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Abstract 

This work presents an approach for automating the discretization and approximation 
procedures in constructing digital representations of composites from Micro-CT images 
featuring intricate microstructures. The proposed method is guided by the Support Vector 
Machine (SVM) classification, offering an effective approach for discretizing 
microstructural images. An SVM soft margin training process is introduced as a 
classification of heterogeneous material points, and image segmentation is accomplished 
by identifying support vectors through a local regularized optimization problem. In 
addition, an Interface-Modified Reproducing Kernel Particle Method (IM-RKPM) is 
proposed for appropriate approximations of weak discontinuities across material 
interfaces. The proposed method modifies the smooth kernel functions with a regularized 
heavy-side function concerning the material interfaces to alleviate Gibb's oscillations. 
This IM-RKPM is formulated without introducing duplicated degrees of freedom 
associated with the interface nodes commonly needed in the conventional treatments of 
weak discontinuities in the meshfree methods. Moreover, IM-RKPM can be implemented 
with various domain integration techniques, such as Stabilized Conforming Nodal 
Integration (SCNI). The extension of the proposed method to 3-dimension is 
straightforward, and the effectiveness of the proposed method is validated through the 
image-based modeling of polymer-ceramic composite microstructures.  
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1 Introduction  

In recent years, a variety of non-destructive imaging techniques, such as micro-X-ray 

computed tomography (micro-CT), have emerged as powerful alternatives to obtain detailed 

information about the microstructure and internal deformation of composite materials [1]–[4]. 

Nevertheless, modeling microstructures remains challenging owing to their geometrical and 

topological complexities and heterogeneity, making the body-fitted mesh generation for mesh-

based methods extremely tedious and time-consuming, especially in the three-dimension model 

construction. An example of a 2D slice of micro-CT image of a polymer-ceramic composite 

specimen (polymer matrix reinforced by ceramic particles) and its corresponding body-fitted 

finite element mesh is shown in Figure 1, demonstrating the meshing complexity.  

 

Figure 1: Micro-CT image of a polymer-ceramic composite microstructure and its 

corresponding body-fitted finite element mesh 

Various image segmentation techniques have been developed over the past several 

decades, including region-based and classification-based methods [5]. Global and local 

thresholding [6] is a simple region-based method that uses a threshold value to separate objects 

from the background, but it can lead to poor results if the threshold is not chosen correctly. The 

region growing method [7] is another region-based approach that relies on user-selected seed 

pixels and offers advantages over thresholding, but the numerical results can be sensitive to the 

selection of initial seed points. On the contrary, classification-based methods generally adopt a 

global approach for image segmentation, whereby an automatic pattern recognition process is 

utilized in the context of supervised learning based on manually segmented training datasets. K-

Nearest Neighbor (KNN) is a simple, non-parametric supervised learning model that makes 

predictions based on the k-nearest neighbors in the training data, but it usually requires a large 

amount of training data to suppress high variance problems [8]. Tree-based algorithms, including 

(a) Micro-CT image (b) Body fitted FEM mesh
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decision trees and random forests, are another widely used supervised learning techniques in 

which the training data is partitioned into smaller subsets without much data pre-processing and 

with high interpretability and computational efficiency. However, these methods may have 

limited ability to predict unseen data, restricted decision boundary expressiveness, and can be 

sensitive to imbalanced data [9]. Recently, deep learning algorithms have enabled to develop 

state-of-the-art image segmentation methods, especially those based on convolutional neural 

networks (CNNs), which can automatically learn features from raw images with minimal human 

interaction. However, these methods require large amounts of labeled datasets with extensive 

training and are mathematically more challenging to interpret due to the highly non-linear 

relationships between input features and output labels [10], [11].  

The present work employs the Support Vector Machine (SVM) algorithms as the image 

segmentation method to guide the numerical model generation. SVM is a classification-based 

machine learning algorithm built on solid mathematical foundation and optimization frameworks 

[12], [13]. Compared to other supervised algorithms, SVM is advantageous because it generates a 

unique maximum-margined global hyperplane for separating training datasets, providing a global 

solution for data classification. Additionally, it is not sensitive to the underlying probabilistic 

distribution of the training dataset, ensuring high performance for limited, noisy, or imbalanced 

datasets [14]. One apparent limitation of the standard SVM is that it requires 𝑂𝑂(𝑙𝑙3) operations, 

where 𝑙𝑙 is the length of the training dataset, to solve a complex quadratic programming problem 

(QPP) with inequality constraints. Various approaches have been proposed to overcome this 

limitation, such as the training decomposition method [15] and the reduced support vector 

machine (R-SVM) algorithm [16], which significantly improves SVM’s training speed. 

Additionally, more efficient formulations of SVM have been introduced, such as the Least Square 

SVM (LS-SVM) algorithm [17] and the Lagrangian SVM algorithm [18]. The LS-SVM 

algorithm optimizes a dual problem directly using a least-square loss function, replacing the hinge 

loss function in the original SVM’s formulation to reformulate the complex QPP as a linear 

system of equations. In contrast, the Lagrangian SVM algorithm utilizes an implicit Lagrangian 

for the dual of the standard quadratic program of a linear SVM, leading to the minimization of an 

unconstrained differentiable convex function in the space of dimensionality equal to the number 

of training datasets. Both mentioned algorithms eliminate the necessity of complicated 

programming problem solvers, making them feasible for classifying large datasets. In addition to 

the binary SVM classifier, extensive research has been done to extend SVM to multi-class 

classification. The one-vs-all (OVA) method, one-vs-one (OVO) method, error-correcting output 

codes (ECOC), and directed acyclic graphs (DAGs) are among the most widely used approaches 
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to handle multi-class classification with SVM [19]. The traditional binary SVM algorithm is 

adopted in this work for its effective applicability to the two-phase materials.  

Numerical modeling of heterogeneous materials remains challenging for both mesh-

based methods discretized with body-fitted discretization and meshfree methods formulated with 

smooth approximations. For the Finite Element Method (FEM), incomplete handling of 

discontinuities in mesh construction can lead to suboptimal convergence [20], and aligning 

meshes with interfaces is a non-trivial task for composites with complex microstructures and 

significant variations in constituent moduli. The meshfree methods utilize point-wise 

discretization instead of carefully constructed body-fitted meshes. However, meshfree methods 

such as element-free Galerkin (EFG) [21] and reproducing kernel particle method (RKPM) [22]–

[24] typically suffer from Gibb's-like oscillation in the approximation when modeling weak 

continuities in composite materials, as their smooth approximation functions with overlapping 

local supports fail to capture gradient jump conditions across material interfaces [25]. 

Considerable effort has been dedicated to developing effective techniques for dealing with 

interface discontinuities. Since the proposed work is under the Galerkin meshfree framework, the 

review of methods developed based on mesh-based context to address interface discontinuities is 

omitted here. Reviews on some key non body-fitted FEM developments for interface 

discontinuities can be found in [26], [27].  

Two primary approaches in meshfree methods have been proposed for handling material 

interface weak discontinuities. The first approach involves introducing discontinuities in the 

meshless approximation function. Krongauz and Belytschko proposed two types of jump 

enrichment functions into the conventional Moving Least Squares (MLK) or Reproducing Kernel 

(RK) approximation of the field variables [25]. The enrichment functions introduce discontinuous 

derivatives into solutions along material interfaces, but additional unknowns must be solved in 

this method. Chen et al. [28] introduced the jump enrichment functions into the RK shape 

function based upon enforcing the consistency conditions, which is termed the interface-enriched 

reproducing kernel approximation (I-RKPM). However, coupling interface-enriched RK shape 

functions with the standard RK shape function requires duplicated unknowns. In addition, 

Masuda and Noguchi introduced a discontinuous derivative basis functions to replace the 

conventional polynomial basis function used in the MLS approximation [29]. Another class of 

methods introduces modifications to the weak formulation to consider the effects of discontinuity 

in a weak sense. Codes and Moran treated material interface discontinuities by a Lagrange 

Multiplier technique so that the approximations are disjoint across the interfaces while the 

Lagrange Multiplier imposes the interface continuity constraints into the variational formulation 
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of the meshfree discretization [30]. This approach introduces additional degrees of freedom to be 

solved associated with the Lagrange Multiplier, and stability conditions need additional attention. 

On the other hand, the discontinuous Galerkin (DG) formulation has also been considered, where 

the continuity of a field variable and its resulting interface flux or traction across interfaces are 

imposed in the weak form [31], [32]. Wang et al. proposed a DG reformulation of the EFG and 

RKPM to address interface discontinuity problems of composite materials [33]. This approach 

avoids duplicated unknowns, and by decomposing the domain into patches, the gradient jump of 

the dependent variable is captured by the boundary of the adjacent patches while the continuity 

condition is realized weakly through an augmented variational form with associated flux or 

traction crossing material interfaces. Additionally, other meshfree methods have also been 

proposed for non-body-fitted discretization of heterogeneous media, such as the immersed 

methods [34], [35].  However, these methods require special care of interface oscillations due to 

the employment of volumetric constraints on the foreground and background discretization. 

The current work introduces a novel Interface-Modified Reproducing Kernel Particle 

Method (IM-RKPM) to properly handle weak discontinuities in composite materials across 

material interfaces. The proposed approach utilizes signed distance functions obtained from SVM 

classified Micro-CT images to introduce regularized weak discontinuities to the kernel functions 

for arbitrary interface geometries. No duplicated unknowns, special enrichment functions, or 

complicated reformulation of the RK shape functions are required in the proposed approach, 

offering automated model construction capabilities for modeling complex microstructures.  

The remainder of the paper is organized as follows. Section 2 provides basic equations 

for the model problem and the Reproducing Kernel Particle Method, and the associated numerical 

domain integration techniques are also discussed in this section. A brief introduction of the SVM 

formulation and the proposed SVM and RK-guided procedures for image segmentation of 

heterogenous materials are introduced in Section 3. Section 4 presents an interface-modified 

kernel function and the Interface-Modified Reproducing Kernel Particle Method formulation to 

introduce weak discontinuities in the image-based modeling of composite microstructures. In 

addition, two validation examples are presented to examine the proposed method's effectiveness. 

In section 5, two numerical examples for image-based modeling of microstructures are 

demonstrated, and the paper concludes with a discussion and summary in Section 6.  
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2  Basic Equations 

2.1 Model problem 

Let a model elasticity problem be defined on a domain Ω with its boundary assigned as 

𝜕𝜕Ω = 𝜕𝜕Ω𝑔𝑔 ∪ 𝜕𝜕Ωℎ , 𝜕𝜕Ω𝑔𝑔 ∩ 𝜕𝜕Ωℎ =  ∅ , where the subscripts 𝑔𝑔  and ℎ  denote the Dirichlet and 

Neumann boundaries, respectively. The strong form for heterogeneous elastic media can be 

described as: 

 

∇ ⋅ 𝝈𝝈 + 𝒔𝒔 = 𝟎𝟎 in Ω 

     𝒖𝒖 = 𝒖𝒖� on 𝜕𝜕Ω𝑔𝑔 

              𝒏𝒏 ⋅ 𝝈𝝈 = 𝒉𝒉 on 𝜕𝜕Ωℎ  

(1) 

where 𝒖𝒖 represents the unknown displacement field, 𝝈𝝈 is the Cauchy stress tensor, 𝒔𝒔 is the body 

force vector, 𝒖𝒖�  and 𝒕𝒕  are the prescribed displacement vector and the applied surface traction 

vector on the Dirichlet and Neumann boundaries, respectively, and 𝒏𝒏 is the unit outward normal 

of the Neumann boundaries. The elastic constitutive relationship for heterogeneous materials is 

represented as: 

  𝝈𝝈(𝒙𝒙) = 𝑪𝑪(𝒙𝒙): 𝜺𝜺�𝒖𝒖(𝒙𝒙)� (2) 

Here 𝑪𝑪(𝒙𝒙) is the elasticity tensor defined as: 

 𝑪𝑪(𝒙𝒙) = �𝑪𝑪
𝟏𝟏,   𝒙𝒙 ∈ Ω1

𝑪𝑪𝟐𝟐,   𝒙𝒙 ∈ Ω2
 (3) 

where Ω𝑖𝑖 are material sub-domains to be segmented by the SVM classification of microstructure 

image pixels. 

The weak formulation is to find 𝒖𝒖(𝒙𝒙) ∈ 𝑈𝑈 ⊂ 𝐻𝐻𝑔𝑔1, such that for all weight function 𝒗𝒗(𝒙𝒙) ∈

𝑉𝑉 ⊂ 𝐻𝐻01, 

 �𝜺𝜺(𝒗𝒗)
Ω

:𝝈𝝈(𝒖𝒖)𝑑𝑑Ω = �𝒗𝒗
Ω

⋅ 𝒔𝒔𝑑𝑑Ω + � 𝒗𝒗
∂Ωℎ

⋅ 𝒉𝒉𝑑𝑑Γ (4) 

The Galerkin formulation seeks the trial solution function 𝒖𝒖ℎ ∈ 𝑈𝑈ℎ ⊂ 𝑈𝑈, so that for all weight 

function 𝒗𝒗ℎ ∈ 𝑉𝑉ℎ ⊂ 𝑉𝑉, 

 �𝜺𝜺�𝒗𝒗ℎ�
Ω

:𝝈𝝈�𝒖𝒖ℎ�𝑑𝑑Ω = �𝒗𝒗ℎ
Ω

⋅ 𝒔𝒔𝑑𝑑Ω + � 𝒗𝒗ℎ
∂Ωℎ

⋅ 𝒉𝒉𝑑𝑑Γ (5) 

2.2  Reproducing Kernel Approximation 

Let a closed domain  Ω� = Ω ∪ 𝜕𝜕Ω ⊂ ℝ𝑑𝑑 be discretized by a set of 𝑁𝑁𝑁𝑁 nodes denoted by 

𝕊𝕊RK = � 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁𝑁𝑁 ∣∣ 𝒙𝒙𝐼𝐼 ∈ Ω � , and let the approximation of a field variable 𝒖𝒖(𝒙𝒙)  in Ω  be 
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denoted by 𝒖𝒖ℎ(𝒙𝒙). The RK approximation of the field variable 𝒖𝒖(𝒙𝒙) based on the discrete points 

in the set 𝕊𝕊RK is formulated as follows: 

 𝑢𝑢𝑖𝑖ℎ(𝒙𝒙) = �Ψ𝐼𝐼(𝒙𝒙)𝑑𝑑𝑖𝑖𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼=1

 (6) 

where Ψ𝐼𝐼 denotes the RK shape function with support centered at the node 𝒙𝒙𝐼𝐼 and 𝑑𝑑𝑖𝑖𝐼𝐼 is the nodal 

coefficient in 𝑖𝑖𝑡𝑡ℎ dimension to be sought. Moreover, let a node 𝐼𝐼 be associated with a subdomain 

Ω𝐼𝐼, over which a kernel function 𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝑰𝑰) with a compact support 𝑎𝑎 is defined, such that Ω� ⊂

⋃ Ω𝐼𝐼𝐼𝐼∈𝕊𝕊RK  holds. The RK approximation function is constructed as:  

 
Ψ𝐼𝐼(𝒙𝒙) = 𝐶𝐶(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) = �� (𝒙𝒙 − 𝒙𝒙𝐼𝐼)α

|α|≤𝑛𝑛

𝑏𝑏α(𝒙𝒙)�𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼)

≡ 𝑯𝑯T(𝒙𝒙 − 𝒙𝒙𝐈𝐈)𝒃𝒃(𝒙𝒙)𝜙𝜙a(𝒙𝒙 − 𝒙𝒙𝐈𝐈) 

(7) 

 𝑯𝑯𝑇𝑇(𝒙𝒙 − 𝒙𝒙𝐼𝐼) = [1, 𝑥𝑥1 − 𝑥𝑥1𝐼𝐼 , 𝑥𝑥2 − 𝑥𝑥2𝐼𝐼 , … , (𝑥𝑥3 − 𝑥𝑥3𝐼𝐼)𝑛𝑛]   (8) 

where α is a multi-index notation such that α = (α1,α2, … ,α𝑑𝑑) with a length defined as |α| =

α1 + α2 + ⋯+ α𝑑𝑑 , and 𝒙𝒙𝛼𝛼 ≡ 𝒙𝒙1
𝛼𝛼1 ⋅ 𝒙𝒙2

𝛼𝛼2 , … ,𝒙𝒙𝑑𝑑
𝛼𝛼𝑑𝑑 , 𝑏𝑏α = 𝑏𝑏α1α2⋯α𝑑𝑑 . The term 𝐶𝐶(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼) =

 𝑯𝑯T(𝒙𝒙 − 𝒙𝒙𝐈𝐈)𝒃𝒃(𝒙𝒙)  is called the correction function of the kernel 𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼)  designed to 

introduced completeness to the RK approximation. The terms {(𝒙𝒙 − 𝒙𝒙𝐼𝐼)α}|α|≤𝑛𝑛 form a set of basis 

functions, and 𝑯𝑯𝑇𝑇(𝒙𝒙 − 𝒙𝒙𝐼𝐼) is the corresponding vector of basis functions to the order 𝑛𝑛. The 

vector 𝒃𝒃(𝒙𝒙) is the coefficient vector of {𝑏𝑏𝛼𝛼(𝒙𝒙)}|𝛼𝛼|≤𝑛𝑛  and is solved by enforcing the following 

discrete reproducing conditions [36]:  

 �Ψ𝐼𝐼(𝒙𝒙)𝒙𝒙𝐼𝐼α
𝑁𝑁𝑁𝑁

𝐼𝐼=1

= 𝒙𝒙α,  |α| ≤ 𝑛𝑛 (9) 

or equivalently, 

 �Ψ𝐼𝐼(𝒙𝒙)(𝒙𝒙 − 𝒙𝒙𝐼𝐼)α
𝑁𝑁𝑁𝑁

𝐼𝐼=1

= 𝛿𝛿0α,  |α| ≤ 𝑛𝑛 (10) 

After inserting Eq. (10) into Eq. (7), 𝒃𝒃(𝒙𝒙) is obtained as: 

 𝒃𝒃(𝒙𝒙) = 𝑴𝑴−𝟏𝟏(𝒙𝒙)𝑯𝑯(𝟎𝟎)𝜙𝜙a(𝒙𝒙 − 𝒙𝒙𝐈𝐈) (11) 

where 𝑴𝑴(𝒙𝒙) is the moment matrix and is formulated as: 

 𝑴𝑴(𝒙𝒙) = �𝑯𝑯(𝒙𝒙 − 𝒙𝒙I)𝑯𝑯T(𝒙𝒙 − 𝒙𝒙I)𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙I)
𝑁𝑁𝑁𝑁

𝐼𝐼=1

 (12) 



 

 

 8 

Finally, the RK shape function is obtained as: 

 Ψ𝐼𝐼(𝒙𝒙) = 𝑯𝑯𝐓𝐓(𝟎𝟎)𝑴𝑴−𝟏𝟏(𝒙𝒙)𝑯𝑯(𝒙𝒙 − 𝒙𝒙𝐈𝐈)𝜙𝜙a(𝒙𝒙 − 𝒙𝒙𝐈𝐈) (13) 

Examples of 1-dimensional kernel functions are shown in Figure 2, and the 1- and 2-dimensional 

RK shape functions constructed based on cubic B-spline kernel function and linear basis 

functions are shown in Figure 3. The locality and the smoothness of the RK approximation 

functions are determined by the kernel function, while the order of completeness in the 

approximation is determined by the order of basis functions 𝑛𝑛. Interested readers are referred to 

[22]–[24], [37]–[39] for basic properties of reproducing kernel approximation. 

 

Figure 2: RK domain discretization and examples of kernel functions 

 

Figure 3: Examples of 1D and 2D RK shape functions constructed based on the cubic B-

spline kernel function and linear basis functions 

2.3 Numerical domain integration 

Due to the rational nature and arbitrary local supports, introducing RK approximations in 

the Galerkin weak form requires special attention. The conventional Gauss integration on 

background integration cells leads to a sub-optimal convergence unless significantly high-order 

(a) RK discretization and nodal influence domains (b) Tent kernel function (c) Cubic B-spline kernel function

(a) 1D RK shape function centered at node (b) 2D RK shape function centered at origin
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quadrature rules are used, which is computationally infeasible especially in three-dimension [37]. 

Several domain integration techniques have been proposed, such as stabilized conforming and 

non-conforming nodal integrations [40]–[45] and variationally consistent integration [46], along 

with various stabilization methods [47]–[49]. The Gauss Integration (GI) and stabilized 

conforming nodal integration methods (SCNI) are summarized in this section. 

2.3.1 Gauss integration 

Gauss integration is introduced by subdividing the domain into background integration 

cells independent of the RK discretized nodes. For pixel discretization points, uniform integration 

cells illustrated in Figure 4 can be used for simplicity.  

 

Figure 4: Schematic of background Gauss integration cells and Gauss points distributions 

While Gauss integration is exceptionally efficient in integrating polynomials, meshfree 

shape functions are typically rational functions with overlapping supports. Additionally, the local 

domain of numerical integration in general misaligns with the nodal compact supports, which 

introduces significant error in Gauss integration, and high order quadrature rule is required to 

ensure optimal convergence [46], [50]. It is recommended in the literature [46] to use up to 5-

point Quadrature rule to obtain desirable accuracy, which is computationally demanding, 

especially for high-dimensional problems. More detailed Gauss domain integration procedures 

can be referred to early Galerkin meshfree literature [22], [24], [51]. 

2.3.2 Stabilized Conforming Nodal Integration 

One solution that significantly eases the computational cost of Gauss domain integration 

is to use the discretized nodes as integration points [47], referred to as the direct nodal integration 

(DNI). The DNI technique is appealing because of its simplicity and efficiency, as it does not 
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require a background integration mesh, which makes numerical approximation truly "mesh-free." 

Nevertheless, since DNI is similar to a one-point quadrature rule, the under-integration of the 

weak form results in improper zero energy modes in most situations [40], [47]. 

Chen et al. [40] introduced the Stabilized Conforming Nodal Integration (SCNI) method 

as an enhancement of the DNI by fulfilling the consistency conditions between the 

approximations and the numerical integration of the weak form known as the integration 

constraints (IC). The SCNI method is formulated to exactly meet the first-order integration 

constraint and also to remedy the rank deficiency in the DNI method by introducing the following 

smoothed gradient in the Galerkin approximation: 

 ∇�Ψ𝐼𝐼(𝒙𝒙𝐿𝐿) =
1
𝑊𝑊𝐿𝐿

� Ψ𝐼𝐼(𝒙𝒙)d
Ω𝐿𝐿

Ω =
1
𝑊𝑊𝐿𝐿

� Ψ𝐼𝐼(𝒙𝒙)𝒏𝒏
∂Ω𝐿𝐿

dΓ (14) 

where 𝑊𝑊𝐿𝐿  denotes the areas of the nodal representative conforming smoothing cells, and 𝒏𝒏 

represents the unit outward normal of the smoothing cell boundaries. A convenient way of 

generating conforming smoothing cells is to create the Voronoi diagram according to the domain 

boundaries and nodal coordinates, as illustrated below in Figure 5, where the boundary integral in 

the smoothed gradient in Eq. (14) is carried out by the cell boundary quadrature points.  

 

Figure 5: Voronoi tessellation of domain and representative nodal cell 

The associated gradient matrix 𝑩𝑩�(𝒙𝒙𝑳𝑳) of RK approximation evaluated at nodal integration point 

𝒙𝒙𝑳𝑳 is now expressed in terms of smoothed gradient as:  

 𝑩𝑩�𝐼𝐼(𝒙𝒙𝐿𝐿) = �
𝑏𝑏�𝐼𝐼1(𝒙𝒙𝐿𝐿) 0

0 𝑏𝑏�𝐼𝐼2(𝒙𝒙𝐿𝐿)
𝑏𝑏�𝐼𝐼2(𝒙𝒙𝐿𝐿) 𝑏𝑏�𝐼𝐼1(𝒙𝒙𝐿𝐿)

� (15) 

Nodal cell edge 
center integration 

point

Interface cell edge 
center integration 

point
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𝑏𝑏�𝐼𝐼𝑖𝑖(𝒙𝒙𝐿𝐿) =
1
𝑊𝑊𝐿𝐿

� Ψ𝐼𝐼(𝒙𝒙)𝑛𝑛𝑖𝑖(𝒙𝒙)𝑑𝑑Γ
Γ𝐿𝐿

 

The stiffness matrix is then integrated by nodal integration with the smoothed gradient as: 

 𝑲𝑲 =  �𝑩𝑩�𝑻𝑻(𝒙𝒙𝐿𝐿)𝑩𝑩�(𝒙𝒙𝐿𝐿)
𝑁𝑁𝑁𝑁

𝐿𝐿=1

𝑊𝑊𝐿𝐿 (16) 

It is noted that Voronoi cells conformed to the material interfaces without confining to 

the existing pixel points can be constructed, as demonstrated in Figure 5. In such construction, the 

centers of those Voronoi cells can be viewed as the integration points that are not coincided with 

the image pixel points. Details of constructing those Voronoi cells near the material interface are 

given in Appendix A. 

3 Support Vector Machine (SVM) classification of Micro-CT images and model 

discretization 

3.1  Support Vector Machine (SVM) classification algorithm 

The Support Vector Machine (SVM) is a class of supervised machine learning algorithms 

that assigns labels to objects through training [52]. Let a labeled classification dataset containing 𝑙𝑙 

sets of data be denote as 𝐃𝐃 = {(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑙𝑙 , where 𝒙𝒙𝑖𝑖 ∈ ℝ𝑑𝑑 is the 𝑖𝑖𝑡𝑡ℎ-dimensional data points, and 

𝑦𝑦𝑖𝑖 is the label corresponding to the 𝑖𝑖𝑡𝑡ℎ data point. Since the primary focus of this work is bi-

material classification, 𝑦𝑦𝑖𝑖  is assumed to be either −1 or +1, representing the negative (matrix) 

and positive (inclusion) classes, respectively. If the given dataset is perfectly linearly separable, 

the SVM classification process can be described as to find a separating hyperplane in the form of 

a linear discriminant function in 𝑑𝑑-dimension: 

 ℎ(𝒙𝒙; {𝒘𝒘, 𝑏𝑏}) = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 (17) 

where 𝒘𝒘  denotes a 𝑑𝑑 -dimensional weight vector and 𝑏𝑏  denotes a scalar bias. Additionally, 

ℎ(𝒙𝒙; {𝒘𝒘, 𝑏𝑏}) serves as a linear classifier for class prediction following the decision rule: 

 𝑦𝑦 = �+1    if ℎ(𝒙𝒙; {𝒘𝒘, 𝑏𝑏}) > 0
−1    if ℎ(𝒙𝒙; {𝒘𝒘, 𝑏𝑏}) < 0 (18) 

Therefore, the weight vector 𝒘𝒘 is orthogonal to the defined hyperplane, and for each 𝒙𝒙𝑖𝑖 ∈ 𝐃𝐃, the 

relative distance in terms of 𝒘𝒘 to the defined hyperplane can be expressed as: 

 𝜉𝜉𝑖𝑖 =
𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏)

‖𝒘𝒘‖
 (19) 
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The margin of the linear classifier is identified by selecting a collection of the data points that 

achieve a minimum distance to ℎ(𝒙𝒙; {𝒘𝒘, 𝑏𝑏}), which are called the support vectors {𝒙𝒙𝑆𝑆𝑆𝑆}, and are 

defined as: 

 {𝒙𝒙𝑆𝑆𝑆𝑆} = argmin
𝐱𝐱𝑖𝑖∈𝑫𝑫

�
𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏)

‖𝒘𝒘‖
� (20) 

Note that if the distances of all support vectors to the hyperplane are normalized to be 1, the 

margin can be defined as 𝜉𝜉∗ = 1
‖𝒘𝒘‖

. Thus, the goal of training the SVM with a linear classifier as 

Eq. (17) can be described as to find the optimal hyperplane ℎ∗(𝒙𝒙) as follows: 

 

ℎ∗(𝒙𝒙) = ℎ(𝒙𝒙; {𝒘𝒘∗,𝑏𝑏∗}), 

𝒘𝒘∗, 𝑏𝑏∗ = argmax
𝒘𝒘,𝑏𝑏

�
1

‖𝒘𝒘‖
�,  

subject to:  𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1, ∀𝒙𝒙𝑖𝑖 ∈ 𝐃𝐃 

(21) 

The constrained optimization problem described in Eq. (21) can be formulated as an equivalent 

convex constrained minimization problem: 

 
min
𝒘𝒘,𝑏𝑏

𝐽𝐽(𝒘𝒘) =
1
2
‖𝒘𝒘‖2, 

subject to:  𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1, ∀𝒙𝒙𝑖𝑖 ∈ 𝐃𝐃 

(22) 

which is called the primal formulation of SVM with linear classifier [13]. Instead of directly 

solving the primal convex minimization problem, it is computationally more efficient to solve the 

dual problem, formulated using the Lagrange multipliers. To construct the dual problem, a 

Lagrange multiplier 𝛼𝛼𝑖𝑖 is introduced for each linear constraint based on the Karush-Kuhn-Tucker 

(KKT) conditions [53]: 

  𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) − 1) = 0, 𝛼𝛼𝑖𝑖 ≥ 0 (23) 

Then the objective of the dual problem can be formulated as: 

 min
𝒘𝒘,𝑏𝑏

𝐿𝐿 =
1
2
‖𝒘𝒘‖2 −�𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) − 1)

𝑙𝑙

𝑖𝑖=1

 (24) 

By finding the stationary point of the Lagrangian 𝐿𝐿 with respect to 𝒘𝒘, the optimal weight vector 

𝒘𝒘 can be expressed in terms of a linear combination of the data points, data label, and Lagrange 

multipliers: 
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 𝒘𝒘 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖

𝑙𝑙

𝑖𝑖=1

 (25) 

Additionally, a new constrain arises when minimizing 𝐿𝐿 with respect to the bias, which indicates 

that the sum of the labeled Lagrange multipliers must be equal to zero. Therefore, by substituting 

Eq. (25) into Eq. (24), the dual problem’s training objective can be formulated as: 

 

max
𝜶𝜶

𝐿𝐿𝑑𝑑𝑑𝑑𝑎𝑎𝑙𝑙 = �𝛼𝛼𝑖𝑖

𝑙𝑙

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝒙𝒙𝑖𝑖𝑇𝑇𝒙𝒙𝑗𝑗

𝑙𝑙

𝑗𝑗=1

𝑙𝑙

𝑖𝑖=1

,    

subject to:  𝛼𝛼𝑖𝑖 ≥ 0,�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑙𝑙

𝑖𝑖=1

, for 𝑖𝑖 = 1,2,3, … , 𝑙𝑙 

(26) 

where Eq. (26) forms a well-known convex quadratic programming problem (QPP).  

Nevertheless, it is possible that no such hyperplane can be found through Eq. (26) as the 

real-world data sets are rarely perfectly separable. To deal with cases with overlapping classes, a 

non-negative slack variable ∇𝜖𝜖𝑖𝑖  is introduced to each data point 𝒙𝒙𝑖𝑖 ∈ 𝐃𝐃 , such that the linear 

constraint in Eq. (21) and Eq. (22) is modified as: 

 𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1 − ∇𝜖𝜖𝑖𝑖 , ∀𝒙𝒙𝑖𝑖 ∈ 𝐃𝐃, ∇𝜖𝜖𝑖𝑖 ≥ 0,∀ 𝑖𝑖 = 1,2,3, … , 𝑙𝑙 (27) 

It is worth noting that the magnitude of ∇𝜖𝜖𝑖𝑖  affects the correctness of the classification of its 

corresponding data point 𝒙𝒙𝑖𝑖: when ∇𝜖𝜖𝑖𝑖 ≥ 1, the data point will be misclassified as it appears on 

the wrong side of the hyperplane. As a result, for non-separable data sets, SVM introduces a “soft 

margin” concept into the training process, and the new training objective function can be 

described as: 

 

min
𝒘𝒘,𝑏𝑏,𝜉𝜉�𝑖𝑖

�
1
2
‖𝒘𝒘‖2 + 𝐶𝐶�∇𝜖𝜖𝑖𝑖

𝑙𝑙

𝑖𝑖=1

�,     

subject to:  𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1 − ∇𝜖𝜖𝑖𝑖 , ∀𝒙𝒙𝑖𝑖 ∈ 𝐃𝐃, 

∇𝜖𝜖𝑖𝑖 ≥ 0,∀ 𝑖𝑖 = 1,2,3, … , 𝑙𝑙 

(28) 

where 𝐶𝐶 is a weight parameter that penalizes the cost of misclassification and ∑ ∇𝜖𝜖𝑖𝑖𝑙𝑙
𝑖𝑖=1  gives the 

loss due to the deviation from the separable cases with the introduction of slack variables. 

Moreover, the penalty weight parameter 𝐶𝐶  controls the trade-off between maximizing the 

hyperplane’s margin and minimizing the misclassification’s loss. Therefore, the selection of 𝐶𝐶 

depends on the nature of problems and datasets at hand. Figure 6 presents the hard- and soft-

margined linear SVM classifiers trained on a binary dataset. For the hard-margined SVM 
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classifier, the support vectors are located exactly on the maximum lower and upper margins, 

while the soft-margined SVM classifier relaxes the linear separability constraints, which allows 

some support vectors to cross over the decision boundary. Note that although the dataset in Figure 

6 is linearly separable if the linear separability is strictly enforced, as for the hard-margined case, 

the resulting margin is significantly smaller than the one for the soft-margined case. 

Figure 6: Hard- and soft-margined SVM linear classifiers 

By introducing Lagrange multipliers 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖, corresponding to each of the constraints 

in Eq. (28), a Lagrangian of Eq. (28) can be formulated as: 

𝐿𝐿 =
1
2
‖𝒘𝒘‖2 + 𝐶𝐶�∇𝜖𝜖𝑖𝑖

𝑙𝑙

𝑖𝑖=1

−�𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) − 1 + ∇𝜖𝜖𝑖𝑖)
𝑙𝑙

𝑖𝑖=1

−�𝛽𝛽𝑖𝑖∇𝜖𝜖𝑖𝑖

𝑙𝑙

𝑖𝑖=1

(29) 

By minimizing the 𝐿𝐿  with respect to 𝒘𝒘, 𝑏𝑏 , and ∇𝜖𝜖𝑖𝑖 , respectively, one additional relationship 

connecting the penalty weight parameter 𝐶𝐶  to 𝛼𝛼𝑖𝑖  and 𝛽𝛽𝑖𝑖  is obtained, in addition to the ones 

acquired in the linearly separable cases: 

𝐶𝐶 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖  (30) 

Therefore, the dual objective can be described as: 

max
𝜶𝜶

𝐿𝐿𝑑𝑑𝑑𝑑𝑎𝑎𝑙𝑙 = �𝛼𝛼𝑖𝑖

𝑙𝑙

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝒙𝒙𝑖𝑖𝑇𝑇𝒙𝒙𝑗𝑗

𝑙𝑙

𝑗𝑗=1

𝑙𝑙

𝑖𝑖=1

, 

subject to:  0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶,�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑙𝑙

𝑖𝑖=1

, for 𝑖𝑖 = 1,2,3, … , 𝑙𝑙 

(31) 

(b) Soft margin:(a) Hard margin:
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Note that the objective function achieved for the inseparable cases is the same as the one obtained 

from the linearly separable cases in Eq. (26), except one additional constraint on the Lagrange 

multiplier 𝛼𝛼𝑖𝑖.  

For complicated data sets, the linear classifier is often found inadequate. One strategy is 

to introduce non-linear transformation function 𝜙𝜙 , which maps the data points 𝒙𝒙 to a higher 

dimension so that the projected data points 𝜙𝜙(𝒙𝒙) are approximately linearly separable in the 

higher dimensional feature space. However, upscaling the dimensionality usually leads to high 

and impractical computational costs. Since the Lagrange dual formulation in Eq. (31) only 

depends on the dot product between two vectors in the feature space, the SVM can utilize the 

“kernel trick” to include high-degree polynomial features. The idea of the kernel trick is to 

represent 𝑙𝑙  data point 𝒙𝒙  by a 𝑙𝑙  by 𝑙𝑙  kernel matrix 𝑲𝑲  that contains elements 𝑘𝑘𝑖𝑖,𝑗𝑗 = 𝑲𝑲�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� =

〈𝜙𝜙(𝒙𝒙𝑖𝑖),𝜙𝜙(𝒙𝒙𝑗𝑗)〉 , which performs pairwise similarity comparisons between the original low 

dimensional data points without an explicit definition of the transformation function 𝜙𝜙  for 

mapping data to high dimensions. More detailed introduction to the requirement and existence of 

kernel function can be found in [14]. Therefore, the dual formulation of the training objective for 

non-linear SVM can be described by replacing 𝒙𝒙𝑖𝑖𝑇𝑇𝒙𝒙𝑗𝑗 in Eq. (31) by a kernel function 𝑲𝑲�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗�: 

 

max
𝜶𝜶

𝐿𝐿𝑑𝑑𝑑𝑑𝑎𝑎𝑙𝑙 = �𝛼𝛼𝑖𝑖

𝑙𝑙

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑲𝑲�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗�

𝑙𝑙

𝑗𝑗=1

𝑙𝑙

𝑖𝑖=1

,    

subject to:  0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶,�𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑙𝑙

𝑖𝑖=1

, for 𝑖𝑖 = 1,2,3, … , 𝑙𝑙 

(32) 

Note that Eq. (32) can be viewed as a generalized Lagrange dual formulation of SVM since for 

linear cases, the kernel function can be expressed as the data point dot product as: 

 Linear: 𝑲𝑲�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� = 𝒙𝒙𝑖𝑖𝑇𝑇𝒙𝒙𝑗𝑗 (33) 

Other widely used kernel functions are polynomial and Gaussian radial basis kernel functions, 

which are illustrated in Eq. (34) and Eq. (35), respectively.  

 Polynomial: 𝑲𝑲�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� = �1 + 𝒙𝒙𝑖𝑖𝑇𝑇𝒙𝒙𝑗𝑗�
𝑞𝑞 ,𝑞𝑞 = 2,3, …, (34) 

 Gaussian radial basis: 𝑲𝑲�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� = 𝑒𝑒−𝛾𝛾�𝒙𝒙𝑖𝑖−𝒙𝒙𝑗𝑗�
2
, 𝛾𝛾>0 (35) 
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Figure 7: An example of training the non-linear SVM with the Gaussian kernel (The circled 

data points are the support vectors) 

Figure 7 demonstrates the transformation of the 2-dimensional training data to 3-dimension using 

a Gaussian kernel. It is clear that the 3-dimensional data points become linearly separable by a 2-

dimensional hyperplane, and the resulting separating hyperplane can be mapped back to the 2-

dimensional space, which becomes a nonlinear curve.  

Moreover, the SVM produces a classification score by predicting new datasets that 

provide information about the material class and reveal the location of material interfaces. The 

classification score is a signed distance measure for an observation point 𝒙𝒙 to its nearest decision 

boundary, with a score of zero denoting 𝒙𝒙 is precisely on the decision boundary. Therefore, the 

classification score acts as a guide in identifying material boundaries in the image, facilitating 

more accurate numerical model generation. The classification score for predictions at 𝒙𝒙 to the 

positive class is defined as: 

 𝑆𝑆(𝒙𝒙) = �𝛼𝛼𝑗𝑗𝑦𝑦𝑗𝑗𝑲𝑲�𝒙𝒙𝑗𝑗 ,𝒙𝒙� + 𝑏𝑏
𝑛𝑛

𝑗𝑗=1

  (36) 

where 𝑛𝑛  is the total number of support vectors and (𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛, 𝑏𝑏)  are the trained SVM 

parameters.   

In summary, the SVM algorithms have shown promising performances in many 

application fields [54]. During the hyperplane selection process, SVMs utilize different kernel 

functions to transform the low-dimensioned, non-linear, and possibly non-separable training data 

to higher-dimensional feature spaces, which allows the data to be linearly separated. In addition, 

the selected high-dimensional hyperplane can be projected back down to the original space where 

the training data belong, providing non-linear decision boundaries between the separated classes 

[55]. As a result, SVMs not only aid in classifying different material pixels from Micro-CT 

(a) 2D non-linear training data (b) 3D mapped data points using the Gaussian 
kernel and separating hyperplane 

(c) non-linear SVM with the Gaussian 
kernel training result



 

 

 17 

images of heterogeneous materials but also inherently identify material interfaces. Here, we use 

SVMs to guide numerical model discretization for the proposed Interface-modified Reproducing 

Kernel Particle Method, which will be introduced in the later sections.  

3.2  From Micro-CT images to numerical models 

In this work, the sample images are taken from Micro-Computed Tomography (Micro-

CT). Micro-CT is an imaging technique that generates three-dimensional images of an object's 

microstructure with (sub)micron resolution using an X-ray tube with cone-beam geometry as a 

source and a rotating sample holder [56].  

3.2.1 Training data preparation and training the SVM 

The training data points are located at the centroid of each pixel cell in the sample image, 

and the physical coordinates of those data points are assigned as the training data for the SVM. 

To supervise the SVM's training, response labels 𝑦𝑦, are created by segmenting the sample image 

using Otsu's method [57]. Otsu's method selects a global threshold that maximizes inter-class 

intensity variance from the zeroth- and the first-order cumulative moments of the sample image's 

intensity-level histogram. Figure 8 illustrates the alumina-epoxy composite sample images, where 

the white areas in the sample image indicate the alumina inclusion material and the grey areas 

represent the epoxy material in the matrix. Thus, the supervised training for the SVM aims to 

establish the correlation between physical locations in the image and their respective material 

types.  

 

Figure 8: Sample alumina-epoxy image 

Specific hyperparameters of the training must be determined beforehand to facilitate 

SVM classification, which are summarized in Table 1.  
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SVM training hyperparameters Values 

Kernel function Gaussian radial basis function 

Kernel scale (𝛾𝛾 in Eq. (35)) 0.25 

Penalty weight parameter ( 𝐶𝐶 in Eq. (28)) 500 

Table 1: SVM hyperparameters selected for training the sample image 

The kernel scale determines the extent to which each data point affects the shape of the decision 

boundaries, which is selected as 0.25. Furthermore, a penalty weight parameter 𝐶𝐶  of 500  is 

chosen to ensure that the resulting separation hyperplane resembles the material interface. 

Additionally, a standardization in which the training data points are normalized to have a zero 

mean and a standard deviation of one is performed. The standardization of the training data is 

critical because SVM training is based on the relative distances between the training data points, 

and without standardization, larger-scale training data may dominate in distance determination, 

leading to a biased model.  

3.2.2 RK interface nodes 

In the Interface-modified RK approximation to be proposed in Section 4, a set of 

interface nodes are included to introduce proper weak discontinuity across material interfaces. In 

this section, we present an approach to generate interface nodes, utilizing the score 𝑆𝑆(𝒙𝒙) (Eq. 

(36)) that is produced during the SVM classification and can be interpreted as a scaled signed 

distance function. 

 Let 𝕊𝕊0 ≡ {𝒙𝒙𝐼𝐼}𝐼𝐼=1
𝑁𝑁𝑁𝑁0  be the set of training data points located at the image pixel centroids in 

the image domain Ω� , and define 𝕊𝕊+ ≡ {𝒙𝒙 ∈ 𝕊𝕊0 | 𝑆𝑆(𝒙𝒙) ≥ 0}  and 𝕊𝕊− ≡ {𝒙𝒙 ∈ 𝕊𝕊0 | 𝑆𝑆(𝒙𝒙) < 0} . 

Consequently, defining a set of interface-searching node pairs {𝒙𝒙𝐾𝐾+,𝒙𝒙𝐾𝐾−}𝐾𝐾=1
𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼 in which 𝒙𝒙𝐾𝐾

± ∈ 𝕊𝕊± is 

a near-interface master/slave node (see Remark 3.1 for details). The search of an interface node 

𝒙𝒙𝐾𝐾∗ ≡ 𝒙𝒙𝐾𝐾+ + 𝑑𝑑𝐾𝐾∗ 𝑹𝑹𝐾𝐾 can be defined as follows:  

Find 𝑑𝑑𝐾𝐾∗ ∈ ℝ such that: 

 𝑆𝑆(𝒙𝒙𝐾𝐾+ + 𝑑𝑑𝐾𝐾∗ 𝑹𝑹𝐾𝐾) = 0,   ∀ 𝐾𝐾 = 1⋯𝑁𝑁𝑁𝑁∗ (37) 

where 𝑹𝑹𝐾𝐾 = (𝒙𝒙𝐾𝐾− − 𝒙𝒙𝐾𝐾+)/‖𝒙𝒙𝐾𝐾− − 𝒙𝒙𝐾𝐾+‖ is the line search direction. The resulting RK node set is 

then 𝕊𝕊𝑅𝑅𝐾𝐾 ≡ 𝕊𝕊0 ∪ 𝕊𝕊𝐼𝐼𝐼𝐼 with 𝕊𝕊𝐼𝐼𝐼𝐼 ≡ {𝒙𝒙𝐾𝐾∗ }𝐾𝐾=1𝑁𝑁𝑁𝑁∗ , which serves as the SVM-RK discretized model. 

 

Remark 3.1. The interface-searching node pairs {𝒙𝒙𝐾𝐾+,𝒙𝒙𝐾𝐾−}𝐾𝐾=1
𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼  can be determined in various 

ways. In this work, the following approach is taken: given the set of support vectors �𝒙𝒙𝐿𝐿𝑆𝑆𝑆𝑆�𝐿𝐿=1
𝑁𝑁𝑆𝑆𝑆𝑆, 
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define the master candidate node set 𝕊𝕊𝐶𝐶+ ≡ �𝒙𝒙𝐼𝐼 ∈ 𝕊𝕊+ | �𝒙𝒙𝐼𝐼 − 𝒙𝒙𝐿𝐿𝑆𝑆𝑆𝑆� ≤ 𝜉𝜉ℓ, ∀𝐿𝐿 = 1⋯𝑁𝑁𝑆𝑆𝑆𝑆� , in 

which ℓ and 𝜉𝜉 denote the image voxel size and a scaling factor, respectively. In this work 𝜉𝜉 = 1.5 

is used. The corresponding nearest slave nodes 𝒙𝒙𝐾𝐾− are found such that, for 𝒙𝒙𝐾𝐾+ ∈ 𝕊𝕊𝐶𝐶+, 

 𝒙𝒙𝐾𝐾− = argmin
𝒙𝒙𝐼𝐼∈𝕊𝕊𝐶𝐶−

‖𝒙𝒙𝐼𝐼 − 𝒙𝒙𝐾𝐾+‖ (38) 

with the slave candidate node set 𝕊𝕊𝐶𝐶− ≡ �𝒙𝒙𝐼𝐼 ∈ 𝕊𝕊− | �𝒙𝒙𝐼𝐼 − 𝒙𝒙𝐿𝐿𝑆𝑆𝑆𝑆� ≤ 𝜉𝜉ℓ, ∀𝐿𝐿 = 1⋯𝑁𝑁𝑆𝑆𝑆𝑆�. Note that 

Eq. (38) can result in multiple 𝒙𝒙𝐾𝐾−  for one 𝒙𝒙𝐾𝐾+ and lead to the master-slave pairs. Figure 9 (a) 

illustrates an example of the master and slave candidate nodes plotted along with the support 

vectors. The corresponding candidate node pairs are shown in Figure 9 (b). 

 

Remark 3.2. The solution of 𝑑𝑑𝐾𝐾∗  in Eq. (37) can be determined iteratively by the Newton-Raphson 

method. For the (𝜈𝜈 + 1)𝑡𝑡ℎ iteration, the increment 𝛥𝛥𝑑𝑑𝜈𝜈+1 for 𝑑𝑑𝐾𝐾∗𝜈𝜈+1 = 𝛥𝛥𝑑𝑑𝐾𝐾∗𝜈𝜈+1 + 𝑑𝑑𝐾𝐾∗𝜈𝜈 is obtained 

as follows: 

 Δ𝑑𝑑𝐾𝐾∗𝜈𝜈+1 = −𝑆𝑆(𝒙𝒙𝐾𝐾∗𝜈𝜈)/�
𝜕𝜕𝑆𝑆(𝒙𝒙𝑲𝑲∗𝜈𝜈)
𝜕𝜕𝒙𝒙𝐾𝐾∗𝜈𝜈

⋅ 𝑹𝑹𝐾𝐾�  (39) 

 

Remark 3.3.  One may consider interpolating the score function with SVM predicted nodal score 

values without constructing Eq. (36) as follows: 

 �̃�𝑆(𝒙𝒙) = �Ψ𝐼𝐼0(𝒙𝒙)𝑠𝑠𝐼𝐼

𝑁𝑁𝑁𝑁0

𝐼𝐼=1

 (40) 

where Ψ𝐼𝐼0(𝒙𝒙) and 𝑠𝑠𝐼𝐼 are the RK shape function constructed on 𝕊𝕊0 and SVM score value (signed 

distance) for node 𝒙𝒙𝐼𝐼, respectively. The RK shape function can serve as a filter for potentially 

noisy predicted score values. Eq. (40) is used for numerical implementation in current work. 

 

Remark 3.4. To ensure relative even distribution of nodes around interfaces, a MATLAB in-built 

function “uniqetol” with a relative tolerance 0.01 is applied to the interface node set 𝕊𝕊𝐼𝐼𝐼𝐼 . In 

addition, 𝒙𝒙𝑰𝑰 ∈ 𝕊𝕊0 is removed if  ‖𝒙𝒙𝑰𝑰 − 𝒙𝒙𝐾𝐾∗ ‖ < 𝜁𝜁ℓ for all 𝒙𝒙𝐾𝐾∗ ∈ 𝕊𝕊𝐼𝐼𝐼𝐼, and 𝜁𝜁 = 1/3 is selected in this 

work. An example of rearranged RK nodes is illustrated in Figure 10. The material interfaces are 

represented by a simple line connection in Figure 10 for visualization purposes; the interface-

modified RK approximation to be discussed next requires only the interface point locations and 

the signed distance of each discrete point obtained from SVM. Note that discretization far from 

the material interfaces can be made coarser to improve computational efficiency. 
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Figure 9: Interface node candidates and resulting master-slave interface node search pairs  

 

Figure 10: RK numerical model for the test image 

3.3  Image-based SVM-RK model validation 

3.3.1  Validation with a synthetic image 

A synthetic two-phase image containing the known locations of inclusions is generated, 

as illustrated in Figure 11. The synthetic image has a dimension of 10 mm × 10 mm and a 

resolution of 224 × 224 pixels. To account for uncertainties in the imaging process, Gaussian 

noise is added to the original image, and the manufactured testing image is scaled down to 100 × 

(a) Interface node candidates (b) Interface master-slave node pairs

Master node pairs with a 
single slave node

Master node pairs with two 
equal distanced slave nodes
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100 pixels to lower the resolution, especially around the material interfaces. Figure 12 

demonstrates the manufactured noisy testing image, which will serve as the input image for the 

image-based SVM-RK model generation. The accuracy of the obtained interface nodes is 

determined by a normalized mean square error of the discretized material interfaces as: 

 𝑀𝑀𝑆𝑆𝑀𝑀 =
1

𝑁𝑁𝐶𝐶 ⋅ 𝐿𝐿
�����𝒙𝒙𝐾𝐾∗ − 𝒄𝒄𝑗𝑗� − 𝑅𝑅𝑗𝑗�

2
𝑁𝑁𝑁𝑁∗

𝐾𝐾=1

𝑁𝑁𝐶𝐶

𝑗𝑗=1

�

1
2

 (41) 

where 𝒄𝒄𝑗𝑗 and 𝑅𝑅𝑗𝑗 represent the center coordinates and radius of the inclusion to which the interface 

node 𝒙𝒙𝐾𝐾∗ ∈ 𝕊𝕊𝐼𝐼𝐼𝐼 belongs, 𝑁𝑁𝑁𝑁∗ is the total number of generated interface nodes in the set 𝕊𝕊𝐼𝐼𝐼𝐼, and 

𝑁𝑁𝐶𝐶 and 𝐿𝐿 denote the total number of inclusions in the synthetic image and the x-dimension of the 

synthetic image, respectively.  

 

Figure 11: Synthetic testing image for validating the SVM-RK interface node generation 

 

Figure 12: Manufactured noisy testing image for validating the SVM-RK interface node 

generation 

As previously discussed, for implementation the score function is interpolated using the 

RK shape function in Eq. (40), and the locality and smoothness of the RK shape function may 

differ depending on the size and order of continuity of the kernel function chosen for its 

construction. Therefore, various RK kernel support sizes and kernel functions with different 

orders of continuity are employed to study their effects on the accuracy of the SVM-RK interface 

node generation algorithm. Figure 13 illustrates the obtained interface nodes overlaid with the 
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synthetic image using a cubic B spline RK kernel (B3, C2 continuity) with a normalized support 

size of 2 and linear bases. In addition, results of the interface node generated with various support 

sizes and kernel function continuities can be found in Table 2 and Table 3, respectively. Upon 

comparison of results in Table 2 and Table 3, it can be observed that the proposed SVM-RK 

interface node search algorithm converges less than an average of 5 iterations for all instances, 

and the resulting interface nodes achieve average scores (Eq. (40)) to the order of 10−12 . 

Additionally, the normalized mean square error of the proposed image-based RK discretization 

model generation process is approximated 0.65% for all scenarios. Moreover, the results show 

that the generated interface nodes are not sensitive to the choices of the kernel support size and 

kernel continuity (tent function with C0 continuity, quadratic B spline function (B2) with 

C1continuity, and B3 with C2 continuity) used in constructing the score function (Eq. (40)).  

 

Figure 13: Interface nodes overlapped with the manufactured test image 

Support size 
Number of 

constructed interface 
nodes 

Mean iteration 
number 

Mean score 
values 

Edge detection mean 
squared error 

1.10 134 3.72 1.63E-12 0.0065 
1.50 134 4.61 5.91E-12 0.0065 
2.00 134 4.60 4.40E-12 0.0065 
2.50 133 4.62 2.99E-12 0.0066 
3.00 131 4.97 4.15E-12 0.0067 

Table 2: Results of interface node search algorithm with various kernel support sizes 

Kernel 
Function 

Number of 
constructed interface 

nodes 

Mean iteration 
number 

Mean score 
values 

Edge detection mean 
squared error 

C0 (Tent) 133 3.62 5.92E-13 0.0065 

C1 (B2) 132 4.64 4.78E-12 0.0066 

C2 (B3) 134 4.60 4.40E-12 0.0065 
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Table 3: Results of interface node search algorithm with various RK kernel functions 

3.3.2 Validation of the image-based SVM-RK discrete model with Scanning Electron 

Microscopy (SEM) images  

To analyze the quality of the proposed image-based  RK discretization model generation 

procedure, a comparison is made between the constructed digital surface model from Micro-CT 

and a surface image obtained from Scanning Electron Microscopy (SEM) with a spatial 

resolution of 1.5 𝜇𝜇𝜇𝜇 for the same specimen as a comparison reference. SEM uses an electron 

beam to scan the surface of a material, producing a high-resolution image that reveals details such 

as surface topography, crystalline structure, chemical composition, and electrical behavior of the 

top 1 𝜇𝜇m portion of a specimen [58]. The inclusion materials in SEM are identified based on the 

Energy Dispersive X-ray Spectroscopy (EDS), a chemical analysis technique that detects X-rays 

emitted by the material in response to the electron beam to form an elemental mapping of the 

SEM-scanned specimen surface [59]. The Micro-CT input image for constructing the numerical 

model is selected accordingly near the surface of the same specimen, and a Region of Interest 

(ROI) around 2.82  mm by 2.37  mm is chosen to match the SEM scanned area, which is 

highlighted in the red box in Figure 14.  

An SVM-RK discretization model is created from the input 2D slice of the Micro-CT 

image using the proposed method, as illustrated in Figure 15, containing discretized nodes in the 

epoxy matrix, alumina inclusions, and on the identified material interfaces.  

 

Figure 14: Micro-CT input image selection for quantitative RK discretization model 

validation 
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Figure 15: Constructed RK discretization model for the quantitative validation 

The constructed SVM-RK discretization model is superimposed over the original Micro-CT 

image, and the result is shown in Figure 16. Furthermore, the alumina inclusions enclosed by the 

identified interface nodes in the constructed SVM-RK discretization model are highlighted and 

overlaid onto the SEM surface image, which is contrasted with the EDS-layered SEM image 

shown in Figure 17. As can be seen, the obtained image-based RK discretization model agrees 

well with the input Micro-CT image in detail.  

 

Remark 3.5: It is worth noting that the surface of the specimen was polished to enhance imaging 

quality for SEM, which may cause slight alterations to the distribution of surface particles. 

Figure 18 illustrates the minor discrepancies between the SEM and Micro-CT images. As the 

blue boxes indicate, misalignments can be observed for certain inclusion particles. Additionally, 

smaller particles were not captured in the SEM scan, as highlighted in the red boxes. 

Consequently, the inclusion particles identified by the SVM-RK discretization model exhibit slight 

variances compared to the EDS elemental mapping result, as illustrated in Figure 17. 

Nevertheless, they are mostly consistent, particularly for the larger and more distinctive inclusion 

particles.  
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Figure 16: Constructed SVM-RK discretization model superimposed with the micro-CT 

input image (only showing the interface nodes) 

 

Figure 17: Comparison of EDS overlaid and SVM-RK discretization model overlaid SEM 

surface images 

 

Figure 18: Comparison between the SEM surface image and Micro-CT image  

(a) SEM image overlaid with EDS mapping (b) SEM image overlaid with SVM-RK discretization model



 

 

 26 

4 Interface-Modified Reproducing Kernel Approximation Guided by Support 

Vector Machine 

4.1 Interface-Modified kernel functions 

With the material interface segmented by the SVM, the weak discontinuities across the 

material interfaces are to be introduced by modifying the regular RK kernel function with a 

regularized heavy-side function 𝐻𝐻� as follows: 

 𝜙𝜙�𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) = 𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝐻𝐻� �𝜉𝜉�̅�𝐼(𝒙𝒙)� (42) 

where 𝜙𝜙�𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) is a modified kernel function, and 𝐻𝐻�(⋅) and 𝜉𝜉�̅�𝐼(𝒙𝒙) in Eq. (42) are defined as: 

 𝐻𝐻�(⋅) = max(0, tanh(⋅)) (43) 

and 

 𝜉𝜉�̅�𝐼(𝒙𝒙) = �
−
𝑆𝑆(𝒙𝒙)
𝑐𝑐

, 𝑆𝑆(𝒙𝒙𝐼𝐼) < 0

+
𝑆𝑆(𝒙𝒙)
𝑐𝑐

, 𝑆𝑆(𝒙𝒙𝐼𝐼) > 0
 (44) 

where 𝑆𝑆(𝒙𝒙) is the score function, and 𝑐𝑐 denotes a scaling factor that has a length of the order of 

nodal spacing. Note that 𝑆𝑆(𝒙𝒙) is a signed distance of an evaluation point to its nearby interface, 

which is given from the output of the SVM-RK image segmentation and is readily available for 

evaluation of regularized heavy-side function 𝐻𝐻� . This normalized distance measure 𝜉𝜉̅(𝒙𝒙)  is 

applicable to general n-dimensional image data. Since the kernel functions associated with nodes 

away from the interfaces have been scaled to zero at the material interfaces by the regularized 

heavy-side function, the kernel functions associated with the interface nodes are not scaled. As 

will be discussed in the next section, the “reproduced” RK shape functions via the reproducing 

conditions given in Eqs. (9)-(10) reveals a weak (C0) continuity of the approximated function at 

the material interface due to the heavy-side scaling in Eq. (42) regardless of the continuity of 

kernel function associated with nodes at the material interfaces. Hence, cubic B spline (B3) kernel 

functions with C2 continuity or power kernel (PK) function with C0 continuity [60] can be 

considered for the kernel function associated with the interface nodes: 

 𝜙𝜙𝑎𝑎𝐵𝐵3(𝑧𝑧) =  

⎩
⎪
⎨

⎪
⎧

2
3
− 4|𝑧𝑧|2 + 4|𝑧𝑧|3                for 0 ≤ |𝑧𝑧| ≤

1
2

4
3
− 4|𝑧𝑧| + 4|𝑧𝑧|2 −

4
3

|𝑧𝑧|3   for
1
2
≤ |𝑧𝑧| ≤ 1

0                                      otherwise

      𝑧𝑧 =
𝒙𝒙 − 𝒙𝒙𝐼𝐼
𝑎𝑎

 (45) 

 



 

 

 27 

 𝜙𝜙𝑎𝑎𝑁𝑁𝐾𝐾(𝑧𝑧) =  �(1 − 𝑧𝑧)𝛼𝛼        for 0 ≤ 𝑧𝑧 ≤ 1
0              otherwise

      𝑧𝑧 =
𝒙𝒙 − 𝒙𝒙𝐼𝐼
𝑎𝑎

 (46) 

Figure 19 shows the un-modified kernel functions 𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼), regularized Heavy-side 

function 𝐻𝐻�(𝜉𝜉�̅�𝐼(𝒙𝒙)) , the interface-modified kernel functions 𝜙𝜙�𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼)  and their derivatives 

𝜙𝜙�𝑎𝑎,𝑥𝑥(𝒙𝒙 − 𝒙𝒙𝐼𝐼) in 1D with different choices of interface kernels. The blue, red, and black kernel 

functions are associated with the interface node, nodes within the support of interface nodes, and 

nodes away from the interface, respectively.  

 

Remarks 4.1. 

1. One can observe that after the interface modification, the influence domains of all 

nodes, except the interface node, terminate at the interface location, which naturally introduces a 

weak discontinuity to interface-modified kernel functions, even for the case of the smooth B-spline 

kernel at the interface.  

2. The added computational cost to perform the proposed kernel modifications is 

marginal because only a scaling is applied to the original kernel functions to construct kernel 

modifications, and this can be done effortlessly for arbitrary spatial dimensions.  

 

Figure 19: Plots of 1D interface-modified kernels with different interface kernels (Left to 

right: original kernel function, regularized heavy-side scaling function, modified kernel 

function, modified kernel function’s derivative) 

(a) All cubic B spline kernels

(x
)

(b) Order 4 power function interface kernel, cubic B spline kernels for the rest
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4.2 Interface-Modified RK (IM-RK) approximation 

Let us consider the RK discretization node set 𝕊𝕊𝑅𝑅𝐾𝐾 in the SVM-RK discretized numerical 

model. Recall that interface nodes in 𝕊𝕊𝑅𝑅𝐾𝐾are contained in the set 𝕊𝕊𝐼𝐼𝐼𝐼. Let 𝕊𝕊𝑅𝑅𝐾𝐾\𝕊𝕊𝐼𝐼𝐼𝐼 denotes the set 

of all RK discrete points excluding those on the interfaces, then the RK shape function can be 

written as follows: 

 �
Ψ𝐼𝐼(𝒙𝒙) = 𝐶𝐶(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) = (𝑯𝑯T(𝒙𝒙 − 𝒙𝒙𝐈𝐈)𝒃𝒃(𝒙𝒙))𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼),          ∀𝐼𝐼 ∈ 𝕊𝕊𝐼𝐼𝐼𝐼

  
Ψ𝐼𝐼(𝒙𝒙) = 𝐶𝐶(𝒙𝒙;𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝜙𝜙�𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) = (𝑯𝑯T(𝒙𝒙 − 𝒙𝒙𝐈𝐈)𝒃𝒃(𝒙𝒙))𝜙𝜙�𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼),∀𝐼𝐼 ∈ 𝕊𝕊𝑅𝑅𝐾𝐾\𝕊𝕊𝐼𝐼𝐼𝐼

 (47) 

where 𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) is the regular kernel functions without interface modification and 𝜙𝜙�𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼) 

is the interface-modified kernel function defined Eq. (42). The unknown coefficient vector 𝒃𝒃(𝒙𝒙) 

is obtained by imposing the 𝑛𝑛𝑡𝑡ℎ order reproducing conditions, as shown in Eq. (10), which can 

also be expressed in terms of the basis vector as: 

 �Ψ𝐼𝐼(𝒙𝒙)𝑯𝑯(𝒙𝒙 − 𝒙𝒙𝐼𝐼) = 𝑯𝑯(𝟎𝟎)
𝑁𝑁𝑁𝑁

𝐼𝐼=1

 (48) 

Substituting Eq. (47) into Eq. (48) yields: 

 𝒃𝒃(𝒙𝒙) =  𝑴𝑴�−1(𝒙𝒙)𝑯𝑯(𝟎𝟎) (49) 

where 𝑴𝑴� (𝒙𝒙) is the modified moment matrix: 

 

𝑴𝑴� (𝒙𝒙) = � 𝑯𝑯T(𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝑯𝑯(𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼)
𝐼𝐼∈𝕊𝕊𝐼𝐼𝐼𝐼

+  � 𝑯𝑯T(𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝑯𝑯(𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝜙𝜙�𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼)
𝐼𝐼∈𝕊𝕊𝑅𝑅𝑅𝑅\𝕊𝕊𝐼𝐼𝐼𝐼

 
(50) 

Finally, by substituting Eq. (49) into Eq. (47), the interface modified reproducing kernel shape 

function is obtained as:  

 Ψ�𝐼𝐼(𝒙𝒙) = �
𝑯𝑯𝑇𝑇(𝟎𝟎)𝑴𝑴�−1(𝒙𝒙)𝑯𝑯(𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝜙𝜙𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼),           ∀𝐼𝐼 ∈ 𝕊𝕊𝐼𝐼𝐼𝐼

𝑯𝑯𝑇𝑇(𝟎𝟎)𝑴𝑴�−1(𝒙𝒙)𝑯𝑯(𝒙𝒙 − 𝒙𝒙𝐼𝐼)𝜙𝜙�𝑎𝑎(𝒙𝒙 − 𝒙𝒙𝐼𝐼),         ∀𝐼𝐼 ∈ 𝕊𝕊𝑅𝑅𝐾𝐾\𝕊𝕊𝐼𝐼𝐼𝐼
 (51) 

Finally, the IM-RK approximation of the displacement field 𝒖𝒖ℎ(𝒙𝒙) is expressed as: 

 𝑢𝑢𝑖𝑖ℎ(𝒙𝒙) =  �Ψ�𝐼𝐼(𝒙𝒙)𝑑𝑑𝑖𝑖𝐼𝐼

𝑁𝑁𝑁𝑁

𝐼𝐼=1

 (52) 

As shown in Eq. (52), no duplicated degrees of freedom associated with the interface 

nodes are added (such as interface enrichments) when using the IM-RK to approximate the 

displacement field. Figure 20 compares the 1D traditional RK and IM-RK shape functions and 
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their derivatives in a domain [0.0, 10] with a material interface at x = 5. The red-colored node in 

Figure 20 is the interface node, and the shape functions colored black, blue, and red are 

associated with nodes outside the support of the interface node, nodes within the influence of the 

interface node, and the interface node, respectively.  

 

Remarks 4.2.  

1. Owing to the regularization function 𝐻𝐻�(𝜉𝜉�̅�𝐼(𝒙𝒙)) introduced in Eqs. (43)-(44), nodes on 

different sides of the interface lose communication, leading to weak discontinuities in the IM-RK 

shape functions. This is true even when a smooth cubic B-spline kernel is used for all nodes, 

including the interface nodes, as shown in Figure 20. Same weak discontinuity properties exist in 

high dimensions, as shown in Figure 21, regardless of the smoothness of interface kernel 

functions. Figure 22 illustrates the IM-RK interpolation of a function: 

𝑓𝑓(𝒙𝒙) = � 𝑒𝑒𝑐𝑐1‖𝒙𝒙‖2 ,    𝑖𝑖𝑓𝑓 ‖𝒙𝒙‖ ≤ 𝑅𝑅
𝑒𝑒𝑐𝑐2‖𝒙𝒙‖2 + (𝑒𝑒𝑐𝑐1𝑅𝑅2 − 𝑒𝑒𝑐𝑐2𝑅𝑅2),   𝑖𝑖𝑓𝑓 ‖𝒙𝒙‖ > 𝑅𝑅 

  

 where 𝑐𝑐1 = 0.5 , 𝑐𝑐2 = 0.1 , and the interface is a circular arc with 𝑅𝑅 = 0.8 . IM-RK shape 

functions with smooth cubic B-spline kernels can effectively capture weak discontinuities along 

the interface in the interpolated function and represent its discontinuous x-directional derivative 

field, while both the interpolated function and its x-directional derivative fields are smooth across 

the interface when using the standard RK shape functions with B3 kernels.   

2. Since all kernel functions vanish at the interface, except for the kernel functions 

defined on the interface nodes, the resulting IM-RK approximation functions possess weak 

Kronecker delta properties, as have been discussed in [38]. These weak Kronecker delta 

properties, however, do not exist in high dimensions because the supports of interface nodes 

overlap except for interface nodes located on domain boundaries. 
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Figure 20: 1D traditional RK and IM-RK shape functions and derivatives 

(a) RKPM shape function and derivative with cubic B spline kernels

(b) IM-RKPM shape function and derivative with cubic B spline interface kernel
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Figure 21: 2D IM-RK shape functions constructed with different interface kernels using (a) cubic B-

spline interface kernels and (b) 4th order power interface kernels (the blue and the black functions on 

the left represent IM-RK shape function on the opposite sides of the material interface) 

 

Figure 22: IM-RK interpolation of a 2D function 

(a) 2D RKPM shape function and x derivative with cubic B spline kernels

(b) 2D M-RKPM shape function and x derivative with cubic B spline interface kernel

(c) Standard RK function interpolation with B3 kernel: interpolated function (left) and x-
directional derivative (right) 

(b) IM-RK function interpolation with B3 kernel: interpolated function (left) and x-directional 
derivative (right) 

(a) RK node distribution (red arc indicates 
the interface)
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In this work, the meshfree method using the above IM-RK approximation as the 

approximation function for the test and trial functions under the Galerkin framework is named the 

Interface-Modified Reproducing Kernel Particle Method (IM-RKPM). 

4.3 IM-RK shape functions for the image-based numerical model  

Figure 23 and Figure 24 respectively show the IM-RK shape functions of non-interface 

nodes near the interfaces and the IM-RK shape functions of the interface nodes, constructed on 

the image-based SVM-RK discretized model shown in Figure 10.  

 

Figure 23: IM-RK shape functions for nodes around the interfaces: top view (right) and the 

zoom-in plot of two shape functions in the black box (left) 

In Figure 23 and Figure 24, the non-zero IM-RK shape functions are color-coded by different 

color blocks, and the maximum shape function is shown at each plotting point in the top view. By 

observing the results in Figure 23, the shape functions are truncated across arbitrarily shaped 

interfaces. The interface nodes’ shape functions, however, provide support coverage to the nodes 

located on both sides of the interface with C0 continuity along the interfaces’ normal direction for 

embedding weak discontinuities normal to the interface.  
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Figure 24: IM-RK shape function for interface nodes: top view (right) and the zoom-in plot 

of two shape functions in the black box (left) 

4.4 Verification of the IM-RKPM 

4.4.1 One-dimensional composite rod problem 

A one-dimensional composite rod with a centered material interface is fixed at the left 

and is subjected to a displacement of 1 on the right end, as demonstrated in Figure 25. The rod is 

also subjected to a polynomial body force up to the third order 𝑏𝑏(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3. 

The Young’s modulus of the two sections of the rod are set as 𝑀𝑀1 = 10000, for 𝑥𝑥 ∈ [0,5] and 

𝑀𝑀2 = 1000, for 𝑥𝑥 ∈]5,10]. The exact solution to this problem is provided in [25]. 

 

Figure 25: Schematic of the 1D bi-material rod problem 

The example is analyzed with two body force cases: (1) 𝑏𝑏 = 0 ; (2) 𝑏𝑏(𝑥𝑥) = 25𝑥𝑥 −

7.5𝑥𝑥2 + 0.5𝑥𝑥3. The 1D problem domain is discretized with 11 uniformly distributed nodes, and 

the problem is approximated using a linear basis in both standard RKPM and IM-RKPM with a 

constant normalized nodal support size of 2. SCNI and 5-point Gauss integration are selected as 
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numerical integration methods for case (1) and case (2), respectively. Figure 26 and Figure 27 

demonstrate the approximated displacement and strain solutions using RKPM and IM-RKPM for 

case (1) , respectively. The results show that RKPM strain solution exhibits Gibb’s-like 

oscillations and fails to reproduce the exact weak discontinuity at the material interface. On the 

other hand, IM-RKPM with SCNI can precisely capture the displacement and strain field to the 

machine’s precision. 

 

Figure 26: Case (𝟏𝟏) RKPM approximated solutions compared to the analytical solutions 

 

Figure 27: Case (𝟏𝟏) IM-RKPM approximated solutions compared to the analytical solutions 

Similar behaviors are observed for case (2), as illustrated in Figure 28 and Figure 29, IM-RKPM 

significantly reduces the oscillations of the strain solution and can accurately capture the weak 

discontinuity across the material interface.  

 

(a) and (b) and 

(a) and (b) and 
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Figure 28: Case (𝟐𝟐) RKPM approximated solutions compared to the analytical solutions 

 

Figure 29: Case (𝟐𝟐) IM-RKPM approximated solutions compared to the analytical solutions 

In addition, the convergence behaviors of IM-RKPM with the cubic B spline and the power 

interface kernels and standard RKPM are investigated in terms of the normalized displacement 

and energy error norms as follows with high-order Gauss quadrature rule: 

 �𝒖𝒖 − 𝒖𝒖ℎ�0 = �
∫ �𝒖𝒖exact(𝒙𝒙) − 𝒖𝒖ℎ(𝒙𝒙)�2𝑑𝑑ΩΩ

∫ (𝒖𝒖exact(𝒙𝒙))2𝑑𝑑ΩΩ

 (53) 

 

 �𝒖𝒖 − 𝒖𝒖ℎ�𝐸𝐸 = �
∫ �𝜺𝜺exact(𝒙𝒙) − 𝜺𝜺ℎ(𝒙𝒙)� ⋅ �𝝈𝝈exact(𝒙𝒙) − 𝝈𝝈ℎ(𝒙𝒙)�𝑑𝑑ΩΩ

∫ 𝜺𝜺exact(𝒙𝒙) ⋅ 𝝈𝝈exact(𝒙𝒙)𝑑𝑑ΩΩ

 (54) 

(a) and (b) and 

(a) and (b) and 
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As illustrated in Figure 30, standard RKPM exhibits a suboptimal convergence rate of 1 for the 

displacement norms and 0.5 for the energy norm, while the accuracy and convergence rates are 

substantially improved in IM-RKPM, restoring the optimal convergence rates of 2 and 1, 

independent to the continuity of the interface kernel function.  

 

Figure 30: Accuracy of RKPM and IM-RKPM with different interface kernels (R: rate of 

convergence) 

4.4.2 2D circular inclusion in an infinite plate 

An infinite plate with a circular inclusion subjected to a constant dilatational eigenstrain 

𝜀𝜀∗ = 0.01, as shown in Figure 31, is analyzed.  

 

Figure 31: Schematic of the 2D infinite plate with circular inclusion problem 

(a) Normalized displacement norms (b) Normalized energy norms

Line of symmetry

Line of sym
m

etry

R = 1
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The material constants selected for the inclusion material are: 𝜆𝜆1 = 497.16, 𝜇𝜇1 = 390.63, and 

matrix material are: 𝜆𝜆2 = 656.79, 𝜇𝜇2 = 338.35, where 𝜆𝜆 and 𝜇𝜇 are Lamé parameters. Due to the 

symmetry of the domain and loading conditions, only the upper right quadrant of the domain is 

modeled. The length of each side of the finite quarter domain is 5, the radius of the circular 

inclusion is 𝑅𝑅 = 1, and an analytical displacement field is prescribed on the boundaries. The 

analytical solutions in cylindrical coordinates can be found in [61]. 

The example is modeled as a plane strain axisymmetric problem. Both 5 × 5 Gauss 

integration and SCNI method are employed as the numerical integration schemes, and RK 

approximation with linear basis and a normalized support size of 2 are utilized throughout the 

numerical analysis. Figure 32 demonstrates an example of domain discretization and background 

integration cell arrangement for the Gauss integration.  

 

Figure 32: Nodal arrangement and background integration cells for GI 

The approximated radial displacement, radial strain, and hoop strain solutions using RKPM, IM-

RKPM with cubic B spline interface kernels, and IM-RKPM with fourth-order power interface 

kernels, accompanied with 224 non-uniform nodes and 5 × 5 GI, are plotted along the line 𝑦𝑦 = 𝑥𝑥 

in Figure 33. Like the 1D composite rod example, the RKPM solution of the radial strain and 

hoop strain are both oscillatory near the interface. IM-RKPM, on the other hand, effectively 

alleviates the oscillations in the strain solutions. In addition, a convergence study is performed for 

both RKPM and IM-RKPM with different interface kernels, and the results are shown in Figure 

34. The IM-RKPM recovers the optimal convergence rates with the Gauss domain integration for 

both smooth and C0 interface kernels.  

(a) Nodal arrangement (b) Background integration cells
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Figure 33: 𝒖𝒖𝒓𝒓𝒉𝒉, 𝜺𝜺𝒓𝒓𝒓𝒓𝒉𝒉 , 𝜺𝜺𝜽𝜽𝜽𝜽𝒉𝒉  approximated using RKPM and IM-RKPM with GI 

Next, the same problem is solved using the computationally efficient SCNI. Figure 35 

demonstrates an arrangement of 211 non-uniformly distributed nodes and conforming strain 

smoothing cells for SCNI. The numerical solutions obtained by RKPM and IM-RKPM with 

different interface kernels are plotted in Figure 36.  

(a) RKPM approximated 

(b) IM-RKPM with B3 approximated 

(c) IM-RKPM with PK4 approximated 
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Figure 34: Accuracy of RKPM and IM-RKPM with different interface kernels with GI (R: 

rate of convergence) 

 

Figure 35: Nodal arrangement and conforming strain smoothing cells for SCNI 

Similar to the Gauss integration, the standard RKPM with SCNI again experiences strain 

oscillations near the interface. However, solutions obtained by the IM-RKPM with different 

interface kernel functions are consistent with the ones obtained with Gauss integration in Figure 

33. By observing results in the convergence plots shown in Figure 37, IM-RKPM with SCNI has 

displacement and strain solutions to converge optimally. These results show that the proposed 

IM-RKPM performs well with different selections of numerical domain integration techniques.  

(a) Normalized displacement norms (b) Normalized energy norms

(a) Nodal arrangement (b) Conforming gradient smoothing cells
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Figure 36: 𝒖𝒖𝒓𝒓𝒉𝒉, 𝜺𝜺𝒓𝒓𝒓𝒓𝒉𝒉 , 𝜺𝜺𝜽𝜽𝜽𝜽𝒉𝒉  approximated using RKPM and IM-RKPM with SCNI 

(a) RKPM approximated 

(b) IM-RKPM with B3 approximated 

(c) IM-RKPM with PK4 approximated 
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Figure 37: Accuracy of RKPM and IM-RKPM with different interface kernels with SCNI 

(R: rate of convergence) 

5 Image-Based Numerical Results 

5.1 Compression-shear test on 2D composite microstructure 

In this numerical example, a compression-shear test is conducted on a composite 

constructed based on the image shown in Figure 38. The image consists of 200 × 200 pixels with 

a pixel size of 8 μm. The physical dimensions of the specimen are 1.6 mm in width and height. 

The bottom edge of the specimen is fixed in both x- and y- directions, while the top edge is 

prescribed with a total displacement of −0.01 mm in both x- and y- directions. In addition, two 

vertical edges of the specimen are assigned as traction-free. The material constants for the 

alumina inclusion materials are: 𝑀𝑀1 = 320 GPa, 𝜈𝜈1 = 0.23 , while the epoxy material is with 

material constants: 𝑀𝑀1 = 3.66 GPa, 𝜈𝜈1 = 0.358.  

(a) Normalized displacement norms (b) Normalized energy norms
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Figure 38: Schematic of compression-shear test on a polymer-ceramic composite 

The problem at hand is examined using the proposed IM-RKPM and compared with the 

results produced using ANSYS [62], a commercially available FEM software with a much refined 

body-fitted mesh. All numerical analyses are performed under the 2D plane strain condition. The 

numerical model of the test image is constructed following Section 3.2, as shown in Figure 39, 

and the IM-RKPM approximation functions presented in Section 4 using cubic B-spline kernel 

with normalized support size of 2 and linear bases. The model employed for FEM analysis is 

manually traced from the inclusion geometries of the test image, resulting in a slight variation 

between the FEM and IM-RKPM discretization near interfaces. The FEM approximation involves 

a fine body-fitted mesh that comprises of 37,454 elements and 112,538 nodes, as illustrated in 

Figure 40. On the other hand, the IM-RKPM approximation uses only 11,316 nodes to discretize 

the image domain, which is approximately one-tenth of the number of nodes used in the FEM 

model. Figure 41 demonstrates the IM-RKPM and FEM approximated displacement solutions, 

respectively, and it is observed that both IM-RKPM and FEM predict similar displacements.  

Fixed support 

mm

y

x
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Figure 39: Discretized RK numerical model for IM-RKPM simulation (Unit: mm) 

 

Figure 40: FEM body-fitted mesh 
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Figure 41: IM-RKPM and FEM approximated displacement solution in both x- and y-

directions (Unit: mm) 

Figure 42 shows the strains predicted by IM-RKPM and FEM, respectively. As shown in Figure 

42, the strains of IM-RKPM display sharp transitions across the material interfaces and 

concentrated strains around the corners of the material interfaces, comparable to the results 

obtained using the FEM approximation. Furthermore, both the IM-RKPM and FEM 

approximations of strain solutions show some coalescence of the strain concentration around 

some closely positioned inclusions, as indicated by the boxed areas in Figure 42. The results 

show that the proposed IM-RKPM, accompanied by the SVM-based RK discretization with 

simple interface modified RK approximation functions, is capable of modeling composite 

materials with complicated microstructure and arbitrarily shaped inclusions with accuracy 

comparable to that obtained from a much refined and laborious FEM model.  

(a) Approximated displacement solutions using IM-RKPM

(b) Approximated displacement solutions using FEM
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Figure 42: IM-RKPM and FEM approximated strain solutions in plane view 

5.2 Uniaxial tensile test on 3D composite microstructure 

In this example, a three-dimensional image-based SVM-RK model is constructed, and a 

uniaxial tensile test is conducted on the specimen’s numerical model with the same material 

properties as those used in Example 5.1. The input of imaged-based 3D numerical model 

generation is performed by stacking 30 slices of ROI of 30 by 30 pixels extracted from 

reconstructed Micro-CT 2D images of a specimen’s internal microstructure along the z-direction 

into a volumetric data matrix, as illustrated in Figure 43. The size of the test volume is 

0.24 mm × 0.24 mm × 0.24 mm, corresponding to an input image voxel size of 8 𝜇𝜇m . The 

uniaxial tension is applied to the two surfaces with surface normal in the z-direction under 

prescribed displacements in the z-direction while without constraints in the x-y displacements.  
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Figure 43: 3D view of the input image volumetric data matrix  

Although the training data points are now in ℝ3 , the discrete model generation 

procedures remain the same as those for 2D, which corresponds to the physical coordinates of 

voxel centroids, as detailed in Section 3.2. The training response labels are obtained by stacking 

the segmented ROIs using Otsu’s method into a binary volumetric data label matrix. It is 

important to note that both matrices that contain the training data points and training response 

labels are concatenated before being fed into the SVM, which means that the combined training 

data set can be represented as 𝐃𝐃 = {𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑙𝑙 , where 𝒙𝒙𝑖𝑖 ∈ ℝ3,𝑦𝑦𝑖𝑖 ∈ {−1,1}, and 𝑙𝑙 = 27,000 for 

the present case. For the SVM training, the same hyperparameters specified in Section 3.2.1 are 

utilized. Figure 44 demonstrates the SVM material classification results, the support vectors 

resulting from training, and the RK interpolated decision boundaries. It is worth mentioning that 

the resulting RK interpolated separating hyperplane, which is the material interface determined 

by the SVM training and RK interpolation, exhibits a smoother appearance in contrast to the 

inclusion geometries represented by binary label data volumetric matrix. This outcome is not 

surprising, given that SVM considers all three dimensions of the training data points to identify 

an appropriate separating hyperplane, which is more realistic and resembles a specimen image 

stack with higher resolution (i.e., with a smaller voxel size).  
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Figure 44: SVM training and prediction results and RK interpolated decision boundaries 

(Unit: mm) 

Figure 45 illustrates the results of identified interface nodes and the 3D RK discrete 

model of the test volume, where the black (small) nodes, blue nodes, and red nodes represent the 

epoxy material points, alumina material points, and points on the material interfaces, respectively. 

The 3D SVM-RK discretization model contains in total 17,648 discretized nodes, among which 

2330 nodes are on the material interfaces.  

The produced 3D SVM-RK discrete model is utilized for a uniaxial tensile test in the z-

direction. The model’s bottom surface is fixed in all three directions, while a z-directional 

displacement of 0.01 mm is prescribed at the top surface of the model. The other surfaces of the 

specimen are assigned traction-free boundary conditions. The proposed IM-RKPM is employed 

for the numerical solution, and Figure 46 depicts the displacement solution in all three directions.  
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Figure 45: 3D interface node assignment result and RK discretized numerical model for the 

test volume (Unit: mm) 

 

Figure 46: IM-RKPM approximated displacement solutions (Unit: mm) 

(a) 3D interface node assignment result (b) 3D RK discretized numerical model

(a) (b) (c) 
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Figure 47: IM-RKPM approximated normal strain solutions (Unit: mm) 

The predicted normal strains are plotted in Figure 47, to which a transparency filter is applied 

such that strain with a large magnitude is not visible. As shown in Figure 47, the regions with the 

relatively small magnitude of strains are consistent with the shapes of the alumina inclusions, 

which is expected because the alumina inclusions are significantly stiffer than the surrounding 

epoxy matrix. In Figure 48, Figure 49, and Figure 50, the normal strains are plotted on multiple 

slices and are compared with the slices of the inclusion contours. The results show that distinctive 

strain transitions in all three dimensions can be observed across interfaces. In addition, some 

strain concentrations are observed between two nearby inclusions and around the corner of the 

inclusions. Overall, this example demonstrates the capability of the proposed SVM-RK image-

based model and IM-RKPM in modeling composite material with arbitrarily shaped inclusions in 

three dimensions.  

(a) (b) (c) 
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Figure 48: Slices of x-directional normal strain results compared to the interface contours  

 

Figure 49: Slices of y-directional normal strain results compared to the interface contours 

(c) At Z = 0.112 mm

(a) At Z = 0.032 mm (b) At Z = 0.064 mm

(d) At Z = 0.176 mm

(d) At Z = 0.192 mm

(a) At Z = 0.048 mm (b) At Z = 0.088 mm

(c) At Z = 0.152 mm
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Figure 50: Slices of z-directional normal strain results compared to the interface contours 

6 Conclusion 

A Support Vector Machine (SVM) guided model discretization and reproducing kernel 

approximation, utilizing Micro-CT images of heterogeneous materials as input, is introduced in 

this work. The trained SVM-RK model generates classification scores for RKPM model 

discretization from the image, enabling their use as inputs for 1) interface node generation and 2) 

the interface kernel modification to construct a modified RK approximation of weak 

discontinuities. The SVM classification scores, representing the signed distances, enables 

identification of material phase, interface discretization, and interface surface normals, allowing 

automatic construction of RK approximation with weak discontinuities and interface-conforming 

gradient smoothing cells for SCNI based domain integration. The proposed image-based SVM-

RK model generation process was validated through a synthetic image and a high-resolution 

surface image obtained from the SEM.  

The resulting Interface-Modified Reproducing Kernel Particle Method (IM-RKPM) 

effectively remedy Gibb's oscillations commonly seen in the conventional RKPM for modeling 

problems with weak discontinuities. The proposed method incorporates a regularized Heavy-side 

function defined on the SVM classification score to achieve RK approximation with interface 

weak discontinuity while avoiding Gibb-type oscillations. These procedures involved in the 

(a) At X = 0.016 mm (b) At X = 0.064 mm

(c) At X = 0.120 mm (d) At X = 0.200 mm
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proposed SVM guided RK approximation with interface weak discontinuities are fully automatic 

in 3-dimensions and without the need of using duplicated DOFs on the interface nodes common 

in other interface-enriched meshfree methods [25], [28]. In addition, this IM-RKPM with 

interface weak discontinuities can be constructed by kernel functions with arbitrary 

smoothness/roughness while achieving optimal convergence as demonstrated in the numerical 

examples using both Gauss integration and SCNI. 

Finally, the effectiveness of the proposed automated SVM-RK model generation process 

in conjunction with the IM-RKPM method is demonstrated through numerical examples based on 

test Micro-CT images in both 2- and 3-dimensions. Notably, the 3D example shows that the 

proposed approach is applicable for 3D simulations where the SVM-RK model precisely 

represents the geometry of the inclusion particles, trained based on stacked image slices.   

It is worth mentioning that the present work utilizes the standard binary SVM library. 

However, it is possible to explore more efficient SVM algorithms to enhance the efficiency of the 

proposed automated numerical model generation process.  
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Appendix A. Construction of interface-conforming gradient smoothing cells  

Since the interface locations are determined by the RK interpolated score function in Eq. 

(40), the outward unit normal of the interfaces at an interface point 𝒙𝒙𝑲𝑲∗  can be calculated as 

follows: 

 𝒏𝒏��⃑ (𝒙𝒙𝑲𝑲∗ ) =
𝜵𝜵�̃�𝑆(𝒙𝒙)
�𝜵𝜵�̃�𝑆(𝒙𝒙)�

�
𝒙𝒙=𝒙𝒙𝑅𝑅

∗
 (55) 

To construct interface-conforming gradient smoothing cells for SCNI domain integration, a 

mirroring technique is utilized. For all interface nodes 𝒙𝒙𝐾𝐾∗ ∈ 𝕊𝕊𝐼𝐼𝐼𝐼 , the mirrored node pair 

{𝒙𝒙𝐾𝐾∗+,𝒙𝒙𝐾𝐾∗−} is obtained as follows: 

 𝒙𝒙𝐾𝐾
∗± = 𝒙𝒙𝐾𝐾∗ ± 𝜖𝜖𝒏𝒏��⃑ (𝒙𝒙𝐾𝐾∗ ) (56) 
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where 𝜖𝜖 is a small perturbation number, and the interface normal 𝒏𝒏��⃑ (𝒙𝒙𝐾𝐾∗ ) is defined in Eq. (55). In 

this work, 𝜖𝜖 = 10−3ℓ is chosen, where ℓ is the image voxel size. As an illustration example, 

mirrored nodes are shown in the black box in Figure 51 (a), and the resulting gradient smoothing 

cells are shown in Figure 51 (b). Note that these mirrored node pairs are only used to generate the 

“interface conforming” Voronoi cells; they are not the RK nodes, and they don’t carry degrees of 

freedom. 

This approach allows for the use of conventional techniques, such as Voronoi 

tessellation, which will result in the two smoothing cells adjacent to either side of the interface 

having a common boundary along the interface location as shown in Figure 51 (b). In addition, 

the material class for the smoothing cells can be assigned according to the centered mirrored 

nodes’ material classes. As a result, smoothing cells away from the material interfaces are 

uniformly arranged, and the material interfaces are well represented by the adjacent two layers of 

smoothing cells.   

 

Figure 51: Interface conforming gradient smoothing cells’ construction (Perturbation 

distances are magnified 𝟏𝟏𝟎𝟎𝟐𝟐 times for mirrored nodes in (a) for demonstration purpose) 
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