
Support Vector Machine Active Learning
for Image Retrieval

Simon Tong
Department of Computer Science

Stanford University
Sanford, CA 94305

simon.tong@cs.stanford.edu

ABSTRACT
Relevance feedback is often a critical component when de-

signing image databases. With these databases it is difficult

to specify queries directly and explicitly. Relevance feedback

interactively determinines a user’s desired output or query

concept by asking the user whether certain proposed images

are relevant or not. For a relevance feedback algorithm to be

effective, it must grasp a user’s query concept accurately and

quickly, while also only asking the user to label a small num-

ber of images. We propose the use of a support vector ma-

chine active learning algorithm for conducting effective rele-

vance feedback for image retrieval. The algorithm selects the

most informative images to query a user and quickly learns

a boundary that separates the images that satisfy the user’s

query concept from the rest of the dataset. Experimental

results show that our algorithm achieves significantly higher

search accuracy than traditional query refinement schemes

after just three to four rounds of relevance feedback.

Keywords
active learning, image retrieval, query concept, relevance

feedback, support vector machines.

1. INTRODUCTION
One key design task, when constructing image databases,

is the creation of an effective relevance feedback compo-

nent. While it is sometimes possible to arrange images

within an image database by creating a hierarchy, or by

hand-labeling each image with descriptive words, it is of-

ten time-consuming, costly and subjective. Alternatively,

requiring the end-user to specify an image query in terms of

low level features (such as color and spatial relationships) is

challenging to the end-user, because an image query is hard

to articulate, and articulation can again be subjective.

Thus, there is a need for a way to allow a user to implicitly

inform a database of his or her desired output or query con-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MM’OI, Sep t . 30 -Oc t . 5,2001, Ottawa, Canada.
Copyright 2001 ACM l-581 13-394-4/01/0009., .$5.00

Edward Chang
Electrical & Computer Engineering

University of California
Santa Barbara, CA 93106

echang@ece.ucsb.edu

cept. To address this requirement, relevance feedback can be

used as a query refinement scheme to derive or learn a user’s

query concept. To solicit feedback, the refinement scheme

displays a few image instances and the user labels each im-

age as “relevant” or “not relevant.” Based on the answers,

another set of images from the database are brought up to

the user for labeling. After some number of such querying

rounds, the refinement scheme returns a number of items in

the database that it believes will be of interest to the user.

The construction of such a query refinement scheme (we

call it a query concept. learner or learner hereafter) can be

regarded as a machine learning task. In particular, it can

be seen as a case of pool-based active learning [18, 221. In

pool-based active learning the learner has access to a pool

of unlabeled data and can request the user’s label for a cer-

tain number of instances in the pool. In the image retrieval

domain, the unlabeled pool would be the entire database

of images. An instance would be an image, and the two

possible labelings of an image would be “relevant” and “not

relevant.” The goal for the learner is to learn the user’s

query concept - in other words the goal is to give a label

to each image within the database such that for any image,

the learner’s labeling and the user’s labeling will agree.

The main issue with active learning is finding a way to

choose informative images within the pool to ask the user

to label. We call such a request for the label of an image a

pool-query. Most machine learning algorithms are passive in

the sense that they are generally applied using a randomly

selected training set. The key idea with active learning is

that it should choose its next pool-query based upon the

past answers to previous pool-queries.

In general, and for the image retrieval task in particular,

such a learner must meet two critical design goals. First, the

learner must learn target concepts accurately. Second, the

learner must grasp a concept quickly, with only a small num-

ber of labeled instances, since most users do not wait around

to provide a great deal of feedback. In this study, we propose

using a support vector machine active learner (SVM*,.ti,,)

to achieve these goals. SVMA,.~%~~ combines active learning

with support vector machines (SVMs). SVMs [34, 11 have

met with significant success in numerous real-world learning

tasks. Like most machine learning algorithms, they are gen-

erally applied using a randomly selected training set which is

not very useful in the relevance feedback setting. Recently,

107

general purpose methods for active learning with SVMs have

been independently developed by a number of researchers [2,

28, 331. We shall use the work and theoretical motivation

of [33] on active learning with SVMs to extend the use of

support vector machines to the task of relevance feedback

for image databases.

Intuitively, SVMA,- ~~~~ works by combining the following

three ideas:

1. SVM,L,~~~~~ regards the task of learning a target con-

cept as one of learning a SVM binary classifier. An

SVM captures the query concept by separating the

relevant images from the irrelevant images with a hy-

perplane in a projected space, usually a very high-

dimensional one. The projected points on one side

of the hyperplane are considered relevant to the query

concept and the rest irrelevant.

2. SVMActzue learns the classifier quickly via active learn-

ing. The active part of SVMA~~% ~~ selects the most in-

formative instances with which to train the SVM clas-

sifier. This step ensures fast convergence to the query

concept in a small number of feedback rounds.

3. Once the classifier is trained, SVMA~~$~~ returns the

top-lc most relevant images. These are the Ic images

farthest from the hyperplane on the query concept

side.

In summary, our contributions are as follows:

. The use of SVM active learning for image retrieval.

We show that combining SVMs with an active learn-

ing component can produce a learner that is particu-

larly well suited to the query refinement task in image

retrieval, significantly outperforming traditional meth-

ods.

. The multi-resolution image feature organization. We

show that organizing image features in different reso-

lutions gives the learner the flexibility to model subjec-

tive perception and to satisfy a variety of search tasks.

Using this representation for images, our learner can

quickly converge to target query concepts.

The rest of this paper is organized into seven sections. Sec-

tion 2 introduces SVMs. Section 3 then introduces the no-

tion of a version space which in Section 4 provides theoretical

motivation for a method for performing active learning with

SVMs. Section 5 depicts our multi-resolution image char-

acterization. In Section 6, we report experimental results

showing that our SVM active learner significantly outper-

forms traditional methods. Section 7 surveys related work.

Finally, we offer our conclusions in Section 8.

2. SUPPORT VECTOR MACHINES
Support vector machines are a core machine learning tech-

nology. They have strong theoretical foundations and excel-

lent empirical successes. They have been applied to tasks

such as handwritten digit recognition [35], object recogni-

tion [25], and text classification [14].

Figure 1: A simple linear Support Vector Machine

We shall consider SVMs in the binary classification set-

ting. We are given training data (x1 .xn} that are vec-

tors in some space X s lRRd. We are also given their labels

{yr yn} where yz E (--1,l). In their simplest form, SVMs

are hyperplanes that separate the training data by a maxi-

mal margin (see Fig. 1). All vectors lying on one side of the

hyperplane are labeled as -1, and all vectors lying on the

other side are labeled as 1. The training instances that lie

closest to the hyperplane are called support vectors. More

generally, SVMs allow one to project the original training

data in space X to a higher dimensional feature space F via

a Mercer kernel operator K. In other words, we consider

the set of classifiers of the form: f(x) = Cy,, (~,K(x,,x).

When f(x) 2 0 we classify x as $1, otherwise we classify x

as -1.

When li satisfies Mercer’s condition [l] we can write: K(u, V) =

Q(u). Q(v) where CD : X -+ J= and “.” denotes an inner prod-

uct. We can then rewrite f as:

f(x) = w @(x)1 where w = c oZ@(xE). (1)

i=l

Thus, by using I\- we are implicitly projecting the training

data into a different (often higher dimensional) feature space

F. The SVM then computes the ots that correspond to the

maximal margin hyperplane in F. By choosing different

kernel functions we can implicitly project the training data

from X into spaces F for which hyperplanes in F correspond

to more complex decision boundaries in the original space

X.

Two commonly used kernels are the polynomial kernel K(u, V) =

(u . v + 1)n which induces polynomial boundaries of degree

p in the original space X and the radial basis function ker-

nel K(u, v) = (t~-~(~-~)‘(~-~)) which induces boundaries by

placing weighted Gaussians upon key training instances. In

the remainder of this paper we will assume that the modulus

of the training data feature vectors are constant, i.e., for all

training instances xI,]]@a(~~)]] = X for some fixed X. The

quantity]]@(x;)]] is always constant for radial basis function

kernels, and so the assumption has no effect for this kernel.

For]]@a(~~)]] to be constant with the polynomial kernels we

require that]]x,]] be constant. It is possible to relax this

constraint on a(~,). We shall discuss this option at the end

of Section 4.

108

3. VERSION SPACE
Given a set of labeled training data and a Mercer kernel

li, there is a set of hyperplanes that separate the data in

the induced feature space F. We call this set of consistent

hyperplanes or hypotheses the version space [23]. In other

words, hypothesis f is in version space if for every training

instance x; with label yZ we have that f(xl) > 0 if y2 = 1

and f(x;) < 0 if y; = -1. More formally:

DEFINITION 3.1. Our set of possible hypotheses is given

as:

31 = f 1 f(x) = w,;$dx) w here w E W

{ 1
,

where our parameter space W is simply equal to F. The

Version space, V is then defined as:

v = (f E H I v’i E { 1 . n} ytf(xt) > 0)

Notice that since H is a set of hyperplanes, there is a bijec-

tion (an exact correspondence) between unit vectors w and

hypotheses f in H. Thus we will redefine V as:

v = (w E w 1 llwll = 1, ?/%(W @ (Xl)) > 0, i = 1.. n}.

Note that a version space only exists if the training data

are linearly separable in the feature space. Thus, we require

linear separability of the training data in the feature space.

This restriction is much less harsh than it might at first

seem. First, the feature space often has a very high dimen-

sion and so in many cases it results in the data set being

linearly separable. Second, as noted by [30], it is possible

to modify any kernel so that the data in the new induced

feature space is linearly separable. This is done by redefin-

ing for all training instances xc: K(x,, x,) + K(x,, x;) + v

where Y is a positive regularization constant. The effect of

this modification is to permit linear non-separability of the

training data in the original feature space.

There exists a duality between the feature space F and the

parameter space W [35, 111 which we shall take advantage of

in the next section: points in F correspond to hyperplanes

in W and vice versa.

Clearly, by definition, points in W correspond to hyper-

planes in F. The intuition behind the converse is that ob-

serving a training instance x; in feature space restricts the

set of separating hyperplanes to ones that classify xI cor-

rectly. In fact, we can show that the set of allowable points

w in W is restricted to lie on one side of a hyperplane in

W. More formally, to show that points in F correspond

to hyperplanes in W , suppose we are given a new training

instance xI with label yt. Then any separating hyperplane

must satisfy y%(w @(xl)) > 0. Now, instead of viewing w

as the normal vector of a hyperplane in F, think of y,@(x,)

as being the normal vector of a hyperplane in W . Thus

Y/I(W. @(xi)) = w. y%Q(x,) > 0 defines a half-space in W .

Furthermore w. y;Q(xz) = 0 defines a hyperplane in W that

acts as one of the boundaries to version space V. Notice

that version space is a connected region on the surface of

a hypersphere in parameter space. See Figure 3(a) for an

example.

SVMs find the hyperplane that maximizes the margin in

feature space F. One way to pose this is as follows:

maximize,Er min,{y,(w @(x2))}

subject to: llw ll = 1
yc(w @(XI)) > 0 i = 1 . . .n.

By having the conditions]]w]] = 1 and yI(w @(xi)) > 0

we cause the solution to lie in version space. Now, we can

view the above problem as finding the point w in version

space that maximizes the distance min, {w . ylQ(xl)}. From

the duality between feature and parameter space, and since

]]@(x~)]] = 1, then each y%@(x;) is a unit normal vector of

a hyperplane in parameter space and each of these hyper-

planes delimits the version space. Thus we want to find the

point in version space that maximizes the minimum distance

to any of the delineating hyperplanes. That is, SVMs find

the center of the largest radius hypersphere whose center

can be placed in version space and whose surface does not

intersect with the hyperplanes corresponding to the labeled

instances, as in Figure 3(b). It can be easily shown that

the hyperplanes touched by the maximal radius hypersphere

correspond to the support vectors and that the radius of the

hypersphere is the margin of the SVM.

4. ACTIVE LEARNING
In pool-based active learning we have a pool of unlabeled

instances. It is assumed that the instances x are indepen-

dently and identically distributed according to some under-

lying distribution F(x) and the labels are distributed ac-

cording to some conditional distribution P(y I x).

Given an unlabeled pool U, an active learner 1 has three

components: (f, Q, X). The first component is a classifier,

f : X - (-1, l}, trained on the current set of labeled data

X (and possibly unlabeled instances in U too). The sec-

ond component p(X) is the querying function that, given a

current labeled set X, decides which instance in U to query

next. The active learner can return a classifier f after each

pool-query (online learning) or after some fixed number of

pool-queries.

The main difference between an active learner and a regular

passive learner is the querying component q. This brings us

to the issue of how to choose the next unlabeled instance in

the pool to query. We use an approach that queries points

so as to attempt to reduce the size of the version space as

much as possible. We need one more definition before we

can proceed:

DEFINITION 4.1. Area(V) is the surface area that the ver-

sion space V occupies on the hypersphere llwll = 1.

We wish to reduce the version space as fast as possible. Intu-

itively, one good way of doing this is to choose a pool-query

that halves the version space. More formally, we can use the

following lemma to motivate which instances to use as our

pool-query:

LEMMA 4.2. (Tong t3 Keller, 2000) Suppose we have an

input space X, finite dimensional feature space .ZF (induced

1 0 9

Fig u re 2: (a) Versio n sp ace d uality . The surface o f the hypersphrre rcprcsents unit w eight v ecto rs. Each

o f the tw o hyp erp lancs co rresp o nd s to a labeled training instance. Each hypcrplane restricts the area on

the hy p ersp hcrc in w hich co nsistent hy p o theses can lie. Here v ersio n sp ace is the surface segment o f the

hy p ersp herc closest to the camera. (b) A n SVM classif ier in v ersio n space. The d ark em bed d ed sp here is

the larg est rad ius sp here w ho se center lies in v ersio n sp ace and w ho se surface doe s no t intersect w ith the

hy p erp lanes. The center o f the anbedded sp here co rresp o nd s to the SVM, its rad ius is the marg in o f the

SVM in F and the training p o ints co rresp o nd ing to the hy p erp lanes that it to uches are the sup p o rt v ecto rs.

(c) Simple Marg in Metho d .

via o kernel I<), and parameter space W. Suppose active
learner e’ always queries instances whose corresponding hy-
petylnnes iu parameter space W h&es the area of the cur-
rent version space. Let e be ong other active learner. Denote
the uersi~n spes of e’ and e after i pool-queries (IS V: and
V, respectively. Let P denote the set of all conditional dis-
tributions of y given x. Then.

with strict inequality whenever there mists u pool-gueryj E
(1 ;) by C that does not halve version space V,-,

This lemma. says that, for any given number of pool-queries,

0’ minimizes the maximum expected size of the version

space, where the maximum is taken over alI conditional dis-

tributions of y given x.

Now, suppose w* t W is the unit parameter vector cor-

responding to the SVM that we would have obtained had

we known the actual labels of off of the data in the pool.

We know that W* must lie in each of the version spaces

VI 1 V2 1 V3.. where V, denotes the version space after

i pool-queries. Thus, by shrinking the size of the version

space as much as possible with each pool-query we are re-

ducing as fast as possible the space in which w* can lie.

Hence, the SVM that we learn from our limited number of

pool-queries will lie close to w*.

This discussion provides motivation for an approach where

we query instances that split the current version space into

two equal parts as much as possible. Given an unlabeled

instance x from the pool, it is not practical to explicitly

compute the sizes of the new version spaces V- and V+
(i.e., the version spaces obtained when x is labeled as -1

and +I respectively). There is way of approximating this

procedure as noted by [33]:

Simple Method. Recall from section 3 that, given data

{x, .x;) and labels (91 y,}, the SVM unit v ecto r wI

obtained from this data is the center of the largest hyper-

sphere that can fit inside the current version space V,. The

position of w, in the version space V, clearly depends on the

shape of the region V,, however it is often approximately in

the center of the version space. Now, we can test each of the

unlabeled instances x in the pool to see how close their car-

responding hyperplanes in W come to the centrally placed

w,. The closer a hyperplane in W is to the point w,, the

more centrally it is placed in version space, and the more

it bisects version space. Thus we can pick the unlabeled

instance in the pool whose hyperplane in W comes closest

to the vector w,. For each unlabeled instance x, the short-

est distance between its hyperplane in W and the vector

w, is simply the distance between the feature vector C’(x)

and the hyperplane w, in F ~ which is easily computed by

Iw, Q(x)l. This results in the natural Simple rule:

l Learn an SVM on the existing labeled data and choose

as the next instance to query the pool instance that

comet closest to the hyperplane in FT.

Figure 3(c) presents an illustration. In the stylized picture

we have flattened out the surface of the unit weight vector

hypersphere that appears in Figure 3(a). The white area

is version space V, which is bounded by solid lines corre-

spending to labeled instances. The five dotted lines repre-

sent unlabeled instances in the pool. The circle represents

the largest radius hypersphere that can fit in version space.

Note that the edges of the circle do not touch the solid lines

~ just as the dark sphere in 3(b) does not meet the hyper-

planes on the surface of the larger hypersphere (they meet

somewhere under the surface). The instance b is closest to

the SVM w. and so we will choose to query b.

As noted by [33] there exist more sophisticated approxima-

tions that one cau perform. Rowever, these methods are

significantly more computation.& intensive. For the task

of relevance feedback, a fast response time for determining

the next image to present to the user is so critically impor-

110

tant that these other approximations are not practical.

Our SVMActtve image retrieval system uses radial basis func-

tion kernels. As noted in Section 2, radial basis function

kernels have the property that 11Q (xi)ll = A. The Simp le

querying method can still be used with other kernels when

the training data feature vectors do not have a constant

modulus, but the motivating explanation no longer holds

since the SVM can no longer be viewed as the center of the

largest allowable sphere. However, alternative motivations

have recently been proposed by Campbell, Cristianini and

Smola (2000) that do not require a constraint on the mod-

ulus.

For the image retrieval domain, we also have a need for per-

forming multiple pool-queries at the same time. It is not

practical to present one image at a time for the user to

label ~ the user is likely to quickly lose patience after a

few rounds of pool-querying. To prevent this from happen-

ing we would like to present the user with multiple images

(say, twenty) at each round of pool-querying. Thus, for each

round, the active learner has to choose not just one image

to be labeled but twenty. Theoretically it would be possi-

ble to consider the size of the resulting version spaces for

each possible labeling of each possible set of twenty pool-

queries but clearly this is impractical. Thus instead, for

matters of computational efficiency, our SVMA,.~%~~ system

takes the simple approach of choosing the pool-queries to be
the twenty images closest to its separating hyperplane.

1 dter N ame Hesolution Rep resentatio n

Masks Coarse Appearance of culture colors
Spread Coarse Spatial concentration of a color
Elongation Coarse Shape of a color

Hzstogrums M edium Distribution of colors
Average Medium Similarity comparison within

the same culture color
Varzance P me bimdarity comparison withm

the same culture color

Table 1: Multi-resolution Color Features.

others, they acquire finer features. Similarly, for some image

applications (e.g., for detecting image replicas), employing

coarse features is sufficient; for other applications (e.g., for

classifying images), employing finer features may be essen-

tial. An image search engine thus must have the flexibility

to model subjective perception and to satisfy a variety of

search tasks.

Our image retrieval system employs a multi-resolution image

representation scheme [4]. In this scheme, we characterize

images by two main features: color and texture. We consider

shape as attributes of these main features.

5.1 Color
Although the wavelength of visible light ranges from 400

nanometers to 700 nanometers, research [lo] shows that the

colors that can be named by all cultures are generally limited

to eleven. In addition to black and white, the discernible

colors are red, yellow, green, blue, brown, purple, pink, orange

and gray.

It has been noted [33] that the Simp le querying algorithm

used by SVMActzue can be unstable during the first round

of querying. To address this issue, SVMA~~~~~ always ran-

domly chooses twenty images for the first relevance feedback

round. Then it uses the Simp le active querying method on

the second and subsequent rounds.

SVMA~~~~~ Algorithm Summary
To summerize, our SVMA ctzve system performs the following

for each round of relevance feedback:

. Learn an SVM on the current labeled data

. If this is the first feedback round, ask the user to label

twenty randomly selected images. Otherwise, ask the

user to label the twenty pool images closest to the SVM

boundary.

.4fter the relevance feedback rounds have been performed

SVM A,.tzve retrieves the top-lc most relevant images:

. Learn a final SVM on the labeled data.

l The final SVM boundary separates “ relevant” images

from irrelevant ones. Display the k “ relevant” images

that are farthest from the SVM boundary.

5. IMAGE CHARACTERIZATION
We believe that image characterization should follow hu-

man perception [lo]. In particular, our perception works in

a multi-resolution fashion. For some visual tasks, our eyes

may select coarse filters to obtain coarse image features; for

We first divide color into 12 color bins including 31 bins for

culture colors and one bin for outliers [12]. At the coars-

est resolution, we characterize color using a color mask of

12 bits. To record color information at finer resolutions,

we record eight additional features for each color. These

eight features are color histograms, color means (in H, S and

V channels), color variances (in H, S and V channel), and

two shape characteristics: elongation and spreadness. Color

elongation characterizes the shape of a color and spreadness

characterizes how that color scatters within the image [16].

Table 1 summarizes color features in coarse, medium and

fine resolutions.

5.2 Texture
Texture is an important cue for image analysis. Studies [21,

31, 32, 201 have shown that characterizing texture features in

terms of structuredness, orientation, and scale (coarseness)

fits well with models of human perception. A wide variety

of texture analysis methods have been proposed in the past.

We choose a discrete wavelet transformation (DWT) using

quadrature mirror filters [31] because of its computational

efficiency.

Each wavelet decomposition on a 2-D image yields four subim-

ages: a $ x i scaled-down image of the input image and its

wavelets in three orientations: horizontal, vertical and di-

agonal. Decomposing the scaled-down image further, we

obtain the tree-structured or wavelet packet decomposition.

The wavelet image decomposition provides a representation

that is easy to interpret. Every subimage contains infor-

1 1 1

Coarse (Level I)

Medium (Level 2)

Figure 3: Multi-resolution Texture Features.

mation of a specific scale and orientation and also retains

spatial information. We obtain nine texture combinations

from subimages of three scales and three orientations. Since

each subimage retains the spatial information of texture,

we also compute elongation and spreadness for each texture

channel. Figure 3 summarizes texture features.

Now, given an image, we can extract the above color and

texture information to produce a 144 dimensional vector of

numbers. We use this vector to represent the image. Thus,

the space X for our SVMs is a 144 dimensional space, and

each image in our database corresponds to a point in this

space.

6. EXPERIMENTS
For our empirical evaluation of our learning methods we

used three real-world image datasets: a four-category, a

ten-category, and a fifteen-category image dataset where

each category consisted of 100 to 150 images. These im-

age datasets were collected from Core1 Image CDs and the

Internet.

. Four-category set. The 602 images in this dataset be-

long to four categories - architecture, flowers, land-

scape, and people.

. Ten-category set. The 1277 images in this dataset be-

long to ten categories - architecture, be ars, c louds,

flowers, landscape, people, objectionable images, tigers,

tools, and wuaves. In this set, a few categories were

added to increase learning difficulty. The tiger cate-

gory contains images of tigers on landscape and water

backgrounds to confuse with the landscape category.

The objectionable images can be confused with people

wearing little clothing. Clouds and waves have sub-

stantial color similarity.

. Fifteen-category set. In addition to the ten categories

in the above dataset, the total of 1920 images in this

dataset includes elephants, fabrics, fireworks, food, and

texture. We added elephants with landscape and wa-

ter background to increase learning difficulty between

landscape, tigers and elephants. We added colorful

fabrics and food to interfere with flowers. Various tex-

ture images (e.g., skin, brick, grass, water, etc.) were

added to raise learning difficulty for all categories.

To enable an objective measure of performance, we assumed

that a query concept was an image category. The SVMA~~~~~

learner has no prior knowledge about image categoriesr. It

treats each image as a 144-dimension vector described in

Section 5. The goal of ~~~~~~~~~ is to learn a given con-

cept through a relevance feedback process. In this process,

at each feedback round SVMA~~% ~~ selects twenty images to

ask the user to label as “relevant” or “not relevant” with

respect to the query concept. It then uses the labeled in-

stances to successively refine the concept boundary. After

the relevance feedback rounds have finished SVMA~~% ~~ then

retrieves the top-k most relevant images from the dataset

based on the final concept it has learned. Accuracy is then

computed by looking at the fraction of the k returned result

that belongs to the target image category. Notice that this is

equivalent to computing the precision on the top-k images.

This measure of performance appears to be the most appro-

priate for the image retrieval task - particularly since, in

most cases, not all of the relevant images will be able to be

displayed to the user on one screen. As in the case of web

searching, we typically wish the first screen of returned im-

ages to contain a high proportion of relevant images. We are

less concerned that not every single instance that satisfies

the query concept is displayed. As with all SVM algorithms,

~~~~~~~~~  requires at least one relevant and one irrelevant

image to function. In practice a single relevant image could

be provided by the user (e.g., via an upload to the system)

or could be found by displaying a large number of randomly

selected images to the user (where, perhaps, the image fea-

ture vectors are chosen to be mutually distant from each

other so as to provide a wide coverage of the image space).

In either case we assume that we start off with one randomly

selected relevant image and one randomly selected irrelevant

image

6.1 SVMA~~$~~  Experiments
Figures 4(a-c)  show the average top-k accuracy for the three

different sizes of data sets. We considered the performance

of  SVM~ctzue after each round of relevance feedback. The

graphs indicate that performance clearly increases after each

round. Also, the SVMA~~~~~  algorithm’s performance de-

grades gracefully when the size and complexity of the database

is increased - for example, after four rounds of relevance

feedback it achieves an average of loo%,  95%, 88% accuracy

on the top-20 results for the three different sizes of data sets

respectively. It is also interesting to note that SVMA~~% ~~  is

not only good at retrieving just the top few images with high

precision, but it also manages to sustain fairly high accuracy

even when asked to return larger numbers of images. For

example, after five rounds of querying it attains 99%) 84%

and 76% accuracy on the top-70 results for the three differ-

ent sizes of data sets respectively. SVMA,.~% ~~  uses the active

querying method outlined in Section 4. We examined the

effect that the active querying method had on performance.

Figures 5(a) and 5(b) compare the active querying method

with the regular passive method of sampling. The passive

‘Unlike some recently developed systems [36]  that contain a
semantical layer between image features and queries to as-
sist query refinement, our system does not have an explicit
semantical layer. We argue that having a hard-coded seman-
tical layer can make a retrieval system restrictive. Rather,
dynamically learning the semantics of a query concept is
more flexible and hence makes the system more useful.

112



Figure 4: (a ) Averago  top-k aceoracy  over the fou r- category dataset.  (b ) Average top- l;  accu racy over the

ten-category  dataset.  (c) Average top-k  accu racy over the fifteen- category dataset.  Standard error  bars are

smaller than the curves’  symbol size. Legend ordor  reflects order of curves.

(a) (b) (cl

Figure 5: (a) Act%  and regular passive learning on the fifteen-category dataset  after three rounds of querying.

(b ) Active and regu lar pass ive learning on the fifteen- category datasct  a fter five rounds of querying. (c)

Comparison bctwccn  asking ten images per  pool-query round and twenty images per  pool-querying round

on the fifteen-category dataset.  Standard error  bars axe  smaller than the curves’ symbol size. Legend order

rcfleets  order of c&&.

method chooses random images from the pool to be labeled.

This method is the one that is typically used with SVMs

since it creates a,  randomly selected data set. It is clear that

the ose  of active learning is beneficial in the image retrieval

domain. There is a significant increase in performance from

using the active method. SVMA~~,~~  displays 20 images per

pool-querying round. There is a tradeoff between the num-

ber of images to be displayed in one round, and the number

of querying rounds. The fewer images displayed per round,

the lower the performance. However, with fewer images per

round we may be able to conduct more rounds of querying

and thus increase our performance. Figure 5(c) considers the

effect  of displaying only ten images per round. In this erper-

iment  our  first round consisted of displaying twenty random

images sod  then, on the second and subsequent rounds of

querying, active learning with 10 or 20 images is invoked.

We notice that there is indeed a benefit to asking (20 ran-

dom + two rounds  of IO images) over  asking (20 random

+ one round of 20 images). This is unsurprising since the

active learner has more control and freedom to adapt when

asking two rounds of 10 images rather than one round of 20.

What is interesting is that asking (20 random + two rounds

of 20 images) is far, far better than asking (20 random + two

rounds of 10 images). The increase in the cost  to users of

asking 20 images per round is often negligible since osers  can

pick out relevant images easily. Furthermore, there is virtu-

ally no additional computational cost in calculating the 20

images to query over  the 10 images to query. Thus, for this

particular task, we believe that it is worthwhile to display

around 20 images per screen and limit the number of query-

ing rounds, rather than display fewer images per saeen and

use many mxe  querying rounds. We also investigated

how performance altered when various aspects of the algo-

rithm were changed. Table 2 shows how all three of the

texture resolutions are important. Also, the performance

of the SVM appears to be greatest when all of the texture

resolutions are included (although in this case  the difference

is not statistically significant). Table 3 indicates how other

113



(b)

Figure 6: (a) Average top-k accuracy over  the ten-category dataset.  (b) A verage top4  accuracy cwer the
fifteen-category dataset.

Texture I Top-50
features A&lKKy
None 80.6 * 2 3
Fine 85.9 * 1:7
Medium 84.7 i 1.6
COUX 85.8 f 1.3
Ail 86.3 * 1.8

Table 2: Average top-50 accuracy over  the four-

category data set  using a regular SVM trained  on

30 images. Texturc spatial features were omitted.

Top-50 T0p-100 Top-150
Degree 2 P’olymxmal 95 9

9217
zt 0.4 86.1 * 0.5 72.8 5 0.4

Degree 4 Polynomial * 0.6 82.8 l 0.6 69.0 zk 0.5
Radial Basis 06.8 * 0.3 89.1 * 0.4 76.0 * 0.4

Table 3: Accuracy on four-category data set aftcr

three querying  rounds using various kernels. Bold
type indicates statistically significant results.

SVM kernel functions perform on the image retrieval task

compared to the radial basis function kernel. It appears that
the radial basis function kernel is the most suitable for this

feature space. One other important aspect of any relevance
fcedback algorithm is the wall clock time that it takes to
generate the next  pool-queries. Relevance feedback is an in-

teractive task, and if the algorithm takes too long then the
user is likely to lose patience and be less satisfied with the

experience. Table 4 shows that ~~~~~~~~~  averages about a
second on a Sun Workstation to determine the 20 most in-

formative images for the US~IS  to label. Retrieval of the 150
most relevant images takes an similar amount of time and

computing the final SVM model never exceeds two seconds.

Dataset

T73r
10 cat
15 cat

6.2 Scheme Comparison
We  also compared SVMA~~,~~  with two traditional query re-
finement methods: query point movement (QPM) and query

ezpponsion  (QEX). In this experiment, each scheme returned
the 20 most relevant images after up to five rounds of rele-

vance feedback. To ensure that the comparison to SVMA~~,.~
WLS  fair, we seeded both schemes with one randomly se-
lected relevant image to generate the first round of images.

On the ten-category image dataset,  Figure 6(a) shows that
SVMA+~~  achieves nearly 90% accuracy on the top-20 rem

suits after three rounds of relevance feedback, whereas the
nccuracies  of both QPM and QEX never reach 80%. On

the fifteen-image category dataset,  Figure 6(b) shows that
SVMnctzuc  outperforms the others by even wider margins.

SVMact,ue  reaches 80% top-20 accuracy after three rounds
and 94% after five rounds, whereas &PM  and QEX cannot
achieve 65% accuracy.

These results hardly surprise us. Traditional information

retrieval schemes require a large number of image instances
to achieve any substantial refinement. By refined current
relevant instances both &PM  and QEX tend to be fairly

localized in their exploration of the image space and hence
rather slow in exploring the entire space. During the rel-

evance feedback phase SVMA~~,,,  takes both the relevant
and irrelevant images into account when choosing the next

pool-queries. Furthermore, it chooses to ask the user to la-
bel images that it regards as nuxt informative  for learning

the query concept, rather than those that have the most
likelihood of being relevant. Thus it tends to explore the

feature space more aggressively.

Figures 7 and 8 show an example run of the SVMA~~G
system. For this run, we are interested in obtaining archi-
tecture images. In Figure 7 we initialize the search by giving

S’JMactive one relevant and one irrelevant image. We then

yn have three feedback rounds. The images that SVMactlve
Dataset round of 20 Computing Retrieving tb.,

Size q u e r i e s  (sea)  final SVLM 150 images asks us to label in these three feedback rounds are images

602 0.34 * 0 00
0.71 l 0:01

os*rJo1
1277 Lb3 * d.03

0.43 f 0 02
0.93 f 0:03

that SVMA~~,~~  will find most informative to know about.

For example, we see that it asks us to label a number of
1920 1.09 * 0.02 1.74 l 0.05 1.37 i 0.04 landscane imaees  and other imaees with a blue or ~r.w

Table 4: Average run timcs in seconds
background with  something in thi  foreground. The f&d-
back rounds allow SVMacta,,e  to narrow down the types of

114



Feedback Round 1

Feedback Round 2 Feedback Round 3

Figure 7: Searching for xchitecture  images. SVMA,,~..  Feedback phase.

images that  we like. When it comes  to the retrieval phase

(Figure  7) SVMacttve returns, with high precision, L.  large

most uncertain about)

varitey of different architecture images, ranging from old

buildings to modern cityscapes.

7. RELATED WORK
There have been several studies of active learning for clas-

sification in the machine learning community. The query

hy  committee algorithm [29,  S]  uses  a.  distribution over  all

possible classifiers and attempts to greedily reduce the en-

tropy of this distribution. This general purpose algorithm

has been applied in a number of domains’ using classifiers

(such  as Naive Bayes  classifiers (7, 221) for which specifying

and sampling classifiers from a distribution is natural. Prob-

abilistic models such as the Naive B&yes  classifier provide ia-

terpretable models and principled ways to incorporate prior

knowledge and data with missing values. However, they typ-

ically do not perform as well as discriminative methods such

as  svbfls  [14, S].

Relevance feedback techniques proposed by the informa-

tion retrieval and database communities also perform non-

random sampling. The study of [27]  puts these query refine-

ment approaches into three  categories: query  reweighting,

query point movement and query  expansion.

Lewis and Gale (1994) focused on the text classification

task and introduced uncertainty sampling using logistic re-

gression  and also decision trees [17].  SVMA,~,,,‘s  querying

method is essentially the ame as their uncertainty sampling

method (choose the instance that  our  current classifier is

.  Query  reweighting  and gaery point  mouenwnl  [13, 2 4 ,  261.

Both query reweighting and query point movement use

nearest-neighbor sampling: They return top ranked ob-

jects to be marked by the  user and refine the query based

on the feedback. These methods tend to require a large

number of image instances to achieve any substantial re-

finement since they do not tend to explore the image space

aggressively.

. Query ezpansion  [27, 371.  The query  ez,xnsion approach

can be regarded as a multiple-instances sampling approach.

The samples of the next round are selected from the neigh-

borhood (not necessarily the nearest ones) of the positive-

labeled instances of the previous round. The study of [27]

shows that query expnnsion  achieves only a slim margin of

improvement (about 10% in precision/recall) over  query

point movement.

2Altlmugh, to our knowledge, not to the image retrieval do- For  image retrieval, the PicHunter system [6]  uses  Bayesian

main. prediction to infer the goal image, based upon the users’

115



Second Srree,~  of Results

Fourth Screen of Results

Fifth Screen of Results Sixth Screen uf Results

Figure 8: Searching for architecture images.  SVMncti..  Retrieval phase.

116



actions. The system shows that employing active learning

can drastically cut down the number of iterations (up to 80%

in some experiments). However the authors also point out

that their scheme is computationally intensive, since it needs

to recompute the conditional probability for all unlabeled

samples after each round of user feedback and hence may

not scale well with dataset size.

8. CONCLUSIONS AND FUTURE WORK
We have demonstrated that active learning with support

vector machines can provide a powerful tool for searching

image databases, outperforming a number of traditional query

refinement schemes. SVMA,~,,,  not only achieves consis-

tently high accuracy on a wide variety of desired returned

results, but also does it quickly and maintains high preci-

sion when asked to deliver large quantities of images. Also,

unlike recent systems such as SIMPLIcity  [36],  it does not

require an explicit semantical layer to perform well.

There are a number of interesting directions that we wish to

pursue. The running time of our algorithm scales linearly

with the size of the image database both for the relevance

feedback phase and for the retrieval of the top-k images.

This is because, for each querying round, we have to scan

through the database for the twenty images that are closest

to the current SVM boundary, and in the retrieval phase we

have to scan the entire database for the top k most relevant

images with respect to the learned concept. ~~~~~~~~~  is

practical for image databases that contain a few thousand

images; however, we would like to find ways for it to scale

to larger sized databases.

For the relevance feedback phase, one possible way to cope

with a large image database is, rather than using the entire

database as the pool, instead sample a few thousand images

from the database and use these as the pool of potential

images with which to query the user. The technique of sub-

sampling databases is often used effectively when performing

data mining with large databases (e.g., [5]). It is plausible

that this technique will have a negligible effect on overall

accuracy, while significantly speeding up the running time

of the SVMA,- ~$~~  algorithm on large databases. Retrieval

speed of relevant images in large databases can perhaps be

sped up significantly by using intelligent clustering and in-

dexing schemes [19].

The second direction we wish to pursue is an issue that

faces many relevance feedback algorithms: that of designing

methods to seed the algorithm effectively. At the moment

we assume that we are presented with one relevant image

and one irrelevant image. It would be beneficial to modify

SVMA,.~% ~~  so that it is not dependent on having a relevant

starting image. We are currently investigating ways of using

SVMA~~~~~‘S  output to explore the feature space effectively

until a single relevant image is found.

An alternative approach for finding a single relevant image

is to use another algorithm to seed SVMA,~,,,.  For example,

the MEGA  algorithm [3]  that we have developed is a sepa-

rate study does not require seeding with a relevant image. If

all of the images generated in the first round of its relevance

feedback are irrelevant, it will use the negative images to

reduce the set of potentially relevant images substantially

so that a relevant image will be generated in the next round

with high probability. Indeed, preliminary experiments that

use MEGA  to find and initial relevant image, and SVM,J~~~~~

to perform relevance feedback have produced promising re-

sults.

Transduction takes advantage of not only the labeled im-

ages but also the unlabeled images to learn a user’s query

concept. Intuitively, the unlabeled images are likely to be

clustered and this provides us with some extra information

which we may be able to use to refine our idea of what the

user’s query concept may be. Transduction has been suc-

cessfully applied to regular passive SVMs  for text classifica-

tion [15]  showing that using unlabeled data can indeeed im-

prove performance. An exciting direction is to see whether

transduction can be applied to the image retrieval domain

and furthermore, whether it can also be combined with ac-

tive learning to provide yet further increases in performance

for the image retrieval task.

9. ACKNOWLEDGEMENTS
Simon Tong was supported by D,4RPA’s  Information As-
surance program under subcontract to SRI International,

and by ONR MURI N00014-00-1-0637.

10.
PI

REFERENCES

PI

[31

C. Burges. A tutorial on support vector machines for

pattern recognition. Data Mining and linowledge

Discovery, 2:121-167,  1998.

C. Campbell, N. C&&mini,  and A. Smola. Query learning

with large margin classifiers. In Proceedings of the

Seventeenth International Conjerence on  Machine

Learning, 2000.

E. Chang and B. Li. Megct  -  the maximizing expected

generalization algorithm for learning complex query

concepts (extended version). Technical Report

http://www-db.stanjord.edu/Nechang/mega.ps,  November

2000.

[41

151

k51

171

k31

PI

[lOI

[Ill

E. Chrtng,  B. Li, and C. Li. Towards perception-based

image retrieval. IEEE Content-Based Access of Image and

Video Libraries, pages 101-105, June 2000.

S. Chaudhuri, V. Narasayyct, and R. Motwani. Random
sampling for histogram construction: How much is enough?
ACM Sigmod, May 1998.

I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas,

and P. N. Yianilos. The bay&an  image retrieval system,

pichunter: Theory, implementation and psychological

experiments. IEEE Transaction on Image Processing (to

appear) ,  2000.

I. Dagan  and S. Engelson. Committee-based sampling for

training probabilistic classifiers. In Proceedings of the

Tweljth  International Conjerence 01~  Machine Learning,

pages 150 157. Morgan Kaufmann,  1995.

S. Dumais, J. Platt, D. IIeckerman,  and M. Sahami.

Inductive learning algorithms and representations for text

categorization. In Proceedings o f the Seventh Inte rna tiona l

Conjerence on  Injormation  and Knowledge Management.

ACM Press, 1998.

Y. Freund,  H. Seung,  E. Shamir, and N. Tishby. Selective

sampling using the Query by Committee algorithm.

Machine Learning, 28:133-168,  1997.

E. B. Goldstein. Sensation and Perception (sth Edition).

Brooks/Cole, 1999.

R. Herbrich, T. Graepel, and C. Campbell. Bayes  point

machines: Estimating the bayes point in kernel space. In

International Joint Conjerence on  Artificial Intelligence

Workshop on Support Vector Machines, pages 23-27,  1999.

117



iI21

[I31

P41

P51

[I61

[I71

[IS1

[W

PO1

1211

WI

[231

[24l

[251

[‘%

T. Joachims. Text categorization with support vector

machines. In Proceedings  of the European  C~njerence  on

Machine Learning. Springer-Verlrtg,  1998.

T. Joachims. Transductive  inference for text classification

using support vector machines. In Proceedings of the

Sixteenth International Conference 01~  Machine Learning,

pages 200-209.  Morgan Kaufmann, 1999.

J.-G. Leu. Computing a shape’s moments from its

boundary. Pattern Recognition, pages Vo1.24,

No.lO,pp.949  957, 1991.

D. Lewis and 3.  Catlett. Heterogeneous uncertainty

sampling for supervised learning. In Proceedings of the

Eleventh International Conference on  Machine Learning,

pages 148 156. Morgan Kaufmann, 1994.

D. Lewis and  W. Gale. A sequential algorithm for training

text classifiers. In Proceedings of the Seventeenth Annual

International ACM-SIGIR Conjerence on Research and

Development in Information Retrieval, pages 3-12.

Springer-Verlag, 1994.

C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold.

Clustering for approximate similarity queries in

high-dimensional spaces. IEEE Transaction on Knowledge

and Data Engineering (to appear), 2001.

W. Y. Ma and H. Zhang. Benchmarking of image features

for content-based retrieval. Proceedings of Asilomar

Conjerence on Signal, Systems &  Computers, 1998.

B. Manjunath,  P. Wu, S. Newsam,  and II. Shin. A texture

descriptor for browsing and similarity retrieval. Signal

Processing Image Communication, 2001.

A. McCallum  and K. Nigam.  Employing EM in pool-based

active lemming for text classification. In Proceedings of the

Fifteenth International Conference on Machine Learning.

Morgan Kaufmann, 1998.

T. Mitchell. Generalization as  search. Artijiciai

Intelligence, 28:203-226,  1982.

M. Ortega, Y. Rui, K. Chakrabarti, A. Warshavsky,

S. Mehrotra, and T. S. IIuang.  Supporting ranked boolean

similarity queries in mars. IEEE Transaction on Ir’nowledge

and Data Engineering, 10(6):905-925,  December 1999.

C. Papageorgiou,  M. Oren,  and T. Poggio. A general

framework for object detection. In Proceedings of the

International ConJerence  on Computer Vision, 1998.

K. Porkaew, K. Chakmbmti,  and S. Mehrotm.  Query

refinement for multimedia similarity retrieval in mars.

Proceedings of A CM Multimedia, November 1999.

[27]  K. Porkaew, S. Mehrota,  and M. Ortega. Query

reformulation for content based multimedia retrieval in

mars. ICMCS,  pages 747-751, 1999.

[28]  G. Schohn and D. Cohn. Less is more: Active learning with

support vector machines. In Proceedings of the Seventemth

International Conference on  Machine Learning, 2000.

[29]  H. Seung,  M. Opper,  and  H. Sompolinsky. Query by

committee. In Proceedings oj the Fifth Workshop on

Computational Learning Theory, pages 287-294.  Morgan

Kaufmann, 1992.

[30]  J. Shave-Taylor and N. Cristictnini.  Further results on the

margin distribution. In Proceedings of the Twelfth Annual

Conference on Computational Learning Theory, pages

278.-285,  1999.

[31]  J. Smith and S.-F. Chang. Automated image retrieval

using color and texture. IEEE Transaction on Pattern

Analysis and Machine Intelligence, November 1996.

[32]  H. Tamura,  S. Mori,  and T. Yamawaki.  Texture features

corresponding to visual perception. IEEE Transaction on

Systems Man Cybernet  (SMC), 1978.

K. A. Hua,  K. Vu, and J.-H. Oh. Sammatch: A flexible and

efficient sampling-based image retrieval technique for image

databases. Proceedings of ACM Multimedia, November

1999.

Y. Ishikawa, R. Subramanya,  and C. Faloutsos.

Mindreader: Querying databases through multiple

examples. VLDB, 1998.

[33]  S. Tong and D. Koller. Support vector machine active

learning with applications to text classification.

Proceedings of the 17th International Conjerence  on

Machine Learning, pages 401-412,  June 2000.

[34]  V. Vapnik.  Estimation of Dependences  Based on Empirical

Data. Springer Verlag,  1982.

[35]  V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[36]  J. Wang, J. Li, and G. Wiederhold. Simplicity:

Semantics-sensitive integrated matching for picture

libraries. ACM Multimedia Conference, 2000.

[37]  L. Wu,  C. Faloutsos, K. Sycara, and T. R. Payne. Falcon:

Feedback adaptive loop for content-based retrieval. The

26th VLDB Conference, September 2000.

118


