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Abstract: In this paper, we proposed an algorithm for arrhythmia classification, which is 
associated with the reduction of feature dimensions by linear discriminant analysis (LDA) and 
a support vector machine (SVM) based classifier. Seventeen original input features were 
extracted from preprocessed signals by wavelet transform, and attempts were then made to 
reduce these to 4 features, the linear combination of original features, by LDA. The 
performance of the SVM classifier with reduced features by LDA showed higher than with that 
by principal component analysis (PCA) and even with original features. For a cross-validation 
procedure, this SVM classifier was compared with Multilayer Perceptrons (MLP) and Fuzzy 
Inference System (FIS) classifiers. When all classifiers used the same reduced features, the 
overall performance of the SVM classifier was comprehensively superior to all others. 
Especially, the accuracy of discrimination of normal sinus rhythm (NSR), arterial premature 
contraction (APC), supraventricular tachycardia (SVT), premature ventricular contraction 
(PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were 99.307%, 99.274%, 
99.854%, 98.344%, 99.441% and 99.883%, respectively. And, even with smaller learning data, 
the SVM classifier offered better performance than the MLP classifier. 
 
Keywords: Arrhythmia classification, linear discriminant analysis, reduction of feature 
dimension, support vector machine, wavelet transform. 
 

1. INTRODUCTION 
 
The electrocardiogram (ECG) remains the simplest 

non-invasive diagnostic method for determining 
various heart diseases. Physicians interpret the 
morphology of the ECG waveform and decide 
whether the heartbeat belongs to the normal sinus 
rhythm or to the class of arrhythmia. 

Computerized electrocardiography is currently a 
well-established practice, supporting human diagnosis. 
Many algorithms have been proposed over previous 
years for developing the automated systems to 

accurately classify the electrocardiographic signals in 
real-time [1-6]. Depending on the type used for the 
applied method of signal processing techniques and 
their formal description, we distinguish statistical, 
syntactic, or artificial intelligent methods [7]. 

Presently, artificial neural networks have 
particularly attracted attentions in the area of data 
processing. Many different neural solutions have been 
proposed [1-4]. The best known include the multilayer 
perceptron, the Kohonen self-organizing network, the 
fuzzy or neuro-fuzzy systems, and the combination of 
different neural networks within a hybrid system. 
Even though neural network is recognized as a 
powerful and promising technique for arrhythmia 
discrimination, it needs, however, to be learned with 
much data and has structural complexity. And, even 
though one of its competing systems, known as the 
fuzzy inference system, demands just simple 
computation without learning task, it requires the 
performance of repetitive experiments with the 
subjective opinion of specialists for setting 
membership functions. 

In this paper, we proposed an algorithm for 
arrhythmia classification, which is associated with 
reduction of feature dimensions by linear discriminant 
analysis (LDA) and a support vector machine (SVM) 
based classifier. Since a SVM is known to have the 
advantage of offering solid performance of 
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(a) Raw ECG signal. 

 

(b) Filtered ECG signal with WT. 
 

 
(c) PSD of (a).           (d) PSD of (b). 

 
Fig. 2. An example of raw ECG signal and filtered 

ECG signal. 

classification with even smaller learning data, we can 
expect that the proposed algorithm, with relatively 
small learning data, would demonstrate better 
performance than other classifiers and be 
implemented faster on account of the reduction of 
feature dimensions. For a cross-validation procedure, 
this algorithm was compared with multilayer 
perceptrons (MLP) and fuzzy inference system (FIS) 
classifiers. 

 
2. METHODS AND MATERIALS 

 
2.1. Overview 

The proposed algorithm includes preprocessing, 
feature extraction and feature dimension reduction by 
LDA and SVM based arrhythmia classification. Fig. 1 
shows a block diagram of the proposed algorithm. 

In this paper, the following arrhythmia categories 
have been considered: normal sinus rhythm (NSR), 
supraventricular tachycardia (SVT), arterial premature 
contraction (APC), ventricular tachycardia (VT), 
premature ventricular contraction (PVC) and 
ventricular fibrillation (VF). 

For collecting arrhythmia data, we have used the 
ECG data from the MIT/BIH Arrhythmia Database 
digitized at a sampling rate of 360Hz. In addition, 
with the lack of VF data, Creighton University 
Ventricular Tachyarrhythmia Database and MIT-BIH 
Malignant Ventricular Arrhythmia Database, which 
had been sampled at 250 Hz, were resampled at 360 
Hz and then used for VF.  

The SVM classifier is the combination of NSR, 
APC, PVC, VF and other arrhythmia classifiers. The 
classification results of different classifiers form one 
output vector and the position of the highest value 
element of output vector indicates the membership 
with the appropriate class. Owing to the similar 
characteristics of the features of APC and SVT, their 
outputs of SVM are hardly distinguished. Opposed to 
APC, SVT is, however, inclined to occur in series. 
PVC and VT have much the same relationship. So, if 
output vector of said APC beat or PVC beat occurred 
more than three times consecutively, they were 
classified into SVT or VT respectively. Consequently, 
six types of arrhythmia were made to be classified by 
the proposed algorithm. 

 
2.2. Preprocessing 

Preprocessing is divided into noise cancellation, 

QRS complex detection and beat segmentation for 
feature extraction and it cares about ECG signals 
sampled at 360 Hz. The wavelet transform (WT) has 
been verified as a good tool for preprocessing and 
QRS complex detection [8]. For the orthogonal 
wavelet transform, a discrete signal x(n) can be 
expanded into the scaling function at j level as 
follows; 

( ) [ ( )] [ ( )]j jx n D x n A x n= + , (1) 

where Dj[x(n)] represents the detail signal at j level 
and Aj[x(n)] represents the approximate signal at j 
level. Here, j level signifies the decomposition at scale 
2j. For noise cancellation such as baseline wander, 60 
Hz interference and other high frequency noises, a 
filtered signal xf (n) is designed as  

( ) [ ( )]- [ ( )]f 2 8x n A x n A x n= . (2) 

The corresponding bandwidth of the filtered signal 
is 0.7Hz to 45Hz for 360 Hz sampling rate. In Fig. 2, 
an example of raw ECG signal and filtered ECG 
signal are presented and cancellation of unnecessary 
high and low frequency noises can be found in time 
domain (Fig. 2(b)) and in frequency domain (Fig. 
2(d)).  

For the detection of the QRS complex, the wavelet 
transform based method, proposed by Park et al. [9], 
was used. For the filtered signal xf (n), the beat 
segment was defined to begin at 200 msec (= 72 
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Fig. 1. Block diagram of proposed arrhythmia classifier.
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sample points) before R peak and to end at 200 msec 
after R peak so that it could have a total length of 400 
msec. All considered features were extracted from this 
beat segment. 

 
2.3. Feature extraction 

The arrhythmias classification by neural network 
classifier requires generation of the input vectors. 
Since a physician classifies arrhythmia with the 
information of rhythm and morphology, an input 
vector should include features that represent the 
rhythm and morphology properly. Therefore, in this 

paper, the input vector fed to the classifier was 
determined to be composed of 2 features related to 
rhythm, and 15 features related to morphology. If we 
define that R(i) is the RR interval between present and 
just previous R peaks – an example is shown in Fig. 
2(b), and K is a constant that corresponds to an RR 
interval that all men are generally expected to have, 
feature 1 and feature 2 can be calculated as  

1
( )
KFeature

R i
=    (3) 

)i(R
K

Feature
1+

=2
                    

(4)
 

considering the sampling rate of 360 Hz, 300 sample 
points are chosen as K. The mean and variance of 
feature 1 and feature 2, which were calculated for four 
different classes (NSR, APC/SVT, PVC/VT and VF), 
are presented in Fig. 3. For these statistics, arrhythmia 
beats of 10 records from the MIT/BIH arrhythmia 
database are used.  

In the mean time, morphology related features 
should satisfy that the differences among the ECG 
waveforms are suppressed for the waveforms of the 
same type but are emphasized for the waveforms 
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Fig. 4. The differences between detail coefficients’ distributions for different types of beats. 

1.0025
1.486 1.4861

3.8396

0

1

2

3

4

5

6

NSR APC/SVT PVC/VT VF

1.0062
1.3293

0.7815

3.8354

0

1

2

3

4

5

6

NSR APC/SVT PVC/VT VF
 

(a) Feature 1.        (b) Feature 2. 
 

Fig. 3. The mean and variance of feature 1 and feature
2 for arrhythmia beats of 10 records from
MIT/BIH arrhythmia database. 
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belonging to different types of beats. Because it is 
difficult to separate one from the other on the basis of 
only time or frequency representation, sub-band 
signals by wavelet transform were utilized for 
morphology features. For NSR and interested types of 
arrhythmia, their detail signals at levels 4, 5, 6 and 7 
have representative components and obviously 
different distributions to each other. Level 4 signifies 
the decomposition at scale 24. Based on these facts, 
detail coefficients of these detail signals were chosen 
as features that could discriminate arrhythmia beats 
from the others. The differences between detail 
coefficients’ distributions for different types of beats 
can be found in Fig. 4. cD4 means that the detail 
coefficients at level 4 and the number of coefficients 
is 8. Similarly, cD5 at level 5, cD6 at level 6, cD7 at 
level 7 with the number of coefficients being 4, 2 and 
1, respectively. These 15 coefficients were defined as 
feature 3 to feature 17. 

 
2.4. Feature dimension reduction by LDA 

Linear Discriminant Analysis (LDA) searches for 
those vectors in the underlying space that best 
discriminate among classes rather than those that best 
describe the data [10]. The goal of LDA is to seek a 
transformation matrix W that maximizes the ratio of 
the between-class scatter to the within-class scatter. 
Initially, we consider a within-class scatter matrix for 
the within-class scatter. A within-class scatter matrix 
Sw is defined as 

(5) 
 

 
where c is the number of classes, Ci is a set of data 
belonging to the ith class, and mi is the mean of the ith 
class. The within-class scatter matrix represents the 
degree of scatter within classes as a summation of 
covariance matrices of all classes. Next, we consider a 
between-class scatter matrix for between-class scatter. 
A between-class scatter matrix SB is defined as 

 
(6) 

 
where m is the mean of all classes. The between-class 
scatter matrix represents the degree of scatter between 
classes as a covariance matrix of means of all classes. 
We seek a transformation matrix W that in some sense 
maximizes the ratio of the between-class scatter and 
the within-class scatter. The criterion function J(W) 
can be defined as  

( ) .
t

B

t
w

W S W
J W

W S W
=                        (7) 

We can obtain the transformation matrix W as one that 
maximizes the criterion function J(W). Furthermore, 
given a number of independent features relative to 
which data is described, LDA creates a linear 
combination of these which yields the largest mean 
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Fig. 5. Statistical characteristic of new features for arrhythmia beats of 10 records from MIT/BIH arrhythmia

database for different classes. 
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differences of the desired classes [11]. As a result, if 
there are c classes, the dimension of feature can be 
reduced to c-1 extremely. Using fewer inputs to the 
arrhythmia classifier, faster computation can be 
expected. 

In this paper, assuming the number of classes is 5, 
the number of original features was designed to be 
reduced to 4 by LDA with guarantee of the 
comparable performance to that prior to reduction. 
The mean and variance of 4 features, which were 
newly generated by this process, are presented in Fig. 
5. For different arrhythmia beats, their mean and 
variance are distributed in different ranges so that new 
features could also provide good tools for 
discrimination of arrhythmia beats. 

 
2.5. SVM based arrhythmia classifier 

The purpose of Support Vector classification is to 
devise a computationally efficient way of learning 
good separating hyperplanes in a high dimensional 
feature space. The SVM works in the high 
dimensional feature space formed by the nonlinear 
mapping, φ(x) of the n-dimensional input vector into a 
K-dimensional feature space. The equation of the 
hyperplane separating two different classes is given 
by the relation 

0
1

(x) ( ) (x) 0
K

T
j j

j
y W Xϕ ω ϕ ω

=
= = + =∑  (8) 

with w=[ω0, ω1, ..., ωk]T is the weight vector of the 
network. 

By introducing the so-called Lagrange multipliers, 
iα  the learning task of SVM is reduced to quadratic 

programming. On account of these facts, there exist 
many highly effective learning algorithms [12-14], 
which result in the global minimum of the cost 
function and the best possible choice of the 
parameters of the neural network. And all operations 
in learning and testing are done using so-called kernel 
functions. The kernel is defined as )xK(x, i ϕ=  

x)()x( i ϕϕT . 
In this paper, a radial basis function (RBF) was 

selected as the kernel and the parameters - kernel 
width σ and margin-losses trade-off C, which 
provided best classification, were fixed by 
experiments before learning. Simultaneously, the 
learning of SVM can be referred to as the separation 
of learning vectors xi into two classes of the 
destination values either di=1 or di=-1, with maximal 
separation margin. And this process is reduced to the 
dual maximization problem of the function, ( )Q α  
defined as follows [12,15]: 

 
(9) 

 
 

Fig. 6. The scheme of proposed SVM based classifier. 
 
with the constraints 
 

 
(10) 

 
 

where C is a user-defined trade-off constant as 
previously mentioned and p is the number of learning 
data pair (xi, di). C determines the balance between 
the complexity of the network, characterized by the 
weight vector w and the error of classification of data. 

The solution with respect to the Lagrange 
multipliers gives the optimal weight vector Wopt, as 

∑
=

=
SN

i
sisi d

1
siopt )x(w ϕα . The output signal y(x) of 

the SVM network is determined as the function of  
 
 

(11) 
 

kernels and the specific form of the nonlinear function 
need not be known. The positive value of y(x) is 
associated with membership of the particular class and 
the negative one with membership of the opposite 
class. Although SVM separates the data only into two 
classes, classification into additional classes is 
possible by applying either the “one against one” or: 
“one against all” method [16,17]. We designed a SVM 
based classifier as shown in Fig. 6. 

The feature vectors xi fed to the neural classifier Ki 
and the outputs of each classifier form the vector 
y=[y1, y2, ..., yM]T which signifies the potential of 
belonging to each class. Subsequently, with user-
defined rules, output values yj for some j may be 
inhibited and additional output may be generated 
through a decision block. As a result, final outputs 
z=[z1, z2, ..., zN]T are given. The position of the 
highest value element of z indicates the membership 
with the appropriate class. 

 
3. RESULTS AND DISCUSSION 

 
To evaluate the performance of the classifier, three 

measures are used and defined as: 
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Table 1. Comparisons of the classifier performance for 
different combination of parameters. 
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(%) 100TNSpecificity
TN FP

= ×
+

, (13) 

( )(%) 100
( )

TP TNAccuracy
TP FN TN FP

+
= ×

+ + +
, (14) 

where TP stands for true positive, TN for true negative, 
FP for false positive and FN for false negative. When 
VF is concerned, TP represents VF being classified as 
VF and TN represents non-VF beat being classified as 
non-VF. Moreover, FP represents non-VF being mis-
classified as VF and FN represents VF being mis-
classified as non-VF [6].  

 
3.1. Parameter selection 

SVM classifier parameters, with kernel width σ and 
margin-losses trade-off C, affect the cost of learning 
and the classification performance. We have selected 
optimal parameter values with trial experiments, in 
which the performance of the classifier was observed 
for the different combination of parameters. For these 
experiments, the goal of the classifier was confined to 
discriminate only NSR with 10 records from the 
MIT/BIH arrhythmia database. Table 1 presents the 

performance of the classifier corresponding to each 
experiment. The performance is likely to get lower as 
σ increases and the classifier has the better 
performance with C=10 than with other Cs. So, we 
chose the parameters - σ and C as 1 and 10 
respectively. 

 
3.2. Feature dimension reduction by LDA 

Two of the most popular dimensionality reduction 
techniques are Principal Component Analysis (PCA) 
and Linear Discriminant Analysis (LDA). The former 
one deals with the data in its entirety for the principal 
component analysis without paying any particular 
attention to the underlying class structure, whereas the 
latter one deals with discrimination between classes. 
To certify the usefulness of LDA, the performance of 
the classifier was evaluated with original features, 
features reduced to 4 dimensions by PCA and features 
reduced to 4 dimensions by LDA. For this, 23 records 
from the MIT/BIH arrhythmia database, which 
contain NSR and other types of arrhythmias, were 
used and the interested classes were confined as NSR 
and others. For this task, the SVM classifier was used 
with different input features and Multilayer 
Perceptrons (MLP) and the Fuzzy Inference System 
(FIS) were additionally tried with them for cross-
validation. The results of classification are 
summarized in Table 2. ORG indicates the results with 
the original 17 features, PCA with 4 features by PCA 
and LDA with 4 features by LDA. 

For the SVM classifier, the overall performance of 
PCA seems to be lower than that of ORG by less than 
1%. In the mean time, the overall performance of 
LDA shows to be higher than both that of PCA and 
that of ORG. Even though other classifiers were used, 
the reduced features by LDA indicated usefulness for 
classification. Consequently, we found that the 
dimension of features had been reduced effectively by 
LDA and the better performance could be obtained 
with a smaller number of features than that of original 
features. Furthermore, faster learning was possible 
due to lower dimensions of input features. 

 
3.3. Performance of SVM arrhythmia classifier 

To verify the effectiveness of the SVM arrhythmia 
classifier, its performance was compared with that of 
well-known classifiers; Multilayer Perceptrons (MLP) 

 

Table 2. Comparisons of the classifier performance for different feature reduction methods (units, %). 
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and Fuzzy Inference System (FIS) classifiers.  
For a MLP classifier, a three layer structure was 

used, including an input layer, a hidden layer and an 
output layer. Each input layer and output layer has 4 
nodes and 5 nodes respectively. And, the hidden layer, 
using sigmoid functions as the membership functions, 
was made to have 10 nodes with best performance. 
The learning task was done by an error back 
propagation algorithm.  

For a FIS classifier, input features were translated 
to linguistic values by the fuzzy inference, in which 
membership functions and fuzzy logic comprised of 
IF-THEN statements were used. A Gaussian curve 
was used for the membership functions, on which the 
performance of FIS is likely to be dependent, and its 
characteristic parameters were selected with repetitive 
experiments. A min-max method, also known as the 
Mandani inference method, was used for inference 
and a result was finally obtained by a gravity center 
defuzzification. 

For the evaluation of each classifier, a total of 5630 
beats were used and it consisted of 67438 NSR beats, 
2318 APC and SVT beats, 8617 PVC and VT beats, 
7175 VF beats and 82 other beats. All classifiers 
equally used 4 dimension features by LDA as input 
features. Table 3 shows the summarized results of 
cross-validation. The SVM classifier can discriminate 
NSR with accuracy of 99.307%, APC with 99.274%, 
SVT with 99.854%, PVC with 98.344%, VT with 
99.441% and VF with 99.883%. The overall 
performance of the SVM classifier is generally better 
than that of the MLP classifier and that of the FIS 
classifier. And, the FIS classifier has the most inferior 
performance. This may be from the fact that the used 
features are not suitable for fuzzy inference and we 
could not find the best membership functions. For 
NSR and APC, the SVM classifier shows absolute 
superiority in all performance areas; sensitivity, 
specificity and accuracy. The sensitivity of the SVM 
classifier for NSR and VF is higher than that of the 
SVM classifier for other arrhythmias, for which MLP 
even demonstrate better sensitivity. And, the SVM 
classifier has mostly good specificity for all 
arrhythmias. The majority of errors are caused by 

some arrhythmias not considered in this paper, such as 
LBBB (left bundle branch block), RBBB (right 
bundle branch block) and fusion beat. To obtain the 
above results, while the SVM classifier used 4135 
beats in the learning task, the MLP classifier used 
26512 beats, which is about six times more. 
Undoubtedly, when fewer beats were used for the 
MLP classifier, lower performances were obtained, 
but these are not shown here. Moreover, the CPU time 
taken to build the SVM classifier and MLP classifier 
were measured as 100.094 and 623.734 secs, 
respectively. 

Finally, we can know that the proposed SVM 
classifier provides better performance than the MLP 
classifier with smaller learning data as well as than 
that of previous studies [1-6]. 

 
5. CONCLUSIONS 

 
In this paper, we proposed a SVM based arrhythmia 

classification algorithm. Seventeen original input 
features were extracted from preprocessed signals by 
wavelet transform; 2 rhythm related features and 15 
wavelet coefficient features. To improve the learning 
efficiency of the classifier, we attempted to reduce the 
original features to 4, the linear combination of 
original features, by LDA. Comparing the 
performance of the SVM classifier with different 
input features, the performance with features by LDA 
showed higher than with that by PCA and even with 
original features. So, we could see that LDA could 
reduce feature dimensions and act as a useful tool to 
improve the classifier performance at lower learning 
costs. To evaluate the SVM arrhythmia classifier, a 
cross-validation method was adopted. That is, the 
performance of it was compared with that of the MLP 
classifier and FIS classifier using dimension reduced 
features. The proposed SVM classifier showed 
satisfactory performances in discriminating six types 
of arrhythmia beats. The accuracy of discrimination of 
NSR, APC, SVT, PVC, VT and VF were 99.307%, 
99.274%, 99.854%, 98.344%, 99.441% and 99.883%, 
respectively. The overall performance of the SVM 
classifier was comprehensively better than that of the 

Table 3. Comparisons of the performances with different classifiers (units, %). 
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MLP classifier and the FIS classifier. And, even with 
smaller learning data, the SVM classifier could 
provide better performance than the MLP classifier. 

Furthermore, the proposed algorithm could be 
expected to offer faster implementation than other 
neural networks by the reduction of feature 
dimensions by LDA and by less-demanding learning 
data characteristics of the SVM classifier. 
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