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Abstract

Structural brain alterations have been repeatedly reported in schizophrenia; however, the

pathophysiology of its alterations remains unclear. Multivariate pattern recognition analysis

such as support vector machines can classify patients and healthy controls by detecting

subtle and spatially distributed patterns of structural alterations. We aimed to use a support

vector machine to distinguish patients with schizophrenia from control participants on the

basis of structural magnetic resonance imaging data and delineate the patterns of structural

alterations that significantly contributed to the classification performance. We used indepen-

dent datasets from different sites with different magnetic resonance imaging scanners, pro-

tocols and clinical characteristics of the patient group to achieve a more accurate estimate

of the classification performance of support vector machines. We developed a support vec-

tor machine classifier using the dataset from one site (101 participants) and evaluated the

performance of the trained support vector machine using a dataset from the other site (97

participants) and vice versa. We assessed the performance of the trained support vector

machines in each support vector machine classifier. Both support vector machine classifiers

attained a classification accuracy of >70% with two independent datasets indicating a con-

sistently high performance of support vector machines even when used to classify data from

different sites, scanners and different acquisition protocols. The regions contributing to the

classification accuracy included the bilateral medial frontal cortex, superior temporal cortex,

insula, occipital cortex, cerebellum, and thalamus, which have been reported to be related

to the pathogenesis of schizophrenia. These results indicated that the support vector

machine could detect subtle structural brain alterations and might aid our understanding of

the pathophysiology of these changes in schizophrenia, which could be one of the diagnos-

tic findings of schizophrenia.
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Introduction

Schizophrenia is a detrimental psychiatric disorder characterized by positive symptoms (delu-

sions and hallucinations), negative symptoms (impaired motivation, reduction in spontaneous

speech, and social withdrawal), and cognitive impairment (working memory deficit, atten-

tional impairment) [1]. Structural brain alterations in schizophrenia have been repeatedly

reported in the literature; however, the pathophysiology of such alterations remains unclear

[1]. Voxel-based morphometry (VBM), a univariate analysis based on a voxel- or cluster-level

comparison, has detected group level differences in gray matter densities between patients

with schizophrenia and controls [2]. Meta-analyses based on VBM have also identified gray

matter deficits in patients with schizophrenia, particularly in the frontal and temporal lobes,

cingulate and insular cortices, and thalamus [3–5]. Gray matter deficits in multiple distributed

brain regions have been implicated in schizophrenia by VBM studies, but the VBM method

does not consider the interconnected nature of the brain regions [6].

To overcome these methodological disadvantages, an increasing number of studies have

applied multivariate pattern recognition analysis (MVPA) to extract brain alterations in

patients with schizophrenia [7]. Unlike univariate analysis, which considers each voxel inde-

pendently, MVPA can detect subtle and spatially distributed patterns of structural alterations

that are not detected by univariate analysis [8]. Furthermore, MVPA can be used to individu-

ally classify patients and healthy controls based on the identified pattern of brain alterations.

Therefore, MVPA may be a potential tool to detect the pathophysiology of brain structural

alterations in schizophrenia.

Support vector machine (SVM) is one of the popular methods of MVPA in the neuroimag-

ing of psychiatric disorders [9]. The use of an SVM typically involves a training phase, in

which datasets with known associations between group features and group membership are

used to train a classifier to discriminate the different groups. Subsequently, the trained classi-

fier is used to classify a new dataset in a testing phase for validation [9]. Validation using inde-

pendent datasets is the appropriate method; however, this method requires a larger number of

samples, which may not be readily available. If the sample size is limited, alternative methods

such as a cross-validation approach can be performed to evaluate the SVM’s classification per-

formance [10–12]. Although cross-validation can provide an unbiased estimate of the classifi-

er’s performance, there is still a danger of overestimating the classification performance

because the test dataset includes the training set [2]. In schizophrenia research, most previous

studies have adopted the cross-validation method for validation [13], which limits the gener-

alizability of the overall findings.

Another important question that needs to be fully addressed for clinical applicability of

MVPA-based approaches is whether classifiers trained using data from one site can be effec-

tively applied to data obtained from another site. The difficulties in multisite analysis is that

the different MRI scanners and protocols can have an effect on the performance of the classifi-

cations [14, 15]. Until recently, most classification studies using two independent samples for

training and testing obtained data from a single study site [16–18]. The performance of data

from multi-site classification still remains unexplored. Rozycki et al. [19] addressed this issue

and reported that consistent classification accuracy could be achieved even if the training and

testing data were acquired from different sites.

In this study, we applied an SVM to classify patients with schizophrenia and control partici-

pants on the basis of structural MRI data. Unlike previous studies and following Rozycki et al.

[19], to evaluate SVM classification performance, we used independent datasets obtained from

different sites using different MRI scanners and protocols and enrolled patients with different

clinical characteristics. This enabled us to examine the robustness and general applicability of
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the trained SVMs to classify patients from healthy controls across different sites and patient

cohorts. Additionally, we investigated the patterns of structural alterations that significantly

contributed to the classification performance of SVMs and examined how these changes were

correlated to patients’ clinical characteristics.

Methods

Participants

The present study included two datasets, one from Nagoya University and the other from

Toyama University in Japan. Table 1 presents the demographic and clinical data of the partici-

pants. The Nagoya University dataset consisted of 50 patients with schizophrenia and 51

healthy controls. The Toyama University dataset consisted of 49 patients and 48 healthy con-

trols. The patients were diagnosed based on the Diagnostic and Statistical Manual of Mental

Disorders, Fourth Edition diagnostic criteria [20] using the Structured interview. Current clin-

ical symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS)

[21]. The dose of antipsychotic medication received at the time of scanning was evaluated by

the chlorpromazine (CPZ) equivalent [22]. The healthy controls had no history of psychiatric

or neurological disorders (based on the Structured Clinical Interview for Diagnosis, non-

patient version) [23] and did not use any psychoactive medications. Intelligence quotient

scores were estimated using the Japanese version of the National Adult Reading Test (JART)

[24]. Handedness was assessed using the Edinburgh Handedness Inventory [25] for partici-

pants from Nagoya University and the Rating Scale of Handedness for Biological Psychiatry

Research among Japanese People [26] for participants from Toyama University. All proce-

dures in this study were carried out in accordance with the Declaration of Helsinki; the partici-

pants provided written informed consent to participate; and the Nagoya University Graduate

School of Medicine, Nagoya University Hospital Ethics Review Committee and the Committee

on Medical Ethics of Toyama University approved this study.

Table 1. Demographic and clinical information.

Nagoya University Toyama University

SCZ (n = 50) CON (n = 51) SCZ (n = 49) CON (n = 48)

Age at scan (years) 38.8 (± 6.9) 36.5 (±7.1) 28.1 (± 5.0) 26.9 (±3.3)

Sex (male/female) 26/24 29/22 23/26 23/25

Handedness (right/both/left) 49/0/1 51/0/0 32/2/9 36/2/9

Education 13.4 (2.7) 16.5 (1.5) 13.7 (2.1) † 17.3 (1.4)

Estimated IQ (JART) 98.9 (10.2) 108.0 (6.4) 101.6 (10.2)‡ 111.0 (5.9)

Onset age (years) 24.1 (6.4) 22.5 (5.1)

Duration of illness (years) 14.7 (8.2) 5.4 (4.8)

Dose of antipsychotics (CPZ equivalent) (mg) 584.4 (406.6) 441.9 (416.7) §

PANSS Total 67.3 (23.5) 64.6 (21.3) ¶

PANSS Positive 16.0 (6.3) 13.4 (5.8)

PANSS Negative 16.9 (6.8) 18.2 (7.9)

Data are presented as the mean (standard deviation). Abbreviations: Schizophrenia (SCZ), healthy control (CON), intelligence quotient (IQ), Japanese version of the

National Adult Reading Test (JART), chlorpromazine (CPZ), Positive and Negative Syndrome Scale (PANSS)
† Information is missing for one patient.
‡ Information is missing for five patients.
§ Seven patients did not take antipsychotics.
¶ Information is missing for two patients.

https://doi.org/10.1371/journal.pone.0239615.t001
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MRI acquisition

Participants from Nagoya University were scanned using a 3-T MRI scanner (Siemens, Verio,

Erlangen, Germany) at the Brain & Mind Research Center, Nagoya University with the follow-

ing parameters: repetition time (TR) = 1900 ms, echo time (TE) = 2.48 ms, inversion time (TI)

= 900 ms, flip angle = 9˚, field of view (FoV) = 256 mm, resolution = 256, number of

slices = 192, slice thickness = 1.3 mm, and voxel size = 1 x 1 x 1.3 mm. The participants from

Toyama University were scanned using a 3-T MRI scanner (Siemens Magnetom Verio,

Erlangen, Germany) at Toyama University with the following parameters: TR = 2300 ms,

TE = 2.9 ms, TI = 900 ms, flip angle = 9˚, FoV = 256 mm, resolution = 256, number of

slices = 178, slice thickness = 1.2 mm, and voxel size = 1 x 1 x 1.2 mm.

MRI preprocessing

MRI data were processed using the VBM 8 toolbox provided by Christian Gaser (http://dbm.

neuro.uni-jena.de/vbm.html) in the Statistical Parametric Mapping 8 program (http://www.fil.

ion.ucl.ac.uk/spm/software/spm8/). The T1 images were normalized and segmented into gray

matter, white matter, and cerebrospinal fluid using VBM 8’s unified segmentation process.

The Diffeomorphic Anatomical Registration using Exponentiated Lie Algebra [27] was used to

create a group template for spatial normalization of the segmented images of each participant.

The modulation step was performed using exclusively non-linear regression. The normalized

and modulated gray matter images were then spatially smoothed using an 8 mm full-width at

half-maximum Gaussian filter. Age and sex were also regressed from the preprocessed gray

matter images independently for each site using the Matlab’s regress function to account for

any differences due to these covariates. These preprocessed images were then used in the suc-

ceeding SVM analysis.

From the preprocessed gray matter images, we also generated a mask by computing the

mean gray matter image using all (both sites) participants’ data and applying a gray matter

density threshold of 0.2. Voxels with values above the threshold were included in the mask.

The resulting mask was then applied to all images in order to limit the number of voxels used

for the classification.

SVM classification

To classify patients from controls, we used a linear SVM. For the SVM analysis, we used in-

house Matlab scripts and the Matlab version of LIBSVM, a library for support vector machines

[28]. We used one dataset to train an SVM classifier and tested the performance of the trained

classifier using the other dataset. The SVM was trained to classify gray matter images as either

belonging to the patient group (assigned a class label of -1) or to the control group (assigned a

class label of +1). The regularization parameter for the linear SVM was estimated using a ten-

fold cross-validation approach. The trained SVM’s classification performance was assessed

using the following measures: accuracy, sensitivity, specificity, positive predictive value, and

negative predictive value.

After training, the SVM assigns weight values for each voxel, which can then be used to

assess each voxel’s contribution to the SVM’s classification accuracy. To identify the signifi-

cance of the weight value of each voxel, a permutation test [29] with 5000 iterations was used.

This was achieved by randomly permuting the class labels, then training an SVM using the

permuted labels to yield the probability distribution of the SVM weights under the null

hypothesis of no association between class labels and the global structure of the training data.

The p-value of each weight was then estimated as the proportion of weight values in the null

distribution greater than or equal to the value obtained using the original (non-permuted)
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labels. A significance map was constructed by estimating the p-values of all voxels within the

mask used in the analysis.

We trained SVM classifiers using the dataset from one site and evaluated the performance

of the trained SVMs using the dataset from the other site, and vice versa. Several classification

measures were assessed and the brain regions that significantly contributed to the classification

of the two groups were identified using the constructed significance map.

Correlation between gray matter densities in regions contributing to the

classification performance of the trained SVMs and clinical features

We also assessed the association between the gray matter densities in brain regions that signifi-

cantly contributed to the classification accuracy of the trained SVMs and patients’ clinical fea-

tures such as onset age, duration of illness, CPZ equivalent, and JART in both models. For this,

we extracted regions-of-interest (ROIs) from the significance map of each model by setting a

threshold using a false discovery rate (FDR) of q< 0.05 and cluster size of more than 100 vox-

els. For each ROI, we then extracted the gray matter values from the preprocessed images,

computed the mean within the ROI, and assigned the resulting value to the ROI. We assessed

the relationship between the mean gray matter densities in the obtained ROIs and the clinical

data of patients (JART, PANSS, onset age, duration of illness, and CPZ equivalent). This analy-

sis was performed independently for each site since the SVM models are site-specific.

Results

Participant characteristics

Five patients were missing JART, one was missing education duration, and two were missing

PANSS information in the patient group in the Toyama University dataset. Patients and con-

trols did not differ significantly in terms of age or sex within each university [t (98) = -1.35,

p = 0.18 and χ2 = 0.04, p = 0.84 in Nagoya University; and t (95) = -1.39, p = 0.17 and χ2 =

0.009, p = 0.92 in Toyama University]. However, significant differences were observed in educa-

tion and estimated intelligence quotient (t (99) = 7.21, p = 4.71 x 10−4 and t (99) = 5.36, p = 6.10

x 10−5 in Nagoya University; t (94) = 9.86, p = 1.42 x 10−15 and t (90) = 5.84, p = 1.34 x 10−7 in

Toyama University]. Significant differences were observed in age (t (98) = 8.81, p = 7.65 x

10−14), duration of illness (t (98) = 6.87, p = 1.29 x 10−9), and PANSS positive (t (96) = 2.1,

p = 0.036) in the clinical data of patients between the two universities. All patients from Nagoya

University and 42 of the 49 patients from Toyama University had been receiving antipsychotic

medication (mean CPZ equivalent = 584.4 mg and 437.1 mg, respectively). There were no sig-

nificant differences in the CPZ equivalent between universities (t (98) = 1.80, p = 0.076).

SVM classification performance

Using the Nagoya University dataset as the training dataset, the ten-fold cross-validation clas-

sification accuracy of the training dataset was 73.3% (p-value = 2 x 10−4) (for the results of

other measures, see Table 2). With the Toyama University dataset as the test dataset, the classi-

fication accuracy was 72.2% (p-value = 2x10-4) and AUC = 0.7402 (p-value = 0.0166) (for the

results of other measures, see Table 3).

Using the Toyama University dataset as the training dataset, the ten-fold cross-validation

classification accuracy of the training dataset was 72.2% (2 x 10−5) (for the results of other mea-

sures, see Table 2). The Nagoya University dataset was used to test the model. The classifica-

tion accuracy was 72.3% (p-value = 0.0108) and AUC = 0.8043 (p-value = 0.0108) (for the

results of other measures, see Table 3).
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Regions contributing significantly to the classification accuracy in the Nagoya University

model included the bilateral insula, bilateral medial frontal cortex/anterior cingulate gyrus,

bilateral frontal pole, bilateral parahippocampal gyrus/hippocampus, bilateral thalamus, bilat-

eral lingual gyrus, fusiform gyrus, and left posterior cingulate gyrus. In contrast, regions with

significant weights in the Toyama University model included the bilateral medial frontal cor-

tex/anterior cingulate gyrus, bilateral insula, bilateral thalamus, bilateral frontal pole, cerebel-

lum, bilateral middle frontal gyrus, right lingual gyrus, right middle temporal gyrus, and right

caudate, among others. Regions where the significant weights of the two models overlapped

were observed in the bilateral medial frontal cortex/anterior cingulate gyrus, bilateral frontal

pole, bilateral frontal orbital cortex, bilateral middle/superior frontal gyrus, right superior tem-

poral gyrus, bilateral insular cortex, and bilateral thalamus (Figs 1 and S1). The full list of

regions with significant weights in the Nagoya University and Toyama University SVM mod-

els are given in Tables 4 and 5, respectively.

Correlation between gray matter density in SVM-identified ROIs and

clinical features

Tables 4 and 5 present the Montreal Neurological Institute coordinates of the center of gravity

of all identified ROIs and the mean SVM weight values assigned to each in the Nagoya Univer-

sity and Toyama University SVM models, respectively. The significant correlations (p< 0.05,

uncorrected) of mean gray matter density and clinical data are also presented in Tables 4 and 5

and Fig 2. All correlations are given in S1 and S2 Tables. There were no significant correlations

after correcting for multiple comparisons using false discovery rate. Correlations of GM densi-

ties between ROIs are also shown in S3 and S4 Tables.

Discussion

We used an SVM to identify the pattern of brain structural alterations that differentiates

patients with schizophrenia from healthy controls. We demonstrated that both the Nagoya

University and Toyama University SVM models had attained approximately the same

Table 3. Classification performance of the support vector machine using independent data set.

Nagoya University model Toyama University model

Test data set Toyama University Nagoya University

Accuracy 72.2% 72.3%

Sensitivity 61.2% 62.0%

Specificity 83.3% 82.4%

Positive predictive value 78.9% 77.5%

Negative predictive value 67.8% 68.9%

https://doi.org/10.1371/journal.pone.0239615.t003

Table 2. Ten-fold cross validation classification performance of the trained support vector machine.

Nagoya University model Toyama University model

Training data set Nagoya University Toyama University

Accuracy 73.3% 72.2%

Sensitivity 64.0% 55.1%

Specificity 82.3% 89.6%

Positive predictive value 78.0% 84.4%

Negative predictive value 70.0% 66.2%

https://doi.org/10.1371/journal.pone.0239615.t002
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classification accuracy in completely independent test datasets that used different MRI scan-

ners, MRI protocols, and characteristics of patients. Our findings also revealed that the brain

regions contributing to the classification included the areas frequently reported to be involved

in the pathogenesis of schizophrenia. Most of the regions showed consistency across the two

Fig 1. Regions with significant (FDR q<0.05 and cluster size of more than 100 voxels) weight values for both

SVM models and their overlap. Regions in red represent area for the Nagoya University model, in green represent the

Toyama University mode and yellow represent the overlap. Axial image (a) and sagittal image (b) (radiological

convention).

https://doi.org/10.1371/journal.pone.0239615.g001

Table 4. Regions contributing to the classification performance of the trained support vector machine (Nagoya University model).

Cluster Voxels Center of Gravity SVM

Weights

Brain regions Correlation with clinical data

Index X

(mm)

Y

(mm)

Z

(mm)

MEAN

1 123 -6.63 -21.7 42.5 8.07E-05 Cingulate Gyrus, posterior division

2 141 39.5 -21.8 -34.1 0.000103 R Temporal Fusiform Cortex

3 143 7.6 -27.5 6.96 8.23E-05 R Thalamus

4 151 5.39 -46.2 -37.6 0.0001 Cerebellar tonsils PANSS ρ = -0.292, p = 0.040

5 269 -6.25 -30.7 1.73 8.53E-05 L Thalamus duration year ρ = -0.320, p = 0.0223; CPZ ρ = -0.350, p = 0.013

6 286 31.9 36.8 -15.2 8.86E-05 R Frontal Pole /Frontal Orbital Cortex

7 369 15.6 -52.8 -0.939 8.92E-05 R Lingual Gyrus

8 396 -28 36.7 -16.7 8.87E-05 L Frontal Orbital Cortex /Frontal Pole

9 425 32.1 -17.2 -15.8 9.06E-05 R Parahippocampal Gyrus /

Hippocampus

10 654 -15.9 -16.9 -19.6 9.48E-05 L Parahippocampal Gyrus /

Hippocampus

PANSS ρ = -0.316, p = 0.025; PANSS positive ρ = -0.318,

p = 0.025, PANSS negative ρ = -0.289, p = 0.042; CPZ ρ = -0.340,

p = 0.016

11 705 19.3 -56.1 -14.3 9.57E-05 R Lingual Gyrus /Temporal Occipital

Fusiform Cortex / Cerebellum

12 731 28.3 60.3 4.04 8.53E-05 R Frontal Pole

13 816 -7.21 -61.4 5.71 9.75E-05 L Lingual Gyrus

14 1317 -27.1 52.7 15.1 8.77E-05 L Frontal Pole

15 1452 -20.6 -69.4 -13.4 0.000111 L Occipital Fusiform Gyrus/Lingual

Gyrus/Cerebellum

16 7930 46.4 2 -11.1 0.000121 R Planum Polare /Insular Cortex

/Temporal Pole

17 9583 0.299 41.4 2.3 0.000114 Medial Frontal Gyrus/Cingulate Gyrus,

anterior division

18 10065 -41 4.73 -14.3 0.000126 L Temporal Pole /Insular Cortex

/Planum Polare

Abbreviations: Japanese version of the National Adult Reading Test (JART), chlorpromazine (CPZ), Positive and Negative Syndrome Scale (PANSS), Right (R), Left (L)

https://doi.org/10.1371/journal.pone.0239615.t004
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SVM models suggesting that these regions could potentially serve as robust neuroanatomical

signatures of schizophrenia.

The classification performance accuracy of SVM models was >70% in both Nagoya and

Toyama Universities despite the differences among MRI scanners and/or protocols. Although

it is difficult to directly compare our results to those of previous studies due to differences in

methodology and characteristics of the patients group, the classification accuracies of SVMs

based on structural MRI findings have been reported to range from 63.2% to 91.8% [13].

Higher classification accuracy may be attained by optimizing the analysis method, standardiz-

ing the data protocol, using a single MRI scanner, and harmonizing participant selection.

However, this might lead to reduced versatility and generalizability of the resulting SVM

model. Feature selection has an effect on the classification accuracy and SVM training using

preselected ROI analysis tends to have higher accuracy than voxel-based feature selection [13].

Although this approach could improve the accuracy, it could also exclude the potentially

important brain regions differentiating the two groups [30]. In this study, we employed whole-

brain analysis, which offered several advantages such as removal of bias in the ROI selection

and identification of additional regions exhibiting morphological differences between patients

with schizophrenia and healthy controls. Another factor to improve the accuracy is to stan-

dardize MRI data acquisition by using the same protocol and MRI scanner at a single site [31].

In clinical practice, inter-site variability in MRI scanners, MRI protocols, and clinical charac-

teristics will remain. Therefore, SVM analysis using different datasets independently collected

at different sites may have higher versatility and generalizability, which makes our study

meaningful.

The performance of the SVMs was also assessed by sensitivity and specificity. The sensitiv-

ity was lower in our study than in previous studies. Previous studies on MVPA meta-analysis

Table 5. Regions contributing to the classification performance of the trained support vector machine (Toyama University model).

Cluster Voxels Center of Gravity SVM

Weights

Brain regions Correlation with clinical

data

Index X (mm) Y (mm) Z (mm) MEAN

1 117 24.6 37.9 -15.7 9.96E-05 R Frontal Pole/Frontal Orbital Cortex

2 123 -60.5 -43.7 -2.86 9.61E-05 R Middle Temporal Gyrus, posterior division

3 148 22.3 -57.3 -6.13 0.000107 R Lingual Gyrus/ Temporal Occipital Fusiform Cortex/Occipital

Fusiform Gyrus

PANSS ρ = -0.325, p = 0.026

4 158 -32.1 -79.7 -50.4 0.000135 L Cerebelllum

5 165 2.42 -31.5 40 9.52E-05 R Cingulate Gyrus, posterior division

6 167 3.75 -47.5 -61 0.00012 R Cerebellum onset age ρ = 0.314,

p = 0.0287 196 9.93 20.2 3.7 8.37E-05 R Caudate

8 287 61.1 -32.1 2.3 9.55E-05 R Superior Temporal Gyrus, posterior division

9 394 -42.2 -64.4 -51.4 0.000166 L Cerebelllum

10 409 -48 6.45 32.1 0.000116 L Middle Frontal Gyrus

11 525 34.1 35.7 26.9 0.00015 R Middle Frontal Gyrus

12 773 -43.3 -75.5 -12.2 9.12E-05 L Lateral Occipital Cortex

13 960 36.1 -74.5 -49.2 0.000144 R Cerebellum

14 1079 35.6 22.2 1.6 0.00011 R Insular Cortex/Frontal Operculum Cortex

15 1169 27.8 53.7 13.6 0.000116 R Frontal Pole JART ρ = -0.311, p = 0.040

16 2259 1.57 -16.6 8.19 0.000114 R Thalamus

17 10190 -10.1 40.8 4.95 0.00011 L Medial Frontal Cortex/Anterior Cingulate Gyrus CPZ ρ = -0.339, p = 0.017

Abbreviations: Japanese version of the National Adult Reading Test (JART), chlorpromazine (CPZ), Positive and Negative Syndrome Scale (PANSS), Right (R), Left (L)

https://doi.org/10.1371/journal.pone.0239615.t005

PLOS ONE Classification of schizophrenia patients and controls with a vector machine and magnetic resonance

PLOS ONE | https://doi.org/10.1371/journal.pone.0239615 November 24, 2020 8 / 15

https://doi.org/10.1371/journal.pone.0239615.t005
https://doi.org/10.1371/journal.pone.0239615


using structural MRI indicated a sensitivity of 76.4% (95% CI: 71.9–80.4%) and a specificity of

79.0% (95% CI: 74.6–82.8%) [7]. Our initial intention was to clarify the clinical characteristics

of the misclassified patients; however, we did not succeed to specify the relation between

patient clinical characteristics and misclassifications. Florkowski indicates that high sensitivity

Fig 2. Correlation between gray matter densities in regions contributing significantly to the classification

performance of the trained support vector machines and clinical features. Nagoya University model and Toyama

University model (see also Tables 4 and 5). ROI, region-of-interest; PANSS, Positive and Negative Syndrome Scale; JART,

Japanese version of the National Adult Reading Test; CPZ, chlorpromazine.

https://doi.org/10.1371/journal.pone.0239615.g002
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corresponds to high negative predictive value and is the ideal property of a “rule-out” test,

while high specificity corresponds to high positive predictive value and is the ideal property of

a “rule-in” test [32]. The prevalence of schizophrenia is approximately 1% of the population

[1], therefore, high specificity (rule-in) rather than sensitivity (rule-out) might be more impor-

tant for clinical application.

We detected highly similar patterns of regions contributing significantly to the classification

accuracy of the trained SVMs in both models. Brain regions such as the bilateral medial frontal

cortex, superior temporal cortex, and insula had structural brain alterations which were con-

sistent with the previously reported structural brain alterations in schizophrenia patients by

VBM analysis [3–5]. These patterns are also consistent with those identified in previous classi-

fication studies [11, 16, 17, 33]. Another region that was common in both models is the thala-

mus. Thalamic volume reductions have frequently been reported in studies employing VBM

and ROI analyses; it was also reported in both those at high risk of schizophrenia and in rela-

tives of patients with schizophrenia [5]. However, reports of thalamic volume reductions are

relatively uncommon in studies applying SVM analyses [18, 34, 35].

On the other hand, there were also regions that were unique to each model, which may

reflect the characteristics of the given site’s patient population. For instance, although regions

in the lingual gyrus were present in both models, the identified regions did not overlap. The

region associated with the Toyama University model (ROI 3) had GM density that also showed

correlation to PANSS score (Fig 2), unlike the region associated with Nagoya University

model. Alterations in the lingual gyrus/occipital fusiform in patients with schizophrenia have

also been reported in previous SVM studies [11, 36, 37]. There are also a few VBM studies [4]

and one ROI study [38] reporting gray matter density decreases in the occipital cortex in

schizophrenic patients. The regions involved in the Nagoya University model are also more

widespread in the cerebral cortex than that in the Toyama University model, which could be a

reflection of illness duration or age considering that the patient group from Nagoya University

were—on average—older and have longer duration of illness [39, 40]. In contrast, in the

Toyama University model, the cerebellum has more widespread involvement than in the

Nagoya University model. Moberget et al. [41] found in a large-scale international multisite

study that cerebellar volume reduction in patients with schizophrenia was present already in

the youngest patients. Cerebellar volume reduction in participants at high-risk of schizophre-

nia has been also reported using SVM analyses [10, 34, 35, 42–44].

Some of the brain regions contributing to the classification accuracy in this study are related

to cognitive impairment and psychotic symptoms in patients with schizophrenia. The medial

frontal cortex is related to executive function, and altered activity in the medial frontal cortex

was reported during executive task performance [45]. The superior temporal gyrus plays an

important role in auditory processing and language comprehension and is associated with pos-

itive symptoms in patients with schizophrenia [46]. The insular cortices are key nodes of the

salience network, which has a central role in the detection of external and internal stimuli and

the coordination of neural activity [47]. The salience network is related to reality distortion

and psychotic symptoms such as delusions and hallucinations in patients with schizophrenia

[48–50]. The lingual gyrus/occipital cortex belongs to the visual system. The impairment of

visual processing in patients with schizophrenia has been frequently reported [51]. The cere-

bellum is a component of the cortico-cerebellar-thalamic-cortical circuit and may play a cru-

cial role in the modulation of cortical activity. The cortico-cerebellar-thalamic-cortical circuit

dysfunction is implicated in cognitive impairment and psychiatric symptoms in patients with

schizophrenia [52]. Thus, the brain regions contributing to the classification accuracy may be

associated with the pathophysiology of schizophrenia. The thalamus is a crucial node of the

cortical-subcortical network and modulates information processing. Dysfunction of the
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thalamus is associated with cognitive impairment and abnormalities in a sensory experience

such as hallucinations in patients with schizophrenia [53–55].

We investigated the correlation between the mean gray matter densities in the brain regions

contributing to classification accuracy and clinical features. Our findings revealed that the gray

matter densities of some regions were significantly correlated with the clinical characteristics

of patients. Although the meaning of this observed association between some of the SVM-

identified ROIs and clinical characteristics is unclear, this association demonstrates the efficacy

of the SVM not only in classifying the two groups but also in identifying relevant discrimina-

tive features available in the data. In addition, some of the ROIs had gray matter densities that

correlated with the amount of antipsychotic medication. These ROIs were observed in the thal-

amus and parahippocampal gyrus/hippocampus in Nagoya University model, and cingulate

gyrus in Toyama University model. The effect of antipsychotics on gray matter changes is a

matter of great concern and has been repeatedly reported [56, 57], but the reported effect on

these regions is not consistent [58].

Finally, there are some limitations that should be mentioned in the interpretation of our

results. Initially, in terms of methodology, we did not regress out the potential contribution of

the differences in the total intracranial volume (ICV). Methodologically, we were concerned

that the regression of the ICV would affect the performance of SVM. With regards to ICV in

SVM analyses, in the literature, it is unclear whether ICV regression should be included [19,

31] or not [17, 59]. We did investigate whether the regression of ICV could affect the perfor-

mance of SVM in our dataset. Our results showed a slight reduction in the classification accu-

racy (S6 Table in S1 File). More details are provided in S1 File. Second, some patients were

using antipsychotics on the day of MRI scanning. Antipsychotic treatment is associated with

gray matter density changes [60, 61]. Indeed, we demonstrated the effects of antipsychotics on

reducing gray matter densities in the Toyama University model. Third, the sample size is rela-

tively small. Nieuwenhuis et al. [17] reported that a large amount (n>130) of structural MRI

data is required to distinguish patients with schizophrenia from controls. As mentioned above,

although our SVM methods may not be applicable for diagnosis in clinical situations, they

could be helpful for diagnosis of patients with schizophrenia and aid our understanding of the

pathophysiology of brain alterations in patients with schizophrenia. In future studies, we need

to use more sophisticated MRI data, for example, MRI data from drug-naïve first-episode

patients [31], in order to secure more robust results.

In conclusion, our results indicated that the SVM performance remained consistent and

accurate even when classifying data from different sites, with different MRI scanners, and dif-

ferent acquisition protocols. In addition, regions that consistently contribute to the classifica-

tion were identified in both the SVM models, thus potentially providing a robust

neuroanatomical signature of schizophrenia. Taken together, SVM could help in advancing

our understanding of the pathophysiology of the structural changes accompanying schizo-

phrenia, which could be one of the diagnostic findings of schizophrenia.
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