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Abstract

We investigate the problem of predicting variables of or-

dinal scale. This task is referred to as ordinal regression

and is complementary to the standard machine learning

tasks of classification and metric regression. In contrast

to statistical models we present a distribution independent

formulation of the problem together with uniform bounds

of the risk functional. The approach presented is based on

a mapping from objects to scalar utility values. Similar

to Support Vector methods we derive a new learning al-

gorithm for the task of ordinal regression based on large

margin rank boundaries. We give experimental results for

an information retrieval task: learning the order of doc-

uments w.r.t. an initial query. Experimental results indi-

cate that the presented algorithm outperforms more naive

approaches to ordinal regression such as Support Vector

classification and Support Vector regression in the case of

more than two ranks.

1 Introduction

Problems of ordinal regression arise in many fields, e.g.,

in information retrieval (Herbrich et al. 1998), in econo-

metric models (Tangian and Gruber 1995), and in clas-

sical statistics (McCullagh 1980; Anderson 1984). They

can be related to the standard machine learning paradigm

as follows:

Given an i.i.d. sample S = {(xi, yi)}
ℓ
i=1 ∼ P ℓ

XY and

a set H of mappings h from X to Y , a learning proce-

dure selects one mapping hℓ such that — using a prede-

fined loss l : Y × Y 7→ R — the risk functional R(hℓ) is

minimized. Typically, in machine learning the risk func-

tional R(h) under consideration is the expectation value

of the loss l(y, h(x)), i.e., the loss at each point (x, y)
weighted by its (unknown) probability PXY (x, y). Using

the principle of Empirical Risk Minimization (ERM), one

chooses that function hℓ which minimizes the mean of

the loss Remp(h
ℓ) given the sample S. Two main scenarios

were considered in the past: (i) If Y is a finite unordered

set (nominal scale), the task is referred to as classification.

Since Y is unordered, the 0 − 1 loss, i.e., l0−1(y, ŷ) = 0
iff y = ŷ, and l0−1(y, ŷ) = 1 iff y ̸= ŷ, is adequate to

capture the loss at each point (x, y). (ii) If Y is a metric

space, e.g., the set of real numbers, the task is referred

to as regression estimation. In this case the loss function

can take into account the full metric structure (see Smola

(1998) for a detailed discussion of loss functions for re-

gression).

In ordinal regression, we consider a problem which shares

properties of both classification (i) and metric regression

(ii). Like in (i) Y is a finite set and like in (ii) there exists

an ordering among the elements of Y . A variable of the

above type exhibits an ordinal scale and can be thought of

as the result of coarse measurement of a continuous vari-

able (Anderson 1984). The ordinal scale leads to prob-

lems in defining an appropriate loss function for our task

(see McCullagh 1980). In Section 2 we present a distri-

bution independent model for ordinal regression, which

is based on a loss function that acts on pairs of ranks.

We give explicit uniform convergence bounds for the pro-
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posed loss function and show the relation between ordinal

regression and preference learning.

As an application of the theory we derive an algorithm

for ordinal regression in Section 3 by modeling ranks as

intervals on the real line. Considering pairs of objects,

the task of learning reduces to finding a utility function

that best reflects the preferences induced by the unknown

distribution PXY . The resulting algorithm is similar to

Support Vector Machines (SVM) (Vapnik 1998) and en-

forces large margin rank boundaries. It is easily extended

to non–linear utility functions using the “kernel trick”

(Smola 1998).

Finally, in Section 4 we present learning curves of our

approach in a controlled experiment and in a real–world

experiment on data from information retrieval.

2 A Risk Formulation for Ordinal

Regression

Consider an input space X ⊂ R
n with objects being

represented by feature vectors x = (x1, . . . , xn)
T ∈

R
n, where n denotes the number of features. Further-

more, let us assume that there is an outcome space Y =
{r1, . . . , rq} with ordered ranks rq ≻Y rq−1 ≻Y · · · ≻Y r1.

The symbol ≻Y denotes the ordering between different

ranks and can be interpreted as “is prefered to”. Suppose

that an i.i.d. sample S = {(xi, yi)}
ℓ
i=1 ⊂ X×Y is given.

Let us consider a model space H = {h(·) : X 7→ Y }
of mappings from objects to ranks. Moreover, each such

function h induces an ordering ≻X on the elements of the

input space by the following rule

xi ≻X xj ⇔ h(xi)≻Y h(xj) . (1)

A distribution independent model of ordinal regression

has to single out that function h∗

pref
which induces the or-

dering of the space X that incurs the smallest number of

inversions on pairs (x1,x2) of objects (for a similar rea-

soning see Sobel 1990; McCullagh 1980). Given a pair

(x1, y1) and (x2, y2) of objects we have to distinguish

between two different outcomes: y1 ≻Y y2 and y2 ≻Y y1.

Thus, the probability of incurred inversion is given by the

following risk functional

Rpref(h) = E [lpref(h(x1), h(x2), y1, y2)] , (2)

with

lpref(ŷ1, ŷ2, y1, y2) =























1 if y1 ≻Y y2
and ¬(ŷ1 ≻Y ŷ2)

1 if y2 ≻Y y1
and ¬(ŷ2 ≻Y ŷ1)

0 else

(3)

The ERM principle recommends to take that mapping hℓ

which minimizes the empirical risk Remp(h;S),

Remp(h;S) =
1

ℓ2

ℓ
∑

i=1

ℓ
∑

j=1

ls
pref
(h(xi), h(xj), yi, yj) ,

which is effectively based on a new training set whose

elements are pairs of objects. Using the shorthand

notation x(1) and x(2) to denote the first and sec-

ond object of a pair, the new training set S′ : X ×
X × {−1,+1} can be derived from S if we use all

2–sets
{

(x
(1)
i , y

(1)
i ), (x

(2)
i , y

(2)
i )

}

from S where either

y
(1)
i ≻Y y

(2)
i or y

(2)
i ≻Y y

(1)
i , i.e.

S′ =
{(

(x
(1)
i ,x

(2)
i ),Ω

(

y
(1)
i , y

(2)
i

))}t

i=1
(4)

Ω(y1, y2) = sign(y1 ⊖ y2) , (5)

where ⊖ is the rank difference and t is the cardinality of

S′.

Theorem 1. Assume a training set S of size ℓ drawn i.i.d.

according to an unknown probability measure PXY on

X × Y . Then for each h : X 7→ Y the following equality

holds true

ℓ2

t
Remp(h;S) = R0−1

emp
(h;S′) =

1

t

t
∑

i=1

l0−1(Ω(h(x
(1)
i ), h(x

(2)
i )),Ω(y

(1)
i , y

(2)
i ))

Taking into account that each function h ∈ H defines a

function p : X ×X 7→ {−1, 0,+1} by

p(x1,x2) = Ω(h(x1), h(x2)) , (6)
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Theorem 1 states that the empirical risk of a certain map-

ping h on a sample S is equivalent to the empirical risk

based on the l0−1 loss of the related mapping p on the

sample S′ up to a constant factor t/ℓ2 which depends nei-

ther on h nor on p. Thus, the problem of ordinal regres-

sion can be reduced to a classification problem on pairs of

objects. Therefore we call this problem also the problem

of preference learning. It was shown that the Bayes op-

timal decision function on pairs of objects can result in a

function pℓ which is no longer transitive on X (Herbrich

et al. 1999). Note also that the requirements of transitivity

and asymmetry effectively reduce the space of admissible

classification functions p acting on pairs of objects.

The following bound on Rpref(h
ℓ) gives a justification for

the large-margin algorithm to be presented in Section 3.

A proof based on a result of (Shawe-Taylor et al. 1998)

can be found in (Herbrich et al. 1999).

Theorem 2. Assume that for a given set H of mappings

from objects to ranks there exists a set F of mappings

from objects to R such that for each function h ∈ H there

exists a function U ∈ F (and vice versa) with

h(x) = ri ⇔ U(x) ∈ [θ(ri−1), θ(ri)] . (7)

Let PXY be a probability measure on XY , let S =
{(xi, yi)}

ℓ
i=1 be an i.i.d. sample from PXY , S′ be de-

rived from S by Equation (4) and the fat–shattering di-

mension of the set of functions F be bounded above by the

function afat : R 7→ N. Then for each function hℓ with

R0−1
emp

(hℓ;S′) = 0 and γ = minS′ |U ℓ(x(1))− U ℓ(x(2))|
with probability 1− δ

Rpref(h
ℓ) ≤

2

t

(

k log2

(

8et

k

)

log2(32t) + log2

(

8t

δ

))

,

where k = afat(γ/8) ≤ et and t = |S′|.

The afat(γ)–shattering dimension of F can be thought of

as the maximum number of objects x(1),x(2) that can be

arranged in any order using functions from F and a min-

imum margin γ = |U(x(1)) − U(x(2))| (using Equation

(1) together with (7)). Note, that maximizing the margin

minS′ |U ℓ(x(1)) − U ℓ(x(2))| decreases the bound on the

true risk while keeping R0−1
emp

(hℓ;S′) = 0 constant for

some functions h.

3 Support Vector Machines for Or-

dinal Regression

In this section we apply the theory from Section 2 to de-

rive an algorithm for ordinal regression. Let us consider a

linear function U : X 7→ R

U(x) = wTx (8)

which is related to a mapping h from objects to ranks by

(7). We assume that θ(r0) = −∞ and θ(rq) = +∞.

Such a function is commonly called a utility function. We

know that U(x) incurs no error for the i-th example in the

training set S′ (see Equation (4)) iff

ziw
Tx

(1)
i > ziw

Tx
(2)
i ⇔ ziw

T
(

x
(1)
i − x

(2)
i

)

> 0 ,

where zi = Ω(y
(1)
i , y

(2)
i ) was used. Note, that the pref-

erence relation is expressed in terms of the difference

x
(1)
i − x

(2)
i of feature vectors, which can be thought of

as the combined feature vector of the pair of objects. By

assuming a finite margin between the n-dimensional fea-

ture vectors x
(1)
i − x

(2)
i of classes zi = +1 and zi = −1,

we define parallel hyperplanes passing through each pair

(x
(1)
i ,x

(2)
i ) by

zi[w
T (x

(1)
i − x

(2)
i )] ≥ 1− ξi , i = 1, . . . , t , (9)

where the non-negative ξi measure the degree of violation

of the i-th constraint. The weight vector wℓ which maxi-

mizes the margin — this time at the rank boundaries θ(ri)
(see Equation (7) and Figure 1) — can now be determined

by minimizing the squared norm ∥w∥2 + C
∑t

i=1 ξi un-

der the constraints (9). This approach is closely related

to the idea of canonical hyperplanes used in Support Vec-

tor classification (Vapnik 1998). A theoretical justifica-

tion for the applicability of SRM is given by Theorem

2. Introducing Lagrangian multipliers and performing un-

constrained optimization with respect to w leads to the

dual problem of finding α
ℓ such that

α
ℓ = max

0≤α≤C1

α
T
z=0

[

1T
α−

1

2
α

TZTQZα

]

, (10)

with z = (z1, . . . , zt)
T , Z = diag(z), and Qij = (x

(1)
i −

x
(2)
i )T (x

(1)
j − x

(2)
j ). This is a standard QP–problem and
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Figure 1: (a) Mapping of objects from ranks r1 (×), r2
(◦), and r3 (△) to the axis U(x). θ(r1) and θ(r2) de-

fine two coupled hyperplanes. (b) The margin m(S′) =

minS′ |U(x
(1)
i ) − U(x

(2)
i )| of the hyperplanes is defined

at the rank boundaries θ(ri).

can efficiently be solved using techniques from mathe-

matical programming (Mangasarian 1969). Given the op-

timal vector α
ℓ as solution to (10), the optimal weight

vector wℓ can be written as a linear combination of dif-

ferences of feature vectors from the training set (Kuhn–

Tucker conditions):

wℓ =
t

∑

i=1

αℓ
izi

(

x
(1)
i − x

(2)
i

)

. (11)

To estimate the rank boundaries we note that due to Equa-

tions (9) the difference in utility is greater or equal to one

for all training examples with ξi = 0 (or equivalently

αi < C). Thus if Θ(k) ⊂ S′ is the fraction of objects

from the training set with ξi = 0 and rank difference of

exactly one starting from rank rk, then the estimation of

θ(rk) is given by

θ(rk) =
U(x1;w

ℓ) + U(x2;w
ℓ)

2
, (12)

where

(x1,x2) = arg min
(xi,xj)∈Θ(k)

[U(xi;w
ℓ)− U(xj ;w

ℓ)] .

In other words, the optimal threshold θ(rk) for rank rk
lies in the middle of the utilities of the closest (in the sense

of their utility) objects of rank rk and rk+1. After the

estimation of the rank boundaries θ(rk) a new object is

classified according to Equation (7).

The extension to non–linear utility functions follows the

same reasoning as with non–linear SVM (Vapnik 1998).

Note, that Qij can be expanded into four inner products

between objects x. Thus, given a function K : X ×X 7→
R which is symmetric and positive definite, each calcula-

tion of an inner product in X is replaced by K(·, ·). This

corresponds to a non–linear utility U(x) = wTΦ(x) with

K(xi,xj) = Φ(xi)
TΦ(xj) and using (11) for the result-

ing wℓ. Here Φ : X → X is a mapping from input space

X to a reproducing kernel Hilbert space X often refered to

as “feature space”. Details can be found in (Smola 1998).

4 Experimental Results

4.1 Learning Curves for Ordinal Regres-

sion

In this experiment we compare the generalization be-

havior of the presented algorithm with the multi-class

SVM and Support Vector regression (SVR). Those algo-

rithms were chosen for comparison due to their similar

regularizer ∥w∥2 and hypothesis space H. We gener-

ated 1000 observations x = (x1, x2)
T in the unit square

[0, 1] × [0, 1] ⊂ R
2 according to a uniform distribution.

We assigned to each observation x a value y according to

y = i ⇔ U(x) + ϵ ∈ [θ(ri−1), θ(ri)] , (13)

U(x) = 10((x1 − 0.5) · (x2 − 0.5)) , (14)

where ϵ ∼ N(0, 0.125), and θ = (−∞,−1,−0.1,
0.25, 1,+∞)T is the vector of predefined thresholds.

We randomly drew 100 training samples of sizes ranging

from 5 to 45 making sure that at least one representative

of each rank was in the training set. Classification with

multi-class SVM’s was carried out by computing the pair-

wise 5 · 4/2 = 10 hyperplanes using the algorithm pre-

sented in Weston and Watkins 1998. For all algorithms,

we chose the kernel K(xi,xj) = (xT
i xj+1)2 and a trade-

off parameter C = 1000000. For Support Vector regres-

sion we used ε = 0.5 for the ε–insensitive loss function

(see (Vapnik 1998) for the definition of this loss function)

and thresholds θ = (0.5, 1.5, 2.5, 3.5, 4.5)T .

From the remaining 995 to 955 data points we estimated

the risk R0−1
pref

and averaged over all 100 results for a given
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Figure 2: Learning curves for multi-class SVM (dashed

lines), SV regression (dashed–dotted line) and the algo-

rithm for ordinal regression (solid line) if we measure

R0−1
pref

. The error bars indicate the 95% confidence inter-

vals of the estimated risk R0−1
pref

.

training set size (see Figure 2). It can be seen that the al-

gorithm proposed for ordinal regression generalizes much

faster by exploiting the ordinal nature underlying Y com-

pared to classification. Due to the model of a latent utility

all “hyperplanes” U(x) = θ(rk) are coupled (see Figure

1) which does not hold true for the case of multi-class

SVM’s. The learning curves for SVR and the proposed

ordinal regression algorithm are very close, because the

predefined thresholds θ(rk) are defined at a distance of

0.5 — the size of the ε–tube chosen beforehand.

4.2 An Application to Information Re-

trieval

In this experiment we made the following assumption:

After an initial (textual ) query to an IR system, the system

returns a bundle of documents, of which the user ranks a

small fraction. The task for the learning algorithm is to

assign ranks to the remaining unranked documents. After

using ℓ = 6 up to ℓ = 24 documents and their respec-

tive ranking for training we measure R0−1
emp

on the remain-

ing documents. For this experiment the same parameter

values were used as in the last experiment. The simula-

tions were carried out on the OHSUMED dataset, which

consists of 348 566 documents and 106 queries with their

respective ranked results (“document is relevant”, “docu-

ment is partially relevant”, “irrelevant document”). For

our experiments we used the results of query 1 (“Are

there adverse effects on lipids when progesterone is given

with estrogen replacement therapy?”) which consisted

of 107 documents taken from the whole database. The

documents were represented as “bag–of–words” (Salton

1968), with the resulting document vectors normalized to

unit length.

4 6 8 10 12 14 16 18 20 22 24 26
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1

Training set size

R
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−
1

p
re

f
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Figure 3: Learning curves for multi-class SVM (dashed

lines) and the algorithm for ordinal regression (solid line)

on the OHSUMED dataset query 1 as measured by R0−1
pref

.

Error bars indicate 95% confidence intervals.

As can be seen from the results (see Figure 3), the pro-

posed algorithm shows very good generalization behavior

compared to the multi-class SVM, which treats each rank

as a separate class. Note that the plotted R0−1
pref

is the pro-

portion of misclassified pairs if we restrict ourselves to

pairs with different ranks. This quantity is much larger

than the estimated probability of an incurred inversion on

a randomly drawn pair because documents of equivalent

ranks were excluded from the evaluation set.

5 Discussion and Conclusion

We introduced a new learning task to the ML community:

ordinal regression. The task is complementary to classi-

fication and metric regression due to its discrete and or-

dered outcome space Y . We showed that every ordinal
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regression problem corresponds to a unique preference

learning problem on pairs of objects. This result builds the

link between ordinal regression and classification meth-

ods on pairs of objects and allows for a theoretical treat-

ment in the framework of classification. We would like to

stress that the presented algorithm is only a particular in-

stantiation of the theory. Retaining the proposed model of

a rank we could also apply Gaussian Processes (MacKay

1997; Zhu et al. 1997) or other types of classifiers baed

on thresholded real valued functions.

Noting that our presented loss involves pairs of objects

it is interesting to note that the problem of multi-class

classification can also be reformulated on pairs of objects.

This leads to the problem of learning an equivalence re-

lation between the objects. Recent work (Phillips 1999)

shows that learning an equivalence relation can increase

the generalization behavior of binary–class methods when

extended to multiple classes.
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