [30] has
revolutionized modular representation theory. Theideology and techniques
involved have been generalized and extended to representations of various
Hopf algebras, culminating in therecent work of Friedlander and Sudlin[17]
on finite group schemes.

In this paper we develop geometric methods for the study of finite
modules over alocal completeintersection R. If Rissucharing and misits
maximal ideal, then the m-adic completion R has the form Q/(f), where
f isaregular sequence and Q is aregular local ring that can be taken to
be aring of formal power series over a field or a discrete valuation ring.
The least number of equations needed to cut out R from aregular local ring
equal s the codimension of R, where codim R = vg(m) — dim Rand vg(M)
denotes the minimal number of generators of an R-module M.

In [5] acone, that is, ahomogeneous algebraic set V(M) is attached to
each finite R-module M and used to study its minimal free resolution. Here
we prove

Theorem |. If Risalocal complete intersection of codimension c, and kK
is an algebraic closure of the residue field k of R, then for any two finite
R-modules M, N there exists a cone Vi(M, N) < k°, such that
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(1) VEM, M) = VE(M, K) = Vi, M) = VE(M).
(2) VR(M, N) = {0} if and only if Extg(M, N) = 0for n>> 0.
(3) VR(M, N) = VR(M)NVER(N) = Vi(N, M).

Thefirst assertion shows that the present theory agrees with and extends
that of [5]. We also complement the earlier results in an important way
by exhibiting a set of polynomial equations defining V(M) that can be
computed solely from afinite free resolution of M over the regular ring Q.

The second assertion is the simplest manifestation of a general phe-
nomenon: the dimension of the variety Vii(M, N) measures “the size” of
Extir(M, N). To make this precise, we define the complexity of a pair of
modules (M, N) to be the number

n b—1
cXr(M, N) = inf { beN vr( ExtR(M, N)) < an®* for Some}

real number aand foral n>> 0

This notion encompasses the asymptotic invariants of M studied in [5]: its
complexity cxg M = cxr(M, k), measuring the polynomial rate of growth
at infinity of itsminimal freeresolution, and itsplexity pxg M = cxgr(k, M),
giving the corresponding information on its minimal injective resolution.
Results of Shamash [31] and Gulliksen [21] show that neither number
exceeds the codimension of R.

By construction, varieties of pairs satisfy cxg(M, N) = dimV (M, N).
Thus, their propertieslisted in Theorem | immediately translate into numer-
ical data.

Theorem II. For finite modules M, N over alocal complete intersection R,
the following (in)equalities hold:

(1) cxr(M, M) =cxgM = pxg M.
(2) cxr(M, N) =0ifand only if Exti(M, N) =0for n>> 0.

(3) cxg M + cxg N — codim R < cxg(M, N) = cxr(N, M)
< min{cxg M, cxg N}.

We do not know any other proof of the relations above. In fact, we are
not even aware of any earlier indication that such relations might hold.

For instance, (2) and (3) yield an unexpected and remarkable property
of finite modules over alocal complete intersection: (ee) Exty(M, N) =0
for n > 0if and only if Extg(N, M) = 0 for n > 0. We prove a more
precise globa version, that aso characterizes the eventual vanishing of
Torr?(M, N). Dencting Max(R) the set of maximal ideals of R, we can state
aform of the result asfollows:

Theorem I11. Let R be a commutative noetherian ring such that the local
ring Ry, is a complete intersection for each maximal ideal m of R, assume
that the Krull dimension dim R = d is finite, and set ¢ = sup{codim R, |
m € Max(R)}.



Cohomology over complete intersections 287

For finite R-modules M, N the following conditions are equivalent.

(i) Exthi(M,N)=0forh<n<h+candsomeh > d.

(i) Exti(N,M)=0fori <n<i+ candsomei > d.

(ii) Tor*(M,N) = 0for j <n<j+candsomej > 0.

(iv) Exth(M, N) = ExtL(N, M) = Tor}(M, N) = 0forn > d.

It is easy to see that any commutative noetherian ring R with prop-
erty (ee) is Gorenstein. By our result, the class of rings satisfying (ee) is
sandwiched between the class of locally complete intersection rings and
that of Gorenstein rings. We do not know whether it is equal to either of
those classes.

There are two aspects to the proof of the last theorem. One is to show
that “long” gaps in a sequence of (co)homology modules force it to vanish
beyond dim R; this is handled by standard homological algebra, and is
known for Tor from work of Murthy [28]. To compare asymptotic vanishing
of Ext's and Tor's, we establish that the latter is also governed by the
intersection of the varieties of M and N.

Theorem V. If M, N are finite modules over a local complete intersec-
tion R, thenTorR(M N)=0for n>>0if and only if V(M) N VR{(N)={0}.

The theorem answers a question of Jorgensen [23], who proved the
‘only if’ part. It aso extends to arbitrary codimension a result of Huneke
and R. Wiegand [22]: If R is a hypersurface, then Torf(M, N) = 0 for

n > 0 (if and) only if M or N has finite projective dimension; indeed,
aconeink! iseither equal to k! itsalf, or is reduced to {0}, and for V* R(M)
the second case means proj dimg M < oco.

The proofs of the theorems discussed above are given in Sects. 5 and 6,
drawing on more general results established in the intervening sections. In
particular, we prove and use a concise, versatile vanishing result in terms of
stable (co)homol ogy.

Many results on varieties over complete intersections have prototypes
over group algebras, cf. [10] for an exposition, but the analogy should be
used with care. For instance, the intersection formula in Theorem | fails
over group algebras: Benson, Carlson, and Robinson [11] show that certain
groups have non-projective modules N with H"(G, N) = 0 for n > 0,
whence {0} = Vi (k, N) € VEK NVE(N) = VE(N).

A difference from the situation over group algebras is the absence of
aHopf algebra structure, so that there is no obvious ring of operators over
which all cohnomology in sight would befinitely generated. Patching together
different actions on Exti(M, N) is an important and non-trivial problem.
Another basic difference is that modules over local rings are not finite-
dimensional vector spaces, so the use of duality is restricted and delicate.
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As aresult, the methods we develop are often quite unlike those used for
groups.

The geometric study of cohomology over commutative local rings R
is not limited to complete intersections. In fact, we establish many results
in the more general context of modules of finite Cl-dimension, introduced
in[8]. However, there are known obstacles to extend the geometric approach
to arbitrary finite modules over local rings. For example, if the localization
R, at a prime ideal p is not a complete intersection, then the R-module
R/p has infinite complexity — in fact, its minimal free resolution grows
exponentialy, cf. [6].

1. Cohomology operators

A magjor role in our investigation is played by an action on Exti(M, N)
of a graded polynomia ring, introduced by Gulliksen in [21] and studied
by Eisenbud, Gasharov, Mehta, Peeva, Sun, and the authors, cf. [5], [7],
(8. [9], [16], [26].

11 Let f = fq,..., fc be aregular sequence in a commutative ring Q,
andlet R= Q/(f). For al R-modules M, N, Gulliksen [21] defined on the
graded R-module Exti(M, N) a structure of graded module over a poly-

nomial ring of conomology operators § = R[xa, ..., xc] with variables of
degree 2, so that
Xj: ExtR(M, N) — Exty?(M,N) for neZ ad j=1,...,c.

Various constructions of that §-module structure are needed to provethefol-
lowing properties of cohomology operators, but by [9, 84] they al coincide
up to sign.

1.1.1. (Eisenbud [16, (1.7)], cf. dso [9, (3.1)].) Consider a commutative
diagram

Q 5 Q

"
R—25> R

of ring homomorphisms with Ker o’ = (f'), where f' = f;,..., f/ and

¢
lﬂ(fi)=ZW(qu)fJf with gj € Q for 1<i<c.

i=1

If f"is Q'-regular, if xi,..., x. isthe family of cohomology operators it
defines, M’, N’ are R-modules,and u: M — M’,v: N — N are R-linear
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maps, then

c
Zqij Xi © EXt:;(/L, l)) = EXt:;(u, v) o X} for ] =1 ..., c y
i=1

where Extj;(u, v) isthe canonical map Exty (M’, N) — Extg(M, N).

1.1.2. (Mehta [26, 82]; cf. dso [9, (3.3)].) Composition products on Ext
modules, denoted - , turn Extg(M, M) and Exti(N, N) into graded R-
agebras, and Exti(M, N) intoagraded left Ext{ (N, N)-, right Exti (M, M)-
bimodule. There exist canonical homomorphisms of graded R-algebras

&m &N

Exti(M, M) ¥

Ext5(N, N)
such that for all y € Extg(M, N) there are equdlities

ENXj) Y =xjy=v -ém(xj) for j=1,...,c.

Composition products are functoria in both module arguments and com-
mute with connecting homomorphisms, hence the action of § shares these
properties.

1.1.3. (Gulliksen [21, (3.1)]; cf. dso [5, (2.1)], [7, (6.2)].) If the graded R-
module Ext’{g(M, N) is noetherian, then the graded $-module Exti,(M, N)
is noetherian.

1.1.4. (Avramov-Gasharov-Peeva [8, (4.2)].) If the graded $-module
Extr(M, N) isnoetherian, thenthegraded R-module Ext (M, N) isnoethe-
rian.

For illustration and for later use, we present a computation of the action
of cohomology operators, using atechnique from [7].

If & isagraded §-module, then & { p} denotes the graded module with
N{p}9 = N9P, and K (vq, ..., vp; N) is the Koszul complex on a set
UL, .., up € 4, with differential of cohomological degree 1 and X in
complex degree —p.

1.2. Proposition. Given a commutative diagram of ring homomor phisms
1.1.1with¢ = idg and an R'-algebra S, thereis an isomor phism of graded
4$-modules

Exty (R, 9= @ # P(K(vr, ..., ve; Sxa, - xeD)IP)
p, ppar

where par stands for either even or odd, and v; = Y§_; gjjx; for i =
1,....c.
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Proof. Let K and K’ be the Koszul complexes that resolve R = Q/(f)
and R = Q/(f), respectively, over Q. Choosing bases &1, ... ., & of Ky
and &1, ..., g, of Ki, with a(¢;) = fjfor j =1,..., cand a(g) = f/
fori = 1,...,c, we define amorphism of DG agebras ¢: K — K’ by

¢(§,)_Z, 1q,,$, forj=1,..., C.

The differential of A = Homg(K', S istrivia, so Ext(R, S = A
Let {¢n}, whereh = (hq, ..., p) e NPwithh; < --- < hp, bethe S-basis
of AP = Homgq(KY, S dual to the basis {&§ A --- A&} of K ®q S.
By [7, (1.9)] the graded algebra K’ ®q Sacts on A = Ext(R, S by
Etp = (—DPT g ifi =h € hand &¢p = 0if i ¢ h. From [7,
(3.7)] we conclude that

Exty (R, 9 = P # (R, 9)(p}
p. ppar

asgraded $-modules, where C* (R, S isthe complex of graded §-modules

s S®rAM(ptr 1 —Ls seRrAPp)
— 4 S@rAPHp—1} —

with 8§ ®@r AP{p} sitting in complex degree — p and differential given by

c c
dx ®tn) =Y XX ® Y Gi&lth
j=1 i—1

=(DP > (ZQinjX)(—l)r_l ® Chhy -
=1

hreh
Itisclear that C*(R, S isisomorphic to the desired Koszul complex. O

The concept of complexity used below is defined in the introduction.

1.3. Proposition. Let Q be a noetherian local ring with unique maximal
ideal n, f = fq,..., fc a Q-regular sequence, and M, N finite modules
over R= Q/(f).

If Extg(M, N) = Ofor n >»> O, then & = Exty(M, N) ®g K is a fi-
nite graded module over the graded polynomial ring R = 8§ Qr k =
Kl x1,...,xc]- When & #0theKrull dimensiondimz & isequal tocxg(M, N),
and the formal power series

o0
(1 _ t2)CXR(M.N) Z UR( EthR(M, N)) tn
n=0

isa polynomial with integer coefficients that hasnoroot att = 1.
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Proof. It follows immediately from 1.1.3 that &€ is a finite module over
R = 8 ®rk, which isitself a polynomial ring in c variables of degree 2
over the field k. Thus, € is the direct sum £ @ £°% of its submodules
consisting of elements of even and odd degree, respectively. In particular,
dimg & = max{dimg &%, dimg £°%).

By the Hilbert-Serre Theorem, Y .-, ranky €"t" represents a rational
function with denominator (1 — t?)9, where d = dimx &, and numerator
that does not vanish at t = 1. It is well known, and easily seen from
a decomposition into partial fractions, that d is the least integer such that
rank, €" < and1 for some real number aand al n > 0. Sinceranky &" =
vr( ExtR(M, N)), we are done. o

A special case of the proposition, cf. [21, (4.2)], deals with the series

Pﬁ(t):ZrankkExtg(M,k)t” and I',‘é'(t):ZrankkExtg(k, M) t"
n=0 n=0

known, respectively, as the Poincaré series and the Bass series of M. By
definition, cxg M = cxgr(M, k) and pxg M = cxgr(k, N), where k is the
residue field of R.

1.4. Corollary. Ifprojdimg M <oo,thencxg M <cand (1-t?)%rM P,ﬁ ()
isa polynomial with integer coefficients that does not vanish at t = 1 when
M # 0.
If inj dimg M < oo, then pxg M < cand (1 — t)P=M ¥ (t) isa poly-
nomial with integer coefficients that does not vanish att = 1 when M # 0.
O
The next result and its proof are cohomological versions of results on
modules with eventually vanishing Tor’s, proved by C. Miller [27, (2.1),
(2.2)].

1.5. Proposition. Let R be alocal ring with residue field k, and let M, N
be finite R-modules such that Extg(M, N) = 0 for n > 0. The following
then hold.

() IR0 =PRO IR .

(2) pxgHOMR(M, N) < cxgM + pxgN.

(3) If furthermore R = Q/(f) for a local ring Q and a regular se-
quence f, and both projdimg M and injdimg N are finite, then
equality holdsin (2).

Proof. (1) Let F be afreeresolution of M, indexed by lower degrees, and
J an injective resolution of N, indexed by upper degrees. The complex
Homg(F', J) has the injective module ]_[i”:O Hom(F;, J"") as component
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of upper degree n, and

Homg(M, N) ifn=0;

n ~ n i
H (HomR(F,J))—EXtR(M’ N) = {0 ifn>0.

Computing with this injective resolution of Homg(M, N), we have

Exty (k, Homg(M, N)) = H" Homg (k, Homg(F", J))
>~ H" HomR(k Qg F, J)
= H"Homy (k ®@r F, Homg(k, J))

n
= [ [ Homy (Hi(k @& F). H"~ Homg(k, .J))
i=0

n
= [ [ Hom (Torf(k, M), Exty ™" (k, N)) .
i=0
Counting ranks of k-vector spaces, for n > 0 we get numerical equalities

n
ranky Exty (k, Homg(M, N)) :Z rank TorR(k, M) - rank, Ext% ' (k, N) .
i=0

Thisis just another way to write the announced equality of power series.

(2) The desired inequality follows from the equality of power series
in(2).

(3) By Proposition 1.3 and Corollary 1.4 theBassseriesof Homg(M, N),
the Poincaré series of M, and the Bass series of N represent rational func-
tions of t having at t = 1 poles of order pxg Homg(M, N), cxg M, and
pXg N, respectively. Equating the orders of the poles on both sides of (1)
we get the desired equality. O

2. Support varieties

Inthis section Q isacommutative noetherian local ring with maximal ideal
n and residue field k = Q/n, and k is an algebraic closure of k. Further,
R = Q/a where a is generated by a Q-regular sequence f = fq,..., fe
and 8 = Ry, ..., xc] is the ring of cohomology operators defined by f
and R =38 Qrk=K[x1, ..., Xcl-

2.1. The support variety V(Q, f; M, N) of a pair of finite R-modules
(M, N) is the zero set in k® of the annihilator of & = Extg(M, N) ®r k
in R, that is

V(Q, f: M, N)={(b1,...,bc)eE° o, .., bC):O}U{O}.

foral ¢ € anng &
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As & is graded, its annihilator is a homogeneous ideal, so V(Q, f; M, N)
isacone.

The variety does not depend on the choice of regular sequence gener-
ating a. To see this, and for later use, it is convenient to adjust the residue
field of alocal ring.

By aresidual algebraic closure of Q we mean aflat extension of local
rings Q C Q such that nQ is the maximal ideal 7 of Q and the induced
map k — Q/7 is the embedding of k into an algebraic closure k; such
extensions always exist: one possible construction is by inflation, asin [12,
App., Théoreme 1, Corollaire].

22. Lemma. If Q C Q is a residual algebraic closure then f is a Q
regular sequence, theinducedmap R — R = Q/(f)lsaresdual algebraic
closure, and

V(Q, f; M, N) =V(Q, £;M, N) < k°
whereM and N denote the R-modules M ®& Rand N ®g R, respectively.

Proof. The sequence f is Q-regular because the inclusion y: Q € Q is
flat. By 1.1.1 applied to ¢ = ¢ ®q Q: R € R, the ¢ x c identity matrix
(gij), and the R-linear maps u: M — M, u(m) = m® 1, and v = idg, we
see that the map

Ext*(u, v): EXt*(I\/I N) — Extx(M, N)

of graded modules is compatlble with the isomorphism § ®gr Rz % of
graded R-algebras. As Ris R-flat, both Ext; (1, v) and the canonical map
of graded modules

Extsy(M, N) g R —— Exty(M, N).

arebijective. Thedesired equality of varietiesisan immediate conseguence.
]

2.3. Remark. The basis of a/na provided by the image of f yields an
isomorphism k® = a/na that extends to a k-linear isomorphism o' ke =
Qa/na. If f'isaQ-regular sequencewith (f') = a,anda’: k°® = Qa/nals
the corresponding isomorphism, then 1.1.1 applied to the identity maps of
Q, R, M, and N yieldsanisomorphismof k-algebras§ = R[x3, ..., Xl that
is compatible with the identity map of &, and hence o’ (V(Q, f'; M, N)) =
a(V(Q, f; M, N)).

_ Thus, we have a well defined algebraic subset V(Q, R; M, N) <
Qa/ma.
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2.4. Proposition. For any two R-modules M, N the following holds.
(1) V(Q, f; M, N) = {0} ifand only if Exth(M, N) =0for n > 0.
If furthermore Extg(M, N) = Ofor n > 0, then the following hold.

(2) dmV(Q, f; M, N) = cxgr(M, N) <c.

) V(Q, f; M, N) =V(Q, f; M, N) if there exist exact sequences of
R-modules

O M—-F—--—>F—M-=0;
0O N->G;— ---—Gy— N—= 0,

with Exty(Fi, N) = 0 = Extg(M, G;) for all i, j and for n > 0.

Proof. (1) holds by the Nullstellensatz.

(2) The dimension of the algebraic set V(Q, f; M, N) is equa to the
Krull dimension dim (R / anng &) by definition. By 1.1.3, € isafinite mod-
ule over the polynomial ring in c variables over k, so dim (R/ anng €) =

(3) Since Extr(Fn, N) = 0 for n > 0, the iterated connecting maps
induced by the exact sequence linking M’ and M yield an isomorphism
Extz' (M, N)[t'] = ExtZ'(M, N)[t], for appropriate t,t' € Z. By 1.1.2
this isomorphism commutes with the actions of §, so the R-modules
Extz'(M, N) ®g k and ExtZ! (M’, N) ®g k have the same support varieties;
thus, V(Q, f; M, N) =V (Q, f; M’, N).

A similar argument showsthat V(Q, f; M’, N) =V(Q, f; M’,N"). O

The key result below descrlbes V(Q, R; M, N) as the set of unstable
directions in the affine space Qa/na, that is, those directions along which
the property that Ext"(M, N) vanishes for n > Oislost under passage from
QtoQ /(). Inthe proof of the theorem we adapt an idea from the proof of
[5, (3.9)] and use 1.1.4.

2.5. Theorem. Let Qbealocal ringwithresiduefieldk,let f = fq, ..., f¢
be a regular sequence, and let M, N be finite modules over R = Q/(f)
such that Ext},(M, N) = Ofor n > 0. If Q € Q isaresidual algebraic
closure of Q, then

for infinitely many n

V(Q, f: M, N) = {a cke

Exth, M, N) #0 } 50

wherea = (ay, ..., a) € Q° denotessomeliftingofa = @y, ..., a;) € K
and

Qu=0Q/f,Q with fo=a;fi+:- +acfee Qa.
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Proof. By 2.2 we may assumethat Q = Q. We use the notation of 1.1 and
21 In particular, 8 = R[x, ..., xc] is the ring of cohomology operators
defined by f, and € is the graded module Exti(M, N) ®g k over R =
5®ng k[Xl,...,XC].

The origin of k® is contained in V(Q, f; M, N) by definition, so we
may assume that 3 # 0 for some i. Changing the generating set of the
ided (f), we may further assume that (a;,ap,...,a) = (0,...,0,1),
hence f, = f..

Theimage f’ of the sequence fy, ..., fc_iisregular on Q' = Q/(fy).
Applying 1.1.1 tothenatural projection Q — Q’, theidentity mapsof R, M,
N, andthe (c—1) xcmatrix (q;) withg; = 1if j =i andg;; = Ootherwise,
we see that the algebra of cohomology operators 8" = Rlxj, ..., xe 4]
defined by f’ actson Ext;(M, N) through the embedding §' < & that maps
xjtoxjforl<j<c-1

From 1.1.3 and 1.1.4 we see that Extg,(M, N) = Oforn > 0if and
only if the 8’-module Exti(M, N) is finite. By Nakayama's Lemma, that
happens if and only if & isfiniteover R' = 8’ @rk = K[x3, ..., x{_,] and
thisisequivalent to thefinitenessover R'/(x3, - - ., Xe_1) = kof themodule
E/(Xps - Xee))€ =8/(X1s - -y Xc-1)E. Denotingthismodule &, observe

that ranky € is finite if and only if Supp;(€) = {(x1. ..., X)) € Spec R.
Asthe R-module € isfinite, we get

Suppx (€) = Suppy, (€ ®x R) = Suppg € N Supp; R
where R = R/(x1, ..., xc—1). The Nullstellensatz trand ates this into
V(Q, f; M, N) nk(@, ..., 0,1) = {0} C k°.
Summing up the discussion, we have: Extg,(M, N) =0forn > 0Oif

and only if k(0,...,0,1) € V(Q, f; M, N). Thisis another way to state
the theorem. |

2.6. For each finite R-module M, varieties V(Q,Nf; M) and W(Q, f; M)
aredefinedin[5, pp. 82, 91] to be the zero-setsin k© of the annihilatorsin R
of Extk(M, k) and Exti(k, M), respectively. Thus, the following equalities
hold by definition:

V(Q, f; M) =V(Q, f; M,k and W(Q, f; M) =V(Q, f; k M).

The preceding results yield some known properties of these varieties.

26.1. If M isasyzygy of M over R, thenV(Q, f; M) =V(Q, f: M).



296 L.L. Avramov, R.-O. Buchweitz

26.2. ([5 (312)]) If projdimgM < oo, then dmV(Q, f; M) =
cXxpM <c.
If inj dimQ M < oo, thendmW(Q, f; M) = pxg M <c.

2.6.3. [5,(3.11) and p. 91]. AsExte, (M, k) = O (respectively, Extey (k, M)
= 0) for n > 0if and only if proj dlmQ, M (respectively, inj dlmQ, M) is
finite, we have:

If proj dimg M < oo then

V(Q, fi M) = {@ € k° | projdimg, M = oo} U {0}.
If injdimg M < oo then
W(Q, f: M) ={a@ e k®|injdimy, M = oo} U {0}.

2.6.4. [5,(5.3)] If RisGorensteinand proj dimg M < oo, thenV(Q, f; M)
= W(Q, f; M) and cxg M = pxg M. Ind%d in that case Q and Q,
are Gorenstein as well, so over them finiteness of projective or injective
dimension coincide.

Hereis afirst link between the variety of a pair and the varieties of its
members.

2.7. Corollary. Let M be a finite R-module.

If proj dimQ M <oothenV(Q, f; M, N) C V(Q, f; M),socxr(M, N)
< cXr M.

Ifinj dimQ N < ocothenV(Q, f; M, N) C W(Q, f; N), socxg(M, N)
<pxgN

Proof. If @ € V(Q f; M, N) then Extn (M, N) # 0 for infinitely many
n, hence both proj dimg, , M andinj dlmQ N areinfinite. From the theorem
weconcludethat @ isinV(Q, i M), reﬁpectlvely, that@isinW(Q, f; N).

O

3. Defining equations

The definition of cohomology varieties in 2.1 presupposes a knowledge of
Ext's as graded modules over aring of conomology operators; therefore, it
canrarely beused for computations. When M hasfinite projectivedimension
over Q we exhibit a determinantal ideal with zero-set V(Q, f; M). Rather
remarkably, the matrices involved are defined solely in terms of a finite
free resolution of M over Q. The converse problem — to find a module
with prescribed variety —is still open, except for divisors, cf. [5, (6.3)]; the
situation in codimension 2 isanalyzed in [7].
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31 Let f = fq,..., fc bearegular sequence in acommutativering Q, let
R = Q/(f), let M be an R-module, and let (E, 9) be afree resolution of
M over Q.

Forj = (ji,...,jo) e N let|j| = ji+ -+ je,andfori =1...,cC
let e; € N be the c-tuple with |e;| = 1 and 1 appearing in i’th position.
A system of higher homotopies for f on E is a family of homogeneous
Q-linear homomorphisms

oc={09:E— E|0%: Ey — Enypji_1forn e Nand j € N°
that satisfy the identities

@ =39;
o @o@) 4 o@g® = fide for 1< j <c;
> 096D =0 for j e N° with |j] > 2.

i'+i"=i

Thefirst two conditions imply that for j = 1, ..., ¢ the degree 1 endomor-
phism o (¢ of E isahomotopy between multiplication by f; and the zero
map.

Conversely, basic homologica algebra yields for j = 1,..., ¢ homo-
topies o)) between f;ide and Og. By [16, (8.1)], cf. also [5, (2.4)], such
afamily of homotopies can be extended to asystem o = {o@ | 5 € N°} of
higher homotopies for f.

After a(tacit) choice of bases, we do not distinguish between a Q-linear
map of free modules E,, and the matrix that represents it.

3.2. Theorem. LetR = Q/(f)whereQisalocalringand f = fq,..., f;
is a Q-regular sequence. Let M be an R-module that has a finite free
resolution E over Q with E, = 0for n > 2u+ 1, setr = Y "'  rankq Eg,
let o = {09 | j € N°} be a system of higher homotopies for f on E, and
consider the 2r x 2r matrix
0 a2(x) 0
oy 0 o ... 0
0 o’ 0
o(X)= : : : : : :
o0 0 oM P ... 0 o 0
0 o0 0 ..ol 0 0 o
o 0 P ... 0 o 0
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with elements in the polynomial ring Q[X] = Q[Xq, ..., Xc], where

oV (x) = Zarﬁj)xj for n=0,...,2u+1 and i=0,...,u+1.
l7|=i
The algebraic set V(Q, f; M) is then defined by the vanishing of the

r x r minors of the matrix o (x) obtained by reducing o(x) modulo the
maximal ideal of Q.

Proof. By 2.2 we may assume that k is algebraically closed.
The complex E[x] = E ®q QI[x] is a free resolution of M[x] =
M ®q Q[x], and
i€ N}

isafamily of Q[x]-linear homomorphisms. Setting f = fix; +-- - + feXe,
Q = QIxI/fQIx], and E, = En[X] ®qpx Q, denote G the graded Q-
module G with

o(xX) = {a(i)(x) = Z o9%I : E[x] - E[X]

|7 1=i

Gy = EO@ EZ@ ®E2i and GZi+1= El@ Eg@ @E2i+1

fori € Z. Themapss ) = oV (x) ®qpx Q yield ahomomorphism 8: G —
G with

&9 0 0 ... 0
sV s 0 .00
7 S
doit1=| . o ‘ - |:Ga+1— Gai,
(-2 (-3 . (-4 ©)
of) 03 05 ... G54 O
(-1 -2 -3) - (D (0)
K‘71 03 05 oo O3l ‘72|+1)
s &9 0
L2 (D) (0
%0 2 0y
A S O 0 0
Dive=| . _ o _ _ :Gair2 = Gaiga.
S0 gD -2 (1) . (0)
% 02 04 s O3l Oy 0
(i+) () (-1 @) D .0
o O 04 o Ogilp Oy Ogigp

Simple calculations show that o (X) is asystem of higher homotopies for f
on E[X].
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In particular, (G, d) is a complex. The assumption on E, implies that
o’ =0forn > 2(u—i+1),50 Gpy2 = Gy and 943 = dnyq for n > 2u,
hence G, 5, isisomorphic to the complex

C=... ctsp—LsctsDpDL5Cc—50

where

C=Gy, D=Gyt1, =041, ¥ =0u2.

We have rankq C = rankq D = r: since flM = 0 and fl is Q-regular
the Euler characteristic of E vanishes, so Z| g1 = Z| ry =r for
rn = rankq En.

For eech a = (a1, ...,a) € Q° there are obvious isomorphisms of
rings

QIx] ~ Q and Q _~Q,.
(X1 — a1, ..., X — a)QIX] (X1 —ag, ..., % —a)Q
Using this Q[x]-module structure on Q we obtain afamily of higher homo-
topies o @qx Q for fo =a; f1 4+ ---a:fe on E[X] Qqix Q = E.

If @ # O then f, isanon-zero-divisor on Q, 0 G, = G ®y Qq is
afree resolution of M over Q, by atheorem of Shamash [31, 83], cf. also
[6, (3.1.3)]. Setting Cq = C ®¢ Qas Do = D ®g Qq, and denoting 84, va
the evaluations at a of the polynomial matrices §, y, we obtain the tail of
that resolution in the form

Sa da

Co=- - Co —*> D, C,—*> D, C, 0.

Now 2.6.3 showsthat @ € V(Q, f; M) if and only if projdimg, M = co.
This happens if and only if the following complex of k-vector spaces is not
exact

éa =" 6a Ba fe 6a Ba D 6a

Non-exactness of C|, is equivalent to non-exactness of the sequence

Ya

Ya

C.®D. —> T, P, —> T, ® D, where fia = (30 Voa).
Since B2 = 0, the latter property translates into ranky B, < ranky Ker B,;
asranky Ker 8, = 2r — ranky B, thismeansthat ranky 8, < r. Theisomor-
phisms

2u+1

(¢ B g@EZ@@EZ—H—@E

take B, to o (@), so the latest inequality reads ranky o (@) < r.
Letting a range over Q° ~. mQ¢, we obtain the desired description of
V(Q, f; M) asthe zero-set of theideal of r x r minors of the matrix & (x).
|



300 L.L. Avramov, R.-O. Buchweitz

Recdll that the grade of M is the Iength of a maxima Q-sequence
contained in the annihilator anng M; it is denoted grade, M and satisfies
gradey M < projdimg M. If equality holds and M |sf|n|teover Q,then M
|S§:\|d to be a perfect Q-module.

3.3. Theorem. Let Q bealocal ring, f a Q-regular sequence, and R =
Q/(f). If an R-module M is perfect of grade g over Q, then sois M =
Ext?, “(M, R), and

V(Q, £; M) =V(Q, f; M).

Proof. By aclassical isomorphism of Rees, Exty, “(M, R) = Ext(M, Q).
Let E beafinitefreeresolution of M over QWlth E, = Ofor n > g.As

a Q-regular sequence of length g annihilates M, the complex Homg (E, Q)

has cohomology only in degree g, where it is isomorphic to M. Setting

E: = Homg(Eg_n, Q) and 3} = Homqg(dg_ni1, Q), We get for MT a

Q-free resolution

E'= 0 E; B B, s

n

E; 0.

Choose asystem o of higher homotopies for f on E and set

j @
(0)" = Homg (o’ Og—n—2/j|+1° Q): By — Efypjit
forn € Z and 7 € N°. Dualizing the identities satisfied by o, we see that

o*={cY: E*— E*|(0(’)": E} - E} ;1 forne Nand j e N°}
is a system of higher homotopies for f on E*. Fixing an integer u with
2u+1 > g, formthe matrix o*(x) as defined in Theorem 3.2. Writing ¢; for
thet x t unit matrix, we see by adirect computation that o*(X) = wo () Tw,

where

(000 .. 0 0 i,
000.. 0 ¢, O
000 ..46, 0 0
o=\ = .
004 ... 0 0 O
04, 0... 0 0 O
', 0 0 ... 0 0 O

and o (x)" is the transpose of o (x). Thus, theideals of r x r minors of the
matrices o*(x) and o (x) coincide, hence V(Q, f; M") = V(Q, f; M) by
Theorem 3.2. O
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4. Finite Cl-dimension

The theme of this section isthat in certain cases, a‘sufficiently big' gapin
a (co)homology sequence forces the entire sequence to vanish after a point
that can be predicted accurately. We consider aclass of modules, introduced
in[8], that includes the modul es of finite projective dimension over any ring,
cf. 4.5.1, and al modules over |.c.i. rings, cf. 6.2, but is strictly larger, as
shownin[8, (3.2)].

A quasi-deformation (of codimension c¢) of aloca ring R is a diagram
of local homomorphisms R — R <« Q, the first being faithfully flat and
the second surjective with kernel generated by a Q-regular sequence (of
length c).

Let M s 0 be afinite module over anoetherian ring R. If Rislocal, set

Cl-dimgM =

’

o {proj dimg(M ®r R) — proj dimg R R>R<Q lsa}

guasi-deformation

in general, the complete intersection (or, Cl-)dimension of M over R is
defined by

Cl-dimg M = sup{Cl-dimg , My, | m € Max(R)} and Cl-dimg0=0.

Many argumentsinvolving finite Cl-dimension hinge upon thefollowing
results.

4.1. Let Rbealocd ring, let M beafinite R-module with Cl-dimg M < oo,
and let R - R <« Q isaquasi-deformation of codimension ¢ such that
the module M’ = M ®g R’ hasfinite projective dimension over Q.

4.1.1. For each R-module N there are isomorphisms of R'-modules
Exth(M, N) s R = ExtL(M',N®gR) for neZ

and thus vr( ExtR(M, N)) = v ( ExtR (M’, N ®r R)).

4.1.2. If N isafinite R-module, then Proposition 1.3 and Corollary 2.7
yield

Xr(M, N) =cxpg (M, N®@r R) <cxg M =cxg M <cC.

4.1.3. Thereisaquasi-deformation R — R <« Q of codimension cxg M,
with proj dimg M” < oo, andring Q with algebraically closed residuefield,
cf. [8, (5.10)].
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414. Let F be aminima free resolution of M; the quasi-deformation
above can be chosen so that the complex F' = F ®g R admitsachain map
0: F' — F' of degree —2 with 9(F/,,,) = F/, for someinteger s > 0 and
dln> s, cf.[8,(7.2.2)].

4.1.5. The Ausander-Buchsbaum Equality is extended in [8, (1.4)] to:
Cl-dimg M = depth R — depth M .

First we establish a self-test for finite projective dimension. It vastly
generalizes aresult of Audander, Ding, and Solberg [4, (1.8)], whichisthe
casei = 1.

4.2. Theorem. Afinite module M of finite Cl-dimension over a noetherian
ring R has finite projective dimension if (and only if) Ext2 (M, M) = 0 for
somei > 1.

Proof. It suffices to prove that projdimg M, < Cl-dimg_ M, for each
m € Max(R), so we may assume that R islocal with maximal ideal m.

Let F' be aminimal free resolution of M, and choose by 4.1.4 a quasi-
deformation R - R <« Q andachainmap ¢: F' — F of degree —2 on
F' = F ®g R such that 9(F/,,) = F, for for some integer s > 0 and all
n > s. Since

H_z Homg (F', F') = H_5 Homg(F', F) g R
= Ext3(M, M) ®: R =0

thei’thiterate »' : F' — F’isnull-homotopic, so thereisahomomorphism
of graded modules A.: F' — F" of degree (—2i + 1) with &' = 91 + Ad. If
n > s, then

< o (Foyz) +29(Fha)

< 8(Fr/1+1) + )‘(mFr/1+2i—1) < mF,

0 F, = F, ®r R vanishes by Nakayama's Lemma, and hence F, = 0.
Thus, M has finite projective dimension, so proj dimg M = Cl-dimg M by
4.15. O

In Theorem 4.2 the vanishing condition cannot be moved, in any com-
plexity, from even to odd Ext’s, and the conclusion failsif Ext’'sare replaced
by Tor’s.
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4.3. Example. Let Q = K[[uy,...,Uc, X1, ..., Xc]] be aring of formal
power series in 2c indeterminates over a field k, fix an integer b with
O0<b=<c andset

_ Q ad S= Q -
(U]_Xl, e uCXC) (ula DRI Ub, Xb-‘rlub-l-l? RN} XCuC)

For b = ¢ = 1 afreeresolution of S= k[[x;]] over Risgiven by

uy

F=... R R R R R 0.
Fori > 1 the homology of the complexes Homg(F', S and F' ®g Syields

Ex2 1S9 =Tok(S9=0 and Extd(S9=Tok (S =k.

In general, Proposition 1.2 shows that Ext,(S S is the homology of
the KOSZU' Complex on {X].Xl’ .. XbXb? Xb+1’ ] XC} C S[Xl L} XC]
and Exti(S K) is the homology of the oneon {0,...,0, xps1,..., xc} <
Klx1, ..., xcl, hence

X1 ui X1 uy

EXti(S 9 = SIx1, -, Xol ;
(X1X15 - -+ » XoXb)

Exti(S k) = Kixa. ... xo] ®k Af(K).

These isomorphisms yield, respectively, Ext¥4(S S) = 0 and cxg S= b.

We now turn to vanishing results that are most succinctly stated interms
of stable (co)homology for modules of finite G-dimension. We review the
basics.

4.4. Let M be afinite module over anoetherian ring R.

4.4.1. A complete resolution of an R-module M is a complex T of finite
projective R-modules, such that H,(T") = 0 = H"(T™) for dl n € Z, and
T., = F, for some projective resolution F' of M and some integer r. It
iswell known that if M has complete resolutions, then any two of them are
homotopy equivalent, cf. e.g. [13], or [15, (2.4)] for a published treatment.
In particular, the modules

Ext%(M, N) = H"Homg(T, N) and TorR(M, N) = H,(T ®& N)

are well defined; we refer to them as stable (co)homology modules.

4.4.2. If T isacomplete resolution of M, then clearly for each i e Z the
shifted complex T'[—i]isacompleteresolution of Q' T = Coker (9 ( c T

— T;), hence

i+1-

Exth(M, N) = EXtT (T, N) and TorR(M, N) = TorR ;(Q'T, N).
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4.4.3. If M # 0, then its G-dimension is the shortest length of aresolution
of M by modules G with G = G** and Ext}(G, R) = 0 = Ext}(G*, R)
for al n > O; it is denoted G-dimg M.

By abasic result of Auslander and Bridger [3, (4.20)] and Goto [19],
a noetherian ring R is Gorenstein if and only if each finite module M
has G-dimg M < oc.

4.4.4. Themodule M hasacompleteresolutionif andonly if G-dimg M < oc.

If G-dmrM = r < oo, then choose a resolution F' of M by finite
projective R-modules, set G = Coker (3F ;: Fry1 — Fr), and let G be
a resolution of G* by finite projective R-modules with augmentation y .
Define acomplex T' through

oF forn>r;
F forn>r; n ’
T,={" = o =1y*Ba  forn=r;

* .

Grogn forn<r: (3¢,)" forn<r,
wherea: F, — G and 8: G — G** are the canonical maps. Clearly, T is
acomplex of finite projective R-modules. The exact sequence of complexes
0— G*[r—1]— T — F; — 0, showsthat H,(T) = 0for n > r, yields
an exact sequence

0 — H,(T) c *

G* —— H_1(T) —— 0

and isomorphisms Hn(T') = Ext 1 ™"(G, R forn <r — 1.

By [3, (3.15)] themodule G has G-dimension 0, so 8 is an isomorphism
and Extr(G, R) = 0fori > 0, hence Hy(T') = Ofor dl n € Z. The dualized
exact sequence of complexes now shows that H,(T™) is isomorphic to
Hh(G[1—-r]) =0forn > 1—r, toKer(8*) forn = 1 —r, to Coker(8*)
for n = —r, and to Hy((F'51)*) = Extg ' (G*, R) = 0for n < —r. Thus,
Hn(T*) = 0foradl n € Z.

Conversely, if M has a complete resolution, then G-dimg M < oo due
to:

4.45. If T isacomplete resolution, then G-dimg Q'T = O for eachi € Z.

It clearly suffices to deal with G = QOT". Since T, is a projective
resolution of G, applying Homg( , R) to the exact sequence of complexes
0> T o— T — Tso — 0yields Ext}(G,R) = 0 for n > 0, and
exhibits (T .o)*[—1] as aprojective resolution of G*. Dualizing once again
we recover the original sequence, which shows that Ext}(G*, R) = 0 for
n > 0 and that the biduaity map G — G** isbijective.

4.4.6. Theconstructionin4.4.4showsthat forn > r thereareisomorphisms

Exth(M, N) = Ext,(M,N)  and  TorR(M, N) = TorR(M, N).
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4.4.7. Assume that G-dimg M = 0. If T' is the complete resolution from
4.4.4, then Q°T = M and T*[—1] is acomplete resolution of M*, hence

TorR(M, N) = Extz" 1(M*, N)
for al n € Z, due to the canonical isomorphism T'®g N = Homg(T™, N).

Cl-dimension iscompared to other homologica dimensionsin[8, (1.4)].
4.5. Let M be afinite module over a noetherian ring R.

4.5.1. There areinequalities G-dimg M < CI-dimg M < proj dimg M, and
equalities hold to the left of any finite dimension, cf. [8, (1.4)].

452 If0—-> M — F_1 — --- - Fop — M — 0isan exact sequence of
finite projective R-modules F;, then Cl-dimg M’ = max{Cl-dimg M — n, 0}
by [8, (1.9)].

4.6. Proposition. Any finite module M of finite Cl-dimension has a complete
resolution. Each complete resolution T" of M has Cl-dimg(Q"T") = 0 for all
ne Z.

Proof. Thefirst assertionfollowsfrom4.5.1 and 4.4.4. For the second it suffices
to note that M and Q"T" have a common syzygy, and apply 4.5.2. O

To any finite R-module M over a noetherian ring R we attach a number
cXr M = sup{cxr,, My |m € Max(R) N Supp(M)} .

In conditions (i) or (iv) of our next vanishing result on cohomology,
the number of consecutive Ext's may not be decreased in generd, cf. [6,
(9.3.7)].

4.7. Theorem. If Risanoetherianring, and M isafinite module of finite Cl -
dimension, then for each R-module N the following conditions are equivalent.

) ExtrF‘{(M, N) = Ofor cxg M + 1 consecutivevaluesof n > Cl-dimg M.
(i) Ext}k(M, N) =0forn> 0.

(iii) Extg(M, N) =Ofor all n > Cl-dimgr M.

(iv) Exth(M, N) = Ofor cxg M 4 1 consecutive values of n.

(v) Ext%(M, N)=0forn 0.

(vi) Ext%(M, N) =O0for aln € Z.
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Proof. To simplify notation, we setr = Cl-dimgr M and ¢ = cxg M.

If m isamaximal ideal of R, then Cl-dimg_, My, <r and cxg, M, < c,
WhileEXt], (Mg, Nip) = EXR(M, N) g and EXtE, (Mpy, Niy) = EXUR(M, Ny
hold for eachn € Z. Thus, to provethe theorem we may assumethat Rislocal.
In that case, by 4.1.2 and 4.1.3 we may further assumethat R = Q/(f) where
Qisloca, f isa Q-regular sequence of length ¢ = cxr M, and proj dimg M
isfinite.

Clearly (iiil) = (ii) = (i). Next we establish (i) = (iii):

Let s bethe smallestindex n > r that appearsin ablock of at least (c + 1)
consecutive vanishing Ext} (M, N), and let t < oo be the largest index in that
block. The Cartan-Eilenberg change of rings spectral sequence [14, XV 85]
has

2EP9 = Ext} (M, EXt),(R N)) = Ext§™(M, N).
Computing with the Koszul complex K that resolves R over Q we get

Ext} (R N) = HI Hom(K, N) = Hom(Kq, N) = N@.,

s02EP9 = ExtR(M, N)@ . Thus, 2EP-9 = Ofor s < p <t,s02EP9 = Owhen
s+c < p+q < t,andtheonly possibly non-zeromodulewith p+q = s+c—1
(respectively, p+ q = t + 1) is 2E51 ¢ (respectively, 2E1+1-0). For degree
reasons, no non-trivial differential can enter or exit these modules, hence

Exty (M, N) = 2B 1 = Exti (M, N) ;
Extg(M, N) = 2E"H0 = Extii ' (M, N) .

Using, in turn, the Auslander-Buchsbaum Equality, the invariance of depth
under finite maps, and 4.1.5 we obtain the following equalities

proj dimg M = depth Q — depthg M = depthR+ ¢ — depthg M =T +C.

Ift < co,thent+1> s+c+1 > r+c+2 > projdimg M, soExt (M, N) =
Exttgl(M, N) = 0, contrary to the maximality of t; thus,t = co.If s> r + 1,
thens+c—1 > r+c = projdimg M, so Extgf**(M, N) = 0, hence

Ext?(l(M, N) = O; this contradictsthe minimality of s, sos=r + 1.

The implications (vi) — (v) = (iv) are clear. The isomorphisms
in 4.4.6 yield (i) = (iv) and (vi) = (ii). To finish the proof, we show
(iv) = (vi): N

Fix an integer n. By hypothesis, thereis an integer s such that Extiz;(M, N)
=0fors<i <s+c Since G-dimgM = r by 4.4.3, the module M has
acompleteresolution 7" by 4.4.4. Choosing aninteger u > — min{n, s},setL =
QUT and note that Cl-dimgr L = 0 by Proposition 4.5.2. The isomorphisms
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Exth(L, N) = ExtL (M, N) of 4.4.2 show that ExtL (L, N) vanishesfor c+ 1
consecutivevaluesof j > 0. ASExth(L, N) = Exth(L, N) for j > Oby 4.4.6,
the already proved implication (i) — (iii) shows that Exth(L, N) = 0 for
j > 0,in particular EXtL(M, N) = Ext:™(L, N) = 0. Asn was arbitrary, we
are done. O

The preceding theorem iscomplemented by the following non-vanishing
result, due to Arayaand Yoshino [1, (4.2), (4,4)].

4.8. Proposition. Let M, N be finite non-zero modules over a local ring R
with Extg(M,N)=0for n>> 0. If Cl-dimg M =r < o0, then Exti(M,N) #0,
and

proj dimg M = sup{n € N | Ext}(M, M) # 0} .

Proof. As in the preceding proof, we may assume that R = Q/(f) where
Q isalocal ring with maximal ideal n, f is a Q-regular sequence of length
¢ = cXr M, andproj dimg M finite. Inthat proof, theargumentfor (i) = (iii)
showed that proj dimg M = r +cand ExtrR(M,N)%CWithC:ExtrQJFC(M,N).
If EZisaminimal free resolution of M over Q, then C is the cokernel of the
homomorphism

Hom(dE,,, N): Homg(Ecir—1, N) —— Homgq(Ecir, N)

whose imageisin n Homg(Ecyr, N); when N isfinite C # 0 by Nakayama.
Set p = projdimgM and q = sup{n € N | Extx(M, M) # O} If pis

infinite, then so is q by Theorem 4.2. If p isfinite, then p =r by 4.5.1, and

g = r by the already established part of the proposition. O

The equivalence of the first three conditions below dightly extends
aresult of Jorgensen [24, (2.1)], cf. [6, (9.3.6)] for a concise proof. Again,
thenumber of consecutive vanishing Tor’sin (i) or (iv) may not be decreased,
cf. [24, (4.1)].

4.9. Theorem. If Risanoetherianring, and M isafinite module of finite Cl -
dimension, then for each R-module N the following conditions are equivalent.

(i) TorR(M, N) = Ofor cxg M + 1 consecutivevaluesof n > Cl-dimg M.
(i) TorX(M, N) = 0forn>> 0.

(iii) TorX(M, N) = Ofor all n > CI-dimg M.

(iv) TarrFf(M, N) = O for cxgr M + 1 consecutive values of n.

(v) TorR(M, N) = 0for n « 0.

(vi) TorR(M, N) =O0forall n € Z.

Proof. A transposition of the proof of Theorem 4.7 yields the desired result. O
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5. Completeintersections

By definition, alocal ring Rwith maximal ideal m is acompleteintersection
if in some Cohen pr@entanon of its m-adic completion R as aresidue ring
of a complete regular local ring Q, the defining ideal a is generated by
aregular sequence. It is well known that the defining ideal of any Cohen
presentation of R then has this property, cf. 5.10.2, and the least length of
such asequence is equal to codim R.

Theresultsof the preceding section fully apply to compl eteintersections,
dueto

5.1 Let M be afinite R-module. If Risaloca complete intersection, then
proj dimg (M ®r R) < oo for any quasi-deformation R — R <« Q with
regular ring Q, so Cl-dimgr M = depth R— depthg M < depthR < dim R by
4.15.

In this section we attach to any pair of finite modules M, N over aloca
completeintersection Ravariety V;(M, N), derive some of its fundamental
properties, and apply themto provethe results described in theintroduction.

5.2. Let Rbealoca complete intersection with residue field k.
We fix an embedding of k into an algebraic closure, k.
For any pair of finite R-modules M, N we define its support variety by

“(M, N) =V(Q, R: M, N) C (a/na) ®K.

where R = Q/a is a Cohen presentation with a complete regular local
ring Q, and V(Q, R: M, N) isthe variety defined in Remark 2.3.

Varieties of pairs do not depend on the choice of the Cohen presentation,
dueto

5.3. Theorem. They\arietyV(Q, R: M, N) iscontainedin((aﬂnz)/na)@)kF.
Any presentation R = Q’/a’ with a completeregular local ring (Q', v/, k)

P e

defines a k-linear isomorphisma: (a’ Nn'2)/n'a’ = (a N n?)/na, and x @y k
maps V(Q/, R; M, N) bijectively onto V(Q, R: M, N) for all R-modules
M, N.

We recall the construction of avariety Viz(M), givenin [5, §6].

5.4. For any local ring R with residue field k the algebra Exti(k, k) (under
composition products) is the universal enveloping algebra of agraded Lie
algebra*(R), cf. [6, §10] for details of the construction.

If R is acomplete intersection, then 7"(R) = 0 for n > 3, so 7%(R)
is a central Lie subalgebra and ranky 72(R) = codim R. By the Poincaré-
Birkhoff-Witt Theorem for graded Lie algebras the associative subalgebra
P = K72(R)] C Exti(k k) |sapolynom|al ring on variables of degree 2.
When M is afinite R—module Exti(M, K) is afinite module over 2. In [5
(6.2)] the cohomological variety Vi (M) is defined to be the zero-set over k
of the annihilator of Exti(M, k) in
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5.5. Theorem. ThevarietiesV(Q, R; M, k) and V(M) areisomorphic.

In our main result we establish basic properties of support varieties of
pairs, and some new properties of varieties of modules. Theorems | and |
in the introduction are abstracted from the next couple of results.

5.6. Theorem. If (R, m, k) isalocal completeintersection of codimensionc,
and M, N arefinite R-modules, then the following hold.

(1) Vi(M, N)isaconeinkC.

(2) dimV{(M, N) =cxpr(M, N).

(3) VE(M, N) = {0} if and only if Extg(M, N) = 0for n>> 0,
if and only if E’itrF‘{(M, N) =OforalneZ.

(@) dimV&(M, N) < 1if and only if Ext}R(M, N) = Ext% (M, N) for
aln> 0.

(5) VR(M,N) = VE(M', N) if M’ isa syzygy of M and N’ is a syzygy
of N.

6 1f0— M1 —> M2 > M3 — 0and0— N; — N2 - N3 — Oare
exact sequences of finite R-modules, then for {h, i, j} = {1, 2, 3} there
areinclusions

VE(Mh, N) € VE(M;, N) UVE(Mj, N);
5(M, Np) € V&R(M, Nj) UVE(M, N;j).
(7) VEM.N) = U, VE(Mi. N if M=@_; Miand N = B_; N;.
®) V&M, N) = VE(M) NVE(N) = VAN, M).
Q) V&M, M) = VE(M, k) = Vik M) = Vi(M).

(10) \(E(M) = VE(ExtrF‘Q(M, R)) if M is Cohen-Macaulay of codimen-
sionm.

By Part (2) of the theorem, the following relations come from equalities
of varieties and estimates for the dimension of intersection of varieties in
(9) and (8).

5.7. Corollary. If M isafinite modulesover alocal completeintersection R,
then

cXr(M, M) = cxgp M
and for each finite R-module N there are (in)equalities

CXR M + cXR N — ¢ < cxr(M, N) = cxr(N, M) < min{cxr M, cxgr N} .
O
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As another consequence, we get equations for the support variety of
a pair. They encode the asymptotic behavior of Extir(M, N) into finitely
many matrices of systems of higher homotopies o and , defined over the
regular ring Q. These homotopies can be computed using Grayson and
Stillman’s software system Macaulay 2 [18].

5.8. Corollary. Assumethat R = Q/(f) for a regular local ring Q and a
Q-regular sequence f = f1, ..., fc. Let E be afreeresolution of M over Q
with E, = Ofor n > 2u + 1, let F' be a free resolution of N over Q with
Fn=0forn> 2v+1,setr =Y grankg Ez and s = Y |_yranko Fai,
and fix systems of higher homotopies for f, say o on E and T on F,
respectively.

If matrices o (X) and T(X) over K[X1, ..., Xc] are formed from o and T as
in Theorem3.2, then V (M, N) isthe zero-set of theideal I; (o(x)) + Is(T(X)),
where |;(y) denotestheideal generated by thet x t minors of a matrix y.

Proof. By Theorem 3.2 the zero set of I; (5(x)) isVz(M), and that of 15(T(x))
iISVR(N). Thus, thezeroset of I; (T(x)) +Is(T (X)) isequal to VR(M)NVR(N).
By part (8) of Theorem 5.6 the intersection coincides with Vz(M, N). O

We start working on the proof of the theorems with

5.9. Lemma. Let (Q,n, k) and (Q’, v, k) be complete regular local rings,

K

andlet Q' — Q %, Rbe surjective homomorphisms with a = Ker p and
a’ = Ker(px).

(1) The induced k-linear map x: (¢/ N 1w 2)/n'd — (a N nd)/na is
bijective.
(2) rankg(a Nn?)/na > codimR.

(3) equality holdsin (2) if and only if a is generated by a regular sequence.

Proof. (1) Thehomomorphism « definesacommutativediagram of Q’-modules

0 b o a 0
I A
0 b nw n 0

where the rows are exact and b = Ker«. Tensoring it over Q" with k we get
acommutative diagram of k-vector spaces with exact rows and columns:
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0 0
{ {
(@Nn'?)/nd —— m2na)/na

{ {
b/nWp —— a/n'd —_— a/na —— 0

H | !
0 —— b/nb —— n'/n'? —— am? —— 0

| |

m/m? — m/m?
{ {
0 0

Indeed, the only point at stakeis the injectivity of «: it is due to the fact that b,
being the kernel of a surjection of regular local rings, is generated by part
of aregular system of parameters for Q. The Snake Lemma shows that ¥ is
bijective.

(2) Let m bethemaximal ideal of R. Theinequality comesfromtherelations

vr(M) — ranky(a N n?)/na = vo(n) — vo(a) = dimQ — vo(a)
> dim Q — height(a) = dimR = dimR

due, in turn, to the right hand column, the regularity of Q, the Krull Principal
Ideal Theorem, the catenarity of Q, and the invariance of dimension under
completion.

(3) The same chain shows that ranky(a N n?) /na = codim Rif and only if
height(a) = vg(a). By the Cohen-Macaulay Theorem, the last equality holds
if and only if a can be generated by a Q-regular sequence. O

The preceding lemmaiis best used in conjunction with a construction of
Grothendieck [20] that compares different Cohen presentations.

5.10. Let(Q, n,k)and (Q', ', k) becompleteregular local rings, p: Q — R
and p': Q" — R be surjective homomorphisms of rings.

5.10.1. There exists acomplete regular local ring P with surjective homo-

morphisms Q' <— P -5 Q such that p'x’ = p«.

Indeed, the fiber product Q" xz Q is a complete local ring, cf. [20,
(19.3.2.1)], so take a Cohen presentation of Q' xg Q a homomorphic
image of a regular local ring P and get the desired homomorphisms as
compositions of canonical projections.
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As k isasurjection of regular local rings, any minimal system of gen-
erators of Kerx can be extended to a minimal system of generators of the
maximal ideal of P, and similarly for Ker«’. In view of Lemma 5.9.3, we
get

5.10.2. Theidea a = Ker p isgenerated by aregular sequence if and only
if theidea o' = Ker p’ isgenerated by aregular sequence.

Proof of Theorem 5.5. Let M be a finite module over a local complete in-
tersection R, and let R = Q/a be a Cohen presentatlon The R-flatness of R
yields a canonical isomorphisms Ext*A(I\/I K) = Exti(M, k) compatible with

an isomorphism of graded algebras Ext (k K) = Exti(K, k) that maps n*(ﬁ)
to 7*(R). It follows that V*A(M) = V’E(M) cf. 5.4, so we may assume that

R=R= Q/aand M =M.

Choose a regular sequence f generating a by first picking { f1, ..., fp} to
map onto abasis of a/(a N n?) = (a + n?)/n?, then extending it by elements
foi1, ..., fc € ann? to a minimal set of generators of a. Also, choose
aminimal set of generators f' = {f[,..., f/} of n’ with fj’ = fjforl <
j < b. Since Q is regular, f' is a Q-regular sequence, so Proposition 1.2
yields an isomorphism Exti(k, k) = R ®k /\(K°~P) of graded modules over
R =8QQrk =K[x1,..., Xc] where 4§ is the ring of cohomology operators
defined by f and R = R/(x1, ..., Xb)-

Let&: R — Exti(k, k) be the homomorphism of graded k-algebras from
1.1.2. The preceding computatlon yieldsKeré&e = (x1, . .. 2 Xxb)- By [9, (5.2)]
each &c(xj) € Ext2 ~(k, k) annihilates the subspace of Torz(k k) spanned by
products of elements in Torl (k, k); this property characterizes the elements
of 72(R), cf. [6, 810. 2] S0 &k induces an injective homomorphism of graded
k-algebras € : R — . Both are generated in degree two. Also, ranky R? =
c—b=codmR by Lemma 5.9.2 and ranky $2 = rankk 72(R) = codim R
by [6, (10.2.1) and (7.5.1)], so £ is bijective. By 1.1.2 the action of R on & =
Exti(M, k) factorsthrough &, henceit inducesan isomorphism R/ anng & =
P/anng &, 0VE(M) =V(Q, f; M). O

We recall a change of rings theorem of Nagata[29, (27.3)], cf. dso [6,
(3.35.1)].

5.11. If (Q/,w) isaloca ring, g ais non-zero-divisor in n’ ~. n’2, and
M # 0 is afinite Q'-module with g'M = 0, then proj dimy (M) = 1 +
proj dimgy ) (M).

The next result isacounterpart in conomology of the theorem of Huneke
and Wiegand [22, (1.9)] that the vanishing of two consecutive Tor’s over
a local hypersurface implies that one of the modules involved has finite
projective dimension.
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5.12. Proposition. If M, N are finite modules over a local hypersurface R,
and

ExtR(M, N) = Extk(M, N) =0
for somen > dim R, then proj dimg M < oo or proj dimg N < oo.

Proof. By 4.7 the hypothesisimpliesthat Extg(M, N) = Oforal n > dimR.
Replacing M by a high enough syzygy, we may assume that Extiz(M, N) = 0
for n > 0. Completing if necessary, we may further assume thaI R= Q/(f)
for aregular local ring Q and a non-zero-divisor f. If both proj dimg M and
inj dimg N wereinfinite, then by Corollary 1.4 and Proposition 1.5.3wewould
have

1> pxgHOomr(M, N) =cXp M + pxg N > 1+41.

Thisisabsurd, so (at |east) one homological dimensionisfinite. Hypersurfaces
being Gorenstein rings, inj dimg N isfiniteif and only if projdimg Nis. O

Proof of Theorem 5.3. Clearly, we may replace R by its completion, and so
write M and N instead of M and N. By 5.10.1 we may assume that there is
a surjective homomorphism «: Q" — Q of regular local rings. Any minimal
system of generators g of Ker « can be extended to aregular system of param-
etersfor Q, sothering Q’/(g’) isregular for each subset g’ of g. Inducing on
the cardinality of g, we may assumethat Q = Q’/(¢) for someg’ e n’ ~ 1’2,
Applying 2.2 to Q" we may further assume that the common residue field k of
Q/, Q, and Risalgebraically closed.

If fe a/na is not contained |n the subspace (a N n?)/na, and f € n
is alifting of f ton, then f ¢ n? It follows that Q/(f) is regular, hence
ExtQ/(f)(M N) =0forn>» 0,s0 f ¢ V(Q, f; M, N) by Theorem 2.5.

Thus, V(Q, f; M, N) C (a N'n?)/na.

Lemma 5.9.1 yields a k-linear isomorphism «x: (¢ N w'2)/n'a’ =
(ann?)/na. Wewant to provethat T’ € (¢’ Nn’2)/n'a’ isinV(Q’, f'; M, N)
if andonly if T =%(T") € (ann?)/naisinV(Q, f; M, N).If f' e a’ Nn’?
is a lifting of T/, then f = «(f’) € a N n?isalifting of T, so by Theo-
rem 2.5 it suffices to prove that Ext” ,/(f,)(M, N) = Ofor n > 0if and only if

Extr(‘g/(f)(M, N) = O0forn > 0.

The sequence f/, g’ is Q'-regular, sotheimage g’ of g in Q" = Q'/(f/)
is anon-zero-divisor. The change of rings spectral sequence with second page
2EP9 = BXtQ, gy (M, X, (Q7/(g"), N)) = Extd[%(M, N)

has 2EP9 = O unless q # 0, 1, o it degenerates into a long exact sequence.
Due to the isomorphisms Q”/(g”) = Q'/(f’,d) = Q/(f) it can be written
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in theform
. — EXtQ/(f)(M N) —— ExtQ,/(f,)(M N)
— EXtQ/(f)(M N) ——
Thus, if Extr(‘g/(f)(M N) = Oforn > 0, then Ext" ,/(f,)(M, N) = Oforn > 0.

Conversely, if ExtQ,/(f,)(M, N) = 0 for n > 0, then Proposition 5.12
shows that over the hypersurface Q” = Q’/(f’) one of the modules M or N
has finite projective dimension. Since f' € n’? and g’ € v’ ~ n’2, we have
g e n’ ~ n"?, wheren” = nQ”. We concludefrom 5.11 that M or N hasfinite
projective dimension over Q'/(f’, g) = Q/(f), so ExtQ/(f)(M, N) = O for
n > 0, asdesired. 0

Proof of Theorem 5.6. By the definition of support varietiesin 5.2, we may
assume that R is complete. We fix a Cohen presentation R = Q/(f) with
regular local ring Q and regular sequence f = fq,..., f¢; by Lemma 2.2,
Theorem 5.5 and Theorem 5.3 we may assume that k is algebraically closed.
In (f)/n(f) = Kk we set

rR(M,N) =V(Q, f;M,N)  and r(M)=V(Q, fi M. k).

(1) wasnoted in 2.1.
(2) dimV&(M, N) = cxr(M, N) by Proposition 2.4.2.

(3) Support varieties are homogeneous by (1), so Vi(M, N) = {0} if
and only if dmV&(M, N) = 0. By (2) the latter cond|t|on is equivalent
to Extg(M N) = 0 for n > 0. Theorem 4.7 recasts the last condition as

Ext”(M N) =0forn e Z.

(4) If ExtR(M, N) = Ext®2(M, N) for n > 0, then we can find a real
number ¢ such that vr( Ext}(M, N)) < cforall n € Z, socxg(M, N) < 1.

Conversely, if cxr(M, N) <1, thenthegraded module & = Ext}, (M, N) ®rk
hasdimension < 1 over R = 8 ®r k. Thus, we may find allnear combination
X = aix1+---+acxc and aninteger i suchthatthemapX®Rk 8“ gh+2
is bijective for h > i. By Nakayama’'s Lemma the map x" ExtR(M N) —

ExtrF‘jZ”(M, N) is surjective for n > 0. Choosing j so that the sequence of
graded $-submodules

Kery C--- C Kerx" C Ker y™2 C ... C Exti(M, N)

stabilizesfor n > j, we see that the R-linear homomorphism y : Exth r(M, N)
— ExtrF‘;rZ(M, N) isanisomorphismforh > i + 2j.
(5) Let M’, N’ be syzygies of M, N. As Exto(R, M) = 0 fori > 0

and Ext'R(M R) = Ofori > dimR, Proposition 2.4.3 yields V;(M, N) =
V(M N).
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(M) 1fM = Pi_; Mi and N = @j_; Nj, then we have an isomorphism
Exti(M, N) = @Ext (Mi, N

of graded R[x1, ..., xc]-modules, henceV rR(M, N) = U;. jVE(Mi, Nj).
(8) By 2.6.4 and Corollary 2.7 we have V{(M, N) € VL(M) N VE(N).
Assuming that equality fails, we may choose f € V&(M) N VE(N) C

(F)/n(f)with T ¢ V& R(M, N).If f e nisalifting of f, then proj d|mQ/(f) M
and proj dimg () N areboth infinite by 2.6.3, while Ext{ o/(r)(M, N) = Ofor
n > 0 by Theorem 2.5. Thisisruled out by Proposition 5.12, so we conclude
that V{(M, N) = VR(M) N VR(N). Interchanging M and N, we see that
(N, M) = VR(N) N VE(M) = V(M) N VE(N).
(9) AsVi(k) = K%, (8) yields V{(M, M) = VR(M, K = Vi M) =
VR(M).
©)1f0 - M; — My, — M3 — 0isan exact sequence of R-modules,

then by 1.1.2 the induced cohomology exact sequence of R-modulesyields an
exact sequence

Extg(M3, k) —> Extg(M2, k) —> Exti(M1, k) —
Extk(Ms, K)[1]— Extk (M2, K)[1]
of graded R-modules, where brackets denote degree shifts. It follows that
R(Mh, k) € VE(M;, K) UVK(M}, K)
for {h,i, j} = {1, 2, 3}. Inview of (8), we then get
V&(Mp, N) = VR(Mp) NVR(N)
C (VR(M) UVR(M))) NVR(N)
= (VR(Mi) NVR(N)) U (VM) NVR(N))
=VR(Mi, N) UVE(Mj, N).

Exact sequences0 — N1 — N2 — N3 — 0 are treated by a similar

argument.
(10) If M is Cohen-Macaulay of codimension m, then it is a perfect Q-
module of gradeg = c+m, SO V{(M) = VE(ExtrF’g(M, R)) by Theorem 3.3.
|

6. Vanishing of cohomology

A ring R is locally complete intersection, or I.c.i., if the loca ring Ry, is
acomplete intersection for each maximal ideal m of R.

As |.c.i. rings are Gorenstein, each finite R-module has a complete
resolution by 4.4.3 and 4.4.4. In particular, stable (co)homology is defined
for any pair of finite modules. Its vanishing is described in the following
result.
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6.1. Theorem. For finite modules M, N over a locally complete intersection
ring R the following conditions are equivalent.

(i) Extk(M,N)=O0foralneZ.
(i) Ext%(N, M) =O0foraln e Z.
(iii) TorR(M, N) = Ofor all n € Z.
(iv) ng(Mm) N ng(Nm) = {0} for all m € Max(R) .

Proof. The conditions are local, so we may assumethat Risalocal complete
intersection with maximal ideal m. The equivalence of (i) or (ii) with (iv) is
then established by parts (3) and (8) of Theorem 5.6, so it remainsto deal with
Tor’s.

Chooseasyzygy M’ of M that isalso asyzygy inacompleteresolution of M
and notethat Cl-dimg M’ = O by 4.4.5and 4.5.1. By 4.4.2 and 4.4.7 condition
(iii) isequivalentto E?trF‘{(M/*, N) = Oforall n € Z. By theaready established
equivalence of (i) and (iv) this condition is tantamount to Vi5(M™*) N Vi (N)
= {0}. Parts (10) and (5) of Theorem 5.6 translate the last condition into (iv). O

Due to 4.4.6, the preceding result contains Theorem IV from the intro-
duction.

To deduce Theorem 111, we use the fact that the I.c.i. property of Ris
characterized by the finiteness of Cl-dimension for all finite R-modules.
For local rings this appears in [8]. The following globa version is due to
LianaSega.

6.2. Proposition. A noetherianring Rislocally completeintersection if and
only if Cl-dimgr M isfinite for each finite R-module M.

Proof. Recall from Sect. 4that Cl-dimgrM = sup{Cl-dimg , M,|m € Max(R)}.

If each finite R-module has finite Cl-dimension, then Cl-dimr,, Rn/mRn
< oo for each maximal ideal m of R, so R, isaloca complete intersection
by [8, (1.3)].

Conversely, if Risl.c.i., thenitis Gorenstein, so G-dimgr M < oo by 4.4.3.
On the other hand, [3, (4.15)] yields G-dimr M = sup{G-dimr, M, |m €
Max(R)}. AsCl-dimr, My, = G-dimg_, My, by 4.5.1, we seethat Cl-dimr M
isfinite. O

Proof of Theoremlll. Let R be alocally complete intersection ring, set d =

dim Rand ¢ = sup{codim R, | m € Max(R)}, and let M be afinite R-module.

For eachm € Max(R), 4.1.2yieldscxr, My < codimRy,, socxg M < c.

Also, Cl-dimg,, My, = depth Ry, — depthg My, < dimRy by 4.1.5, so
Cl-dmg M < d.

Putting together Theorems4.7, 4.9, and 6.1 we get the desired equivalences.

O
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6.3. Remark. For acommutative noetherian ring R, consider the properties
(ee) if Ext}(M, N) = 0forn>> 0, then Ext}(N, M) = 0for n>> 0;
(et) if Extk(M, N) = 0for n > 0, then TorR(M, N) = 0for n > 0;
(te) if TorR(M, N) = 0 for n > 0, then Ext®(M, N) = 0for n > 0,

where M, N range over al finite R-modules.
Denoting (Ici) the condition that R islocally complete intersection, and
(gor) the one that it is Gorenstein, we have a diagram of implications

(ee)
2 (4

(Ici) 2= (et) & (te) (gor).

3 ©)

(te)

Indeed, (1) is a consequence of Theorem 6.1, via 4.4.6. The isomor-
phisms TorX(M, N) = TorR(N, M) yield (2). To see (4) and (5), note that
for each m € Max(R) and all n € Z we have Extgm(Rm/mRm, Ryn) =
Ext}(R/m, R)y; the latter module vanishes for n >> 0, and so R is Goren-
stein, if either (ee) or (te) holds, Since Ext (R, R/m)y, = 0= TorR(R/m, R,
forn > 0.

Forty years of research in commutative algebra have not produced aclass
of ringsintermediate between locally compl ete intersections and Gorenstein
rings, hence

6.4. Problem. Is any one of the implications in the diagram above re-
versible?

Acknowledgements. We thank Dan Grayson, Craig Huneke, Srikanth lyengar, Dave Jor-
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