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Abstract—Several machine-learning algorithms have been pro-
posed for remote sensing image classification during the past two
decades. Among these machine learning algorithms, Random For-
est (RF) and Support Vector Machines (SVM) have drawn attention
to image classification in several remote sensing applications. This
article reviews RF and SVM concepts relevant to remote sensing im-
age classification and applies a meta-analysis of 251 peer-reviewed
journal papers. A database with more than 40 quantitative and
qualitative fields was constructed from these reviewed papers.
The meta-analysis mainly focuses on 1) the analysis regarding
the general characteristics of the studies, such as geographical
distribution, frequency of the papers considering time, journals,
application domains, and remote sensing software packages used
in the case studies, and 2) a comparative analysis regarding the
performances of RF and SVM classification against various param-
eters, such as data type, RS applications, spatial resolution, and the
number of extracted features in the feature engineering step. The
challenges, recommendations, and potential directions for future
research are also discussed in detail. Moreover, a summary of the
results is provided to aid researchers to customize their efforts in
order to achieve the most accurate results based on their thematic
applications.

Index Terms—Image classification, meta-analysis, random forest
(RF), remote sensing (RS), support vector machine (SVM).
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I. INTRODUCTION

R
ECENT advances in remote sensing (RS) technologies,
including platforms, sensors, and information infrastruc-

tures, have significantly increased the accessibility to the Earth
Observations for geospatial analysis [1]–[5]. In addition, the
availability of high-quality data, the temporal frequency, and
comprehensive coverage make them advantageous for several
agro-environmental applications compared to the traditional
data collections approaches [6]–[8]. In particular, land use and
land cover (LULC) mapping is the most common application
of RS data for a variety of environmental studies, given the in-
creased availability of RS image archives [9]–[12]. The growing
applications of LULC mapping alongside the need for updating
the existing maps have offered new opportunities to effectively
develop innovative RS image classification techniques in various
land management domains to address local, regional, and global
challenges [13]–[20].

The large volume of RS data [14], the complexity of the
landscape in a study area [21]–[23], as well as limited and usually
imbalanced training data [24], [25], make the classification a
challenging task. Efficiency and computational cost of RS image
classification [26] is also influenced by different factors, such
as classification algorithms [27]–[30], sensor types [31], [32],
training samples [33]–[37], input features [38]–[41], pre- and
postprocessing techniques [42], [43], ancillary data [44], target
classes [22], [45], and the accuracy of the final product [44],
[46]–[48]. Accordingly, these factors should be considered with
caution for improving the accuracy of the final classification
map. Carrying a simple accuracy assessment, through the overall
accuracy (OA) and Kappa coefficient of agreement (K), by the
inclusion of ground truth data might be the most common and
reliable approach for reporting the accuracy of thematic maps.
These accuracy measures make the classification algorithms
comparable when independent training and validation data are
incorporated into the classification scheme [28], [49]–[51].

Given the development and employment of new classification
algorithms, several review articles have been published. To date,
most of these reviews on RS classification algorithms have
provided useful guidelines on the general characteristics of a
large group of techniques and methodologies. For example, Ma
et al. [52] represented a meta-analysis of the popular supervised
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Fig. 1. Interpretability-accuracy tradeoff in machine learning classification
algorithms.

object-based classifiers and reported the classification accura-
cies with respect to several influential factors, such as spatial
resolution, sensor type, training sample size, and classification
approach. Several review papers also demonstrated the perfor-
mance of the classification algorithms for a specific type of
application. For instance, Fassnacht et al. [53] summarized the
significant trends in RS techniques for the classification of tree
species and discussed the effectiveness of different sensors and
algorithms for this application. The development in methodolo-
gies for processing a specific type of data is another dominant
type of review papers in RS image classification. For example,
Yan et al. in [54] review the usefulness of high-resolution LiDAR
sensor and its application for urban land cover classification,
or in [7], an algorithmic perspective review for processing of
hyperspectral images is provided.

Over the past few years, deep learning algorithms have drawn
attention for several RS applications [30], [55], and as such,
several review articles have been published on this topic. For in-
stance, three typical models of deep learning algorithms, namely
deep belief network, convolutional neural networks, and stacked
auto-encoder, were analyzed in [56]. They also discussed the
most critical parameters and the optimal configuration of each
model. Studies, such as [57] which compared the capability of
deep learning architectures with support vector machine (SVM)
for RS image classification, and [58] which focused on the clas-
sification of hyperspectral data using deep learning techniques,
are other examples of RS deep learning review papers.

The commonly employed classification algorithms in the RS
community include support vector machines SVMs [59]–[61],
ensemble classifiers, e.g., random forest (RF) [10], and deep
learning algorithms [27]. Deep learning methods have the ability
to retrieve complex patterns and informative features from the
satellite image data. For example, CNN has shown performance
improvements over SVM and RF [62], [63]. However, one of the
main problems with deep learning approaches is their hidden
layers; “black box” [60] nature, which results in the loss of
interpretability (see Fig. 1). Another limitation of a deep learning
models is that they are highly dependent on the amount of
training data, i.e., ground truth. Moreover, implementing CNN
required expert knowledge and computationally is expensive and

needs dedicated hardware to handle the process. On the other
hand, recent research works show SVM and RF (i.e., relatively
easily implementable methods) can handle learning tasks with
a small amount of training dataset, yet demonstrate competitive
results with CNNs [64]. Deep learning methods have the ability
to retrieve complex patterns and informative features from the
satellite imagery. For example, CNN has shown performance
improvements over SVM and RF [62], [63]. However, one
of the main problems with deep learning approaches is their
hidden layers; “black box” nature [60], which results in the
loss of interpretability (see Fig. 1). Another limitation of deep
learning models is that they are highly dependent on the avail-
ability of abundant high-quality ground truth data. Moreover,
implementing CNN requires expert knowledge and it is compu-
tationally expensive and needs dedicated hardware to handle
the process. On the other hand, recent research works show
SVM and RF (i.e., relatively easily implementable methods) can
handle learning tasks with a small amount of training dataset,
yet demonstrate competitive results with CNNs [64]. Although
there is an ongoing shift in the application of deep learning
in RS image classification, SVM and RF have still held the
researchers’ attention due to lower computational complexity
and higher interpretability capabilities compared to deep learn-
ing models. More specifically, SVM maintenance among the
top classifiers is mainly because of its ability to tackle the
problems of high dimensionality and limited training samples
[65], while RF holds its position due to ease of use (i.e., does
not need much hyperparameter finetuning) and its ability to
learn both simple and complex classification functions [66],
[67]. As a result, the relatively high similar performance of
SVM and RF in terms of classification accuracies makes them
among the most popular machine learning classifiers within the
RS community [68]. As a result, giving merit to one of them
is a difficult task as past comparison-based studies, as well
as some review papers, provide readers with often contradic-
tory conclusions, which was somehow confusing. For instance,
Mountrakis et al. in [66] reported SVMs can be considered
the “best of class” algorithms for classification; however, the
work in [67] and [69] suggested that RF classifiers may out-
perform support vector machines for RS image classification.
This knowledge gap was identified in the field of bioinformatics
and filled by an exclusive review of RFs versus SVMs [70];
however, no such a detailed survey is available for RS image
classification.

Table I summarizes the review papers on recent classification
algorithms of RS data, where a large part of the literature is
devoted to RFs or is discussed as an alternative classifier. The
majority of these review papers are descriptive and do not offer
a quantitative assessment of the stability and suitability of RF
and SVM classification algorithms. Accordingly, the general
objective of this study is to fill this knowledge gap by comparing
RF and SVM classification algorithms through a meta-analysis
of published papers and provide RS experts with a “big picture”
of the current research in this field. To the best of the authors’
knowledge, this is the first study in the RS filed that provides a
one to one comparison analysis for RF and SVM in various RS
applications.
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TABLE I
SUMMARY OF RELATED SURVEYS ON REMOTE SENSING IMAGE CLASSIFICATION (THE NUMBER OF CITATIONS IS REPORTED BY APRIL 20, 2020)

To fulfill the proposed meta-analysis task, more than 250
peer-reviewed papers have been reviewed in order to construct
a database of case studies that include RFs and SVMs either
in one-to-one comparison or individually with other machine
learning methods in the field of RS image classification.

II. OVERVIEW OF SVM AND RF CLASSIFIER

Image classification algorithms can be broadly categorized
into supervised and unsupervised approaches. Supervised clas-
sifiers are preferred when sufficient amounts of training data are
available. Parametric and nonparametric methods are another
categorization of classification algorithms based on data distri-
bution assumptions (see Fig. 2). Yu et al. [71] reviewed 1651
articles and reported that supervised parametric algorithms were
the most frequently used technique for RS image classification.
For example, the maximum likelihood (ML) classifier, as a
supervised parametric approach, was employed in more than
32% of the reviewed studies. Supervised nonparametric algo-
rithms, such as SVM and ensemble classifiers, obtained more
accurate results, yet they were less frequently used compared to
supervised parametric methods [71].

Prior to the introduction of RF, SVM has been in the spotlight
for RS image classification, given its superiority compared to
ML classifier, K-nearest neighborsKNN, artificial neural net-
works, and decision tree for RS image classification. Since the

Fig. 2 Taxonomy of image classification algorithms.

introduction of RF, however, it has drawn attention within the RS
community, as it produced classification accuracies comparable
with those of SVM [67], [68]. An overview of SVM and RF
classification algorithms has been presented in the following
sections.

A. Support Vector Machine Classifier

The SVM algorithm, introduced first in the late 1970s by
Vapnik and his group, is one of the most widely used kernel-
based learning algorithms in a variety of machine learning
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Fig. 3. SVM example of linearly separable data.

applications, and especially image classification [66]. In SVMs,
the main goal is to solve a convex quadratic optimization
problem for obtaining a globally optimal solution in theory
and thus, overcoming the local extremum dilemma of other
machine learning techniques. SVM belongs to nonparametric
supervised techniques, which are insensitive to the distribution
of underlying data. This is one of the advantages of SVMs
compared to other statistical techniques, such as ML, wherein
data distribution should be known in advance [68].

SVM, in its basic form, is a linear binary classifier, which
identifies a single boundary between two classes. The linear
SVM assumes the multidimensional data are linearly separable
in the input space (see Fig. 3). In particular, SVMs determine
an optimal hyperplane (a line in the simplest case) to separate
the dataset into a discrete number of predefined classes using
the training data. To maximize the separation or margin, SVMs
use a portion of the training sample that lies closest in the
feature space to the optimal decision boundary, acting as support
vectors [72]–[75]. These samples are the most challenging data
to classify and have a direct impact on the optimum location
of the decision boundary [38], [75]. The optimal hyperplane,
or the maximal margin, can be mathematically and geometri-
cally defined. It refers to a decision boundary that minimizes
misclassification errors attained during the training step [65],
[66]. As seen in Fig. 3, a number of hyperplanes with no sample
between them are selected, and then the optimal hyperplane is
determined when the margin of separation is maximized [75],
[76]. This iterative process of constructing a classifier with an
optimal decision boundary is described as the learning process
[77].

In practice, the data samples of various classes are not always
linearly separable and overlap with each other (see Fig. 4 ). Thus,
linear SVM cannot guarantee a high accuracy for classifying
such data and needs some modifications. Cortes and Vapnik
[78] introduced the soft margin and kernel trick methods to
address the limitation of linear SVM. To deal with nonlinearly
separable data, additional variables (i.e., slack variables) can
be added to SVM optimization in the soft margin approach.
However, the idea behind the kernel trick is to map the feature
space into a higher dimension (Euclidean or Hilbert space) to
improve the separability between classes [78], [79]. In other
words, using the kernel trick, an input dataset is projected into

Fig. 4. SVM example of nonlinearly separable data with the kernel trick.

a higher-dimensional feature space where the training samples
will become linearly separable.

The performance of SVM largely depends on the suitable
selection of a kernel function that generates the dot products in
the higher-dimensional feature space. This space can theoreti-
cally be of an infinite dimension where the linear discrimination
is possible. There are several kernel models to build different
SVMs, satisfying the Mercer’s condition, including Sigmoid,
Radial basis function, Polynomial, and Linear [80]. Commonly
used kernels for remotely sensed image analysis are polynomial
and the radial basis function (RBF) kernels [66]. Generally,
kernels are selected by predefining a kernel’s model (Gaussian,
polynomial, etc.) and then adjusting the kernel parameters by
tuning techniques, which could be computationally very costly.
The classifier’s performance, on a portion of the training sample
or validation set, is the most important criteria for selecting a
kernel function. However, kernel-based models can be quite
sensitive to overfitting, which is possibly the main limitation of
kernel-based methods, such as SVM [57]. Accordingly, innova-
tive approaches, including automatic kernel selection [75], [79],
[81], and multiple kernel learning [82], were proposed to address
this problem. Notably, the task of determining the optimum ker-
nel falls into the category of the optimization problem [83]–[87].
Optimizing several SVM parameters is very resource-intensive.
So there comes a need for an alternate way of searching out the
SVM parameters; genetic optimization algorithm (GA) [88]–
[90] and particle swarm optimization (PSO) algorithm [91].
GA-SVM and SVM-PSO are both evolutionary techniques that
exploit principles inspired from biological systems to optimize C
and gamma. Compared with GA and other similar evolutionary
techniques, PSO has some attractive characteristics and, in many
cases, proved to be more effective [91].

The binary nature of SVMs usually involves complications on
their use for multiclass scenarios, which frequently occur in RS.
This requires a multiclass task to be broken down into a series of
simple SVM binary classifiers, following either the one-against-
one or one-against-all strategies [92]. However, the binary SVM
can be extended to a one-shot multiclass classification, requiring
a single optimization process. For example, a complete set of
five-class classifications only requires to be optimized once for
determining the kernel’s parameters C (a parameter that controls
the amount of penalty during the SVM optimization) and γ

(spread of the RBF kernel), in contrast to the five-times for
one-against-all and ten-times for the one-against-one methods,
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Fig. 5. Widely used ensemble learning methods. (a) Boosting. (b) Bagging.

respectively. Furthermore, the one-shot multiclass classifica-
tion uses fewer support vectors while, unlike the conventional
one-against-all strategy, it guarantees to produce a complete
confusion matrix [93]. SVM classifies high-dimensional big
data into a limited number of support vectors, thus achieving
the distinction between subgroups within a short period of time.
However, the classification of big data is always computationally
expensive. As such, hybrid methodologies of the SVM, e.g.,
Granular Support Vector Machine (GSVM), are introduced in
different applications. GSVM is a novel machine learning model
based on granular computing and statistical learning theory
that addresses the inherently low-efficiency learning problem of
the traditional SVM while obtaining satisfactory generalization
performance [94].

SVMs are particularly attractive in the field of RS owing to
their ability to manage small training data sets effectively and
often delivering higher classification accuracy compared to the
conventional methods [95]–[98]. SVM is an efficient classifier
in high-dimensional spaces, which is particularly applicable
to RS image analysis field where the dimensionality can be
extremely large [99], [100]. In addition, the decision process
of assigning new members only needs a subset of training data.
As such, SVM is one of the most memory-efficient methods,
since only this subset of training data needs to be stored in
memory [100]. The ability to apply new kernels rather than
linear boundaries also increases the flexibility of SVMs for
the decision boundaries, leading to a greater classification per-
formance. Despite these benefits, there are also some chal-
lenges, including the choice of a suitable kernel, optimum kernel
parameters selection, and the relatively complex mathematics
behind the SVM, especially from a nonexpert user point of

view, that restricts the effective cross-disciplinary applications of
SVMs [101].

B. Random Forest Classifier

RF is an ensemble learning approach, developed by Breiman
[102], for solving classification and regression problems. En-
semble learning is a machine learning scheme to boost accuracy
by integrating multiple models to solve the same problem. In
particular, multiple classifiers participate in ensemble classi-
fication to obtain more accurate results compared to a single
classifier. In other words, the integration of multiple classifiers
decreases variance, especially in the case of unstable classifiers,
and may produce more reliable results. Next, a voting scenario
is designed to assign a label to unlabeled samples [11], [103]–
[105]. The commonly used voting approach is majority voting,
which assigns the label with the maximum number of votes
from various classifiers to each unlabeled sample [106]. The
popularity of the majority voting method is due to its simplicity
and effectiveness. More advanced voting approaches, such as
the veto voting method, wherein one single classifier vetoes the
choice of other classifiers, can be considered as an alternative
for the majority voting method [107].

The widely used ensemble learning methods are boosting and
bagging. Boosting is a process of building a sequence of models,
where each model attempts to correct the error of the previous
one in that sequence [see Fig. 5(a)]. AdaBoost was the first
successful boosting approach, which was developed for binary
classification cases [108]. However, the main problem of Ad-
aBoost is model overfitting [103]. The Bootstrap Aggregating,
known as Bagging, is another type of ensemble learning methods
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Fig. 6. Random forest model.

[109]. Bagging is designed to improve the stability and accuracy
of integrated models while reducing variance [see Fig. 5(b)].
As such, Bagging is recognized to be more robust against the
overfitting problem compared to the boosting approach [102].

RF was the first successful bagging approach, which was
developed based on the combination of Breiman’s bagging
sampling approach, random decision forests, and the random
selection of features independently introduced in [110]–[112].

RFs with significantly different tree structures and splitting
variables encourage different instances of overfitting and out-
liers among the various ensemble tree models. Therefore, the
final prediction voting mitigates the overfitting in case of the
classification problem, while the averaging is the solution for the
regression problems. Within the generation of these individual
decision trees, each time the best split in the random sample
of predictors is chosen as the split candidates from the full
set of predictors. A fresh sample of predictors is taken at each
split utilizing a user-specified number of predictors (Mtry). By
expanding the RF up to a user-specified number of trees (Ntree),
RF generates high variance and low bias trees. Therefore, new
sets of input (unlabeled) data are assessed against all decision
trees that are generated in the ensemble, and each tree votes for
a class’s membership. The membership with the majority votes
will be the one that is eventually selected (see Fig. 6) [113],
[114]. This process, hence, should obtain a global optimum
[115]. To reach a global optimum, two-thirds of the samples,
on average, are used to train the bagged trees, and the remaining
samples, namely the out-of-bag (OOB) are employed to cross
validate the quality of the RF model independently. The OOB
error is used to calculate the prediction error and then to evaluate
variable importance measures (VIMs) [116], [117].

Of particular RFs’ characteristic is VIM [118]–[121]. Specif-
ically, VIM allows a model to evaluate and rank predictor vari-
ables in terms of relative significance [26], [45]. VIM calculates

the correlation between high-dimensional datasets on the basis
of internal proximity matrix measurements [122] or identifying
outliers in the training samples by exploratory examination
of sample proximities through the use of variable importance
metrics [44]. The two major variable importance metrics are:
mean decrease in Gini (MDG) and mean decrease in accuracy
(MDA) [123]–[125]. MDG measures the mean decrease in node
impurities as a result of splitting and computes the best split
selection. MDG switches one of the random input variables
while keeping the rest constant. It then measures the decrease
in the accuracy, which has taken place by means of the OOB
error estimation and Gini Index decrease. In a case where all
predictors are continuous and mutually uncorrelated, Gini VIM
is not supposed to be biased [26]. MDA, however, takes into
account the difference between two different OOB errors, the
one that resulted from a dataset obtained by randomly permuting
the predictor variable of interest and the one resulted from the
original dataset [102].

To run the RF model, two parameters have to be set: The
number of trees (Ntree) and the number of randomly selected
features (Mtry). RFs are reported to be less sensitive to the Ntree
compared to Mtry [126]. Reducing Mtry parameter may result
in faster computation, but reduces both the correlation between
any two trees and the strength of every single tree in the forest
and thus, has a complex influence on the classification accuracy
[113]. Since the RF classifier is computationally efficient and
does not overfit, Ntree can be as large as possible [127]. Several
studies found 500 as an optimum number for the Ntree because
the accuracy was not improved by using Ntrees higher than this
number [115]. Another reason for this value being commonly
used could be the fact that 500 is the default value in the software
packages like R package; “randomForest” [128].

In contrast, the number of Mtry is an optimal value and de-
pends on the data at hand. The Mtry parameter is recommended
to be set to the square root of the number of input features in
classification tasks and one-third of the number of input features
for regression tasks [102]. Although methods based on bagging,
such as RF, unlike other methods based on boosting, are not
sensitive to noise or overtraining [129], [130], the above-stated
value for Mtry might be too small in the presence of a large
number of noisy predictors, i.e., in the case of noninformative
predictor variables, the small Mtry results in building inaccurate
trees [26].

The RF classifier has become popular for classification, pre-
diction, studying variable importance, variable selection, and
outlier detection since its emergence in 2001 by Breiman [102].
They have been widely adopted and applied as a standard clas-
sifier to a variety of prediction and classification tasks, such as
those in bioinformatics [131], computer vision [132], and RS
land cover classification [133]. RF has gained its popularity
in land cover classification due to its clear and understand-
able decision-making process and excellent classification results
[115], as well as easy implementation of RF in a parallel structure
for geo-big data computing acceleration [134]. Other advantages
of RF classifier can be summarized as follows:

1) handling thousands of input variables without variable
deletion;
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Fig. 7. Article search query design.

2) reducing the variance without increasing the bias of the
predictions;

3) computing proximities between pairs of cases that can be
used in locating outliers;

4) being robust to outliers and noise; and
5) being computationally lighter compared to other tree en-

semble methods, e.g., Boosting.
As such, many research works have illustrated the great capa-

bility of the RS classifier for classification of Landsat archive,
hyper and multispectral image classification [135], and digital
elevation model data [136]. Most RF research has demonstrated
that RF has improved accuracy in comparison to other super-
vised learning methods and provide VIMs that is crucial for
multisource studies, where data dimensionality is considerably
high [137].

III. METHODS

To prepare for this comprehensive review, a systematic lit-
erature search query was performed using the Scopus and the
Web of Science, which are two big bibliographic databases and
cover scholarly literature from approximately any discipline.
Notably, Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) were followed for study selection
[138]. After numerous trials, three groups of keywords were
considered to retrieve relevant literature in a combination on and
up to October 28, 2019 (see Fig. 7). The keywords in the first and
last columns were searched in the topic (title/abstract/keyword)
to include papers that used data from the most common RS
platforms and addressed a classification problem. However, the
keywords in the second column were exclusively searched in the
title to narrow the search down. This resulted in obtaining studies
that only employed SVM and RF algorithms in their analysis.

To identify significant research findings and to keep a man-
ageable workload, only those studies that had been published
in one of the well-known journals in the RS community (see
Table II) have been considered in this literature review.

Fig. 8. PRISMA flowchart demonstrating the selection of studies.

Of the 471 initial number of studies, 251 were eligible to
be included in the meta-analysis with the following attributes:
title, publication year, first author, journal, citation, application,
sensor type, data type, classifier, image processing unit, spatial
resolution, spectral resolution, number of classes, number of fea-
tures, optimization method, test/train portion, software/library,
single-date/multitemporal, overall accuracy, as well as some
specific attributes for each classifier, such as kernel types for
SVM and number of trees for RF. A summary of the literature
search is demonstrated in Fig. 8.

IV. RESULTS AND DISCUSSION

A. General Characteristics of Studies

Following the in-depth review of 251 publications on su-
pervised remotely-sensed image classification, relevant data
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TABLE II
REMOTE SENSING JOURNALS USED TO COLLECT RESEARCH STUDIES FOR THIS LITERATURE REVIEW

Fig. 9. Distribution of research institutions, according to the country reported in the article. The countries with more than three studies are presented in the table.

were obtained using the methods described in Section III. The
primary sources of information were articles published in sci-
entific journals. In this section, we conduct analysis about the
geographical distribution of the research papers and discuss the
frequency of those papers based on RF and SVM considering
time, journals, and application domains. This was followed by
statistical analysis of RS software packages used in the case
studies, given RFs and SVMs. Furthermore, we reported the
result and discussed the finding of classification performance

against essential features, i.e., data type, RS applications, spatial
resolution, and finally, the number of extracted features.

Fig. 9 illustrates the geographical coverage of published pa-
pers based on the research institutions reported in the article on
a global scale. More than three studies were published in 16
countries from 6 continents, including Asia 41%, Europe 32%,
North America 18%, and the others 9%. As can be seen, most
of the studies have been carried out in Asia and specifically in
China by 71 studies; more than two times higher than the number
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Fig. 10. Usage rate of SVM and RF for remote sensing image classification in countries with more than three studies.

Fig. 11. Cumulative frequency of studies that used SVM or RF algorithms for
remote sensing image classification.

of studies conducted in the following country (i.e., USA). The
papers from China and the USA have been over 40% of the
studies. This is maybe due to the extensive scientific studies
conducted by the universities and institutions located in these
countries, as well as the availability of the datasets. Fig. 10 also
demonstrates the popularity of RF and SVM classifiers within
these 16 countries. It is interesting that in the Netherlands and
Canada, RF is frequently applied, while in China and the USA,
SVM attracts more scientists. It was only in Italy and Taiwan that
all the studies used merely one of the classifiers (i.e., SVMs).

Fig. 11 represents the annual frequency of the publications
and the equivalent cumulative distribution for RF and SVM
algorithms applied for RS image classification. The resulting
list of papers includes 251 studies published in 12 different
peer-reviewed journals. Case studies were assembled from 2002
to 2019, a period of 17 years, wherein the first study using
SVM dates back to 2002 [139] and 2005 for RFs [137]. The
graph shows the significant difference between studies using

SVM and RF over the time frame. Apart from a brief drop
between 2010 and 2011, there was a moderate increase in case
studies using SVM from 2002 to 2014. However, this slips back
for four subsequent years, followed by significant growth in
2019. Studies using RFs, on the other hand, shows the steady
increase in the given time-span, which resulted in an exponential
distribution in the equivalent cumulative distribution function.
The number of studies employed SVMs were always more than
those that used RFs until 2016, wherein the number crossed over
in favor of utilizing RFs. The sharp decrease in using both RF
and SVM between 2014 and 2019 can be clearly explained by the
advent of utilizing deep learning models in the RS community
[140]. However, it seems that employing RF and SVM regained
the researchers’ attention from 2018 onward. Overall, 170 (68%)
and 105 (42%) studies used SVM and RF for their classification
task, respectively. It is noteworthy to mention that some papers
include the implementation of both methods. Besides, the graph
illustrates that utilizing SVMs fluctuated more than RFs, and
both classifiers keep almost steady growth, given the time period.
More information on datasets will be given in the next section.

Fig. 12 demonstrates the number of publications in each of
these 12 peer-reviewed journals, as well as their contribution
in using RF and SVM. Nearly one-fourth of the papers (24%)
were published in Remote Sensing (RS MDPI) with the majority
of the remaining published in the Institute of Electrical and
Electronics Engineers (IEEE) hybrid journals (JSTARS, TGRS,
and GRSL; 23%), International Journal of Remote Sensing

(IJRS; 19%), Remote Sensing of Environment (RSE; 8%), and
six other journals (26%). Although in most of the journals the
number of SVM- and RF-related articles are high enough, three
journals have published less than ten papers with RF or SVM
classification implementations (i.e., GIS&RS, CJRS, and PRL).

The scheme for RS applications used for this study consisted
of eight broad Classification groupings referred to as classes
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Fig. 12. Number of publications per journal; Remote Sensing of Environment
(RSE), ISPRS Journal of Photogrammetry and Remote Sensing (ISPRS), Trans-
action on Geoscience and Remote Sensing (IEEE TGRS), International Journal
of Applied Earth Observation and Geoinformation (JAG), Remote Sensing (RS
MDPI), GIScience Remote Sensing (GIS & RS), Journal of Selected Topics
in Applied Earth Observations and Remote Sensing (IEEE JSTARS), Pattern
Recognition Letters (PRL), Canadian Journal of Remote Sensing (CJRS), Inter-
national Journal of Remote Sensing (IJRS), Remote Sensing Letters (RSL), and
Journal of Applied Remote Sensing (JARS).

Fig. 13. Number of studies that used SVM or RF algorithms in different remote
sensing applications.

distributed across the world (see Fig. 13). The most frequently
investigated application, representing 39% of studies, was re-
lated to land cover mapping, with other categorial applications
including agriculture (15%), urban (11%), forest (10%), wetland
(12%), disaster (3%), and soil (2%). The remaining applications
comprising about 8% of the case studies mainly consist of
mining area classification, water mapping, benthic habitat, rock
types, and geology mapping.

B. Statistical and Remote Sensing Software Packages

A comparison of the geospatial and image processing soft-
ware and other statistical packages is depicted in Fig. 14. These
software packages shown here were used for the implementation
of both the SVM and RF methods in at least three journal papers.
The software packages include eCognition (Trimble), ENVI
(Harris Geospatial SolutionsInc.), ArcGIS (ESRI), Google Earth
Engine, Geomatica (PCI Geomatics) as well as statistical and
data analysis tools, which are MATLAB (MathWorks), and
open-source software tools such as R, Python, OpenCV, and

Fig. 14. Software packages with tools/modules for the implementation of RF
and SVM methods.

Fig. 15. Distribution of overall accuracies for different remotely sensed data
(the numbers on top of the bars show the paper frequencies).

Weka data mining software tool (developed by Machine Learn-
ing Group at the University of Waikato, New Zealand). A de-
tailed search through the literature showed that the free statistical
software tool R appears to be the most important and frequent
source of SVM (25%) and RF (41%) implementation. R is a pro-
gramming language and free software environment for statistical
computing and graphics and widely used for data analysis and
development of statistical software. Most of the implementations
in R were carried out using the caret package [141], which
provides a standard syntax to execute a variety of machine
learning methods, and e1071 package [142], which is the first
implementation of SVM method in R. The dominance of statisti-
cal and data analysis software especially R, Python (scikit-learn
package), and MATLAB is mainly because of the flexibility
of these interfaces in dealing with extensive machine learning
frameworks such as image preprocessing, feature selection and
extraction, resampling methods, parameter tuning, training data
balancing, and classification accuracy comparisons. In terms
of the commercial software, for RF, eCognition is the most
popular one, with about 17% of the case studies, while for the
SVM classification method, ENVI is the most frequent software
accounted for 9% of the studies.

C. Classification Performance and Data Type

Considering the optimal configuration for the available
datasets, Fig. 15 shows the average accuracies based on the type
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of remotely sensed data for both the SVM and RF methods. Mul-
tispectral RS images remain undoubtedly the most frequently
employed data source amongst those utilized in both SVM
and RF scenarios, with about 50% of the total papers mainly
involving Landsat archives followed by MODIS imagery. On
the other hand, the least data usage is related to LIDAR data,
with less than 2% of the whole database. The percentages of
the remaining types of RS data for SVM are as follows: fusion
(21%), hyperspectral (21%), SAR (4%), and LIDAR (1.6%).
These percentages for RF classifiers are about 32%, 10%, 6%,
and 4%, respectively. In working with the multispectral and
hyperspectral datasets, SVM gets the most attention. However,
when it comes to SAR, LIDAR, and fusion of different sensors,
RF is the focal point. The mean classification accuracy of SVM
remains higher than the RF method in all sensor types except in
SAR image data. Although it does not mean that in those cases,
the SVM method works better than RF, it gives a hint about the
range of accuracies that might be reached when using the SVM or
RF. Moreover, it can be observed that, except for hyperspectral
data in case of using the RF method, the mean classification
accuracies are generally more than 82%. For SVM, the mean
classification accuracy of hyperspectral datasets remains the
highest at 91.5%, followed by multispectral (89.7%), fusion
(89.14%), LIDAR (88.0%), and SAR (83.9%). This order for
the RF method goes as SAR, multispectral, fusion, LIDAR,
and hyperspectral with the mean overall accuracies of 91.60%,
86.74%, 85.12%, 82.55%, and 79.59%, respectively.

D. Classification Performance and Remote

Sensing Applications

The number of articles focusing on different study targets
(the number of studies is shown in the parenthesis) alongside
the statistical analyses for each method is shown in Fig. 16.
Other types of study targets, including soil, forest, water, mine,
and cloud (comprising less than 10% of the total studies), were
very few and are not shown here individually. The statistical
analysis was conducted to assess OA (%) values that SVM
and RF classifiers achieved for seven types of classification
tasks. As shown in Fig. 16, most studies focused on LULC
classification, crop classification, and urban studies with 50%,
14%, and 11% for SVM and 27%, 17%, and 14% for RF
classifier. For LULC studies, the papers mostly adopted the
publicly available benchmark datasets, as the main focus was on
hyperspectral image classification. The most used datasets were
from AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)
and ROSIS (Reflective Optics System Imaging Spectrometer)
hyperspectral sensors. For crop classification, the mainly used
data was AVIRIS, followed by MODIS imageries. While in
urban studies, Worldview-2 and IKONOS satellite imageries
were the most frequently employed data. On the other hand,
other studies mainly focused on the nonpublic image dataset
for the region under study based on the application. Therefore,
there is a satisfying number of studies that have focused on the
real-world RS applications of both SVM and RF classifiers.

The assessment of classification accuracy regarding the types
of study targets shows the maximum average accuracy in case

Fig. 16. Overall accuracies distribution of (a) SVM and (b) RF classifiers in
different applications.

Fig. 17. Frequency and average accuracy of SVM and RF by the spatial
resolution.

of using RF for LULC with approximately 95.5% and change
detection with about 93.5% for SVM classification. LULC, as a
mostly used application in both SVM and RF scenarios, shows
little variability for the RF classifier. It can be interpreted as
the higher stability of the RF method than SVM in the case of
classification. The same manner is going on in crop classification
tasks (i.e., the higher average accuracy and little variability for
RF compared to the SVM method). The minimum amounts of
average accuracies are also related to disaster-related applica-
tions and crop classification tasks for RF and SVM, respectively.

E. Classification Performance and Spatial Resolution

Fig. 17 shows the average obtained accuracy using RFs and
SVMs based on the spatial resolution of the employed image
data and their equivalent number of published papers. The papers
were categorized based on the spatial resolution into high (<10
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Fig. 18. Frequency and average accuracy of SVM and RF by the number of
features.

m), medium (between 10 and 100 m), and low (>100 m). As
seen, a relatively high number of papers (∼49%) were dedicated
to the image data with spatial resolution in the range of 10–100
m. Datasets with a spatial resolution of smaller than 10 m
also contribute to the high number of papers with about 44%
of the database. The remaining papers (∼7% of the database)
deployed the image data with a spatial resolution of more than
100 m. The image data with high, medium, and low resolutions
comprise 41%, 52%, and 7% of the studies for the SVM method
and 52%, 44%, and 4% of the papers while using the RF
method. Therefore, in the case of using high spatial resolution
RS imagery, RF remains the most employed method, while in the
case of medium- and low-resolution images, SVMs are the most
commonly used method. A relatively robust trend is observed
for the SVM method as the image data pixel size increases the
average accuracy decreases. Such a trend can be observed for RF
regarding that OA versus resolution is inconsistent among the
three categories. Hence, in the case of the RF classifier, it is not
possible to get a direct relationship between the classification
accuracy and the resolution. However, in the high and medium
resolution scenarios, the SVM method shows the higher average
OAs.

F. Classification Performance and the Number of

Extracted Features

Frequency and the average accuracies of SVMs and RFs
versus the number of features are presented in Fig. 18. The
papers were split into three groups (<10, between 10 and 100,
and>100) based on the employed number of features. As can be
seen, the number of papers for the SVM method is relatively the
same for the three groups. However, in the case of RF, the vast
majority of published papers (over than 60% of the total papers)
focused on using 10 to 100 features, whereas a smaller number
of papers used the number of features less than 10 or higher
than 100, i.e., 22% and 18%, respectively. The comparison of the
average accuracies of RF and SVM methods shows that the SVM
method is reported to have higher accuracy. However, because
of the inconsistency of the average accuracies for both SVM
and RF, it is not possible to predict a linear relationship between
the number of features and acquired accuracies. For the SVM
method, the highest reported average accuracy is when using
the lowest (<10) and highest (>100) number of features, but

RF shows the highest average accuracy while the number of
features is between 10 and 100.

Fig. 19 displays the scatterplot of the sample data for pairwise
comparison of RF and SVM classifiers. This figure illustrates the
distribution of the overall accuracies and indicates the number
of articles where one classifier works better than another. It can
also help to interpret the magnitude of improvement for each
sample article while considering the other classifier’s accuracy.
To further inform the readers, we marked the cases with different
ranges of the number of features by three shapes (square, circle,
and diamond), and with different sizes. The bigger size indicates
the lower spatial resolution, i.e., bigger pixel size.

Moreover, to analyze the sensitivity of the algorithms to the
number of classes, a colormap was used in which the brighter
(more brownish) color shows the lower number of classes, and
as the number of classes increases, the color goes toward the
dark colors. The primary conclusion that is observed from the
scatter plot is that most of the points are near the line 1:1, which
shows somewhat similar behavior of the classifiers. However,
in general, there are 32 papers with the implementation of both
classifiers, and in 19 cases (about 60%), RF outperforms SVM,
and in 40% of the remaining papers, SVM reports the higher
accuracy.

Fig. 19 organizes the results based on the feature input dimen-
sionality in three general categories by using different shapes.
When it comes to the number of features, one can clearly observe
that there is only one circle below the line 1:1, while the others
are at the above. This shows the better performance of the SVM
when the input data contains many more features. This result is
in accordance with those exploited from Fig. 18. Conversely, in
the case of features between 10 and 100, there are over 63% of
the squares under the identity line (7 squares out of 11), which
shows the high capability of RF while working with this group of
image data. Finally, considering features fewer than 10, 58% of
the diamonds are under the identity line (11 out of 17) and 42%
above the line. Considering the fraction of RF supremacy over
SVM 60–40, it is hard to infer which method performs better.

To examine the spatial resolution, three shape sizes were used.
It is hardly possible to notice a specific pattern with respect
to the pixel size of input data, but it is observed that most of
the bigger shapes are under the one-to-one line. This represents
the RF method offer consistently better results than SVM while
dealing with images with bigger pixel size, which is in total
accordance with Fig. 17. Looking at Fig. 19 and the distribution
of points regarding the colors, the darker colors tend to offer
more abundance under the identity line, while the points above
the reference line are brighter. This can be proof of the efficiency
of the SVM classifier to work with data with a lower number of
classes. Statistically, 77% of the papers in which SVM shows
higher accuracy include input data with the number of classes
less than or equal to 6. The mean number of classes, in this case,
is∼5.5, whereas the mean number of classes in which RF works
better is 8.4.

V. RECOMMENDATIONS AND FUTURE PROSPECT

Model selection can be used to determine a single best model,
thus lending assistance to the one particular learner, or it can
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Fig. 19. Comparison of the overall accuracy of SVM and RF classifiers by spatial resolution, number of features, and the number of classes in the under-study
dataset.

be used to make inferences based on weighted support from a
complete set of competing models. After a better understanding
of the trends, strengths, and limitations of RFs and SVMs in
the current study, the possibility of integrating two or more
algorithms to solve a problem should be more investigated where
the goal should be to utilize the strengths of one method to
complement the weaknesses of another. If we are only interested
in the best possible classification accuracy, it might be difficult
or impossible to find a single classifier that performs as well as
an excellent ensemble of classifiers. Mechanisms that are used
to build the ensemble of classifiers, including using different
subsets of training data with a single learning method, using
different training parameters with a single training method, and
using different learning methods, should be further investigated.
In this sense, researchers may consider multiple variation of
nearest neighbor techniques (e.g., K-NN) along with RF and
SVM for both prediction and mapping.

Both SVM and RF are pixel-wise spectral classifiers. In other
words, these classifiers do not consider the spatial dependences
of adjacent pixels (i.e., spatial and contextual information). The
availability of remotely sensed images with the fine spatial
resolution has revolutionized image classification techniques
by taking advantage of both spectral and spatial information
in a unified classification framework [143], [144]. Object-based
and spectral-spatial image classification using SVM and RF are
regarded as a vibrant field of research within the RS community
with lots of potential for further investigation.

The successful use of RF or SVM, coupled with a feature
extraction approach to model a machine learning framework
has been demonstrated intensively in the literature [145], [146].
The development of such machine learning techniques, which
include a feature extraction approach followed by RF or SVM

as the classifier, is indeed a vibrant research line, which deserves
further investigation.

As discussed in this study, SVM and RF can appropriately
handle the challenging cases of the high-dimensionality of the
input data, the limited number of training samples, and data
heterogeneity. These advantages make SVM and RF well-suited
for multisensor data fusion to further improve the classification
performance of a single sensor data source [147], [148]. Due to
the recent and sharp increase in the availability of data captured
by various sensors, future studies will investigate SVM and RF
more for these essential applications.

Several other ensemble machine learning toolboxes exist for
different programming languages. The most widely used ones
are scikit-learn [149] for Python, Weka [150] for Java, and mlj
[151] for Julia. The most important toolboxes for R are mlr,
caret [141], and tidy models [152]. Most recently, the mlr3
[153] package has become available for complex multistage
experiments with advanced functionality that use a broad range
of machine learning functionality. The authors of this study
also suggest that researchers explore the diverse functionality
of this package in their studies. We also would like to invite
researchers to report their variable importance, class imbalance,
class homogeneity, and sampling strategy and design in their
studies. More importantly, to avoid spatial autocorrelation, if
possible, samples for training should be selected randomly and
spatially uncorrelated; purposeful samples should be avoided.
For benchmark datasets, this study recommends researchers to
use the standard sets of training and test samples already sepa-
rated by the corresponding data provider. In this way, the clas-
sification performance of different approaches becomes com-
parable. To increase the fairness of the evaluation, RS societies
have been developing evaluation leaderboards where researchers
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can upload their classification maps and obtain classification
accuracies on (usually) nondisclosed test data. One example of
those evaluation websites is the IEEE Geoscience and Remote
Sensing Society Data and Algorithm Standard Evaluation web-
site (http://dase.grss-ieee.org/).

VI. CONCLUSION

The development of RS technology alongside with introduc-
ing new advanced classification algorithms have attracted the
attention of researchers from different disciplines to utilize these
potential data and tools for thematic applications. The choice of
the most appropriate image classification algorithm is one of
the hot topics in many research fields that deploy images of a
vast range of spatial and spectral resolutions taken by different
platforms while including many limitations and priorities. RF
and SVM, as well-known and top-ranked machine learning
algorithms, have gained the researchers’ and analysts’ attention
in the field of data science and machine learning. Since there is
ongoing employment of these methods in different disciplines,
the common question is which method is highlighted based on
the task properties. This article focused on a meta-analysis of
comparison of peer-reviewed studies on RF and SVM classifiers.
Our research aimed to statistically quantify the characteristics
of these methods in terms of frequency and accuracy. The meta-
analysis was conducted to serve as a descriptive and quantitative
method of comparison using a database containing 251 eligible
papers in which 42% and 68% of the database include RF and
SVM implementation, respectively. The surveying carried out
in the database showed the following.

1) The higher number of studies focusing on the SVM clas-
sifier is mainly due to the fact that it was introduced years
before RF to the RS community. As can be concluded from
the articles database, in the past three years, implement-
ing the RF exceeded the SVM method. Nevertheless, in
general, there is still an ongoing interest in using RF and
SVM as standard classifiers in various applications.

2) The survey in the database revealed a moderate increase
in using RF and SVM worldwide in an extensive range
of applications such as urban studies, crop mapping, and
particularly LULC applications, which got the highest
average accuracy among all the applications. Although
the assessment of the classification accuracies based on
the application showed rather high variations for both RF
and SVM, the results can be used for method selection
concerning the application. For instance, the relatively
high average accuracy and the little variance of the RF
method for LULC applications can be interpreted as the
superiority of RFs over SVMs in this field.

3) Medium and high spatial resolution images are the most
used imageries for SVM and RF, respectively. It is hardly
possible to notice a specific pattern concerning the spatial
resolution of the input data. In the case of low spatial
resolution images, the RF method offers consistently bet-
ter results than SVM, although the number of papers
using SVM for low spatial resolution image classification
exceeded the RF method.

4) There is not a strong correlation between the acquired
accuracies and the number of features for both the SVM
and RF methods. However, a comparison of the average
accuracies of RF and SVM methods suggests the superior-
ity of the SVM method while classifying data containing
many more features.

Contrary to the dominant utilization of SVM for the clas-
sification of hyperspectral and multispectral images, RF gets
the attention while working with the fused datasets. For SAR
and LIDAR datasets, the RF was also used more than the SVM
method. However, its popularity cannot be concluded because
of the low available number of published papers.
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