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Support Vector Machine With Adaptive Parameters in
Financial Time Series Forecasting

L. J. Cao and Francis E. H. Tay

Abstract—A novel type of learning machine called support
vector machine (SVM) has been receiving increasing interest in
areas ranging from its original application in pattern recognition
to other applications such as regression estimation due to its
remarkable generalization performance. This paper deals with
the application of SVM in financial time series forecasting.
The feasibility of applying SVM in financial forecasting is first
examined by comparing it with the multilayer back-propagation
(BP) neural network and the regularized radial basis function
(RBF) neural network. The variability in performance of SVM
with respect to the free parameters is investigated experimentally.
Adaptive parameters are then proposed by incorporating the
nonstationarity of financial time series into SVM. Five real futures
contracts collated from the Chicago Mercantile Market are used as
the data sets. The simulation shows that among the three methods,
SVM outperforms the BP neural network in financial forecasting,
and there are comparable generalization performance between
SVM and the regularized RBF neural network. Furthermore, the
free parameters of SVM have a great effect on the generalization
performance. SVM with adaptive parameters can both achieve
higher generalization performance and use fewer support vectors
than the standard SVM in financial forecasting.

Index Terms—Back-propagation (BP) neural network, nonsta-
tionarity, regularized radial basis function (RBF) neural network,
support vector machine (SVM).

I. INTRODUCTION

F INANCIAL time series are inherently noisy and nonsta-
tionary [1], [2]. The nonstationary characteristic implies

that the distribution of financial time series changes over time.
In the modeling of financial time series, this will lead to gradual
changes in the dependency between the input and output vari-
ables. Therefore, the learning algorithm used should take into
account this characteristic. Usually, the information provided by
the recent data points is given more weight than that provided
by the distant data points [3], [4], as in nonstationary financial
time series the recent data points could provide more important
information than the distant data points.

In recent years, neural networks have been successfully used
for modeling financial time series [5]–[8]. Neural networks are
universal function approximators that can map any nonlinear
function withouta priori assumptions about the properties of the
data [9]. Unlike traditional statistical models, neural networks
are data-driven, nonparametric weak models, and they let “the
data speak for themselves.” Consequently, neural networks are
less susceptible to the problem of model mis-specification as
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compared to most of the parametric models. Neural networks
are also more noise tolerant, having the ability to learn complex
systems with incomplete and corrupted data. In addition, they
are more flexible and have the capability to learn dynamic sys-
tems through a retraining process using new data patterns. So
neural networks are more powerful in describing the dynamics
of financial time series in comparison to traditional statistical
models [10]–[12].

Recently, a novel type of learning machine, called the sup-
port vector machine (SVM), has been receiving increasing at-
tention in areas ranging from its original application in pattern
recognition [13]–[15] to the extended application of regression
estimation [16]–[19]. This was brought about by the remark-
able characteristics of SVM such as good generalization perfor-
mance, the absence of local minima, and sparse representation
of solution. SVM was developed by Vapnik and his coworkers
in 1995 [20], and it is based on thestructural risk minimization
(SRM) principle which seeks to minimize an upper bound of the
generalization error consisting of the sum of the training error
and a confidence interval. This induction principle is different
from the commonly usedempirical risk minimization(ERM)
principle which only minimizes the training error. Established
on the unique principle, SVM usually achieves higher gener-
alization performance than traditional neural networks that im-
plement the ERM principle in solving many machine learning
problems. Another key characteristic of SVM is that training
SVM is equivalent to solving a linearly constrained quadratic
programming problem so that the solution of SVM is always
unique and globally optimal, unlike other networks’ training
which requires nonlinear optimization with the danger of getting
stuck into local minima. In SVM, the solution to the problem is
only dependent on a subset of training data points which are
referred to as support vectors. Using only support vectors, the
same solution can be obtained as using all the training data
points. One disadvantage of SVM is that the training time scales
somewhere between quadratic and cubic with respect to the
number of training samples. So a large amount of computa-
tion time will be involved when SVM is applied for solving
large-size problems.

This paper deals with the application of SVM to financial time
series forecasting. The feasibility of applying SVM in financial
forecasting is first examined by comparing it with the multi-
layer back-propagation (BP) neural network and the regularized
radial basis function (RBF) neural network, which are the best
methods as reported in research. A more detailed description
on this work can also be found in our earlier papers [21], [22].
As there is a lack of a structured way to choose the free pa-
rameters of SVM, experiments are carried out to investigate the
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functional characteristics of SVM with respect to the free pa-
rameters in financial forecasting. Finally, adaptive parameters
are proposed by incorporating the nonstationarity of financial
time series into SVM. The experiment carried out shows that the
SVM with adaptive parameters outperforms the standard SVM
in financial forecasting. There are also fewer converged support
vectors in the adaptive SVM, resulting in a sparser representa-
tion of the solution.

Section II provides a brief introduction to SVM in regression
approximation. Section III presents the experimental results on
the comparison of SVM with the BP and RBF neural networks,
together with the experimental data sets and performance cri-
teria. Section IV discusses the experimental analysis of the free
parameters of SVM. Section V describes the adaptive param-
eters that make the prediction more accurate and the solution
sparser. Section VI concludes the work.

II. SVM FOR REGREESSIONESTIMATION

Compared to other neural network regressors, SVM has three
distinct characteristics when it is used to estimate the regres-
sion function. First, SVM estimates the regression using a set of
linear functions that are defined in a high-dimensional feature
space. Second, SVM carries out the regression estimation by
risk minimization, where the risk is measured using Vapnik’s
-insensitive loss function. Third, SVM implements the SRM

principle which minimizes the risk function consisting of the
empirical error and a regularized term.

Given a set of data points
( , , is the total number of training
samples) randomly and independently generated from an un-
known function, SVM approximates the function using the
following form:

(1)

where represents the high-dimensional feature spaces
which is nonlinearly mapped from the input space. The coef-
ficients and are estimated by minimizing the regularized
risk function (2)

minimize (2)

otherwise.
(3)

The first term is called the regularized term. Minimizing
will make a function as flat as possible, thus playing

the role of controlling the function capacity. The second term
is the empirical error measured by the

-insensitive loss function (3). This loss function provides the
advantage of using sparse data points to represent the designed
function (1). is referred to as the regularization constant.is
called the tube size. They are both user-prescribed parameters
and determined empirically.

To get the estimations of and , (2) is transformed to the
primal objective function (4) by introducing the positive slack
variables ( denotes variables with and without)

minimize

subject to

(4)

Finally, by introducing Lagrange multipliers and exploiting
the optimality constraints, the decision function (1) has the fol-
lowing explicit form [20]:

(5)

In function (5), are the so-called Lagrange multipliers. They
satisfy the equalities , , and where

, and they are obtained by maximizing the dual
function of (4), which has the following form:

(6)

with the following constraints:

is defined as the kernel function. The value of the
kernel is equal to the inner product of two vectorsand in
the feature space and , that is,

. The elegance of using the kernel function is that one
can deal with feature spaces of arbitrary dimensionality without
having to compute the map explicitly. Any function that
satisfies Mercer’s condition [20] can be used as the kernel func-
tion. Common examples of the kernel function are the polyno-
mial kernel and the Gaussian kernel

, where and are the
kernel parameters.

Based on the Karush–Kuhn–Tucker (KKT) conditions [23],
only a number of coefficients in (5) will assume
nonzero values, and the corresponding training data points have
approximation errors equal to or larger than, and are referred
to as support vectors. According to function (5), it is evident
that only the support vectors are used to determine the decision
function as the values of for the other training data
points are equal to zero. As support vectors are usually only a
small subset of the training data points, this characteristic is re-
ferred to as the sparsity of the solution.

From the implementation point of view, training SVM
is equivalent to solving the linearly constrained quadratic
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TABLE I
FIVE FUTURESCONTRACTS ANDTHEIR CORRESPONDINGTIME PERIODS

programming problem (6) with the number of variables twice
as that of the number of training data points. The sequential
minimal optimization (SMO) algorithm extended by Scholkopf
and Smola [24], [25] is very effective in training SVM for
solving the regression estimation problem.

III. T HE FEASIBILITY OF APPLYING SUPPORTVECTOR

MACHINE IN FINANCIAL FORECASITNG

A. Data Sets

Five real futures contracts collated from the Chicago Mer-
cantile Market are examined in the experiment. They are the
Standard & Poor 500 stock index futures (CME-SP), United
Sates 30-year government bond (CBOT-US), Unite States
10-year government bond (CBOT-BO), German 10-year
government bond (EUREX-BUND), and French government
stock index futures (MATIF-CAC40). A subset of all available
data is used in the experiment to reduce the requirement of the
network design. The corresponding time periods used are listed
in Table I. The daily closing prices are used as the data sets.

Choosing a suitable forecasting horizon is the first step in
financial forecasting. From the trading aspect, the forecasting
horizon should be sufficiently long so that the over-trading re-
sulting in excessive transaction costs could be avoided. From
the prediction aspect, the forecasting horizon should be short
enough as the persistence of financial time series is of limited
duration. As suggested by Thomason [26], a forecasting horizon
of five days is a suitable choice for the daily data. As the precise
values of the daily prices is often not as meaningful to trading
as its relative magnitude, and also the high-frequency compo-
nents in financial data are often more difficult to successfully
model, the original closing price is transformed into a five-day
relative difference in percentage of price (RDP). As mentioned
by Thomason, there are four advantages in applying this trans-
formation. The most prominent advantage is that the distribu-
tion of the transformed data will become more symmetrical and
will follow more closely to a normal distribution as illustrated
in Fig. 1. This modification to the data distribution will improve
the predictive power of the neural networks.

The input variables are determined from four lagged RDP
values based on five-day periods (RDP-5, RDP-10, RDP-15,
and RDP-20) and one transformed closing price (EMA100)
which is obtained by subtracting a 100-day exponential moving
average from the closing price. The subtraction is performed

(a)

(b)

Fig. 1. Histograms. (a) Of CME-SP daily closing price. (b) Of RDP+5.

to eliminate the trend in price as the maximum value and the
minimum value is in the ratio of about in all of the five
data sets. The optimal length of the moving day is not critical,
but it should be longer than the forecasting horizon of five days
[26]. EMA100 is used to maintain as much of the information
contained in the original closing price as possible since the
application of the RDP transform to the original closing price
may remove some useful information. The output variable
RDP+5 is obtained by first smoothing the closing price with a
three-day exponential moving average, because the application
of a smoothing transform to the dependent variable generally
enhances the prediction performance of neural networks [27].
The calculations for all the indicators are given in Table II.

The long left tail in Fig. 1(b) indicates that there are outliers
in the data set. As the Z-score normalization method [28] is
mostly suitable for normalizing the time series containing out-
liers, this method is used here to scale each data set. Then the
walk-forward testing routine [29] is used to divide each whole
data set into five overlapping training–validation–testing sets.
Each training–validation–testing set is moved forward through
the time series by 100 data patterns as shown in Fig. 2. In each
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Fig. 2. Walk-forward testing routine to divide each whole data set into five overlapping training–validation-test sets.

TABLE II
INPUT AND OUTPUT VARIABLES

of the five divided training–validation–testing sets, there are a
total of 1000 data patterns in the training set, 200 data patterns
in both the validation set and the testing set. The training set is
used to train SVM and the neural networks, the validation set is
used to select the optimal parameters of SVM and prevent the
overfitting problem in the neural networks. The testing set is
used for evaluating the performance. The comparison of SVM,
the BP neural network, and the regularized RBF neural network
in each futures contract is based on the averaged results on the
testing sets.

B. Performance Criteria

The prediction performance is evaluated using the following
statistical metrics, namely, the normalized mean squared error
(NMSE), mean absolute error (MAE), and directional symmetry
(DS). The definitions of these criteria can be found in Table III.
NMSE and MAE are the measures of the deviation between the
actual and predicted values. The smaller the values of NMSE
and MAE, the closer are the predicted time series values to the
actual values (a smaller value suggests a better predictor). DS

TABLE III
PERFORMANCEMETRICS AND THEIR CALCULATIONS

provides an indication of the correctness of the predicted direc-
tion of RDP+5 given in the form of percentages (a larger value
suggests a better predictor). A detailed description of the perfor-
mance metrics in financial forecasting can be referred to [30].

C. Experimental Results

When applying SVM to financial forecasting, the first thing
that needs to be considered is what kernel function is to be
used. As the dynamics of financial time series are strongly
nonlinear [31], it is intuitively believed that using nonlinear
kernel functions could achieve better performance than the
linear kernel. In this investigation, the Gaussian function is
used as the kernel function of SVM, because Gaussian kernels
tend to give good performance under general smoothness
assumptions. Consequently, they are especially useful if no
additional knowledge of the data is available [24]. This is
also demonstrated in the experiment by comparing the results
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obtained using the Gaussian kernel with results obtained using
the polynomial kernel. The polynomial kernel gives inferior
results and takes a longer time in the training of SVM. The
second thing that needs to be considered is what values of the
kernel parameters (, , and ) are to be used. As there is no
structured way to choose the optimal parameters of SVM, the
values of the three parameters that produce the best result in
the validation set are used for SVM. These values could vary
for futures due to different characteristics of the futures. The
SMO for solving the regression problem is implemented in
this experiment and the program is developed using the VC
language.

A standard three-layer BP neural network is used as a bench-
mark. There are five nodes in the input layer, which is equal to
the number of indicators. The output node is equal to, whereas
the number of hidden nodes is determined based on the valida-
tion set. This procedure is very simple. The number of hidden
nodes is varied from a small value (say, three) to a reasonably
big value (say, 30). For each chosen number of hidden nodes, the
BP neural network is trained, and the averaged error on the val-
idation sets is estimated. After the above procedure is repeated
for every number of hidden nodes, the number of hidden nodes
that produces the smallest averaged error on the validation sets is
used, which could vary between different data sets. The learning
rate is also chosen based on the validation set. The hidden nodes
use the sigmoid transfer function and the output node uses the
linear transfer function. The stochastic gradient descent method
is used for training the BP neural network as it could give better
performance than the batch training for large and nonstationary
data sets. In the stochastic gradient descent training, the weights
and the biases of the BP neural network are immediately up-
dated after one training sample is presented. The BP software
used is directly taken from Matlab 5.3.0 neural network toolbox.

In the training of the BP neural network, the number of epochs
is first chosen as 6000 as there is no prior knowledge of this
value before the experiment. The behavior of the NMSE is given
in Fig. 3. In BP, it is evident that the NMSE on the training set de-
creases monotonically during the entire training period. In con-
trast, the NMSE on the validation set decreases for the first few
hundreds epochs but increases for the remaining epochs. This
indicates that overfitting has occurred in the BP network. Hence,
in the later training, the procedure of “early stopping training”
is used for the BP neural network. That is, the validation error
is calculated after every presentation of five training samples. If
the validation error is increasing for a few (say, five) times, the
training of the BP neural network will be stopped. This reduces
the possibility of the overfitting. This procedure of training the
BP neural network is used for all the data sets. In comparison,
for the SVM, the NMSE on both the training set and the valida-
tion set fluctuate during the initial training period but gradually
converge to a constant value, as illustrated in Fig. 4.

In addition, the regularized RBF neural network [32] is also
used as the benchmark. The regularized RBF neural network
minimizes the risk function which also consists of the empirical
error and a regularized term, derived from Tikhonov’s regular-
ization theory used for solving ill-posed problems. But the op-
timization methods used in the regularized RBF neural network
are different from those of SVM. So it is very interesting to see

(a)

(b)

Fig. 3. The behavior of NMSE in BP. (a) On the training set. (b) On the
validation set.

how is the performance of SVM relative to that of the regular-
ized RBF neural network. The regularized RBF neural network
software used is developed by Mulleret al. [19], and can be
downloaded from http://www.kernel-machines.org. In the reg-
ularized RBF neural network, the centers, the variances, and
the output weights are all adjusted [33]. The number of hidden
nodes and the regularization parameter are chosen based on the
validation set. In a similar way as used in the BP neural net-
work, the procedure of “early stopping training” is also used in
the regularized RBF neural network for avoiding the overfitting
problem.

The results are collated and the averages of the best five
records obtained in 30 trials on the training set are given
in Table IV. From the table, it can be observed that in all
the futures contracts, the largest values of NMSE and MAE
are in the RBF neural network. In CME-SP, CBOT-US, and
EUREX-BUND, SVM has smaller values of NMSE and MAE,
but larger values of DS than BP. In the futures of CBOT-BO
and MATIF-CAC40, the reverse is true.
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TABLE IV
RESULTS ON THETRAINING SET

(a)

(b)

Fig. 4. The behavior of NMSE in SVM. (a) On the training set. (b) On the
validation set.

The results on the validation set are given in Table V. As ex-
pected, the results of the validation set are worse than those of
the training set in terms of NMSE. All the values of NMSE
are near or larger than , indicating financial data sets are
very noisy and financial forecasting is a very challenging task.

Among the three methods, the smallest values of NMSE and
MAE occurred in SVM, followed by the RBF neural network.
In terms of DS, the results are comparable among the three
methods.

The results on the testing set are given in Table VI. The table
shows that in four of the studied futures (CME-SP, CBOT-BO,
EUREX-BUND, and MATIF-CAC40), the smallest values of
NMSE and MAE are found in SVM, followed by the RBF
neural network. In CBOT-US, BP has the smallest NMSE and
MAE, followed by RBF. The results are comparable among the
three methods in terms of DS. A paired-test [34] is performed
to determine if there is significant difference among the three
methods based on the NMSE of the testing set. The calculated
-value shows that both SVM and RBF outperform BP with

5% significance level for a one-tailed test, and there is no
significant difference between SVM and RBF.

IV. EXPERIMENTAL ANALYSIS OF PARAMETERS

In the earlier experiments, the kernel parameter, , and
are selected based on the validation set. Making use of a valida-
tion set is still not a structured way to select the optimal values of
the free parameters as this iterative process involves numerous
trial and errors. In this section, the NMSE and the number of
support vectors with respect to the three free parameters are in-
vestigated by varying one free parameter at a time. Although
this approach is completely suboptimal for choosing the optimal
values of the free parameters, it is still useful for investigating
the performance of SVM with respect to different values of the
free parameters. Only the results of CME-SP are illustrated as
the same can be applied to the other data sets.

Fig. 5(a) gives the NMSE of SVM at various, in which
and are, respectively, fixed atand . The figure shows that
the NMSE on the training set increases with. On the other
hand, the NMSE on the validation set decreases initially but
subsequently increases asincreases. This indicates that too
small a value of (1–100) causes SVM to overfit the training
data while too large a value of (10000–1 000 000) causes
SVM to underfit the training data. An appropriate value for
would be between 100 and 10 000. In this respect, it can been
said that plays an important role on the generalization per-
formance of SVM. Fig. 5(b) shows that the number of support
vector decreases initially and then increases withas most of
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TABLE V
RESULTS ON THEVALIDATION SET

TABLE VI
RESULTS ON THETESTING SET

the training data points are converged to the support vectors in
the overfitting and underfitting cases.

Fig. 6 gives the results of various where is chosen as
100 based on the last experiment andis still fixed at . It
can been observed that the NMSE on the training set decreases
monotonically as increases. In contrast, the NMSE on the val-
idation set first decreases whenis increased from to and
then starts to increase whenincreases beyond. The reason
lies in that a small value for will underfit the training data
because the weight placed on the training data is too small thus
resulting in large values of NMSE on both the training and val-
idation sets. On the contrary, when is too large, SVM will
overfit the training set, leading to a deterioration in the gener-
alization performance. Similarly, the number of support vectors
also first slightly decreases as increases and then keeps in-
creasing when increases again, as is illustrated in Fig. 6(b).
This means that there are more support vectors in the overfitting
and underfitting cases.

Fig. 7 gives the results of SVM with variouswhere and
are, respectively, fixed at 100 and 1. Fig. 7(a) shows that the

NMSE on both the training set and the validation set is very
stable and relatively unaffected by changes in. This indicates

that the performance of SVM is insensitive to. However, ac-
cording to [17], whether has an effect on the generalization
error depends on the input dimension of the data set. So this re-
sult cannot be generalized for usual cases. The number of sup-
port vectors decreases asincreases, especially whenis larger
than as illustrated in Fig. 7(b). This is consistent with the
result obtained in [20] that the number of support vector is found
to be a decreasing function of.

V. SUPPORTVECTOR MACHINE WITH ADAPTIVE

PARAMETERS (ASVM)

From the results reported in the last section, it can be observed
that the performance of SVM is sensitive to the regularization
constant , with a small underfitting the training data points
and a large overfitting the training data points. In addition,
the number of support vectors is related to the tube size. A
large reduces the number of converged support vectors without
affecting the performance of SVM, thus causing the solution to
be represented very sparsely. Based on this, adaptive parameters
are proposed in this section by incorporating the nonstationarity
of financial time series into SVM.
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(a)

(b)

Fig. 5. The results at various� in which C = 5 and" = 0:05. (a) The
NMSE. (b) The number of support vectors.

A. Modification of Parameter

As shown in (4), the regularized risk function of SVM con-
sists of two terms: the regularized term and the empirical error.
The regularization constant determines the tradeoff between
the two terms. Increasing the value of, the relative impor-
tance of the empirical error with respect to the regularized term
grows. By using a fixed value of in the regularized risk func-
tion, SVM assigns equal weights to all the-insensitive errors
between the actual and predicted values. For illustration, the em-
pirical error function in standard SVM is expressed by

(7)

However, in nonstationary financial time series, it is usually
believed that the information provided by the recent training
data points is more important than that provided by the distant
training data points. Thus, it is beneficial to place more weight
on the -insensitive errors corresponding to the recent training

(a)

(b)

Fig. 6. The results of variousC in which � = 100 and" = 0:05. (a) The
NMSE. (b) The number of support vectors.

data points than those of the distant training data points. In light
of this characteristic, the regularization constantadopts the
following exponential function:

(8)

(9)

where represents the data sequence, with being the most
recent training data point and being the most distant
training data point. is the parameter to control the ascending
rate. is called the ascending regularization constant as its
value will increase from distant training data points to recent
training data points.

The behaviors of the weight function (9) are illustrated in
Fig. 8, which can be summarized as follows.



1514 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

(a)

(b)

Fig. 7. The results of various" in which� = 100 andC = 1. (a) The NMSE.
(b) The number of support vectors.

i) When , then . In this case, the
same weights are applied in all the training data points,
and .

ii) When , then

.

In this case, the weights for the first half of the training
data points are reduced to zero while the weights for the
second half of the training data points are equal to, and

.

iii) When and increases, the weights for the
first half of the training data points become smaller while
the weights for the second half of the training data points
become larger.

B. Modification of Parameter

To make the solution of SVM sparser,adopts the following
form:

(10)

where has the same meaning as in (9).is the parameter to
control the descending rate. is called the descending tube as
its value will decrease from the distant training data points to
the recent training data points.

Furthermore, the proposed adaptivecould also place
more weights on the recent training data points than the
distant training data points. This can be explained from both
the approximation accuracy aspect and the characteristic of
the solution of SVM aspect. In SVM, is equivalent to the
approximation accuracy placed on the training data points.
A small corresponds to a large slack variable and high
approximation accuracy. On the contrary, a largecorresponds
to a small slack variable and low approximation accuracy.
According to (4), a large slack variable will cause the empirical
error to have a large impact with relation to the regularized
term. Therefore, the recent training data points by using a
smaller value of will be penalized more heavily than the
distant training data points by using a larger value of. The
characteristic of the solution of SVM can also be used to
explain that there are more weights in the recent training data
points than in the distant training data points. In SVM, the
solution to the problem is represented by support vectors. What
are support vectors? In regression estimation, support vectors
are the training data points lying on or outside the-bound of
the decision function. Therefore, the number of support vectors
decreases as increases. As support vectors are a decreasing
function of , the recent training data points by using a smaller

will have a larger probability of converging to the determinant
support vectors than the distant training data points by using a
larger . Thus, the recent training data points will obtain more
attention in the representation of the solution than the distant
training data points.

The behaviors of the weight function (10) can be summarized
as follows. Some examples are illustrated in Fig. 9.

i) When , then . In this case, the
weights in all the training data points are equal to.

ii) When , then

.

In this case, the weights for the first half of the training
data points are increased to an infinite value while the
weights for the second half of the training data points are
equal to .

iii) When and increases, the weights for the
first half of the training data points become larger while
the weights for the second half of the training data points
become smaller.
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Fig. 8. Weights function of the regularized constantC. In the x-axis,i represents the training data sequence. (i) Whena = 0, all the weights are equal to 1. (ii)
Whena = 1000, the first half of the weights are equal to zero, and the second half of the weights are equal to 1. (iii) Whena increases, the first half of the weights
become smaller while the second half of the weights become larger.

Fig. 9. Weights function of the tube size". i) Whenb = 0, all the weights are equal to1:0. ii) Whenb increases, the weights for the first half of the data points
become larger while the weights for the second half of the data points become smaller.

Thus, the regularized risk function in ASVM is calculated as
follows:

minimize (11)

subject to

(12)

The dual function of (11) takes the following form:

(13)

with the constraints

(14)
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TABLE VII
RESULTS OFASVM AND WBP

The SMO algorithm can still be used to optimize ASVM ex-
cept that the Lagrange multipliers are obtained according
to (13), and the upper bound value for every training data
points is different and should be adapted according to (14). The
selection of the optimal values of the free parameters of ASVM
will become more challenging, due to the increase of two other
free parameters and .

In addition, the weighted BP (WBP) neural network which
uses the weight function (9) is also examined in the experiment.
The error risk function of the standard BP neural network is
expressed by

(15)

So the error risk function of the WBP neural network has the
following formula:

(16)

where has the function (9). Based on the gradient descent
method, the weights of the WBP neural network are updated
according to (17).

(17)

That is, the weights of the WBP neural network are updated
by an amount equal to the product of the weight function
and the value updated in the standard BP neural network. So the
updating of the weights of the WBP neural network is irrelevant
to the order in which the training samples are presented to the
WBP neural network. A detailed description of the WBP neural
network can also be found in [4].

C. Results of ASVM

The purpose of the following experiment is to compare
ASVM with the standard SVM, as well as the WBP neural
network with the standard BP neural network. In each futures
contract and each data set, the same values of the free parame-
ters of the standard SVM and the BP neural network are used
in ASVM and the WBP neural network. In ASVM, the control
rates and are chosen based on the following two steps: first,
an optimal or is selected based on the best result of the

validation set by fixing or at . Then, vary or by fixing
the obtained or . The combination of and that produce
the best result on the validation set is used in ASVM. The
control rate in the WBP neural network is also chosen based on
the validation set.

The best results obtained in ASVM and WBP are listed in
Table VII. By comparing the results with those of the stan-
dard SVM and BP as listed in Table VI, it is evident that both
ASVM and WBP have smaller NMSE and MAE, but larger DS
than their corresponding standard methods. The result is consis-
tent in all of the five futures. The result means that ASVM and
WBP can forecast more closely to the actual values of RDP+5
than their corresponding standard methods. Further, there is also
greater consistency between the predicted and actual RDP+5 in
ASVM and WBP than their corresponding standard methods.
The paired -test shows that ASVM outperforms the standard
SVM with 2.5% significance level for a one-tailed test
based on the NMSE of the testing set, and WBP outperforms the
standard BP with 10% significance level for a one-tailed
test. Table VII also shows that ASVM has smaller NMSE and
MAE than WBP in four futures contracts (CEM-SP, CBOT-BO,
EUREX-BUND, and MATIF-CAC40). In CBOT-US, there is
slightly smaller NMSE and MAE in WBP. The paired-test
shows that ASVM outperforms WBP with 5% signifi-
cance level for a one-tailed test. The maximum, minimum, and
mean values of the NMSE of the testing set obtained in ASVM,
the standard SVM, WBP, and the standard BP are illustrated in
Fig. 10.

The converged support vectors in ASVM and standard SVM
are reported in Table VIII. Obviously, ASVM converges to
fewer support vectors than the standard SVM because of the
use of the adaptive.

VI. CONCLUSION

The use of SVM in financial time series forecasting is studied
in this paper. The performance of SVM is evaluated using five
real futures contracts. The first series of experiments shows that
SVM provides a promising alternative tool to the BP neural
network for financial time series forecasting. As demonstrated
in the experiment, SVM forecasts significantly better than the
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Fig. 10. The maximum, minimum, and mean values of the NMSE of the testing set obtained in ASVM, the standard SVM, WBP, and the standard BP.

TABLE VIII
THE CONVERGEDSUPPORTVECTORS INASVM AND STANDARD SVM

BP network in all but one futures. The superior performance of
SVM to the BP network lies in the following reasons.

1) SVM implements the SRM principle which minimizes an
upper bound of the generalization error rather than mini-
mizes the training error, eventually leading to better gen-
eralization performance than the BP network which im-
plements the ERM principle.

2) BP may not converge to global solutions. The gradient
steepest descent BP algorithm optimizes the weights in
a way that the summed square error is minimized along
the steepest slope of error surface. Global solution is not
guaranteed because the algorithm can become stuck in
the local minima that the error surface may include. In
the case of SVM, training SVM is equivalent to solving a
linearly constrained quadratic programming, and the so-
lution of SVM is always unique, optimal, and global.

3) The use of the validation set to stop the training of the BP
network needs much art and care. Stopping training too
early will not allow the network to fully learn the com-
plexity required for prediction. On the other hand, stop-

ping training too late will allow the network to learn the
complexity too much, resulting in overfitting the training
samples. Although we have the benefit of using the vali-
dation set, it is still difficult to guarantee there is no over-
fitting in the BP.

The experiment also shows that there is similar performance
between the regularized RBF neural network and SVM. The
reason lies in the fact that both SVM and the regularized RBF
neural network minimize the regularized risk function, rather
than the empirical risk function as used in the BP neural net-
work. So they are robust to overfitting, eventually resulting in
better generalization performance than the BP neural network.

The investigation of the parameters of SVM shows thatand
play an important role on the performance of SVM. Improper

selection of the two parameters can cause either the overfitting
or underfitting of the training data points. Although the NMSE
of the testing set is almost insensitive to, the number of support
vectors can be greatly reduced by using a larger, resulting in
a sparse representation of solution.

Finally, adaptive parameters are proposed to deal with struc-
tural changes in the financial data. The proposed ascending
regularization constant and descending tube could place more
weights on the recent training data points and less weights on
the distant training data points. This is desirable according to the
problem domain knowledge that in the nonstationary financial
time series the recent training data points could provide more
important information than the distant training data points. The
simulation shows that ASVM could both achieve higher gener-
alization performance and use fewer support vectors than the
standard SVM in financial forecasting. This also demonstrates
that problem domain knowledge can be incorporated into SVM
to improve the generalization performance.

In the present paper, the approach of choosing the optimal
values of the free parameters of ASVM is suboptimal. So it
cannot be guaranteed that the used control rates and the other
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free parameters are the best. How to choose the optimal values
of the free parameters of ASVM will be investigated in a fu-
ture work. More sophisticated weights functions that can closely
follow the dynamics of nonstationary financial time series will
also be explored in a future work for further improving the per-
formance of ASVM.
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