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Abstract—Designing a brain computer interface (BCI) system
one can choose from a variety of features that may be useful for
classifying brain activity during a mental task. For the special case
of classifying electroencephalogram (EEG) signals we propose the
usage of the state of the art feature selection algorithms Recursive
Feature Elimination [3] and Zero-Norm Optimization [13] which
are based on the training of support vector machines (SVM) [11].
These algorithms can provide more accurate solutions than stan-
dard filter methods for feature selection [14].

We adapt the methods for the purpose of selecting EEG chan-
nels. For a motor imagery paradigm we show that the number of
used channels can be reduced significantly without increasing the
classification error. The resulting best channels agree well with the
expected underlying cortical activity patterns during the mental
tasks.

Furthermore we show how time dependent task specific infor-
mation can be visualized.

Index Terms—Brain computer interface (BCI), channel rele-
vance, channel selection, electroencephalography (EEG), feature
relevance, feature selection, Recursive Feature Elimination (RFE),
support vector machine (SVM), Zero Norm Optimization (l0-Opt).

I. INTRODUCTION

MOST brain computer interfaces (BCIs) make use of
mental tasks that lead to distinguishable electroen-

cephalogram (EEG) signals of two or more classes. For some
tasks the relevant recording positions are known, especially
when the tasks comprise motor imagery, e.g., the imagination
of limb movements, or the overall activity of large parts of the
cortex that occurs during intentions or states of preparation and
relaxation.

For the development of new paradigms whose neural corre-
lates are not known in such detail, finding optimal recording
positions for use in BCIs is challenging. New paradigms can be-
come necessary when motor cortex areas show lesions, for the
increase of the information rate of BCI systems or for robust
multi-class BCIs. If good recording positions are not known, a
simple approach is to use data from as many as possible EEG
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Fig. 1. The position of 39 EEG electrodes used for data acquisition are
marked in solid black circles. The two referencing electrodes are marked in
dotted circles.

electrodes for signal classification. The drawback of this ap-
proach is that the extend to which feature selection and clas-
sification algorithms overfit to noise increases with the number
of task-irrelevant features, especially when the ratio of training
points and number of features is small. In addition, it is difficult
to understand which part of the brain generates the class rele-
vant activity.

We show that the selection of recording positions can be done
robustly in the absence of prior knowledge about the spatial dis-
tribution of brain activity of a mental task. Specifically we adapt
the state of the art feature selection methods Zero-Norm Opti-
mization (l0-Opt) and Recursive Feature Elimination (RFE) to
the problem of channel selection and demonstrate the usefulness
of these methods on the well known paradigm of motor imagery.

The paper is structured as follows: Section II contains the
experimental setup, the task, and the basic data preprocessing. In
Section III, the feature selection methods and the classification
algorithm are described. Results are given in Section IV and the
final section concludes.

II. DATA ACQUISITION

A. Experimental Setup and Mental Task

We recorded EEG signals from eight untrained right handed
male subjects using 39 silver chloride electrodes (see Fig. 1).
The reference electrodes were positioned at TP9 and TP10. The
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two electrodes Fp2 and 1 cm lateral of the right eye (EOG) were
used to record possible EOG artifacts and eye blinks while two
fronto-temporal and two occipital electrodes were positioned to
detect possible muscle activity during the experiment. Before
sampling the data at 256 Hz an analog bandpass filter with cutoff
frequencies 0.1 Hz and 40 Hz was applied.

The subjects were seated in an armchair at 1-m distance in
front of a computer screen. Following the experimental setup
of [6] the subjects were asked to imagine left versus right hand
movements during each trial. With every subject, we recorded
400 trials during one single session. The total length of each
trial was 9 s. Additional intertrial intervals for relaxation varied
randomly between 2 and 4 s. No outlier detection was performed
and no trials were removed during the data processing at any
stage.

Each trial started with a blank screen. A small fixation cross
was displayed in the center of the screen from second 2 to 9. A
cue in the form of a small arrow pointing to the right or left side
was visible for half a second starting with second 3. In order
to avoid event related signals in later processing stages, only
data from seconds 4 to 9 of each trial was considered for further
analysis. Feedback was not provided at any time.

B. Preanalysis

As Pfurtscheller and da Silva have reported [7] that move-
ment related desynchronization of the -rhythm (8–12 Hz) is
not equally strong in subjects and might even fail for various
reasons (e.g., because of too short intertrial intervals that pre-
vent a proper re-synchronization) we performed a preanalysis
in order to identify and exclude subjects that did not show sig-
nificant -activity at all.

For seven of the eight subjects the -band was only slightly
differing from the 8–12 Hz usually given in the EEG literature.
Only one subject showed scarcely any activity in this frequency
range but instead a recognizable movement related desynchro-
nization in the 16–20 Hz band.

Restricted to only the 17 EEG channels that were located over
or close to the motor cortex we calculated the maximum energy
of the -band using the Welch method [12] for each subject.
This feature extraction resulted in one parameter per trial and
channel and explicitly incorporated prior knowledge about the
task.

The eight data sets consisting of the Welch-features were clas-
sified with linear SVMs (see below) including individual model
selection for each subject. Generalization errors were estimated
by tenfold cross validation (CV). As for three subjects the pre-
analysis showed very poor error rates close to chance level their
data sets were excluded from further analysis.

C. Data Preprocessing

For the remaining five subjects the recorded 5 s windows of
each trial resulted in a time series of 1280 sample points per
channel. We fitted an autoregressive (AR) model of order 3 to
the time series1 of all 39 channels using forward backward linear

1For this choice, we compared different model orders. For a given order, we
fitted an AR-model to each EEG sequence. After proper model selection a sup-
port vector machine (SVM) with tenfold CV was trained on the coefficients.
Model order 3 resulted in the best mean CV error.

prediction [5]. The three resulting coefficients per channel and
trial formed the new representation of the data.

The extraction of the features did not explicitly incorporate
prior knowledge although AR models have successfully been
used for motor related tasks (e.g., [6]). However, they are not
directly linked to the -rhythm.

D. Notation

Let denote the number of training vectors (trials) of the data
sets ( for all five data sets) and let denote the data
dimension ( for all five data sets). The training
data for a classifier is denoted as
with labels . For the task used in
this paper denotes imagined left hand movement,
denotes imagined right hand movement. The terms dimension
and feature are used synonymously. For , the set

is obtained from a set by removing the
dimension from every point (canonical projection).

III. FEATURE SELECTION AND CLASSIFICATION METHODS

Feature selection algorithms can be characterized as either
filter or wrapper methods [8]. They select or omit dimensions
of the data depending on a performance measure.

The problem of how to rate the relevance of a feature if non-
linear interactions between features are present is not trivial, es-
pecially since the overall accuracy might not be monotonic in
the number of features used. Some feature selection methods try
to overcome this problem by optimizing the feature selection for
subgroups of fixed sizes (plus-l take-away-r search) or by imple-
menting floating strategies (e.g., floating forward search) [8].
Only few algorithms like, e.g., genetic algorithms can choose
subgroups of arbitrary size during the feature selection process.
They have successfully been used for the selection of spatial
features [10] in BCI applications but are computationally de-
manding.

For the application of EEG channel selection, it is necessary
to treat a certain kind of grouped features homogenously: nu-
merical values belonging to one and the same EEG channel have
to be dealt with in a congeneric way so that a spatial interpre-
tation of the solution becomes possible. We adapted the state
of the art feature selection methods 10-Opt and RFE as well as
the Fisher Correlation to implement these specific requirements.
The first two algorithms are closely related to SVMs.

A. Support Vector Machines (SVMs)

The SVM is a relatively new classification technique devel-
oped by Vapnik [11] which has shown to perform strongly in a
number of real-world problems, including BCI [2]. The central
idea is to separate data from two classes by finding a
weight vector and an offset of a hyperplane

with the largest possible margin,2 which apart from being an
intuitive idea has been shown to provide theoretical guaranties in

2Is X linear separable the margin of a hyperplane is the distance of the hy-
perplane to the closest point x 2 X .
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Fig. 2. Linear SVM. For nonseparable data sets, slack variables � are
introduced. The thick points on the dashed lines are called support vectors
(SVs). The solution for the hyperplane H can be written in terms of the SVs.
For more detail see Section III-A.

terms of generalization ability [11]. One variant of the algorithm
consists of solving the following optimization problem:

(1)

The parameters are called slack variables and ensure that the
problem has a solution in case the data is not linear separable3

(see Fig. 2). The margin is defined as .
In practice, one has to trade-off between a low training error,
e.g., , and a large margin . This trade-off is controlled by
the regularization parameter . Finding a good value for is
part of the model selection procedure. If no prior knowledge is
available has to be estimated from the training data, e.g., by
using CV. The value is also referred to as the ridge. For a
detailed discussion please refer to [9].

B. Fisher Criterion (FC)

The FC determines how strongly a feature is correlated with
the labels [1]. For a set define the
mean and the variance

. The score
of feature is then given by

(2)

with and similarly. The rank of
a channel is simply set to the mean score of the corresponding
features.

C. Zero-Norm Optimization (l0-Opt)

Weston et al. [13] recently suggested to minimize the
zero-norm4 instead of

3Is the data linear separable the slack variables can improve the generalization
ability of the solutions.

4The zero-norm of a vector v is equal to number of nonzero entries of v.

minimizing the -norm or -norm as in standard SVMs [see,
for example (1)]

(3)

The solution of this optimization problem is usually much
sparser than the solution of problem (1). Thus, feature selection
is done implicitly. Unfortunately the problem has shown to
be NP-hard but the authors developed an iterative method to
approximate the solution. In case the solution has less than
the desired number of zero entries, the remaining features
can be ranked according to (as in one iteration step of RFE).

In the original version of the method, the features are multi-
plied with a scaling factor during each iteration. Once a scaling
factor is zero, the corresponding feature is removed. We adapt
this method in the following way: the scaling factors of the fea-
tures corresponding to a channel are substituted by their mean.
Thus, all features of one channel are either removed completely
(the channel is removed) or all features remain. As in the case
of SVM and RFE, the parameter has to be estimated from the
training data in case prior knowledge is not available.

D. Recursive Feature Elimination (RFE)

This feature selection method was prosed by Guyon et al.
[4] and is based on the concept of margin maximization. The
importance of a dimension is determined by the influence it has
on the margin of a trained SVM. Let be the inverse of the
margin

At each iteration one SVM is trained and the features which
minimize are removed (typ-
ically that is one feature only); this is equivalent to removing
the dimensions that correspond to the smallest . We adapt
this method for channel selection in the following way: Let

denote the features from channel . Similar
to the reformulation of the FC and the 10-Opt, we define for
each channel the score . At each it-
eration step we remove the channel with the lowest score. The
parameter has to be estimated from the training data, if no
prior knowledge is available.

For the remainder of the paper we refer to the adapted feature
selection methods as channel selection methods. Furthermore,
we will also refer to the adapted RFE as Recursive Channel
Elimination.

E. Generalization Error Estimation

For model selection purposes we estimated the generalization
error of classifiers via tenfold CV.

If the generalization error of a channel selection method had
to be estimated, a somewhat more elaborated procedure was
used. An illustration of this procedure is given in Fig. 3.
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Fig. 3. Illustration of the procedure for channel selection and error estimation
using CV.

The whole data set is split up into 10 folds (F1 to F10) as for
usual CV. In each fold , the channel selection (CS in Fig. 3) is
performed based on the train set of only, leading to a specific
ranking of the 39 EEG channels. For each fold , 39 classifiers

, are trained as follows: is trained on the
best5 channels, respectively, of the train set of and tested on

the corresponding channels of the test set of . For each fold,
this results in 39 test errors ( to ).

During the last step, the corresponding test errors are aver-
aged over all folds. This leads to an estimate of the generaliza-
tion error for every number of selected channels.

IV. RESULTS

A. Channel Selection

We applied the three channel selection methods FC, RFE, and
10-Opt introduced in Section III to the five data sets. As the ex-
perimental paradigm is well known, we could examine the re-
sults concerning their physiological plausibility. Therefore, we
investigated whether the best ranked channels are those situated
over or close to motor areas. Furthermore we analyzed if the
number of channels can be reduced without a loss of accuracy
in terms of CV error.

5In this context, best means according to the calculated ranking of that fold.

Fig. 4. Comparison of the three channel selection methods Fisher Score, RFE
and l0-Opt individually for five subjects and averaged over the subjects. Method
RFE allows the strongest reduction of number of channels for all subjects.

Initial to the channel selection and individually for each sub-
ject , the regularization parameter for later SVM trainings
was estimated via tenfold CV from the training data sets.6

The estimation of the generalization error for all 39 stages
of the channel selection process7 was carried out using linear
SVMs as classifiers with parameters previously determined.
Details about the tenfold CV during the estimation procedure
are described in Section III-E and Fig. 3.

The estimation results are depicted in Fig. 4. The first five
plots show the individual generalization error for the five sub-
jects against the different numbers of channels chosen by the
three channel selection methods. The sixth plot in the bottom
right corner shows the generalization error of the three methods
averaged over the five subjects.

6Estimating the parameter for each number of channels in the process of
channel selection might improve the accuracy. However the chance of overfit-
ting increases.

7In fact, methods RFE and l0-Opt perform rather a channel removal than a
channel selection.
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TABLE I
RFE RANKING OF 39 EEG

CHANNELS

The ranking of the 39 EEG channels was calculated by the
RFE method. The 17 channels over or close to motor areas of
the cortex are marked with grey background for all five subjects.
Underlined rank positions mark the estimated minimum of the
RFE error curve for every subject from which on the error rate
increases prominently (see Fig. 4 for the individual error curves)

RFE and 10-Opt proof to be capable of selecting relevant
channels, whereas the FC fails for some subjects. Especially for
small numbers of channels RFE is slightly superior over the FC
and 10-Opt. For larger numbers of channels the performance of
l0-Opt is comparable to RFE.

As can be seen in Fig. 4 it is possible to reduce the number of
EEG channels significantly using the RFE method—for the

Fig. 5. Idealized generalization error curve using a channel selection method
in the presence of irrelevant channels. When removing channels iteratively the
classification error decreases slightly until all irrelevant channels are removed.
Removing more channels results in an increase of error.

investigated experimental paradigm this can be done without a
loss of classification accuracy. For example, using 8 channels
for subject yields the same error as the error obtained using
all channels. On the data set of subject the CV error of 24.5%
can be reduced to 20.75% using 12 channels only.

It is not tractable to test all possible combinations of
channels to find the best combination. In this light, the 17 chan-
nels located over or close to the motor cortex can be considered
a very good solution that is close to the optimal one. For rating
the overall accuracy of the RFE method we, thus, trained a clas-
sifier using these 17 channels. The result averaged over the five
subjects is plotted as a baseline in the last figure. The average
error rate (taken over all subjects) of 24% using 12 channels is
very close to the error of the baseline which is 23%.

Table I contains channel rankings, which are obtained by ap-
plying Recursive Channel Elimination to the data set of each
subject.8 As the RFE method has outperformed CF and l0-Opt,
the rankings in Table I were exclusively calculated by RFE.

To interpret the table it is useful to have a closer look at Fig. 5.
It shows an idealized curve for an estimate of the generalization
error when using a channel or feature selection method. As we
have also seen in the experiments it is possible to reduce the
number of channels without a loss of accuracy. For each subject
we can obtain a heuristic estimate on the number of irrelevant
channels from the generalization error curves in Fig. 4. We un-
derlined one entry in each column of Table I. The row number
of that entry is an estimate for the rank position that divides
task relevant channels from task irrelevant ones. For example,
for subject Fig. 4 shows a local minimum of the RFE gener-
alization error curve at 10 channels. Thus, the best 10 selected
channels can be used without increasing the error estimate.

The positions of the 17 channels over or close to the motor
cortex were marked with a grey background. Except for very
few of them, these channels have a high rank. For four of the
subjects only few other (nonmotor) channels were ranked above
the marked minimum-error positions (see underlined ranks). For

8Please note that in this step CV was not applied.
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Fig. 6. Visualization of task relevant regions for subjects A, B, D and E
(one subject per column) during imagined hand movements. The score for each
channel was obtained by using the RFE method and is based on the full duration
of 5 s. The top row depicts the view from above, the second and third row show
the frontal view and view from the back. Please see also the left column of Fig. 7
for the corresponding mapping of subject C.

subject channels FT9, FT10, and FP2 are relevant according
to the ranking. To verify this observation we

• estimated the classification error using the seventeen
motor channels and compared it to the error using the
motor channels plus FT9, FT10, FP2, and EOG. Indeed
by adding artefact channels the error could be reduced
from 24% to 21%.

• trained an SVM based on these artefact channels only.
The performance was poor: only 0.55% accuracy could
be reached in a tenfold CV SVM training.9

That means that although feedback was not provided this subject
showed task relevant muscle activity. However his performance
was only supported by this muscle activity. The other four sub-
jects did not accompany the left/right tasks with corresponding
muscle movements.10

We conclude that the RFE method was capable of estimating
physiologically meaningful EEG channels for the imagined
left/right hand paradigm.

B. Visualization

The visualization of channel scores can support the analysis
of BCI experiments, reveal activation patterns or channels car-
rying misleading artifacts and ease the choice of channel sub-
groups.

For visualization purposes we assigned a score calculated by
RFE to each channel. The channels below the underlined entries
of Table I receive a score of 0. The ones above the underlined
entries are mapped to the grey value scale according to their
rank. Figs. 6 and 7 show the task relevant channels for the five
subjects. Black regions in both plots mark channels irrelevant
for the classification task whereas white regions mark relevant
ones.

9The ridge was explicitly optimized for this test.
10This observation was supported by visual inspection and frequency analysis

of the raw EEG signal—only very little muscle activity or other forms of artifacts
could be detected.

Fig. 7. Visualization of task relevant regions for subjectC (top, front and back
view). The leftmost column shows the scores obtained by RFE based on the
complete duration of 5 s. The remaining three columns show the development
of the scores over time. The rankings were obtained by applying the RFE method
separately on the three shorter, overlapping time windows.

For all subjects the informative regions are located close to
the motor cortex. Subject shows a clear and symmetrical con-
centration of important channels. The second column of Fig. 6
also shows, that subject has additional important channels
outside the motor area probably resulting from muscle activity
(as discussed above).

As the generalization error was minimal for the data of sub-
ject we performed a closer examination of this data. Columns
2 to 4 of Fig. 7 visualize the spatial distribution of task specific
information over time. We split the training data into three over-
lapping windows each of 2.5-s length. For every time window,
we applied channel selection via RFE separately. It can be ob-
served that the three resulting score patterns vary from window
to window. This could be due to an instable channel selection.
Another reason might be that the task related activation pattern
changes over time. Both issues will be addressed in future ex-
periments.

V. CONCLUSION

We adapted two state of the art feature selection algorithms
RFE and l0-Opt as well as the FC for the special case of EEG
channel selection for BCI applications.

The methods were applied to the paradigm of motor imagery.
We showed that both RFE and l0-Opt are capable of signifi-
cantly reducing the number of channels needed for a robust clas-
sification without an increase of error. In our experiments, the
FC failed to discover satisfying channel rankings.

The reason for the decrease in performance of the l0-Opt
compared to the RFE for smaller numbers of channels might
be that on average the recursive l0-Opt algorithm could not de-
crease the number of chosen channels to less than 25 before the
recursion converged. This means that all the remaining chan-
nels were ranked according to the solution of only one SVM. To
overcome this shortcoming of l0-Opt we suggest the following
procedure: channels are reduced with l0-Opt until the minimum

-norm for is obtained. In a next step, the remaining channels
are ranked using an iterative method like RFE instead of relying
on a single SVM solution. This combination method was not in-
vestigated in this paper but will be subject to future research.
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Although we did not incorporate explicit prior knowledge of
the mental task or its underlying neural substrates, channels that
are well known to be important (from a physiological point of
view) were consistently selected by RFE whereas task irrelevant
channels were disregarded. Furthermore the method revealed
the use of muscular activity for one subject.

We introduced a method to visualize the channel rankings.
This method can also be used to visualize the spatial change of
task relevant information over time.

The results suggest that the RFE method can be used for new
experimental paradigms in future BCI research—especially if
no a priori knowledge about the location of important channels
is available.
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