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1 Introduction

In this chapter we introduce basic concepts and ideas of the Support Vec-
tor Machines (SVM). In the first section we formulate the learning problem
in a statistical framework. A special focus is put on the concept of consis-
tency, which leads to the principle of structural risk minimization (SRM).
Application of these ideas to classification problems brings us to the basic,
linear formulation of the SVM, described in Section 3. We then introduce
the so called ‘kernel trick’ as a tool for building a non-linear SVM as well as
applying an SVM to non-vectorial data (Section 4). The practical issues of
implementation of the SVM training algorithms and the related optimization
problems are the topic of Section 5. Extensions of the SVM algorithms for
the problems of non-linear regression and novelty detection are presented in
Section 6. A brief description of the most successful applications of the SVM
is given in Section 7. Finally, in the last Section 8 we summarize the main
ideas of the chapter.

2 Learning from Examples

2.1 General Setting of Statistical Learning

The main objective of statistical learning is to find a description of an unknown
dependency between measurements of objects and certain properties of these
objects. The measurements, to be also called “input variables”, are assumed to
be observable in all objects of interest. On the contrary, the objects’ properties,
or “output variables”, are in general available only for a small subset of objects
known as examples. The purpose of estimating the dependency between the
input and output variables is to be able to determine the values of output
variables for any object of interest.
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The problem of estimating an unknown dependency occurs in various prac-
tical applications. For example, the input variables can be the prices for a set
of stocks and the output variable the direction of change in a certain stock
price. As another example, the input can be some medical parameters and the
output the probability of a patient having a certain disease. An essential fea-
ture of statistical learning is that the information is assumed to be contained in
a limited set of examples (the sample), and the estimated dependency should
be as accurate as possible for all objects of interest.

To proceed with a formal description of main properties of statistical learn-
ing, let us fix some notation. Let X denote the space of input variables re-
presenting the objects, and let Y be the space of output variables. The struc-
ture of Y defines the learning task. For example, if Y = R, the learning
amounts to a regression problem, for Y = {1, 2, 3}, the task is a classification
problem with three classes, etc.

Let Z = {(xi, yi) ∈ X × Y | i = 1, . . . ,M} be a given sample. We assume
that there exists some unknown but fixed probability distribution P (X,Y )
over the space X × Y generating our data; that is, (xi, yi) ∈ Z are drawn
identically and independently from P (X,Y ).

The dependency to be estimated takes the form of a function f : X → Y.
To decide which of many possible functions best describes the dependency
observed in the training sample, we introduce the concept of a loss function:

ℓ : Y × Y → R. (1)

Such a loss function should be bounded from below and should measure the
cost ℓ(f(x), y) of discrepancy between the predicted value f(x) ∈ Y and the
true value y ∈ Y. Then the risk, i.e. the expected loss incurred from using a
particular prediction function f , can be defined as:

R(f) = EP [ℓ(f(x), y)], (2)

where EP denotes the expectation with respect to the joint distribution
P (X,Y ) of input and output variables.

Notice that, if we would know the joint distribution P (X,Y ), the learn-
ing problem can be easily solved. For example, in the classification case one
could calculate the conditional probability P (Y |X) and compute the so called
“Bayes-optimal solution”:

f∗(x) = argmax
y1∈Y

∫

y2∈Y
ℓ(y1, y2) P (Y = y2|X = x). (3)

However, in our setup P (X,Y ) is unknown, and only a sample Z is available.
One possible solution would be to estimate P (X,Y ) or P (Y |X) from the
sample Z. In many theoretical and practical approaches the inference is carried
out exactly in this way (Duda et al., 2001; Bishop, 1995; Devroye et al.,
1996). But it is also well known that estimating a density from empirical
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Fig. 1. Two functions that separate two classes of data points with zero empirical
risk. Without further information it is impossible to decide for one of them.

data is a hard problem, especially in the multi-dimensional case. The number
of examples one needs in order to get a reliable estimate of a density in N
dimensions grows exponentially with N—a well-known difficulty denoted as
curse of dimensionality.

In the approach to be followed in this chapter we shall attempt to estimate
the function f directly from Z without using P (X,Y ) or P (Y |X). For this,
the following three steps are necessary. First, a class of functions F needs to
be defined. Second, a suitable loss ℓ is to be fixed. Finally, a method has to
be provided to find the function f which minimizes the risk R(f) among all
f ∈ F . Such method is called an “induction principle”. Desirable properties
of such an induction principle are discussed in the next section.

2.2 Desirable properties for Induction Principles

The most commonly used induction principle is the one of minimizing the
empirical risk

Remp(f) =
1

M

M∑

i=1

ℓ(f(xi), yi), (4)

which is the empirical counterpart of the expected risk (2). The goal of learning
in our setup is to find an algorithm that, given a training sample Z, finds a
function f ∈ F that minimizes (4). Notice that this will not necessarily result
in a unique solution. As one can see in Figure 1 more than one function can
have the same (e.g. zero) empirical risk on the same data sample. However,
these functions can take arbitrary values at other points in X ; hence the
solution that minimizes the empirical risk is not guaranteed to minimize the
true risk (2).

The other two phenomena arising in relation with the minimization of the
empirical risk (4) are overfitting and underfitting. An overly complex function
f might describe the training data well but does not generalize to unseen
examples. The converse could also happen. Assume the function class F we
can choose from is very small, e.g. it contains only a single, fixed function.
Then our learning machine would trivially be consistent, since R(f) = const
for all f ∈ F . But if this single f ∈ F is not by accident the rule that
generates our data, the decisions are unrelated to the concept generating our
data. This phenomenon is called underfitting (cf. Figure 2). Apparently we
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Fig. 2. An illustration of underfitting and overfitting on a small sample. The simple
linear function (solid line) underfits the data and already makes training errors. The
complex one (dash-dotted line) has no training error but may not generalize well
on unseen data. The function with intermediate complexity (dashed line) seems to
capture the decision boundary best.

need some way of controlling how large the class of functions F is, such that
we avoid overfitting and underfitting and obtain solutions that generalize well
(i.e. with reasonable complexity). The questions of consistency, overfitting
and underfitting are closely related and will lead us to a concept known as
regularization (e.g. Tikhonov and Arsenin, 1977; Morozov, 1984) and to the
principle of Structural Risk Minimization (Vapnik, 1998).

Regularization

In the previous paragraphs we have shown that for successful learning it is
not enough to find a function with minimal empirical risk. If we are interested
in a good estimation of the true risk on all possible data points, we need to
introduce a complexity control and choose our solution by minimizing the
following objective function:

Remp(f,Z) + λ Ω(f). (5)

This equation shows a regularization approach. We add a penalty term to
make the trade-off between the complexity of the function class and the em-
pirical error. Using such a regularization, a bound for the true risk can be
derived.

There are several possibilities to choose λ and Ω in order to derive a
consistent inductive principle. In the following sections we will describe the
choice inspired by the work of Vapnik. Other possible choices are for example
Akaike information criterion (Akaike, 1974) or Mallows Cp (Mallows, 1973),
used in classical statistics, as well as spline-regularization (Wahba, 1980),
wavelet regularization (Donoho et al., 1996), CART (Breiman et al., 1984)
and many other modern approaches. A general foundation for regularization
in model selection is given in (Barron et al., 1999). Bartlett and Mendelson
(2002) investigate regularization in the context of SVM.

Consistency

Let us define more closely what consistency means and how it can be char-
acterized. Let us denote by fM the function f ∈ F that minimizes (4) for a
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given training sample Z of size M . The notion of consistency implies that, as
M →∞, |R(fM )−Remp(fM )| → 0 in probability. We have already seen in a
previous example that such convergence may not be the case in general, the
reason being that fM now depends on the sample Z. One can show that a
necessary and sufficient condition for consistency is uniform convergence, over
all functions in F , of the difference between the expected and the empirical
risk to zero. This insight is summarized in the following theorem:

Theorem 1 (Vapnik and Chervonenkis, 1991). One-sided uniform con-
vergence in probability, i.e.

lim
M→∞

P

[
sup
f∈F

(R(f)− Remp(f)) > ǫ

]
= 0, (6)

for all ǫ > 0, is a necessary and sufficient condition for (nontrivial) consis-
tency of empirical risk minimization.

Since the condition in the theorem is not only sufficient but also necessary it
seems reasonable that any “good” learning machine implementing a specific
function class should satisfy condition (6).

2.3 Structural Risk Minimization

Consequently, the question arises how one can choose function classes that
satisfy Theorem 1 in practice? It will turn out that this is possible and it
crucially depends on the question how complex the functions in the class F
are, a question we have already seen to be equally important when talking
about overfitting and underfitting. But what does complexity mean and how
can one control the size of a function class?

The complexity of a function class can be measured by the number of dif-
ferent possible combinations of outcome assignments when choosing functions
from this class. This quantity is usually difficult to obtain theoretically for use-
ful classes of functions. Popular approximations of this measure are covering
numbers (Shawe-Taylor et al., 1998), annealed entropy and fat-shattering di-
mension (Bartlett et al., 1996), VC-entropy and VC-dimension (Vapnik, 1998),
or Rademacher and Gaussian complexity (Bartlett and Mendelson, 2002). We
will not go into detail about these quantities here.

A specific way of controlling the complexity of a function class is given by
VC-theory and the principle of Structural Risk Minimization (Vapnik, 1998).
Here the concept of complexity is captured by the VC-dimension h of the
function class F . Roughly speaking, the VC-dimension measures how many
(training) points can be shattered (i.e. separated for all possible labellings)
using functions of the class. This quantity can be used to bound the probability
that the expected error deviates much from the empirical error for any function
from the class, that is VC-style bounds usually take the form
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Fig. 3. Schematic illustration of (8). The dash-dotted line represents the training
error (empirical risk), the dashed line the upper bound on the complexity term.
With higher complexity the empirical error decreases but the upper bound on the
risk uncertainty becomes worse. For a certain complexity of the function class the
best expected risk (solid line) is obtained. Thus, in practice the goal is to find the
best trade-off between empirical error and complexity.

[
sup
f∈F

(R(f)− Remp(f,Z)) > ǫ

]
≤ H(F ,M, ǫ), (7)

where H is some function that depends on properties of the function class
F , e.g. the VC-dimension, the size M of the training set and the desired
closeness ǫ. By equating the right-hand side of (7) to δ > 0 and solving H = δ
for ǫ one can turn these bounds into expressions of the following form: with
probability at least 1− δ over the random draw of the training sample Z,

R(f) ≤ Remp(f,Z) + H̃(F ,M, δ), (8)

where H̃ is the penalty term that measures our degree of uncertainty. If the
function class is simple then H̃ is small. This penalty term usually increases
if we require a higher precision (e.g. with log(1

δ
)) and decreases if we observe

more examples (e.g. with 1
M

or 1√
M

). Note that this prototypical bound is

structurally identical to the regularized risk functional in equation (5). The
practical implication of bounds like (8) is that our learning machine should
be constructed such that

1. it finds a function with a small empirical error, and
2. at the same time keeps the penalty term H̃ small.

Only if our learning principle can control both quantities we have a guar-
antee that the expected error of our estimate will be small (cf. Figure 3).
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One of the most famous of these VC-style bounds is due to Vapnik and
Chervonenkis:

Theorem 2 (Vapnik and Chervonenkis, 1991). Let h denote the VC-
dimension of the function class F and let Remp be defined by (4) using the
0/1-loss. For all δ > 0 and f ∈ F the inequality bounding the risk

R(f) ≤ Remp(f,Z) +

√
h
(
ln 2M

h
+ 1
)
− ln(δ/4)

M
(9)

holds with probability of at least 1− δ for M > h over the random draw of the
training sample Z.

This theorem lays the ground for the SVM algorithm that we will consider
in more detail in Section 3.

Based on Theorem 2 the principle of Structural Risk Minimization (SRM)
has been derived (e.g. Cortes and Vapnik, 1995; Vapnik, 1998). According
to this principle a nested family of function classes F1 ⊆ · · · ⊆ Fk with
non-decreasing VC-dimension h1 ≤ · · · ≤ hk is constructed. After the solu-
tions f1, . . . , fk of the empirical risk minimization (4) in the function classes
F1, . . . ,Fk have been found, the principle chooses the function class Fi (and
the function fi) such that an upper bound on the generalization error like (9)
is minimized.

3 Linear SVM: Learning Theory in Practice

Having summarized the prerequisites from statistical learning theory, we now
give an example of a particular learning machine that builds upon these in-
sights. The Support Vector Machine algorithm (SVM) developed by Vapnik
and others (e.g. Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1998;
Cristianini and Shawe-Taylor, 2000; Müller et al., 2001; Schölkopf and Smola,
2002, and numerous others) is one of the most successful classification tech-
niques over the last decade, especially after being combined with the kernel
idea which we shall discuss in Section 4.

3.1 Linear Separation Planes

We are now going to discuss how one could possibly control the size of a
function class and how to select the empirical risk minimizer in this class.

In the following, let us assume that we are dealing with a two class classifi-
cation problem (i.e. Y = {−1,+1}) in a real-valued vector space, e.g. X = R

N .
Further, we assume that the distribution of these two classes is such that they
are linearly separable, i.e. one can find a linear function of the inputs x ∈ X
such that f(x) < 0 whenever the label y = −1 and f(x) ≥ 0 otherwise. This
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can be conveniently expressed by a hyperplane in the space X , i.e. we are
looking for a function f of the form

f(x) = (w⊤x) + b. (10)

Assume that the function class F we choose our solution from is the one
containing all possible hyperplanes, i.e. F = {f : X → R | f(x) = (w⊤x)+b}.
For X = R

N it is rather straightforward to show that the VC-dimension of
this class of functions will be h = N + 1, that is, in an N -dimensional space
the maximal number of points that can be separated for an arbitrary labelling
using a hyperplane is N + 1.

3.2 Canonical Hyperplanes and Margins

To apply the SRM principle in practice, not only must the VC-dimension of
the class of hyperplanes be finite, rather a nested structure of function classes
must be defined. To this end we define the function classes

FΛ = {f : R
N → R | f(x) = (w⊤x) + b, ‖w‖ ≤ Λ}. (11)

Clearly FΛ1
⊆ FΛ2

whenever Λ1 ≤ Λ2. But what effect does constraining the
norm of the weight vector have on the corresponding VC-dimensions of FΛ?
It turns out that we also get h(FΛ1

) ≤ h(FΛ2
) for Λ1 ≤ Λ2, as we will see

shortly in (12).
The crucial ingredient in making the function classes FΛ nested is to de-

fine a unique representation for each hyperplane. We introduce the concept
of canonical hyperplanes and the notion of margins. If the data are separable
by (w, b) then they are also separable by any (positive) multiple of (w, b) and
hence there exist an infinite number of representations for the same separat-
ing hyperplane. In particular, all function classes FΛ would have the same
VC-dimension as they would contain the same functions in different represen-
tations.

A canonical hyperplane with respect to a sample Z of M points is defined
as a function

f(x) = (w⊤x) + b,

where w is normalized such that

min
i=1,...,M

|f(xi)| = 1.

The notion of a canonical hyperplane is illustrated in Figure 4. Notice that
none of the training examples produces an absolute output that is smaller
than one and the examples closest the hyperplane have exactly an output of
one, i.e. (w⊤x) + b = ±1. In section 5, we will see that the latter objects will
be used in the description of the hyperplane, and they are therefore called the
support vectors. In Figure 4 these are the objects which are connected to the
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w

Fig. 4. Linear SVM and margins. A linear SVM classifier is defined by the normal
vector w of a hyperplane and an offset b. The decision boundary is {x|(w⊤x)+b = 0}
(solid line). Each of the two half spaces induced by this hyperplane corresponds to
one class, i.e. f(x) = sgn((w⊤x)+b). The margin of a linear classifier is the minimal
distance of any training point to the hyperplane. For the case shown in the picture
it is the distance between the dotted lines and the solid line.

decision boundary by the dashed lines. Since we assumed the sample Z to be
linearly separable, we can turn any f that separates the data into a canonical
hyperplane by suitably normalizing the weight vector w and adjusting the
threshold b correspondingly.

The margin is defined to be the minimal Euclidean distance between any
training example xi and the separating hyperplane. Intuitively, the margin
measures how good the separation between the two classes by a hyperplane
is. If this hyperplane is in the canonical form, the margin can be measured by
the length of the weight vector w. Consider two support vectors x1 and x2

from different classes. The margin is given by the projection of the distance
between these two points on the direction perpendicular to the hyperplane.
This distance can be computed as (e.g. Vapnik, 1998)

(
w⊤

‖w‖ (x1 − x2)

)
=

2

‖w‖ .

The smaller the norm of the weight vector w in the canonical representation,
the larger the margin.

More generally, it was shown (e.g. Vapnik, 1998) that if the hyperplane
is constructed under the constraint ‖w‖2 ≤ Λ then the VC-dimension of the
class FΛ is bounded by

h ≤ min(Λ2R2 + 1, N + 1), (12)

where R is the radius of the smallest sphere around the data. Thus, if we
bound the margin of a function class from below, say by 2

Λ
, we can control its

VC-dimension and hence apply the SRM principle as shown in Figure 5.
A particularly important insight is that the complexity only indirectly de-

pends on the dimensionality of the data. This is very much in contrast to
density estimation, where the problems become more difficult as the dimen-
sionality of the data increases. For SVM classifier, if we can achieve a large
margin the problem remains simple.
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2

Λ1

2

Λ2

Fig. 5. Illustration of why a large margin reduces the complexity of a linear hyper-
plane classifier. If we choose hyperplanes with a large margin, there is only a small
number of possibilities to separate the data, i.e. the VC-dimension of FΛ1 is small
(left panel). On the contrary, if we allow smaller margins there are more separating
hyperplanes, i.e. the VC-dimension of FΛ2 is large (right panel).

4 Kernel Functions

In the previous section we have seen that by restricting ourselves to linear
functions one can control the complexity of a learning machine. We have
thus avoided the problem of dealing with too complex functions at the price
of being able to solve only linearly separable problems. In the following we
show how to extend the linear SVM for constructing a rich set of non-linear
decision functions by abstracting the task of learning from the actual data
representation. Based on this abstraction we then introduce techniques for
learning with structured data, such as strings and trees.

Central to the success of non-linear SVM was the re-discovery of the
so called Reproducing Kernel Hilbert Spaces (RKHS) and Mercer’s Theorem
(Boser et al., 1992). There is a large body of literature dealing with kernel
functions, their theory and applicability, see e.g. Kolmogorov (1941); Aron-
szajn (1950); Aizerman et al. (1964); Boser et al. (1992) or Schölkopf and
Smola (2002); Shawe-Taylor and Cristianini (2004) for an overview. We only
recall the basic definitions and properties necessary for turning our linear,
hyperplane based learning technique into a very powerful algorithm capable
of finding non-linear decision functions with controllable complexity.

4.1 The Kernel Trick

The basic idea of the so called kernel methods is to first preprocess the data
by some non-linear mapping Φ and then to apply the same linear algorithm
as before but in the image space of Φ (cf. Figure 6 for an illustration).

More formally we apply the mapping
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(a) (b) (c)

Fig. 6. Three views on the same two class separation problem (Zien et al., 2000).
(a) A linear separation of the input points is not possible without errors. Even
allowing misclassification of one data point results in a small margin. (b) A better
separation is provided by a non-linear surface in the input space. (c) This non-linear
surface corresponds to a linear surface in a feature space. Data points are mapped
from input space to feature space by the function Φ induced by the kernel function k.

Φ : R
N→ E

x 7→ Φ(x)

to the data x1, . . . ,xM ∈ X and consider our algorithm in E instead of X ,
i.e. the sample is preprocessed as

{(Φ(x1), y1), . . . , (Φ(xM ), yM )} ⊆ (E × Y)M .

In certain applications we might have sufficient knowledge about our prob-
lem such that we can design an appropriate Φ by hand (e.g. Zien et al., 2000;
Blankertz et al., 2002). An alternative strategy is to consider a class of map-
pings and choose the Φ providing the best representation for a particular
learning task (Braun et al., 2008). If this mapping is not too complex to com-
pute and the space E is not too high-dimensional, we might just explicitly
apply this mapping to our data. Similar transformations are applied in neural
networks (Bishop, 1995), radial basis networks (e.g. Moody and Darken, 1989)
or Boosting algorithms (Freund and Schapire, 1997), where the input data is
mapped to some representation given by the hidden layer, the RBF bumps or
the hypotheses space, respectively (Rätsch et al., 2002). The difference with
kernel methods, however, is that for a suitably chosen Φ we get an algorithm
that has powerful non-linearities but is still very intuitive and retains most of
the favorable properties of its linear input space version.

The problem with explicitly using the mapping Φ to construct a feature
space is that the resulting space can be extremely high-dimensional. As an
example consider the case when the input space X consists of images of 16×16
pixels, i.e. 256 dimensional vectors, and we choose 5th order monomials as
non-linear features. The dimensionality of such space would be

(
5 + 256− 1

5

)
≈ 1010.
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Such a mapping would clearly be intractable to carry out explicitly. We are
not only facing the technical problem of storing the data and doing the com-
putations, but we are also introducing problems due to the fact that we are
now working in an extremely sparsely sampled space.

The problems concerning the storage and the manipulation of the high
dimensional data, however, can be alleviated. It turns out that for a certain
class of mappings we are well able to compute scalar products in this new
space even if it is extremely high dimensional. Simplifying the above example
of computing all 5th order products of 256 pixels to that of computing all 2nd

order products of two “pixels”, i.e.

x = (x1, x2) and Φ(x) = (x2
1,
√

2x1x2, x
2
2),

the computation of a scalar product between two such feature space vectors
can be readily reformulated in terms of a so-called kernel function k:

(Φ(x)⊤Φ(z)) = (x2
1,
√

2 x1x2, x
2
2)(z

2
1 ,
√

2 z1z2, z
2
2)⊤

= ((x1, x2)(z1, z2)
⊤)2

= (x⊤z)2

=: k(x, z).

This finding generalizes: For x, z ∈ R
N , and d ∈ N the kernel function

k(x, z) = (x⊤z)d

computes a scalar product in the space of all products of d vector entries
(monomials) of x and z (Vapnik, 1998; Schölkopf et al., 1998b).

The kernel trick (Aizerman et al., 1964; Boser et al., 1992; Vapnik, 1998)
is to take the original algorithm and formulate it such, that we only use Φ(x)
in scalar products. Then, if we can efficiently evaluate these scalar products,
we do not need to carry out the mapping Φ explicitly and can still solve the
problem in the huge feature space E . Furthermore, we do not need to know
the mapping Φ but only the kernel function.

Now we can ask two questions:

1. For which mappings Φ does there exist a simple way to evaluate the scalar
product?

2. Under which conditions does a function k : X × X → R correspond to a
scalar product?

The first question is difficult to answer in general. But for the second question
there exists an answer which we present in the following.

4.2 Feature Spaces

To address the question whether a kernel function k : X × X → R equals a
scalar product in some feature space, let us first introduce some more notation
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and definitions. Given a training sample {x1, . . . ,xM} ⊆ X , the M × M
matrix K with elements Kij = k(xi,xj) is called the kernel matrix or the
Gram matrix. An M ×M matrix K (and any other symmetric matrix) is said
to be positive semi-definite if any quadratic form over K is positive or zero,
i.e. for all ri ∈ R, i = 1, . . . ,M , we have

M∑

i,j=1

rirjKij ≥ 0. (13)

Positive semi-definite kernels are exactly those giving rise to a positive semi-
definite kernel matrix K for all M and all sets {x1, . . . ,xM} ⊆ X . Note that
for a kernel (and a matrix) to be positive semi-definite, it is necessary to be
symmetric and non-negative on the diagonal.

For any positive semi-definite kernel k we can construct a mapping Φ into
a feature space E , such that k acts as a scalar product over Φ. As a matter of
fact, it is possible to construct more than one of these spaces. We will omit
many crucial details and only present the central results. For more details see
Schölkopf and Smola (2002).

The Feature Map

Given a real-valued, positive semi-definite kernel function k, defined over a
non-empty set X , we define the feature space E as the space of all functions
mapping from X to R, i.e. as E = R

X = {f | f : X → R}. Notice that, unlike
the example in Figure 6, this feature space is not a usual Euclidean space but
rather a vector space of functions. The mapping Φ is now defined as

Φ : X → R
X , Φ(x) = k(·,x), (14)

i.e. Φ maps each x to the function k(·,x), i.e. the kernel k where the first
argument is free and the second is fixed to x (e.g., Schölkopf et al., 1999).
One can show that the set of all linear combinations of the form

f(·) =
M∑

i=1

αi k(·,xi), (15)

for arbitrary M , αi ∈ R, and x1, . . . ,xM forms a vector space. Especially, for
all functions of the form (15) one gets

〈k(·,x), f〉H = f(x),

where 〈·, ·〉H denotes the scalar product in some Hilbert space that will become
clearer below. In particular we have

〈k(·,x), k(·, z)〉H = 〈Φ(x), Φ(z)〉E
= k(x, z).
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The last property is the reason why positive semi-definite kernels are also
called reproducing kernels: they reproduce the evaluation of f on x. It also
shows that k indeed computes, as desired, the scalar product in E for Φ(x)
defined as in (14). Hence (14) is one possible realization of the mapping associ-
ated with a kernel and is called the feature map (for its empirical counterpart
see e.g. Mika (2002)). The following is a formal definition of a Reproducing
Kernel Hilbert Space (cf. Schölkopf and Smola, 2002).

Definition 1 (Reproducing Kernel Hilbert Space (RKHS)). Let X be
a nonempty set and H a Hilbert space of functions f : X → R. Then H is
called a reproducing kernel Hilbert space endowed with the dot product 〈·, ·〉
if there exists a function k : X × X → R with the properties that

1. k has the reproducing property 〈f, k(·,x)〉 = f(x) for all f ∈ H, in partic-
ular 〈k(·,x), k(·, z)〉 = k(x, z), and

2. k spans H, i.e. H = span{k(·,x)|x ∈ X}, where A denotes the completion
of the set A.

One can show, that the kernel k for such a RKHS is uniquely determined.

Mercer Kernels

As a second way to identify a feature space associated with a kernel k one can
use a technique derived from Mercer’s Theorem.

The Mercer’s Theorem, which we will reproduce in the following, states
that if a function k gives rise to a positive integral operator, the evaluation
of k(x, z) can be expressed as a finite or infinite, absolute and uniformly
convergent series, almost everywhere. This series defines a feature space and
an associated mapping connected to the function k.

Let X be a finite measure space, i.e. a space with a σ-algebra and a measure
µ satisfying µ(X ) ≤ ∞.

Theorem 3 (Mercer, 1909). Suppose k ∈ L∞(X 2, µ) is a symmetric real-
valued function such that the integral operator

Tk : L2(X , µ)→ L2(X , µ), (Tkf)(x) :=

∫

X
k(x, z)f(z)dµ(z)

is positive semi-definite, i.e. for all f ∈ L2(X , µ)

∫

X 2

k(x, z)f(x)f(z)dµ(x)dµ(z) ≥ 0.

Let ϕj ∈ L2(X , µ) be the normalized orthogonal eigenfunctions of Tk associ-
ated with the eigenvalues λj ≥ 0, sorted in non-increasing order. Then

1. (λj)j ∈ l1
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2. k(x, z) =
∑NE

j=1 λjϕj(x)ϕj(z) holds for almost all x, z. Either NE ∈ N or
NE =∞; in the latter case, the series converges absolutely and uniformly
for almost all x, z.

If we choose as feature space E = lNE

2 and the mapping Φ as

Φ : X → lNE

2 , Φ(x) = (
√

λjϕj(x))j=1,...,NE
,

we see from the second statement in Theorem 3 that the kernel k corresponds
to the dot product in lNE

2 , i.e. k(x, z) = 〈Φ(x), Φ(z)〉.
The kernels satisfying the Mercer’s Theorem are called Mercer kernels. It

can be shown that, if the set X on which the kernel is defined, is compact,
a kernel is a Mercer kernel if and only if it is a positive semi-definite kernel
(cf. Smola et al., 1998). Table 1 lists some of the most widely used kernel
functions in machine learning applications.

Table 1. Common kernel functions:

Gaussian RBF: k(x, z) = exp

„

−‖x− z‖2

c

«

(16)

Polynomial: k(x, z) = ((x⊤
z) + θ)d (17)

Inverse multi-quadric: k(x, z) =
1

p

‖x− z‖2 + c2

Note that recently Braun et al. (2008) have observed that the excellent
generalization that is typically observed when using SVMs in high-dimensional
applications with few samples is due to its very economic representation in
the feature space E . Given the appropriate kernel, only a very low dimensional
subspace is task relevant (see Figure 7).

4.3 Kernels for Structured Data

Another important feature of kernel functions is that they are not restricted
to operate on vectorial data. Kernels can be defined over any type of data
including discrete and structured representations. Consequently, a large body
of research has studied kernel functions for structured data, such as for analysis
of strings and sequences (e.g. Watkins, 2000; Lodhi et al., 2002; Sonnenburg
et al., 2007a), hierarchical representations and trees (e.g. Collins and Duffy,
2002; Kashima and Koyanagi, 2002; Rieck et al., 2010) as well as network and
graph structures (e.g. Gärtner et al., 2004; Kashima et al., 2004; Vishwanathan
et al., 2010). We herein provide a brief introduction to kernel functions defined
over strings and trees. An extensive discussion of kernels for structured data
is provided by Shawe-Taylor and Cristianini (2004).
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E R
N

R
d

Fig. 7. Illustration of the feature space representation. The data is embedded in
a high-dimensional feature space E . Since only, say, N data points exist, the data
given through a normalized kernel is situated in a N -dimensional ball in E . However,
only a small d-dimensional subspace of the N -dimensional ball in E is task relevant,
e.g. for the classification or regression at hand. Thus, if the kernel is well chosen,
then kernel methods make very economical use of the data as they map the data
into a effectively very low dimensional task relevant subspace of E (see also Braun
et al. (2008) for further discussion and proofs).

String Kernels

Strings and sequences are a natural representation of data in many areas
of computer science. For example, several applications in bioinformatics are
concerned with studying strings of DNA and many tasks of information re-
trieval center around analysis of text documents. Before introducing kernels
for strings, let us introduce some notation. A string or sequence x is a con-
catenation of symbols from an alphabet A, such as the characters in text or
the bases of DNA. The set of all possible concatenations of symbols from A
is denoted by A∗ and the set of all concatenations of length n by An

For characterizing the content of sequential data, most string kernels make
use of a predefined set L ⊆ A∗ of relevant strings. This set L can be interpreted
as a language that is used to capture structure contained in strings and may
range from a simple selection of interesting terms to complex constructs in-
volving gaps and wildcards. We focus on two basic definitions that are widely
used for learning with string kernels: words and n-grams (Figure 8).

favors words:

n-grams:

x =

Fortune the brave 

une tun rtu ort For 

Fortune favors the brave. 

... 

Fig. 8. Representations of a string x using words and n-grams.
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In the domain of information retrieval and natural language processing,
the set L is often defined as words of a natural language, such as English or
German. In this setting, L is either given explicitly by providing a dictionary
of terms or implicitly by partitioning strings according to a set of delimiter
symbols D ⊂ A, such that

L = (A \ D)∗

where L corresponds to all concatenations of non-delimiter symbols. Based on
this definition, the content of a string can be described in terms of contained
words from the set L—a representation often denoted as a “bag of words”
(Joachims, 1999).

In several applications, however, the structure underlying sequential data
is unknown and no set of appropriate words can be defined a priori. An alter-
native technique for defining the set L is to move a sliding window of length n
over a string and extract n-grams (substrings of length n, cf. Damashek, 1995).
Formally, this set can be defined as

L = An.

Using this definition of L, the content of a string can be described in terms of
contained n-grams, even if no prior knowledge about its structure is available,
for example as in many applications of bioinformatics involving DNA and
protein sequences.

Based on the set L, a feature map Φ can be defined which embeds strings
in an |L|-dimensional vector space spanned by the strings of L, that is,

Φ : A∗ → R
|L|, Φ(x) =

(
#w(x)

)
w∈L

, (18)

where #w(x) returns the number of occurrences of the string w in the string x.
Alternatively, #w(x) may be defined as frequency, probability or binary flag
for the occurrences of w in x.

This feature map Φ provides the basis for constructing a string kernel
which takes the form

k : A∗ ×A∗ → R, k(x, z) =
∑

w∈L

#w(x) ·#w(z) (19)

and correspond to an inner product in the feature space spanned by the strings
of L. Depending on the complexity of the set L, however, the dimension of
this features space may grow almost arbitrarily. Thus in practice, computation
of string kernels is rarely conducted using explicit vectors, but carried out
by means of advanced data structures, such as hash maps, Tries and suffix
trees (cf. Sonnenburg et al., 2007a). The corresponding realizations of (19)
for words and n-grams are denoted as Bag-of-Words Kernel (Joachims, 1999)
and Spectrum Kernel (Leslie et al., 2002), respectively.

Due to the ease of incorporation with kernel-based learning methods, string
kernels have gained considerable attention in research, starting from first re-
alizations of Haussler (1999) and Watkins (2000), and extending to domain-
specific kernels for natural language processing (Lodhi et al., 2002; Cancedda



18 Rieck, Sonnenburg, Mika, Schäfer, Laskov, Tax, & Müller

et al., 2003) and bioinformatics (Zien et al., 2000). In particular, the challenge
of uncovering structure in DNA has influenced several extensions of the feature
map in (18), for example by incorporating generative models (Jaakkola et al.,
2000; Tsuda et al., 2002), inexact and position-dependent matching (Leslie
et al., 2003; Leslie and Kuang, 2004; Rätsch et al., 2005; Sonnenburg et al.,
2006) as well as sequence alignments (Vert et al., 2004; Cuturi et al., 2007).
A discussion of several string kernels and their implementations is provided
by Sonnenburg et al. (2007a).

Tree Kernels

Besides sequences and strings, several applications of statistics and machine
learning involve tree-structured data, for example in form of parse trees in
natural language processing or molecule structures in chemistry. Formally, a
tree x is an acyclic graph with a dedicated root, where we additionally require
each node x to be labeled with a symbol. To navigate in a tree, we address
the i-th child of a node x by xi and denote the number of children by |x|.
Moreover, we denote the set of all possible trees by T . Similar to strings, we
construct a feature map Φ which embeds a tree x in a |T |-dimensional vector
space spanned by all possible trees, that is

Φ : T → R
|T |, Φ(x) =

(
#t(x)

)
t∈T

, (20)

where #t(x) counts the occurrences of the (sub)tree t in the tree x. In contrast
to (18), the set T is more involved than a list of strings and thus requires
special techniques for constructing a feasible kernel function.

A generic technique for defining kernels over structured data is the convolu-
tion of local kernels defined over sub-structures (Haussler, 1999). This concept
has been applied to tree data by Collins and Duffy (2002) for constructing a
tree kernel which implicitly computes an inner product by counting shared
subtrees. Given two trees x and y, this kernel is defined as

k(x, z) = 〈Φ(x)Φ(z)〉 =
∑

x∈x

∑

z∈z

c(x, z) (21)

where the counting function c recursively determines the number of shared
subtrees rooted in the tree nodes x and z.

The function c is defined as c(x, z) = 0 if x and z have different labels and
c(x, z) = 1 if x and z are leave nodes of the same label. In all other cases, the
definition of c follows a recursive rule given by

c(x, z) =

|x|∏

i=1

(1 + c(xi, zi)). (22)

To understand how the counting of subtrees relates to an inner product,
let us consider two trees x, z and a subtree t, which occurs m times in x and n
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times in z. Clearly, both trees share the subtree t and we can count mn distinct
pairs of t common to x and z. If we consider the feature map Φ given in (20),
we have Φt(x) = m and Φt(z) = n and also obtain Φt(x)Φt(z) = mn. Hence,
by counting all shared subtrees of x and z, we arrive at an inner product over
the vectors Φ(x) and Φ(z). As an example, Figure 9 illustrates two simple
trees and their shared subtrees.

z =x = A

B B

C A

A

B B

C A

(4)(4) (1)

AA BB CC

B

C A

B

C A

A

B B

A

B B

(1) (1)

Shared subtrees

Fig. 9. Shared subtrees of two trees. The numbers in brackets indicate the number
of occurrences for each shared subtree pair.

Several extensions and refinements of the kernel in (21) have been pro-
posed to increase its expressiveness for specific learning tasks. For example,
there exists several variations of (22) which account for different types of sub-
trees, such as complete trees (Vishwanathan and Smola, 2004) and ordered
trees (Kashima and Koyanagi, 2002). A generic extension by Moschitti (2006)
allows for controlling the vertical as well as the horizontal contribution of
subtree counts. Furthermore, different techniques have been studied for alle-
viating the quadratic run-time of counting shared subtrees, most notably the
approximation framework of Rieck et al. (2010) which enables computing tree
kernels in almost linear time.

4.4 Properties of Kernels

Besides being useful tools for constructing non-linear classifiers or learning
with structured data, kernels possess some additional properties that make
them an interesting choice in algorithms. It was shown (Girosi et al., 1993)
that using a particular positive semi-definite kernel corresponds to an implicit
choice of a regularization operator. For translation-invariant kernels, the reg-
ularization properties can be expressed conveniently in Fourier space in terms
of the frequencies (Smola et al., 1998; Girosi, 1998). For example, Gaussian
kernels (cf. (16)) correspond to a general smoothness assumption in all k-th
order derivatives (Smola et al., 1998). Vice versa, using this correspondence
kernels matching a certain prior about the frequency content of the data can
be constructed so as to reflect our prior problem knowledge.
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Furthermore, many algorithms can be formulated using so called condi-
tionally positive definite kernels (cf. Smola et al., 1998) which are a superclass
of positive semi-definite kernels considered so far. They can be interpreted
as generalized non-linear dissimilarity measures (opposed to just the scalar
product) and are applicable e.g. in SVM and kernel PCA.

5 Implementation of SVM

5.1 Basic formulations

We are now at the point to merge the ideas of statistical learning, structural
risk minimization and reproducing kernels into a single algorithm, Support
Vector Machines, suitable for a wide range of practical application. The main
goal of this algorithm is to find a weight vector w separating the data Z with
the largest possible margin.

Separable Data

Assume that the data are separable. Our goal is to find the smallest possible
w without committing any error. This can be expressed by the following
quadratic optimization problem:

min
w,b

1

2
‖w‖2, (23)

subject to yi

(
(w⊤xi) + b

)
≥ 1, ∀i = 1, . . . ,M.

The constraints in (23) assure that w and b are chosen such that no example
has a distance to the hyperplane smaller than one. The problem can be solved
directly by using a quadratic optimizer. Notice that the optimal solution ren-
ders a canonical hyperplane. In contrast to many neural networks (e.g. Bishop,
1995) one can always find the global minimum. In fact, all minima of (23) are
global minima, although they might not be unique as e.g. in the case when
M < N , where N is the dimensionality of the data.

In the formulation (23), referred to as the primal formulation, we are bound
to use the original data xi. In order to apply the kernel trick (cf. section 4.1)
we need to transform the problem such that the only operation involving the
original data x is an inner product between certain data points. This can be
achieved by transforming the problem to the dual formulation. The notion
of duality is an essential part of non-linear optimization theory, for details
one can refer to any standard textbook on mathematical programming (e.g.
Luenberger, 1973; Bertsekas, 1995). For our purposes it is important that
for every quadratic optimization problem there exists a dual problem which
is also a quadratic problem. If both the primal and the dual problems have
an optimal solution then the values of the objective function at the optimal
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solutions coincide. This implies that by solving the dual problem—which uses
the original data x only through inner products—the solution to the primal
problem can be reconstructed.

To derive the dual of (23), we introduce Lagrange multipliers αi ≥ 0,
i = 1, . . . ,M , one for each of the constraints in (23). We obtain the following
Lagrangian:

L(w, b,α) =
1

2
‖w‖2 −

M∑

i=1

αi(yi((w
⊤xi) + b)− 1). (24)

The task is to minimize (24) with respect to w, b and to maximize it with
respect to αi. At the optimal point, we have the following saddle point equa-
tions:

∂L

∂b
= 0 and

∂L

∂w
= 0,

which translate into

M∑

i=1

αiyi = 0 and w =

M∑

i=1

αiyixi. (25)

From the right equation of (25), we find that w is contained in the subspace
spanned by the xi in the training set. By substituting (25) into (24), we get
the dual quadratic optimization problem:

max
α

M∑

i=1

αi −
1

2

M∑

i,j=1

αiαjyiyj

(
x⊤

i xj

)
, (26)

subject to αi ≥ 0, i = 1, . . . ,M, (27)
M∑

i=1

αiyi = 0. (28)

Thus, by solving the dual optimization problem, one obtains the coefficients
αi, i = 1, . . . ,M , which one needs to express the solution w. This leads to the
decision function:

f(x) = sgn
(
(w⊤xi) + b

)

= sgn

(
M∑

i=1

yiαi

(
x⊤

i x
)

+ b

)
. (29)

Note that the scalar product in this dual formulation can be directly replaced
by the kernel mapping k(xi,x), opening the possibility for the non-linear
classifiers. This expression does not directly depend on the dimensionality N
of the data but on the number of training examples M . As long as we are able
to evaluate the scalar product (x⊤

i x) the dimensionality could be arbitrary,
even infinite.
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Non-separable Data

So far we have only considered the separable case which corresponds to an
empirical error of zero (cf. Theorem 2). However for many practical applica-
tions this assumption is violated. If the data is not linearly separable then
problem (23) has no feasible solution. By allowing for some errors we might
get better results and avoid overfitting effects (cf. Figure 2).

Therefore a “good” trade-off between the empirical risk and the complex-
ity term in (9) needs to be found. Using a technique which was first proposed
in (Bennett and Mangasarian, 1992) and later used for SVMs in (Cortes and
Vapnik, 1995), one introduces slack-variables to relax the hard-margin con-
straints:

yi((w
⊤xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . ,M, (30)

additionally allowing for some classification errors. The SVM solution can
then be found by (a) keeping the upper bound on the VC dimension small

and (b) by minimizing an upper bound
∑M

i=1 ξi on the empirical risk, i.e. the
number of training errors. Thus, one minimizes

min
w,b,ξ

1

2
‖w‖2 + C

M∑

i=1

ξi,

where the regularization constant C > 0 determines the trade-off between the
empirical error and the complexity term. This leads to the dual problem:

max
α

M∑

i=1

αi −
1

2

M∑

i,j=1

αiαjyiyj

(
x⊤

i xj

)
, (31)

subject to 0 ≤ αi ≤ C, i = 1, . . . ,M, (32)
M∑

i=1

αiyi = 0. (33)

From introducing the slack-variables ξi, one gets the box constraints that limit
the size of the Lagrange multipliers: αi ≤ C, i = 1, . . . ,M .

The threshold b can be computed by exploiting the fact that for all support
vectors xi with 0 < αi < C, the slack variable ξi is zero. This follows from
the Karush-Kuhn-Tucker (KKT) conditions (cf. (34) below). Thus, for any
support vector xi with αi < C holds:

yi




M∑

j=1

yjαj

(
x⊤

i xj

)
+ b


 = 1.

Averaging over these patterns I yields a numerically stable solution:

b =
1

|I|
∑

i∈I


yi −

M∑

j=1

yjαj

(
x⊤

i xj

)

 .
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Sparsity

The Karush-Kuhn-Tucker (KKT) conditions are the necessary conditions for
an optimal solution of a non-linear programming problem (e.g. Bertsekas,
1995; Luenberger, 1973). The conditions are particularly simple for the dual
SVM problem (31), (32) and (33) (Vapnik, 1982):

αi = 0 ⇒ yif(xi) ≥ 1 and ξi = 0,
0 < αi < C ⇒ yif(xi) = 1 and ξi = 0,

αi = C ⇒ yif(xi) ≤ 1 and ξi ≥ 0.
(34)

They reveal one of the most important properties of SVMs: the solution is
sparse in α. For all examples outside the margin area the optimal αi’s are
zero. Specifically, the KKT conditions show that only such αi connected to
a training pattern xi, which is either on the edge of (i.e. 0 < αi < C and
yif(xi) = 1) or inside the margin area (i.e. αi = C and yif(xi) < 1) are
non-zero. These are exactly the support vectors as mentioned in section 3.2.

5.2 Decomposition

The practical usefulness of SVM stems from their ability to provide arbitrary
non-linear separation boundaries and at the same time to control general-
ization ability through the parameter C and the kernel parameters. In order
to utilize these features it is necessary to work with the dual formulation
(31)–(33) of the SVM training problem. This can be difficult from the com-
putational point of view, for two reasons:

1. One needs to solve the quadratic programming problem with as many
variables as the number M of available data points (this can be quite
large, up to 105–106).

2. Merely to define the quadratic problem formally, one needs to store the
M ×M kernel matrix, which poses an insurmountable storage problem
for large datasets.

Because of these implications, it is usually impossible to use the standard op-
timization tools (e.g. MINOS, CPLEX, LOQO) for solving the SVM training
problems on datasets containing larger than 10,000 examples. In the follow-
ing sections the decomposition techniques are presented, which use the special
structure of the SVM problem to provide efficient training algorithms.

Basic principles

The key idea of decomposition is to freeze all but a small number of opti-
mization variables and to solve a sequence of constant-size problems. The set
of variables optimized at a current iteration is referred to as the working set.
Because the working set is re-optimized, the value of the objective function
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is improved at each iteration provided the working set is not optimal before
re-optimization.

The mathematics of the decomposition technique can be best seen in the
matrix notation. Let α = (α1, . . . αM )⊤, let y = (y1, . . . , yM )⊤, let H be the
matrix with the entries Hij = yiyj k(xi,xj), and let 1 denote the vector of
length M consisting of all 1s. Then the dual SVM problem (31)–(33) can be
written in the matrix form as:

max
α

1⊤
α− 1

2
α

⊤Hα, (35)

subject to y⊤
α = 0, (36)

α− C1 ≤ 0, (37)

α ≥ 0. (38)

Let us partition the vector α into αB of the variables to be included in
the working set at a current iteration and the vector αN of the remaining
variables. The matrix H is partitioned as

H =

[
HBB HBN

HNB HNN

]
,

with the corresponding parts determined by the index sets B and N . By
re-writing the problem (35)–(38) using the partitioned matrix notation, and
observing that only the free variables αB are to be considered as variables,
the following sub-problem, to be solved at each iteration, is obtained:

max
α

(1⊤
B −α

⊤
NHNB)αB −

1

2
α

⊤
BHBBαB , (39)

subject to y⊤
BαB = −yNαN , (40)

αB − C1B ≤ 0, (41)

αB ≥ 0. (42)

Choosing the size q of the working set B relatively small (usually q ≤ 100) one
can ensure that the sub-problem (39)–(42) is easily solved by any optimization
tool.

Iteration of this procedure is carried out until the following termination
criteria, derived from Karush-Kuhn-Tucker conditions (34), are satisfied to
the required precision ǫ:

b− ǫ ≤ yi −
∑M

j=1 yjαjK(xi,xj) ≤ b + ǫ, ∀i : 0 < αi < C, (43)

yi

(∑M
j=1 yjαjK(xi,xj) + b

)
≥ 1− ǫ, ∀i : αi = 0, (44)

yi

(∑M
j=1 yjαjK(xi,xj) + b

)
≤ 1 + ǫ, ∀i : αi = C. (45)
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Working set selection: feasible direction algorithms

The crucial issue in the decomposition technique presented above is the se-
lection of working sets. First, the provision that a working set must be sub-
optimal before re-optimization is essential to prevent the algorithm from cy-
cling. Second, the working set selection affects the speed of the algorithm: if
sub-optimal working sets are selected more or less at random, the algorithm
converges very slowly. Finally, the working set selection is important in theo-
retical analysis of decomposition algorithms; in particular in the convergence
proofs and in the analysis of the convergence rate.

Two main approaches exist to the working set selection in the SVM de-
composition algorithms: the heuristic approach and the feasible direction ap-
proach. The former has been used in the original paper of Osuna et al. (1997a)
on SVM decomposition and has been mainly used in the specific flavor of de-
composition algorithms called Sequential Minimal Optimization (SMO), pre-
sented in the next section. The feasible direction decomposition algorithms
root in the SVMlight algorithm of Joachims (1999) for pattern recognition,
with the formal connection to the feasible direction methods of non-linear
programming established by Laskov (2002).

The notion of a “feasible direction” stems from the classical techniques of
non-linear programming subject to linear constraints (Zoutendijk, 1960; Bert-
sekas, 1995). It refers to the direction along which any step of the magnitude
δ satisfying 0 < δ ≤ δ0, for some fixed δ0, results in a feasible solution to the
non-linear program. For any non-linear program, finding the feasible direction
amounts to a solution of a linear programming problem. In particular, for the
dual SVM training problem (31)–(33) the following problem must be solved:

max
d

g⊤d, (46)

subject to y⊤d = 0, (47)

di ≥ 0, for all αi = 0, (48)

di ≤ 0, for all αi = C, (49)

||d||2 ≤ 1, (50)

where g is the gradient of the objective function (31). Solving the feasible
direction problem exactly at each iteration is inefficient because the linear
program (46)–(50) has all M variables. However, an approximate solution to
the feasible direction problem can be efficiently found by using the normaliza-
tion di ∈ {−1, 0, 1} instead of (50) and requiring that the number of positive
direction components is equal to the number of the negative components. In
this case, the solution is obtained by sorting all examples by the quantity giyi,
and selecting q/2 examples with the largest and q/2 examples with the small-
est values. In fact, by using a Heap data structure, sorting can be avoided,
and the entire selection can be executed in O(q log M) time. The motivation
behind the quantity giyi can be traced back to the first-order Karush-Kuhn-
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Tucker conditions (Laskov, 2002), which provides the solid formal background
for the feasible direction SVM decomposition.

Convergence of the feasible direction SVM decomposition has been proved
by Lin (2001), and the linear convergence rate has been observed experimen-
tally (Laskov, 2002).

Sequential Minimal Optimization

The Sequential Minimal Optimization (SMO) algorithm proposed by Platt
(1999) is another popular and efficient algorithm for the SVM training. In
this algorithm the idea of decomposition is taken to its extreme by reducing
the working sets to two points—the smallest size for which it is possible to
maintain the equality constraint (33). For two points the optimal solution can
be computed analytically without calling an optimization tool.

The analytical computation of the optimal solution is based on the follow-
ing idea: given the solution (αold

1 , αold
2 ), the optimal update is computed to

obtain the solution (αnew
1 , αnew

2 ). To carry out the update, first the constraints
(32)–(33) have to be obeyed. The geometry of these constraints depends on
whether the labels y1 and y2 are equal or not. The two possible configurations
are shown in Figure 10. If y1 6= y2 (left picture) the solution should be sought
along the line α1 − α2 = γ, where γ = αold

1 + y1y2α
old
2 . If y1 = y2 (right pic-

ture) the solution should be sought along the line α1 +α2 = γ. If the solution
transgresses the bound of the box, it should be clipped at the bound.

α1

α2

(0, 0)

α1 − α2 = γ

(αold
1 , αold

2 )

α1

α2

(0, 0)

α1 + α2 = γ

(αold
1 , αold

2 )

y1 6= y2 y1 = y2

Fig. 10. Constraints of the SVM training problem with two examples.

The optimal values of the variables along the line are computed by elim-
inating one of the variables through the equality constraint and finding the
unconstrained minimum of the objective function, for example, eliminating
α1 one obtains the following update rule for α2:

αnew
2 = αold

2 − y2(E1 − E2)

η
, (51)
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where

E1 =
∑M

j=1 yjαj k(x1,xj) + b− y1, (52)

E2 =
∑M

j=1 yjαj k(x2,xj) + b− y2, (53)

η = 2k(x1,x2)− k(x1,x1)− k(x2,x2). (54)

Next, the bound constraints should be taken care of. Depending on the ge-
ometry, one computes the following lower and upper bounds on the value of
the variable α2:

L =

{
max (0, αold

2 − αold
1 ), if y1 6= y2,

max (0, αold
2 + αold

1 − C), if y1 = y2,

H =

{
min (C,C + αold

2 − αold
1 ), if y1 6= y2,

min (C,αold
2 + αold

1 ), if y1 = y2.

The constrained optimum is then found by clipping the unconstrained opti-
mum to the ends of the line segment:

αnew
2 :=





H, if αnew
2 ≥ H,

L, if αnew
2 ≤ L,

αnew
2 , otherwise.

Finally, the value of αnew
1 is computed:

αnew
1 = αold

1 + y1y2(α
old
2 − αnew

2 ). (55)

The working set selection in the SMO algorithm is carried out by means
of two heuristics. The “first choice” heuristic is responsible for the choice
of the first example in each pair. Following this heuristic, all examples that
violate the KKT condition (34) are used in turns as the first example in the
pair. More precisely, the algorithm makes repeated passes only through the
examples whose αi is strictly between then bounds, and only when all such
examples satisfy the KKT conditions the sweep over the entire data is done
to bring in new examples. The “second choice” heuristic is responsible for the
selection of the second example in the pair. It is intended to bring in such an
example that results in the largest step taken during the joint optimization
(51). As a cheap approximation of this step the numerator |E1 −E2| is taken
(the denominator, which involves evaluation of kernels, can be expensive to
compute). Following the strategy to maximize |E1 −E2|, the SMO algorithm
chooses the example with the largest E2, if E1 is negative, and the example
with the smallest E2, if E1 is positive. Under unusual circumstances, when no
progress can be made using the second heuristic above, a hierarchy of weaker
heuristics is applied, the details of which are provided by Platt (1999).
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5.3 Incremental Support Vector Optimization

Many real-life machine learning problems can be more naturally viewed as
online rather than batch learning problems. Indeed, the data is often collected
continuously in time, and, more importantly, the concepts to be learned may
also evolve in time. Significant effort has been spent in the recent years on the
development of online SVM learning algorithms (e.g. Rüping, 2002; Kivinen
et al., 2001; Ralaivola and d’Alché Buc, 2001). An elegant solution to online
SVM learning is the incremental SVM proposed by Cauwenberghs and Poggio
(2001), which provides a framework for exact online learning.

The incremental SVM learning algorithm can be best presented using the
following abstract form of the SVM optimization problem:

max
µ

min
0≤α≤C

a
⊤

α+b=0

: W = −c⊤α +
1

2
α

⊤Kα + µ(a⊤
α + b), (56)

where c and a are M × 1 vectors, K is the M ×M kernel matrix and b is a
scalar. By defining the meaning of the abstract parameters a, b and c for the
particular SVM problem at hand, one can use the same algorithmic structure
for different SVM algorithms. In particular, for the standard support vector
classifiers (Vapnik, 1998), take c = 1,a = y, b = 0 and the given regularization
constant C; the same definition applies to the ν-SVM (Schölkopf et al., 2000)
except that C = 1

Nν
.

The incremental SVM provides a procedure for adding one example to
an existing optimal solution. When a new point k is added, its weight αk is
initially set to 0. Then the weights of other points and µ should be updated,
in order to obtain the optimal solution for the enlarged dataset. Likewise,
when a point k is to be removed from the dataset, its weight is forced to 0,
while updating the weights of the remaining points and µ so that the solution
obtained with αk = 0 is optimal for the reduced dataset. The online learning
follows naturally from the incremental learning: the new example is added
while some old example is removed from the working set.

The basic principle of the incremental SVM (Cauwenberghs and Poggio,
2001) is that updates to the state of the example k should keep the remaining
examples in their optimal state. In other words, the KKT conditions (34)
expressed for the gradients gi:

gi = −ci + Ki,:α + µai





≥ 0, if αi = 0,

= 0, if 0 < αi < C,

≤ 0, if αi = C,

(57)

∂W

∂µ
= a⊤

α + b = 0, (58)

must be maintained for all the examples, except possibly for the current ex-
ample k. Let S denote the set of unbounded support vectors and R the set
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of other examples. In order to maintain the KKT conditions (57), one can
express increments to the weights of the unbounded support vectors and to
the gradients of other examples as a linear function of the increment of the
current example’s weight ∆αk:

∆αS = β∆αk, ∆gR = γ∆αk. (59)

The sensitivity relations (59) only make sense for the fixed composition of sets
S and R. To proceed with learning, we need to detect the largest increment
∆αmax

k such that the sets S and R remain intact. After changing the SVM
state according to the relations (59) evaluated for the increment ∆αmax

k , the
sensitivity vectors β and γ must be recomputed accordingly (depending of
whether an example enters or leaves the set S). For the details of accounting
the reader should refer to (Cauwenberghs and Poggio, 2001; Tax and Laskov,
2003). The iteration terminates when the current element satisfies the KKT
conditions (57) as well.

5.4 Large-scale Learning with SVM

The kernel trick has enabled SVMs to be applied to several domains and it has
been one of the reasons SVMs are used with great success, often delivering
state-of-the-art results. Unfortunately, it is also the kernel trick that limits
the speed of applying SVMs and renders them unsuitable in several large-
scale applications. The reason is that for predicting the class label of a single
example, we need to compare it with all support vectors, that is, compute

f(x) = sgn

(
M∑

i=1

αiyi k(xi,x) + b

)
.

Consequently, the speed for application of an SVM decays linearly with the
number of support vectors. It is this same operation that slows down training
in most SVM implementations and potentially the cause for a shift in interest
back to linear SVMs for large-scale applications. In the linear case, the decision
function of an SVM (without bias term b) takes the form

f(x) = sgn
(
wT x

)

and can be computed in linear time in the number of dimensions of the feature
space, i.e. O(dim(X )). Furthermore, if either the vectors x or w are sparse,
this run-time can be further reduced to processing non-zero entries only.

The first linear SVM for large-scale application has been proposed by
Joachims (2006) (SVMperf) and builds on solving the underlying optimization
problem using the concept of cutting planes (Kelly, 1960). The resulting linear
SVM achieves an ε-precise solution in time linear in the number of samples
and dimensions, that is, O(Mdim(X )).
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Theorem 4 (Joachims, 2006). For any ε > 0, C > 0, and any training
sample Z = {(x1, y1), . . . , (xM , yM )}, SVMperf terminates after at most

max

{
2

ε
,
8CR2

ε2

}

iterations, where R = maxM
i=1 ||xi||.

This method has been further refined by Teo et al. (2007, 2010) and later
on by Franc and Sonnenburg (2008, 2009) who improve convergence rates to
O( 1

ε
). Following a different line of research, Fan et al. (2008) have developed

a dual coordinate descent approach that performs similar, but drastically re-
duces memory requirements, as no set of cutting planes needs to be stored.
For that reason we will explain this algorithm in more detail.

The idea of the dual coordinate descent method by Fan et al. (2008)
is to perform coordinate descent on a single dual variable αi while main-
taining the SVM normal vector w. Note that SMO (cf. Section 5.2) up-
dates two variables at the same time, while coordinate descent updates a
single variable only. More formally, considering the dual objective function
D(α) = 1

2

∑M
i,j=1 αiαjyiyj k(xi,xj)−

∑M
i=1 αi, one solves the dual optimiza-

tion problem for a single variable αi via

min
d

D(α + d1i)

subject to 0 ≤ αi + d ≤ C

where 1i is the vector whose i−th component is 1 while its other components
are zero, i.e. 1i = (0, . . . , 0, 1, 0, . . . , 0)T . By inserting (α + d1i) into D and
removing terms independent of d, we arrive at

min
d

d2

2
k(xi,xi) + d




M∑

j=1

yiyj k(xi,xj)αj − 1


 (60)

subject to 0 ≤ αi + d ≤ C.

If αi is optimal, that is d = 0, the projected gradient is 0 (cf. PG in
Algorithm 1) and we leave this coordinate unchanged. Otherwise, asserting
k(xi,xi) > 0 one computes the new value of αi by determining the derivative
of Equation (60) with respect to d. Setting the derivative to zero while ensuring
0 ≤ αi ≤ C finally leads to the following update rule

αi ← min

(
max

(
αi −

∑M
j=1 yiyj k(xi,xj)αj − 1

k(xi,xi)
, 0

)
, C

)
.

It should be noted that for efficiency the k(xi,xi) in the denominator
can be precomputed. In addition, we know from Equation (25) that w =∑M

i=1 αiyixi and subsequently the numerator can be written as yiw
T xi − 1.
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In addition, we avoid to recompute w in each iteration by starting with α = 0
and w = 0, and only compute updates on w via w← w+(αi− ᾱi)yixi. As a
result, dual coordinate descent closely resembles a perceptron-style algorithm
with a step size obtained via the SVM dual.

Algorithm 1 Dual Coordinate Descent (Fan et al., 2008)

α = 0 and w = 0

repeat

for i = 1, . . . , M do

G = yiw
T xi − 1

PG =

8

>

<

>

:

min(G, 0) if αi = 0

max(G, 0) if αi = C

G if 0 < αi < C

if |PG| 6= 0 then

ᾱi ← αi

αi ← min(max(αi −G/Q̄ii, 0), C)
w← w + (αi − ᾱi)yixi

end if

end for

until Optimality

The full algorithm is outlined in Algorithm 1. It can be shown that dual
coordinate descent reaches a ε-precise solution D(α) ≤ D(α∗)+ε in O(log(1

ε
))

iterations with an iteration cost of O(Mdim(X )) (Fan et al., 2008).
Besides dual coordinate descent, several other approaches for efficiently

training linear SVMs have been proposed, for example, based on stochastic
learning concepts (e.g. Shwartz et al., 2007; Bottou and Bousquet, 2008; Bor-
des et al., 2009; Shwartz et al., 2007; Yu et al., 2010). Finally, there have been
a number of attempts to combine the advantages of fast linear SVM solvers
with the non-linearity of kernels (Joachims and Yu, 2009; Chang et al., 2010;
Sonnenburg and Franc, 2010)

6 Extensions of SVM

6.1 Regression

In this subsection we will give a short overview of the idea of Support Vector
Regression (SVR). A regression problem is given whenever Y = R for the
training dataset Z = {(xi, yi) ∈ X × Y|i = 1, . . . ,M} (cf. Section 2.1) and
our interest is to find a function of the form f : X → R.

In our discussion of statistical learning in section 2.1 we have not talked
about loss functions except for saying that they should be non-negative func-
tions of the form (1). The particular form of the loss function depends on
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the learning task. For the pattern recognition problem the 0/1-loss function
was used (cf. Theorem 2). For the regression problem the following two loss
functions are common: the simple squared loss

ℓ(f(x), y) = (f(x)− y)2, (61)

and the ǫ-insensitive loss

ℓ(f(x), y) =

{
|f(x)− y| − ǫ, if |f(x)− y| > ǫ,

0, otherwise.
(62)

For ǫ = 0 the ǫ-insensitive loss equals the ℓ1-norm, otherwise it linearly pe-
nalizes deviations from the correct predictions by more than ǫ.

l

ǫ-insensitive loss

squared loss
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2 · ǫ

ξi

Fig. 11. The left subplot shows the two different loss functions for the regression
problem. The right subplot gives a regression function derived with an ǫ-insensitive
loss function. The solid line indicates the function, the dashed lines indicate the
ǫ-tube around this function.

In the left subplot of Figure 11 the two error functions are shown. In
the right subplot a regression function using the ǫ-insensitive loss function is
shown for some artificial data. The dashed lines indicate the boundaries of the
area where the loss is zero (the “tube”). Clearly most of the data is within
the tube.

Similarly to the classification task, one is looking for the function that best
describes the values yi. In classification one is interested in the function that
separates two classes; in contrast, in regression one looks for the function that
contains the given dataset in its ǫ-tube. Some data points can be allowed to
lie outside the ǫ-tube by introducing the slack-variables.

The primal formulation for the SVR is then given by:

min
w,b,ξ(∗)

1

2
‖w‖2 + C

M∑

i=1

(ξi + ξ∗i ),

subject to ((w⊤xi) + b)− yi ≤ ǫ + ξi,

yi − ((w⊤xi) + b) ≤ ǫ + ξ∗i ,

ξ
(∗)
i ≥ 0, i = 1, . . . ,M.
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R

a
ξi

xi

Fig. 12. Schematic illustration of the hypersphere model for describing a target
class of data. The center a and the radius R should be optimized to minimize the
volume of the captured space.

In contrast to the primal formulation for the classification task, we have to in-
troduce two types of slack-variables ξi and ξ∗i , one to control the error induced
by observations that are larger than the upper bound of the ǫ-tube, and the
other for the observations smaller than the lower bound. To enable the con-
struction of a non-linear regression function, a dual formulation is obtained
in the similar way to the classification SVM and the kernel trick is applied.

As a first application, SVR has been studied for analysis of time series
by Müller et al. (1997). Further applications and an extensive description of
SVR are provided by Vapnik (1998); Cristianini and Shawe-Taylor (2000);
Schölkopf and Smola (2002).

6.2 One-class Classification

Another common problem of statistical learning is one-class classification
(novelty detection). Its fundamental difference from the standard classifica-
tion problem is that the training data is not identically distributed to the test
data. The dataset contains two classes: one of them, the target class, is well
sampled, while the other class it absent or sampled very sparsely. Schölkopf
et al. (2001) have proposed an approach in which the target class is separated
from the origin by a hyperplane. Alternatively (Tax and Duin, 2001), the tar-
get class can be modeled by fitting a hypersphere with minimal radius around
it. We present this approach, illustrated in Figure 12, in more detail below.

Mathematically the problem of fitting a hypersphere around the data is
stated as:

min
R,a

R2 + C

M∑

i=0

ξi, (63)

subject to ||xi − a||2 ≤ R2 + ξi, i = 1, . . . ,M,

ξi ≥ 0,



34 Rieck, Sonnenburg, Mika, Schäfer, Laskov, Tax, & Müller

where a is the center of the sphere, and R is the radius. Similarly to the SVM
we make a “soft” fit by allowing non-negative slacks ξi. One can likewise apply
the kernel trick by deriving the dual formulation of (63):

max
α

M∑

i=1

αi k(xi,xi)−
1

2

M∑

i,j=1

αiαj k(xi,xj), (64)

subject to 0 ≤ αi ≤ C, i = 1, . . . ,M,
M∑

i=1

αi = 1.

The parameter C can be interpreted (Schölkopf et al., 2001) as the reciprocal
of the quantity 1

Mν
, where ν is an upper bound for the fraction of objects

outside the boundary.
To decide whether a new object belongs to the target class one should

determine its position with respect to the sphere using the formula

f(x) = sign(R2 − k(x,x) + 2
∑

i

αi k(x,xi)−
∑

i,j

αiαj k(xi,xj)). (65)

An object with positive sign belongs to the target class and vice versa. An in-
cremental version of the one-class classification SVM can be obtained using the
approach of section 5.3, with the parameters of the abstract formulation (56)
defined as: c = diag(K), a = y and b = −1 (Laskov et al., 2006).

7 Applications

7.1 Optical character recognition (OCR)

One of the first real-world experiments carried out with SVM was done at
AT&T Bell Labs using optical character recognition (OCR) data (Cortes and
Vapnik, 1995; Schölkopf et al., 1995). These early experiments already showed
the astonishingly high accuracies for SVMs which was on a par with convo-
lutive multi-layer perceptrons. Below we list the classification performance of
SVM, some variants not discussed in this chapter, and other classifiers on the
USPS (US-Postal Service) benchmark (parts from (Simard et al., 1998)). The
task is to classify handwritten digits into one of ten classes. Standard SVMs
as presented here already exhibit a performance similar to other methods.

Linear PCA & Linear SVM (Schölkopf et al., 1998b). . . . . . . . . . . . . . . . . . .8.7%
k-Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7%
LeNet1 (Bottou et al., 1994) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2%
Regularised RBF Networks (Rätsch, 1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1%
Kernel-PCA & linear SVM (Schölkopf et al., 1998b) . . . . . . . . . . . . . . . . . . 4.0%
SVM (Schölkopf et al., 1995) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.0%
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Invariant SVM (Schölkopf et al., 1998a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.0%
Boosting (Drucker et al., 1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6%
Tangent Distance (Simard et al., 1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.5%
Human error rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5%

A benchmark problem larger than the USPS dataset (7291 patterns) was
collected by NIST and contains 120000 handwritten digits. Invariant SVMs
achieve an error rate of 0.7% (DeCoste and Schölkopf, 2002) on this chal-
lenging and more realistic dataset, slightly better than the tangent distance
method (1.1%) or single neural networks (LeNet 5: 0.9%). An ensemble of
LeNet 4 networks that was trained on a vast number of artificially generated
patterns (using invariance transformations) is on a par with the best SVM,
and also achieved the accuracy of 0.7% (LeCun et al., 1995).

7.2 Text categorization and text mining

The high dimensional problem of text categorization is an application for
which SVMs have performed particularly well. A popular benchmark is the
Reuters-22173 text corpus containing 21450 news stories, collected by Reuters
in 1997, that are partitioned and indexed into 135 different categories. The
features typically used to classify Reuters documents are 10000-dimensional
vectors containing word frequencies within a document. SVMs have achieved
excellent results using such a coding (see e.g. Joachims, 1997).

7.3 Network Intrusion Detection

The one-class formulation of the SVM presented in Section 6.2 provides an-
other example for a successful application in computer security. In the last
years, the amount and diversity of computer attacks has drastically increased,
rendering regular defenses based on manually crafted detection rules almost
ineffective. By contrast, the one-class SVM provides means for identifying un-
known attacks automatically as novelties and thus has gained a strong focus
in security research (e.g. Eskin et al., 2002; Nassar et al., 2008; Wahl et al.,
2009; Perdisci et al., 2009).
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Fig. 13. One-class SVM vs.
regular intrusion detection
system (Rieck, 2009).

As an example of this research, we present re-
sults from an application of the one-class SVM
for detection of unknown attacks in network
traffic of the FTP protocol (see Rieck, 2009).
Figure 13 shows the detection performance of
the one-class SVM and the rule-based detec-
tion system “Snort”. For analysing network data
the one-class SVM is applied using a string ker-
nel defined over n-grams as presented in Sec-
tion 4.3. The one-class SVM significantly out-
performs the regular detection system by iden-
tifying 80% of the unknown attacks with almost
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no false alarms, demonstrating the ability of SVMs to effectively generalize
from data and surpass manually crafted rules and heuristics.

7.4 Bioinformatics

SVMs are widely used in bioinformatics, defining the state-of-the-art in sev-
eral applications, like splice site detection (Sonnenburg et al., 2002; Degroeve
et al., 2005; Sonnenburg et al., 2007b; Rätsch et al., 2007; Sonnenburg and
Franc, 2010), detection of transcription starts (Sonnenburg et al., 2006), trans-
lation initiation site detection (Zien et al., 2000) and detection of several other
genomic signals (Sonnenburg et al., 2008). Various further applications have
been considered, like gene array expression monitoring (Brown et al., 2000),
remote protein homology detection (Jaakkola et al., 2000; Leslie et al., 2002),
protein sub-cellular localization Ong and Zien (2008), to detect protein pro-
tein interactions (Ben-Hur and Noble, 2005) to analyze phylogenetic trees
Vert (2002). For further information, the interested reader is referred to the
tutorial on support vector machines and kernels (Ben-Hur et al., 2008).

7.5 Other Applications

There are numerous other applications to which SVM were successfully ap-
plied. Examples are object and face recognition tasks (Osuna et al., 1997b),
inverse problems (Vapnik, 1998; Weston et al., 1999), drug design in com-
putational chemistry (Warmuth et al., 2003; Müller et al., 2005) and brain
computer interfacing (Blankertz et al., 2007; Müller et al., 2008). A large
collection of links to SVM applications is available at www.clopinet.com/

isabelle/Projects/SVM/applist.html.

8 Summary and Outlook

We have shown in this chapter how the problem of learning from data can
be cast formally into the problem of estimating functions from given observa-
tions. We have reviewed some basic notation and concepts from statistics and
especially from statistical learning theory. The latter provides us with two
extremely important insights: (i) what matters the most is not the dimen-
sionality of the data but the complexity of the function class we choose our
estimate from, (ii) consistency plays an important role in successful learning.
Closely related to these two questions is the issue of regularization. Regu-
larization allows us to control the complexity of our learning machine and
usually suffices to achieve consistency.

As an application of statistical learning theory we have presented the tech-
nique for constructing a maximum margin hyperplane. Whilst it is satisfac-
tory to have a technique at hand that implements (at least partially) what the
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theory justifies, the algorithm is only capable of finding (linear) hyperplanes.
To circumvent this restriction we introduced kernel functions yielding SVMs.
Kernel functions allow us to reformulate many algorithms in some kernel fea-
ture space that is non-linearly related to the input space and yield powerful,
non-linear techniques. Moreover, kernel functions enable us to apply learning
techniques in structured domains, such as on string, trees and graphs. This
abstraction using the kernel trick is possible whenever we are able to express
an algorithm such that it only uses the data in the form of scalar products.
However, since the algorithms are still linear in the feature space we can use
the same theory and optimization strategies as before.

Kernel algorithms have seen an extensive development over the past years.
Among many theoretical (Williamson et al., 1998; Graepel et al., 2000;
Bartlett et al., 2002) and algorithmic (Platt, 1999; Joachims, 1999) results
on SVM itself, new algorithms using the kernel trick have been proposed
(e.g. Kernel PCA (Schölkopf et al., 1998b), Kernel ICA (Harmeling et al.,
2003), temporal Kernel CCA (Bießmann et al., 2009) or Bayes–Point ma-
chines (Herbrich et al., 2001)). This development is still an ongoing and excit-
ing field of study. A large collection of SVM implementations is contained in
the shogun machine learning toolbox (Sonnenburg et al., 2010). Furthermore,
various kernel-based learning methods are available from http://mloss.org/
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G. Rätsch, S. Sonnenburg, and B. Schölkopf. RASE: recognition of alterna-
tively spliced exons in c. elegans. Bioinformatics, 21:i369–i377, June 2005.
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S. Rüping. Incremental learning with support vector machines. Technical
Report TR-18, Universität Dortmund, SFB475, 2002.

B. Schölkopf, C. Burges, and V. Vapnik. Extracting support data for a given
task. In U. Fayyad and R. Uthurusamy, editors, Proceedings, First Inter-
national Conference on Knowledge Discovery & Data Mining. AAAI Press,
Menlo Park, CA, 1995.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, 2002.

B. Schölkopf, P. Simard, A. Smola, and V. Vapnik. Prior knowledge in support
vector kernels. In M. Jordan, M. Kearns, and S. Solla, editors, Advances in
Neural Information Processing Systems, volume 10, pages 640–646, Cam-
bridge, MA, 1998a. MIT Press.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as
a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998b.

B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and
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