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Support Vector Machine Techniques for
Nonlinear Equalization

Daniel J. Sebald, Member, IEEE,and James A. Bucklew

Abstract—The emerging machine learning technique called
support vector machines is proposed as a method for performing
nonlinear equalization in communication systems. The support
vector machine has the advantage that a smaller number of
parameters for the model can be identified in a manner that
does not require the extent of prior information or heuristic
assumptions that some previous techniques require. Furthermore,
the optimization method of a support vector machine is quadratic
programming, which is a well-studied and understood mathemat-
ical programming technique.

Support vector machine simulations are carried out on non-
linear problems previously studied by other researchers using
neural networks. This allows initial comparison against other
techniques to determine the feasibility of using the proposed
method for nonlinear detection. Results show that support vector
machines perform as well as neural networks on the nonlinear
problems investigated.

A method is then proposed to introduce decision feedback pro-
cessing to support vector machines to address the fact that inter-
symbol interference (ISI) data generates input vectors having tem-
poral correlation, whereas a standard support vector machine as-
sumes independent input vectors. Presenting the problem from the
viewpoint of the pattern space illustrates the utility of a bank of
support vector machines. This approach yields a nonlinear pro-
cessing method that is somewhat different than the nonlinear de-
cision feedback method whereby the linear feedback filter of the
decision feedback equalizer is replaced by a Volterra filter. A sim-
ulation using a linear system shows that the proposed method per-
forms equally to a conventional decision feedback equalizer for this
problem.

Index Terms—Decision feedback SVM, ISI, nonlinear equaliza-
tion, support vector machine.

I. INTRODUCTION

NONLINEAR equalization has many applications [1]–[4]
and has remained a challenging analytical problem for

several reasons. First, architectures for nonlinear equalization
often become unmanageably complex very rapidly; thus, they
require novel techniques for limiting their degrees of freedom
to make them useful. This has come to be known in the liter-
ature asthe curse of dimensionality—a phrase popularized by
Bellman [5]. Second, the nonlinear system requiring equaliza-
tion is often noninvertible, resulting in a drastic loss of infor-
mation. Third, algorithms performing nonlinear equalization are
often too computationally intensive to be run in real time.
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This paper primarily addresses the first of these issues by
investigating the use of support vector machines as a means
to perform nonlinear equalization or, more appropriately, non-
lineardetection. A support vector machine (SVM) uses training
data as an integral element of the function estimation model as
opposed to simply using training data to estimate parameters
of an a priori model using maximum likelihood, which is the
more traditional approach. The second issue, regarding loss of
information, is a consequence of the nonlinear system and is
not addressed in this paper. Although this is certainly an issue
of interest to a system designer, the main issue here is the de-
tection problem given a predefined nonlinear system. The third
issue, regarding computational efficiency, is more general than
the equalization problem. This is also certainly an issue of con-
cern as the optimization technique associated with SVMs re-
quires a considerable amount of computation. However, our in-
tent is to investigate feasibility of the SVM method in the detec-
tion setting. Efficient SVM implementation is a very active area
of research by other investigators, including [6]–[10].

In the case of equalization, it is desirable that a modem re-
quire a small set of training data to characterize the transmis-
sion channel, hence making better use of bandwidth. In addi-
tion, the model should be efficient for real-time applications. We
feel that the concepts of generalized learning theory presented
in [5], i.e., the idea that an algorithm should attempt to bound
the estimation risk based upon empirical risk, is a strong moti-
vation for investigating the use of SVMs for nonlinear equaliza-
tion.1 Consequently, SVMs train with relatively small amounts
of data, and training is rather straightforward, requiring lessad
hocinput from the designer. Once training of the SVM has com-
pleted, the detection stage is efficient, comparable to Volterra
filters and neural networks.

Section II presents the pattern recognition concept of detec-
tion and equalization then summarizes solutions using Volterra
filters and neural networks. Section III contrasts the SVM
against other nonlinear techniques and lays the mathematical
groundwork. Section IV gives further details about setting up
the equalization problem. Section V then presents simulation
results using the model of Section IV. Three nonlinear system
models from [12] are analyzed. Results for the first system
are illustrated in terms of the pattern space. This gives insight
into the decision boundaries that the SVM can construct.
The second system introduces colored noise to show that the
SVM works on this more general noise problem. The third
system investigates the bit error rate (BER) as a function of
signal-to-noise ratio (SNR) and compares it against the result

1An alternative interpretation of the theory of SVM optimization is a regular-
ization problem [11].
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in [12] using a neural network. Section VI presents the SVM
bank and state machine idea, and Section VII simulates a linear
system studied in [13] with detection done using an SVM with
decision feedback and done using an SVM bank. Section VIII
summarizes the paper and discusses some open issues.

II. DETECTIONVIEWED AS PATTERN RECOGNITION

As pointed out in [12], equalization may be viewed as a clas-
sification problem. In such a scenario, the output of a communi-
cations channel can be grouped as a vector and used as the input
to a classification machine whose output should match as best as
possible some delayed version of the original signal entering the
channel. The raw data (i.e., channel output) is transformed to a
patternspace [i.e., it is grouped as a state vector according to
the expected amount of intersymbol interference (ISI)]. The pat-
tern space is then transformed to a higher dimensionalfeature
space (usually of much higher dimension than, which is
sometimes infinite dimensional) that incorporates the nonlinear
nature of the model.

We pause to emphasize the difference between true equaliza-
tion and detection via pattern classification for a digital commu-
nications system. Equalization attempts to map the nonlinear
channel output, an element of , into such that this map-
ping represents an inverse of the channel as closely as possible
according to some accepted functional measure. Clearly, if this
can be done effectively, then detection follows in a straightfor-
ward manner. On the other hand, detection only attempts to map
the channel output into a finite alphabet, say , such
that this mapping is optimum in a statistical sense. The under-
appreciated point is that in cases where finding the system in-
verse only serves as an intermediate step to the goal of detecting
digital symbols, the system designer usually finds that the direct
detection problem is much easier to solve than the more general
equalization problem.

Both Volterra filters [14]–[16] and neural networks [12],
[17]–[20] have been studied as techniques for nonlinear equal-
ization. In the case of Volterra filters, a multiplicative structure
creates cross-products of all filter states. These cross-products
are then weighted linearly, and the problem is to find the
optimum weighting that minimizes some cost. The dimension
of the model grows quickly, and it becomes necessary to apply
some type of heuristic to limit that model. For example, Van
Veenet al. [21] address the issue of excessive parameterization
and propose a clever method to manage the model using
diagonal coordinate system approximations. A recent paper by
Carini et al. [22] proposes a new vector algebra for Volterra
filters to address the stability of high dimensional systems.

In the case of neural networks, the feature space is gener-
ated via multiple layers of nonlinear functions (i.e., neurons)
acting on either filter states (first layer) or outputs of the pre-
vious layer. The weightings of the neurons are trained by back-
propagation, which is an iterative, gradient descent-like algo-
rithm that is not guaranteed to find a global optimum but may in-
stead tend to a local optimum solution. Researchers have found
that the neural network is susceptible to overtraining and that
the number of layers, the number of neurons per layer, and when
to stop adapting must be determined in anad hocfashion [12],

[20]. That is, the network may find a solution that minimizes the
error on the training set very well, but in order to generalize for
a test set, some heuristics must be introduced. A recent paper
by Uncini et al. [4] proposes a complex-valued neural network
with a spline activation function as a method for addressing the
complexity and generalization problems.

III. SVM

An SVM is a method for separating clouds of data in the
feature space using anoptimalhyperplane. By consequence
of Cover’s theorem [23], a nonlinear mapping from the pattern
space to the higher dimensional feature spaceis more likely
to create linearly separable clouds of data. The SVM nonlin-
early maps inner products of the pattern space data, as opposed
to the data itself, via a kernel. That is, the pattern space maps
to a nonunique generalized surface in the feature space [24].
Thus, the projection does not have the full dimensionality of the
feature space, and there are mechanisms for controlling the ca-
pacity of the SVM. Furthermore, data points near the optimal
hyperplane calledsupport vectorsare used as a basis for the
model. Consequently, an SVM is a nonparametric learning ma-
chine for which capacity can be controlled and whose solution
is familiar to optimization theory.

A. Dual Optimization Problem

For the classification problem, the training set consists of
vectors from the pattern space and to each vector a
classification , . This data is com-
pletely known beforehand. In the case of the telecommunica-
tions problem, it would be the training data periodically sent for
purposes of characterizing the transmission channel. For a full
derivation of the pattern recognition and optimal hyperplane ter-
minology, see [5], [23], and [24]. In summary, given an input
vector , an SVM classifies according to

sign

where is the estimate to the classification, and

(1)

Here, are Lagrange multipliers, is a set of indices for
which is asupport vector, i.e., a vector for which after
optimization, and is a kernel satisfying
the conditions of Mercer’s theorem [5], [25]. We see in (1) that
after training, only a subset of the training data enters the model
(i.e., data reduction) and operations are only performed on data
in the pattern space and not in the feature space (i.e., more man-
ageable than previously studied nonlinear techniques).

According to Vapnik [5], for training data that is nonsepa-
rable, the dual optimization problem is to maximize

(2)
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under constraints

(2 )

(2 )

This is a quadratic programming (QP) problem that may be
solved with traditional optimization techniques [26]. Choice of
parameter is a current research area of others. In Wahbaet al.
[11], it is considered a regularization parameter for which gener-
alized approximate cross validation is utilized. Here, we choose

empirically and find that the solution is not overly sensitive
to its value.

B. QP Formulation

The QP algorithm of most mathematics software packages
takes the general form [27]

(3)
where

variable to be optimized;
index set for equality constraints;
index set for inequality constraints.

Although the s play the role of Lagrange multipliers,
here, they are treated as the optimized variablein order to
implement constraints (2) and (2 ). To put the dual formula (2)
into a form suitable for the QP problem, begin by defining the
vectors

and the matrix diag and arranging the vectors of the
pattern space into an matrix as

The QP problem is usually programmed as a minimization. Ex-
panding the negative of (2) and rearranging terms leads to

where is an matrix of ones, and the matrix kernel
is a component-wise application of the kernel, i.e.,

. Then, we can easily define the
following:

Having defined as such, the constraints of (2) and (2 ) may

be expressed compactly as with

where is an matrix of zeros, and is a size iden-
tity matrix. It is taken as understood for this matrix representa-
tion that the first constraint is an equality constraint, whereas
the remaining constraints are inequality constraints.

C. Calculating the Affine Offset

The affine constantin (1) is implicitly determined by the QP
solution. The property of support vectors and the Karush-Kuhn-
Tucker conditions [24] for the primal optimization problem in-
dicate that for vectors in which the optimized Lagrangian coef-
ficient satisfies , (1) equals , which is equiv-
alent to in this case. This corresponds to support vectors on
the marginsof the optimal hyperplane. Call the set of indices
for these support vectors . Then, in the case where is not
empty, is taken as the average

(4)

where is the cardinality of . Occasionally, the solution
to the QP problem, even when data is separable, only has support
vectors for which . Unfortunately, (4) does not apply in
that case, and the affine constantmust come directly from the
QP numerical method.

D. Kernel Options

The kernel corresponds to an inner product of vectors
in the higher dimensional feature space if and only if Mercer’s
condition is met. Some common kernels meeting this condition
are the polynomial generator

(5)

the Gaussian radial basis function

and the sigmoidal neural network function

Preliminary studies on character recognition problems [5] sug-
gest that the type of kernel utilized by the SVM is inconse-
quential as long as the capacity is appropriate for the amount
of training data and complexity of the classification boundary.
However, the precise effects of the kernel is still an issue for
research [24]. In the simulations for this paper, the polynomial
kernel (5) is used exclusively. This kernel is more efficient for
real-time applications than the other standard kernels, which re-
quire computation of the exponential function. The polynomial
order is a parameter that controls the capacity of the SVM.
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Fig. 1. Nonlinear systemN is equalized by a SVM. The training data for the
SVM is obtained from appropriately arranging the nonlinear system outputx(n)
of the training sequenceu(n) and the desired outputy , which is simply a
delayed version of the training sequence.

Fig. 2. Model of the nonlinear transmission system originating from Chenet
al. [12].

The greater is, the more complex classification boundary the
SVM can create.

IV. SVM M ODEL OF EQUALIZATION

A discrete-time transmission channel can be made to fit the
support vector model by grouping the output of the channel into
vectors

and, for training purposes, taking the desired classification to
be the input to the channel delayed bysamples, i.e.,

. This model is illustrated in Fig. 1, where the nonlinear
channel has an ISI of length . A baseband model of a
transmission channel is assumed, but we consider all data to be
real valued in our analysis.

To train the SVM, let

i.e., , and

diag

The Chenet al. model [12] is a pulse amplitude modulation
(PAM) scheme illustrated in Fig. 2. It is an example of a cubic
simple Wiener nonlinear model [28]. The transmitted data se-
quence is an independent, equiprobable binary sequence
taking values . The output of the channel is
the sum of a deterministic, nonlinear function of , , and
an additive noise . The equalizer has a feedforward delay of
length , i.e., the number of past channel outputs utilized.
The goal of the equalizer is then to mimic the desired output

. Call the equalizer detection output .

The deterministic portion of the channel model consists of a
linear, finite impulse response (FIR) filter followed by a poly-
nomial nonlinearity. Let

(6)

where are the FIR filter coefficients, and let

where are the polynomial coefficients.
Varying the delay results in different performance of the

equalizer because the correlation between and
changes with . Since the channel has ISI of lengthand the
equalizer has feed-forward delay of length , the equalizer
output is dependent on channel inputs, i.e.,

(7)

This means that the signal constellation for the detector has
points. The constellation points are the noise-free

channel outputs resulting from the various inputs and are clas-
sified according to the value of . Let the noise-free channel
outputs be grouped as a vector

Then, the constellation sets can be expressed as

Similarly, let the classification regions be defined as

Note that the right-hand side of (7) depends on
. Under the assumption of independent , any

detector having delay greater than is
certain to yield poor results since is then independent
of . The optimum classifier assumed
in this study is the Bayesian maximum likelihood detector under
conditions of equiprobablea priori probabilities and zero/one
cost [25]. Let represent probability density functions. Then,
the Bayesian classifier is

where hypothesis declares to be 1, hypothesis
declares to be 1, and

where is the probability density associated with random
vector , where is an -length random vector with
components distributed similar to .
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Fig. 3. Example of typical classification regions of an SVM and associated
training points with channel̂x(n) = ~x(n) � 0:9 ~x (n), ~x(n) = u(n) +
0:5u(n � 1), and Gaussian white noise of power� = 0:2 and equalizer
dimensionM = 2, polynomial kernel orderd = 3, constraintC = 5, and lag
D = 0.

Fig. 4. Example of typical classification regions of an SVM and associated
training points with the channel described in Fig. 3, except the equalizer lag is
nowD = 1.

V. SIMULATIONS AND RESULTS 2

The first simulation is with the nonlinear channel
, , additive white

Gaussian noise of power , and SVM parameters
, and with polynomial kernel. Results are an

average of ten trials with 500 samples in the training set and
5000 samples in the test set. With this setup, . Ex-
ample SVM classification regions for and 2 are given
in Figs. 3–5, respectively. Region is shaded, whereas

is left unshaded. Included on the pattern space is the
signal constellation where is marked by a large, and

is marked by a large . Training data is also displayed,
using a small to indicate and a small to
indicate .

The initial impression is that the SVM classifier constructs a
good boundary with respect to the training data it is given. Data
clouds of the two types are consistently separated in a logical
manner. Chenet al. [12] gives optimum boundaries for the

2All simulations were done with MATLAB 5.3 with an interface to PATH 3.0
[29] for solving the QP optimization.

Fig. 5. Example of typical classification regions of an SVM and associated
training points with the channel described in Fig. 3, except the equalizer lag is
nowD = 2.

TABLE I
SIMULATION STATISTICS FOR THESVM x̂(n) = ~x(n) � 0:9 ~x (n),

~x(n) = u(n) + 0:5 u(n� 1), AND GAUSSIAN WHITE NOISE OFPOWER

� = 0:2 AND EQUALIZER DIMENSIONM = 2, POLYNOMIAL KERNEL ORDER

d = 3, AND CONSTRAINTC = 5. THE NUMBER OF TRAINING POINTS IS 500,
AND THE NUMBER OF TEST POINTS IS 5000

and scenario. In the case of , the SVM
classification regions have the general shape of the optimum re-
gions; however, they tend to be more curved in nature. The op-
timum regions for are rather complex. The SVM classi-
fication regions for are more near that of the optimum
given in [12].

Statistics for the simulations are given in Table I: probabil-
ities of error, ; associated standard deviations of the proba-
bilities, ; total number of support vectors, ; and number
of margin support vectors, . Surprisingly, delay
produces the best results. One might have guessed a delay of

or 1 would perform better because the impulse response
of (6) is only of length 2 for this channel. Most encouraging is
that the standard deviations for probability of error for the SVM
are approximately one eighth of the probability of error, and the
error probabilities for training and test data are approximately
the same. This confirms that the SVM is very good at general-
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Fig. 6. Example of a type of SVM error in which the classification boundary
does not match the optimum in the region where empirical data is unlikely. The
system is that described in Fig. 4.

Fig. 7. Example of a type of SVM error in which an obvious region of
misclassification appears in the outer regions of the classification space. The
system is that described in Fig. 4.

izing. Last, note that there is correlation between the probability
of error and number of support vectors. This relationship con-
cerns the severity of the nonlinear boundary for the different
pattern spaces as a function of delay.

Depending on the value chosen for the optimization param-
eter , the SVM classification regions and can
exhibit peculiar artifacts. Examples of this are given in Figs. 6
and 7, where . The boundary separating from

in Fig. 6 deviates greatly from the optimum boundary in
the portion of the pattern space where data is unlikely to occur.
Since the SVM training set does not include data from these
locations, it is understandable that the boundary is, in general,
arbitrary there. A recent paper by Lyhyaouiet al. [30] includes
an analysis of boundary behavior for support vector-like clas-
sifiers. In Fig. 7, the boundary is constructed in accord with
the optimum boundary. However, portions of ghostinto

. Neither of these behaviors have a significant influence on
BER. Furthermore, the artifacts can be lessened by decreasing

, where the tradeoff is an increase in the number of support
vectors.

Fig. 8. Example of typical classification regions of an SVM and associated
training points with channel̂x(n) = ~x(n) + 0:1 ~x (n) + 0:05~x (n),
~x(n) = 0:5u(n)+u(n�1), and Gaussian colored noise of power� = 0:2,
correlation� = 0:48 (i.e., � = 0:75), and equalizer dimensionM = 2, lag
D = 0, polynomial kernel orderd = 3 and constraintC = 5.

We now test the behavior of the SVM with colored noise as an
input. Chenet al.[12] consider zero-mean, stationary correlated
noise with correlation matrix

(8)

The method used in simulations for generating colored noise
having statistic (8) was an FIR filter

where and uncorrelated, and

Fig. 8 shows an example SVM classifier for channel
,

, , (i.e., ), , ,
, and . The number of training points was again

500. The optimum Bayesian solution is given in [12]. Again, the
SVM chooses a decision boundary similar to the optimum and is
logical in terms of the training data. The optimum for this
example includes a disconnected region, but the SVM cannot
match the polygon nature of the optimum. When approximately

, the SVM does not generate disconnected regions but
instead consistently creates spoon-like regions.

Last, a third example compares the SVM BER against the
optimum BER as a function of SNR for the channel

,
, (i.e., ), , ,

, and . Let be the SNR. Then,
since the transmitted symbols have unit energy. The number of
training samples was again 500, whereas the number of trials
and test samples were varied to compensate for greater relative
variance for low BER estimates. The variance scaling method of
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Fig. 9. Average BER for the SVM detector versus the Bayesian detector for
the channel̂x(n) = ~x(n)+0:2 ~x (n), ~x(n) = 0:3482 u(n)+0:8704u(n�
1)+ 0:3482 u(n� 2), and Gaussian colored noise correlation� = 0:48 (i.e.,
� = 0:75) and equalizer dimensionM = 3, lagD = 1, polynomial kernel
orderd = 3, and constraintC = 0:1.

importance sampling, first proposed by Hahn and Jeruchim [31]
and discussed for simulating communication links in Smithet
al. [32], was utilized to speed computation of the BER for each
individual trial. The number of samples and choice of scaling
depend on the SNR. The BER results, which are given in Fig. 9,
show that the SVM requires approximately 2.0–2.5 dB more
SNR to match the Bayesian performance. Above 15 dB SNR,
the SVM result is essentially the same as the neural network
solution given in [12].

VI. COMBATING TEMPORAL DEPENDENCE

The results of the previous section suggest that SVMs are a
robust, straight-forward manner to do nonlinear processing for
the detection problem. The nonlinear boundaries can result in
a reduced BER. Yet the nature of the SVM (and, consequently,
neural-networks and Volterra filters) does not take into account
the temporal relationship among input vectors due to
ISI. Rather, an input vector is treated as though it were indepen-
dent of all other input vectors. Because of the manner in which
the input vector is constructed, i.e., basically a state vector of
the channel output, this independence assumption clearly is not
valid.

It has been shown for linear channels [13] that, depending on
the nature of the ISI, significantly better performance can often
be achieved by incorporating previously detected symbols into
the detector. This concept is exemplified in the decision feed-
back equalizer (DFE). The concept of the linear DFE, which
is shown in Fig. 10, is to pass the previously detected symbols
through feedback filter to create a signal approximating
the ISI. Subtracting this signal from the feed-forward filter
output theoretically removes ISI. As for application of the DFE
idea in nonlinear scenarios [2], [33], replace the linear feed-
back and feed-forward filters of Fig. 10 by nonlinear Volterra
series channel approximations. Unciniet al. [4] point out this
method’s sensitivity to noise.

Fig. 10. Decision feedback equalizer in which past decisions are fed back
through filterA(f) to cancel ISI.

The decision feedback idea can be incorporated into an SVM
by simply lengthening its input vector by appending previous
SVM outputs. That is, let

where is the number of previously detected symbols
fed back. We call this approach the decision feedback SVM
(DFSVM). A DFSVM with correct decisions fed back is called
the perfect DFSVM (PDFSVM).

The most thorough study of applying nonlinear equalization
is Chenet al. [34]. They used a radial basis function (RBF)
network with adaptive centers to construct the Bayesian solu-
tion having a nonlinear decision boundary. They also described
an important property of the pattern space (observationspace
in [34]) related to previously detected symbols and proposed a
novel method of utilizing this property in their system. We now
reiterate these ideas and show how our system can be modified
in a similar way.

Reconsider the constellations of Figs. 3–5. Notice that the lo-
cations of points on each constellation (i.e., the eight bigger,
filled points) are all the same but are assigned different sym-
bols based on the delay. The case of in Fig. 5 results
in the best performance because its constellation is such that the
minimum distance between points in and is greater
than the distance between points in classes for other delays. Fur-
thermore, its classification boundary is simpler. Therefore, any
method that reduces and simplifies the signal constellation will
improve BER’s and simplify nonlinear models. Utilizing previ-
ously detected symbols will do just that.

Let us switch to analyzing a channel model studied by Proakis
in [13] for DFE. That channel is linear, i.e., with
output

(9)

and the signal constellation for delay is shown in Fig. 11.
Because of the fact that opposite symbols in the constellation lie
on the same point (i.e., the input is indistinguish-
able from ), there is little hope that even a non-
linear boundary could significantly decrease the BER for this
example. However, Fig. 12 illustrates how the constellation is
reduced when conditioned on previous symbols being knowna
priori . Two properties are immediately clear.

1) For this example, no longer do opposing symbols lie on
the same point. In general, distances between classes of
symbols will typically increase.
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Fig. 11. Constellation diagram for linear channel (9) for delayD = 1,
assumingu(n � 2) andu(n� 3) are unknown.

Fig. 12. Various constellations for delayD = 1 in different states ofu(n�2)
andu(n� 3) for the linear channel (9).

2) Typically, the severity of the decision boundary decreases,
in which case, the SVM becomes simpler and more effi-
cient.

As the delay increases and the length of the ISI and di-
mension of the input remain constant, fewer symbols will
be known (estimated)a priori from the perspective of decision
feedback. That is, the pattern space simplification is less signifi-
cant for larger . The relationship is that the maximum number
of useful detected symbols, orstates, is related to the delay,
ISI length, and input dimension as

(10)

In (10), when . Note that in [34], the term
statesis used to refer to the RBF centers, whereas here, the term
refers to previously detected symbols.

The logical manner to utilize this property of pattern spaces is
to construct a bank of SVMs (or any other of the nonlinear ma-
chines discussed in this paper), each of which is trained using
an appropriate subset of the training data based on previous
symbols being knowna priori. Then, in the detection stage, a
state machine having previously decided symbols as an input se-
lects which SVM to use when deciding the current symbol. The
idea is illustrated in Fig. 13. The method may appear compu-

Fig. 13. Bank of SVMs with selection based on the state of previous decisions.
Each SVM constructs a different decision boundary based on the constellation
for a given state.

tationally intensive, but in fact, the simpler decision boundary
for each individual SVM requires less training data per SVM
(roughly the same amount overall) and less support vectors per
SVM (roughly the same amount overall). This implies that the
SVM-bank (SVMB) method is as efficient as the DFSVM ap-
proach. In fact, the two methods involve the same principle.
However, the SVMB better handles the finite alphabet of the
feedback decision, whereas the DFSVM is more appropriate for
real or discrete amplitude data.

In contrast to the RBF approach of [34], the SVMB approach
presented here requires no mechanism for finding the centers of
RBF kernels and is more general in terms of the properties of
noise. That is, although the method in [34] could be adapted for
different noise distribution and correlation properties by choice
of kernel, either such information would be requireda priori or
some method of density estimation would be required, which
is a difficult problem. However, as was shown in the previous
section, the general nature of the SVM means that detection
performance will often be suboptimal. To be fair, however, in
the case of RBF kernels, there is some uncertainty associated
with determining centers, variances, and rotations (in the case
of correlated noise) that can only degrade performance from the
optimal.

Another striking difference between the two methods is
that the RBF kernel is adaptive sample-by-sample, whereas
an SVMB, as proposed here, can only be block adaptive. In
addition, determining the number of RBF kernels is an issue for
the system of [34], whereas determining an appropriate number
of SVMs in the bank is an issue here. However, we find that
having the right number of RBF kernels may be more critical
to the system of [34] than the number of states is to the SVMB
approach. The more general SVM may require only that the
portion of the pattern space most harmful to performance be
reduced, whereas the portion of the space less detrimental to
performance can be handled by the nonlinear capabilities of
the SVM.

VII. M ORE SIMULATIONS AND RESULTS

To test the performance of the SVMB and DFSVM ap-
proaches, a simulation using channel model (9) is presented.
The SNR is defined in [13] as
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Fig. 14. Average BER for the SVM, SVMB, DFSVM, and PDFSVM detectors
compared against the optimum binary, non-ISI detector for the linear channel
(9) with added Gaussian noise and equalizer dimensionM = 2, lagD = 1,
polynomial kernel orderd = 3, constraintC = 0:5, and DFSVM/PDFSVM
feedback dimensionM = 1.

where is the variance for the additive noise of a discrete-time
model of equalization, and is the impulse response
of the channel. Thus, the variance of noise in the
following simulation is , or more precisely

where . The optimum non-ISI binary signaling is

erfc

where erfc is the complimentary error function.
The parameters for the various types of SVM in the simu-

lation were , , , and . For the
DFSVM and PDFSVM, . The added noise was white.
The number of training samples was 500, and results were av-
eraged over ten trials. Importance sampling was not used in
this situation because of problems in large dimensionality due
to feedback similar to those described in [32]. Fig. 14 shows
the performance as a function of SNR for the various SVM ap-
proaches. The SVMB outperforms the DFSVM, requiring ap-
proximately 2.0 dB less SNR to achieve the same BER, and it
performs about the same as the DFE of [13]. The DFSVM is a
simple method with significantly improved performance com-
pared to the SVM.

VIII. C ONCLUSIONS

Simulations have shown that the SVM provides a robust
method for addressing nonlinearities in communication chan-
nels exhibiting ISI. The method performs as well as neural
networks and Volterra filters and has several advantages over
these methods. The use of a bank of SVMs controlled by a state
machine—a variation on a technique proposed previously be
other researchers—allows incorporation of decision feedback.
This significantly increases performance for certain channel
scenarios. There are two open issues of concern for applying

SVMs to nonlinear equalization: efficient implementation, and
adaptive processing.

Although QP problems are well studied, the optimization
method is somewhat computationally intensive. The SVM-bank
approach reduces requirements because of simpler decision
boundaries. However, faster optimization techniques are always
beneficial. Optimization is an ongoing research problem in the
area of mathematical programming, and the particular problem
of SVMs is addressed in [8]. Another issue of efficiency is a
method for reducing the number of nonmargin support vectors
in the case of nonseparable data. This scenario arises when
the optimal BER is abnormally high. Whenever a model can
be constructed with fewer support vectors, the per-symbol
classification becomes more efficient. The run-time complexity
problem is studied in [9].

As it stands, the SVM can only be used in applications
where a block of training data can be accumulated then the
QP optimization performed. There currently is no well-studied
sample-by-sample adaptive method for SVMs. An adaptive
method would be an important contribution to the field. The
goal would be to incorporate the regularization principle
of SVMs into an adaptive algorithm. A recent paper by
Martínez-Ramónet al. [35] proposes a variant of the SVM-like
algorithm from [30] for equalization. The method chooses
centers of an RBF network from the data using an adaptive
clustering algorithm. This is the first attempt, that we are aware
of, at a sample-by-sample adaptive methodology incorporating
SVM principles.
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