
■ Kernel methods, a new generation of learning

algorithms, utilize techniques from optimization,

statistics, and functional analysis to achieve maxi-

mal generality, flexibility, and performance. These

algorithms are different from earlier techniques

used in machine learning in many respects: For

example, they are explicitly based on a theoretical

model of learning rather than on loose analogies

with natural learning systems or other heuristics.

They come with theoretical guarantees about their

performance and have a modular design that

makes it possible to separately implement and ana-

lyze their components. They are not affected by

the problem of local minima because their training

amounts to convex optimization. In the last

decade, a sizable community of theoreticians and

practitioners has formed around these methods,

and a number of practical applications have been

realized. Although the research is not concluded,

already now kernel methods are considered the

state of the art in several machine learning tasks.

Their ease of use, theoretical appeal, and remark-

able performance have made them the system of

choice for many learning problems. Successful

applications range from text categorization to

handwriting recognition to classification of gene-

expression data.

I
n many respects, the last few years have wit-

nessed a paradigm shift in the area of

machine learning, comparable to the one of

the mid-1980s when the nearly simultaneous

introduction of decision trees and neural net-

work algorithms revolutionized the practice of

pattern recognition and data mining. In just a

few years, a new community has gathered,

involving several thousands of researchers and

engineers, a yearly workshop, web sites, and

textbooks. The focus of their research: support

vector machines (SVMs) and kernel methods. 

Such paradigm shifts are not unheard of in

the field of machine learning. Dating back at

least to Alan Turing’s famous article in Mind in

1950, this discipline has grown and changed

with time. It has gradually become a standard

piece of computer science and even of software

engineering, invoked in situations where an

explicit model of the data is not available but,

instead, we are given many training examples.

Such is the case, for example, of handwriting

recognition or gene finding in biosequences. 

The nonlinear revolution of the 1980s, initi-

ated when the introduction of back-propaga-

tion networks and decision trees opened the

possibility of efficiently learning nonlinear

decision rules, deeply influenced the evolution

of many fields, and paved the way for the cre-

ation of entire disciplines, such as data mining

and a significant part of bioinformatics. Until

then, most data analysis was performed with

linear methods essentially based on the sys-

tems developed in the 1960s, such as the PER-

CEPTRON. The asymmetry however remained: A

number of optimal algorithms and theoretical

results were available for learning linear depen-
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ties of the learning system’s output.

In a way, researchers now have the power of

nonlinear function learning together with the

conceptual and computational convenience

that was, to this point, a characteristic of linear

systems. 

SVMs are probably the best-known example

of this class of algorithms. Introduced in 1992

at the Conference on Computational Learning

Theory (Boser, Guyon, and Vapnik 1992), it

has since been studied, greatly generalized, and

applied to a number of different problems. The

general class of algorithms resulting from this

process is known as kernel methods or kernel

machines. They exploit the mathematical

techniques mentioned earlier to achieve the

maximal flexibility, generality, and perfor-

mance, both in terms of generalization and in

terms of computational cost. They owe their

name to one of the central concepts in their

design: the notion of kernel functions, used in

the representation of the nonlinear relations

discovered in the data and discussed later.

The growing impact of this new approach in

the larger field of machine learning can be

gauged by looking at the number of researchers

and events related to it. The research commu-

nity gathered around these algorithms is very

diverse, including people from classic machine

learning, neural networks, statistics, optimiza-

tion, and functional analysis. It meets at a year-

ly workshop, held at the Neural Information

Processing Systems Conference for the past five

years. Since the first such workshop, the

growth of this field has been rapid: Textbooks

have appeared (Cristianini and Shawe-Taylor

2000; Schölkopf and Smola 2002); many hun-

dreds of papers have been published on this

topic; and all the major conferences and jour-

nals in machine learning, neural networks, and

pattern recognition have devoted increasing

attention to it, with special issues, dedicated

sessions, and tutorials. The recently launched

Journal of Machine Learning Research has a regu-

lar section for kernel methods.1 An increasing

number of universities teach courses entirely

or partly dedicated to kernel machines.

Currently, SVMs hold records in perfor-

mance benchmarks for handwritten digit

recognition, text categorization, information

retrieval, and time-series prediction and have

become routine tools in the analysis of DNA

microarray data.

In this article, we survey the main concepts in

the theory of SVMs and kernel methods; their

statistical and algorithmic foundations; and

their application to several problems, such as

text categorization, machine vision, handwrit-

ing recognition, and computational biology.

dencies from data, but for nonlinear ones,

greedy algorithms, local minima, and heuristic

searches were all that was known. In a way,

researchers had come to accept that the theo-

retical elegance and practical convenience of

linear systems was not achievable in the more

powerful setting of nonlinear rules.

A decade later, however, kernel methods

made it possible to deal with nonlinear rules in

a principled yet efficient fashion, which is why

we identify them with a new generation, fol-

lowing the linear learning machines, one in

the 1960s and the first generation of nonlinear

ones in the 1980s. The consequences of this

new revolution could be even more far reach-

ing. In many ways, kernel methods represent

an evolution of the subsymbolic learning

approaches such as neural networks, but in

other ways, they are an entirely new family of

algorithms and have more in common with

statistical methods than with classical AI. 

The differences with the previous approach-

es are worth mentioning. Most of the learning

algorithms proposed in the past 20 years had

been based to a large extent on heuristics or on

loose analogies with natural learning systems,

such as the concept of evolution, or models of

nervous systems. They were mostly the result

of creativity and extensive tuning by the

designer, and the underlying reasons for their

performance were not fully understood. A large

part of the work was devoted to designing

heuristics to avoid local minima in the hypoth-

esis-search process. The new pattern-recogni-

tion algorithms overcome many such limita-

tions by using a number of mathematical tools. 

To start with, in the last decade, a general the-

ory of learning machines has emerged and with

it the possibility of analyzing existing algo-

rithms and designing new ones to explicitly

maximize their chances of success. The impact

of learning theory on machine learning has

been profound, and its effects have also been

felt in the industrial applications. Further-

more—and somehow independently—new effi-

cient representations of nonlinear functions

have been discovered and used for the design of

learning algorithms. This representation makes

use of so-called “kernel functions,” discussed

later, and has a number of useful properties.

The combination of these two elements has

led to powerful algorithms, whose training

often amounts to convex optimization. In oth-

er words, they are free from local minima. This

use of convex optimization theory, largely a

consequence of the novel representation,

marks a radical departure from previous greedy

search algorithms and, furthermore, enables

researchers to analyze general formal proper-
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Statistical Learning Theory

The kind of learning algorithm that we are
talking about can mathematically be described
as a system that receives data (or observations)
as input and outputs a function that can be
used to predict some features of future data. In
other words, it automatically builds a model of
the data being observed and exploits it to make
predictions. Generalization is the activity of
inferring from specific examples a general rule,
which also applies to new examples. Of course,
building a model capable of generalizing
requires detecting and exploiting regularities
(or patterns) in the data.

For example, a learning system can be
trained to recognize a handwritten digit 5 from
the other nine classes of digits. Such a system
would initially be presented with a number of
images of handwritten digits and their correct
class label, and after learning, it would be
required to correctly label new, unseen images
of handwritten digits.

Statistical learning theory (Vapnik 1998)
models this as a function estimation problem:
The function in this case maps representations
of images to their correct class label. Given
some observations of this function at random
positions (the training set of labeled images), it
requires the hypothesis to correctly label new
examples with high accuracy. The performance
in predicting labels in a test set of images is
known as generalization performance. Vladimir
Vapnik and his coworkers at the Institute of
Control Sciences of the Russian Academy of
Science in Moscow pioneered this approach to
statistical pattern recognition, and since then,
many other researchers refined their early
results. 

It turns out that the risk of a learned func-
tion making wrong predictions depends on
both its performance on the training set and a
measure of its complexity. In other words, it is
not sufficient to accurately describe the train-
ing data, but it is necessary to do so with a suit-
ably simple hypothesis (an idea related to the
well-known Occam’s razor principle). For
example, it is always possible to interpolate 5
points in the plane with a polynomial of, say,
degree 25, but nobody expects the resulting
function to have any predictive power; howev-
er, we are more likely to trust predictions of a
linear function interpolating them.

In Vapnik’s theory, the key observation is
that the complexity of a function is not an
absolute concept, but it depends on the class of
functions from which it was extracted. Com-
plexity of a learning machine is measured by
counting the number of possible data sets that
the learning machine could perfectly explain

without errors using elements of its associated

function class. Now suppose the learning

machine has explained one data set at hand.

Certainly, if the learning machine’s capacity is

high enough such that it can explain all possi-

ble data sets, then it will come as no surprise if

it can explain the given one. Thus, from the

mathematical point of view, no generalization

to new data points can be guaranteed. If, how-

ever, the learning machine explains the given

data although its capacity is small, then we

have reason to believe that it will also work

well on new data points that it has not seen

during training.

This insight is formalized in statistical learn-

ing theory, and it leads to bounds on the risk of

the learned hypothesis making wrong predic-

tions that depend on many factors, including

the training sample size and the complexity of

the hypothesis (see sidebar 1). 

The theory identifies which mathematical

characteristics of learning machines control

this quantity. Named after its inventors Vapnik

and Chervonenkis, the most famous such char-

acteristic is called the VC dimension. More

refined notions of complexity (or capacity)

have been proposed in recent years. 

The resulting bounds can point algorithm

designers to those features of the system that

should be controlled to improve generaliza-

tion. In many classical learning algorithms, the

main such feature is the dimensionality of the

function class or data representation being

used. The class of algorithms described in this

article, however, exploit very high dimensional

spaces, and for this purpose, it is crucial to

obtain bounds that are not affected by it. One

of such bounds is at the basis of the support

vector machine algorithm and is a reason why

this algorithm does not suffer from the “curse

of dimensionality.” 

Although these general ideas had been

around (but, to some extent, neglected) since

the 1960s, the crucial development for practi-

tioners occurred in the 1990s. It turned out

that not only did this theory explain the suc-

cess of several existing learning procedures, but

more importantly, it enabled researchers to

design entirely new learning algorithms, not

motivated by any analogy, just aimed at direct-

ly optimizing the generalization performance. 

Support Vector Machines

In introducing the main ideas of SVMs, our

reasoning is informal, confining mathematical

arguments to separate sidebars and pointing

the interested readers to the references at the

end of the article.

The fundamental idea of kernel methods is
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The functions learned by kernel machines
can be represented as linear combinations of
kernels computed at the training points:

In approximation theory and functional analy-
sis, this representation was already used,
although never combined with statistical
learning theory results and pattern-recognition
algorithms such as the ones described here.
Importantly, they correspond to linear func-
tions in the embedding space, and hence, pow-
erful linear methods and analysis can be
applied.

The basic algorithm we analyze deals with
the problems of learning classifications into
two categories. SVMs achieve this by first
embedding the data into a suitable space and
then separating the two classes with a hyper-
plane (see sidebar 2). Results from statistical
learning theory show that the generalization
power of a hyperplane depends on its margin,
defined as the distance from the nearest data
point, rather than the dimensionality of the
embedding space. This result provides the
motivation for the following simple algorithm:

Embed the data into a high dimensional
space and then separate it with a maxi-
mum margin hyperplane. Because the
margin measures the distance of the clos-
est training point to the hyperplane, the
maximum margin hyperplane not only
correctly classifies all points, it actually
does so with the largest possible “safety
margin.”

The decision function learned by such a
machine has the form

where xi, yi, k are training points, their labels,
and the kernel function, respectively, and x is
a generic test point.

It is important to note that the problem of
constructing the maximal margin hyperplane
reduces to a quadratic programming problem,
whose convex objective function can always be
maximized efficiently under the given con-
straints. The absence of the so-called local min-
ima in the cost function marks a radical depar-
ture from the standard situations in systems
such as neural networks and decision trees—to
cite the most popular ones—that were forced
to utilize greedy algorithms to find locally opti-
mal solutions. An entire set of empirical
tricks—that often absorbed most of the
researchers’ attention—can thus be replaced by
a well-developed field of mathematics: convex
optimization.

SVMs can always be trained to the optimal

f x sign y k x x bi i i
i

( ) ( ( , ) )= +∑α

f x y k x x bi i i( ) ( , )= +∑ α

to embed the data into a vector space, where

linear algebra and geometry can be performed.

One of the simplest operations one can per-

form in such space is to construct a linear sep-

aration between two classes of points. Other

operations can involve clustering the data or

organizing them in other ways. The use of lin-

ear machines is easier if the data are embedded

in a high dimensional space.

However, it is important to embed the data

into the correct space, so that the sought-after

regularities can easily be detected, for example,

by means of linear separators. Informally, one

would like “similar” data items to be represent-

ed by nearby points in the embedding space.

High dimensional spaces are often used for this

purpose. 

Two major problems occur when pursuing

this line of action. First, on the statistical side,

if the dimensionality of such a space is very

high, then it is trivial to find a separation con-

sistent with the labels in the training data.

Hence, according to the learning-theoretic rea-

soning sketched earlier, one cannot expect this

trivial separation to predict well the labels of

new unseen points. For this reason, we have to

incorporate ideas from statistical learning the-

ory to rule out meaningless explanations of the

data, which would lead to overfitting. We see

later how this is performed in practice. 

Second, on the computational side, working

directly in very high dimensional spaces can be

demanding, and this cost can pose a severe

limit on the size of problems that can be solved

with this algorithm. This problem is addressed

in a rather clever way by using kernel func-

tions, as follows.

Kernels are inner products in some space but

not necessarily in the space where the input

data come from. They can often be computed

efficiently. By reformulating the learning algo-

rithms in a way that only requires knowledge

of the inner product between points in the

embedding space, one can use kernels without

explicitly performing such embedding. In oth-

er words, rather than writing the coordinates

of each point in the embedding space, we

directly compute the inner products between

each pair of points in such space. This is some-

times called implicit mapping or implicit embed-

ding. If we call φ the embedding function, then

a kernel can be written as k(x, z) = 〈φ (x), φ (z)〉.

Surprisingly, many learning algorithms can be

formulated in this special way, that is, kernel-

ized. Among these are many standard linear

discriminant techniques, clustering proce-

dures, regression methods such as ridge regres-

sion, and principal components analysis

(PCA).
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solution in polynomial time, which is one of

the reasons for their fast uptake among practi-

tioners in pattern recognition. However, other

important features contribute to their perfor-

mance. 

With convex optimization concepts, it is

possible to show that in the solution, only

some of the α coefficients are nonzero, namely,

the ones lying nearest to the separation hyper-

plane. The other points could be removed from

the training set without loss of information

about the classification function. Thus, what is

called a sparseness of the solution is induced,

which is the key for many efficient algorithmic

techniques for optimization as well as an

analysis of SVM generalization performance

based on the concept of data compression.

Such points are called support vectors (hence the

name of the entire approach). 

Another major property of this class of algo-

rithms is their modularity: The maximal mar-

gin algorithm is independent of the kernel

being used, and vice versa. Domain knowledge

and other techniques dictate the choice of ker-

nel function, after which the same margin-

maximizing module is used. It is important to

note that the maximal margin hyperplane in

the embedding space will usually correspond

to a nonlinear boundary in the input space, as

illustrated by figure 1.

The high generalization power of large mar-

gin classifiers is the result of the explicit opti-

mization of statistical bounds controlling the

risk of “overfitting.” The choice of the kernel

function is the only major design choice. How-

ever, this choice can be guided by domain

expertise, keeping in mind that a kernel can be

regarded as a similarity measure and that often

domain experts already know effective similari-

ty measures between data points. Such has been

the case, for example, in the field of text catego-

rization, where a kernel inspired by informa-

tion-retrieval techniques has successfully been

used (Joachims 1998). Domain-specific kernels

are also increasingly used in bioinformatics.

The maximal margin hyperplane is, however,

not the only classification algorithm to be used

in combination with kernels. For example, the

well-known Fisher discriminant procedure and

methods motivated by the Bayesian approach

to statistics and machine learning have been

combined with kernels, leading to other inter-

esting nonlinear algorithms whose training

often amounts to convex optimization.

Regression

Similarly, several kernel-based methods for

regression have been proposed. For example,

the classic ridge regression algorithm acquires
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Figure 1. A Simple Two-Dimensional Classification Problem (Separate Balls
from Circles), with Three Possible Solutions of Increasing Complexity.

The first solution, chosen from a class of functions with low capacity, misclassifies

even some rather simple points. The last solution, however, gets all points right

but is so complex that it might not work well on test points because it is basically

just memorizing the training points. The medium-capacity solution represents a

compromise between the other two. It disregards the outlier in the top left corner

but correctly classifies all other points.



PCA in a principled way, now known as kernel
PCA (figures 2, 3, and 4).

Novelty detection is the task of spotting anom-
alous observations, that is, points that appear
to be different from the others. It can be used,
for example, in credit card fraud detection,
spotting of unusual transactions of a customer,
and engine fault detection and medical diag-
nosis. An efficient SVM method for represent-
ing nonlinear regions of the input space where
normal data should lie makes use of kernel
embedding. 

Clustering is the task of detecting clusters
within a data set, that is, sets of points that are
“similar to each other and different from all
the others.” Obviously, performing clustering
requires a notion of similarity, which has usu-
ally been a distance in the data space. Being
able to reformulate this problem in a generic
embedding space created by a nonlinear kernel
has paved the way to more general versions of
clustering. 

Applications

The number of successful applications of this
class of methods has been growing steadily in
the last few years. The record for performance
in text categorization, handwriting recogni-
tion, and some genomics applications is cur-
rently held by SVMs. Furthermore, in many
other domains, SVMs deliver performance
comparable to the best system, requiring just a
minimum amount of tuning.

We review just a few cases: text categoriza-

a completely new flavor when executed in a
nonlinear feature space. Interestingly, the
resulting algorithm is identical to a well-
known statistical procedure called Gaussian
processes regression and to a method known in
geostatistics as Krieging. 

Also in this case, the nonlinear regression
function is found as a linear combination of
kernels by solving a convex optimization prob-
lem. A special choice of loss function also leads
to sparseness and an algorithm known as SVM
regression.

Unsupervised Learning

The same principles and techniques deployed
in the case of SVMs have been exported to a
number of other machine learning tasks. Unsu-
pervised learning deals with the problem of
discovering significant structures in data sets
without an external signal (such as labels pro-
vided by human expert).

For example, PCA is a technique aimed at
discovering a maximally informative set of
coordinates in the input space to obtain a more
efficient representation of the data. This tech-
nique was routinely performed in a linear fash-
ion, using as coordinate basis vectors the eigen
vectors of the data set’s covariance matrix
(roughly speaking, the directions in which the
data vary most). Several tricks existed to over-
come the obvious limitations of linear systems,
but the discovery that this algorithm can be
used in any kernel-induced embedding space
opened the possibility to perform nonlinear
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Figure 2. The First (and Only) Two Principal Components of a Two-Dimensional Toy Data Set.

Shown are the feature-extraction functions, that is, contour plots of the projections onto the first two eigenvectors of the covariance matrix.

Being a linear technique, principal component analysis cannot capture the nonlinear structure in the data set.



tion, handwritten digit recognition, and gene

expression data classification. We briefly sum-

marize here the results of these benchmarks

but strongly recommend readers access the

original papers to obtain a full description and

justification of the cost functions being used

for the comparison, the data sets, the experi-

mental design, and other fundamental statisti-

cal considerations that we could not address

here because of space limitations. A proper dis-

cussion would require several pages for each

experiment.

Text Categorization

Researchers have constructed a kernel from a

representation of text documents known in

information retrieval as a bag of words. In this

representation, a document is associated with a

sparse vector that has as many dimensions as

there are entries in a dictionary. Words that are

present in the document are associated with a

positive entry, whereas words that are absent

will have a zero entry in the vector. The weight

given to each word depends also on its infor-

mation content within the given corpus. The

similarity between two documents is measured

by the cosine between vectors, which corre-

sponds to a kernel.

The combination of this kernel with SVMs

has created the most efficient algorithm for the

classification of news wire stories from Reuters,

a standard benchmark. 

Comparisons with four conventional algo-

rithms (k-nearest neighbor, the decision tree

learner C4.5, the standard Rocchio algorithm,

and naïve Bayes) reported by Thorsten

Joachims (1998) on two standard benchmarks

(the Reuters and the Oshumed corpora) show

SVMs consistently outperforming these meth-

ods. Performance was measured by microaver-

aged precision/recall breakeven point across 10

categories for Reuters and 23 categories for

Oshumed. In particular, for the Reuters data,

the average performance across the 10 cate-

gories ranges for the conventional methods

from 72 to 82 where SVMs achieve 86.0 with

polynomial kernels and 86.4 with Gaussian

kernels. For the Oshumed data, the conven-

tional systems ranged from 50.0 to 59.1, but

SVMs achieved 65.9 with polynomial kernels

and 66.0 with Gaussian kernels. 

Since then, SVMs have been used in a num-

ber of text categorization applications.

Handwritten-Digit Recognition

During the 1990s, the so-called MNIST set

emerged as the “gold standard” benchmark for

pattern-recognition systems in what was then

the Adaptive Systems Research Group at AT&T

Bell Labs. This group pioneered the industrial

use of machine learning as well as contributed

fundamental insights to the development of

the field in general. The MNIST training set

contains 60,000 handwritten digits, scanned in

a resolution of 28 x 28 pixels. All major algo-

rithms were tested on this set, and a sophisti-

cated multilayer neural net (called LENET) had

long held the benchmark record. Recently, an
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Figure 3. The First Two Principal Components for Kernel Principal Components Analysis (PCA), That Is, PCA Performed in the
Feature Space Associated with a Kernel Function.

The two feature extractors identify the cluster structure in the data set: The first one (left) separates the bottom left cluster from the top

one; the second one (right) then disregards this distinction and focuses on separating these two clusters from the third one.



ing systems. In particular, gene-expression data
generated by DNA microarrays are high dimen-
sional and noisy and usually expensive to
obtain (hence only available in small data sets).
A typical microarray experiment produces a
several-thousand–dimension vector, and its
cost means that usually only a few dozen such
vectors are produced.

SVMs are trained on microarray data to accu-
rately recognize tissues that are, for example,
cancerous or to detect the function of genes
and, thus, for genomic annotation.

SVMs were first used for gene-function pre-
diction based on expression data at the Univer-
sity of California at Santa Cruz in 1999 (Brown
et al. 2000). The same group later pioneered
the use of SVMs for cancer diagnosis based on
tissue samples. In both cases, they delivered
state-of-the-art performance, and since this
time, these experiments were repeated and
extended by a number of groups in essentially
all the leading institutions for bioinformatics
research. Kernel methods are now routinely
used to analyze such data. 

In this first experiment, SVMs were com-
pared to four conventional algorithms (deci-
sion tree learner C4.5, the perceptron decision
tree learner MOC1, Parzen windows, and the
Fisher discriminant) on a data set of about

SVM invariant to a class of image transforma-

tions has achieved a new record result, thus

taking over one of the previous strongholds of

neural nets. The previous record was owned by

a boosted version of the sophisticated neural

network LENET4, which has been refined for

years by the ATT Labs, with 0.7-percent test

error. SVMs with so-called jittered kernels

(DeCoste and Schoelkopf 2002) achieved 0.56

percent. On the same data set, 3 nearest neigh-

bors obtains 2.4 percent, 2-layer neural net-

works 1.6 percent, and SVMs without special-

ized kernels 1.4 percent, illustrating the

importance of kernel design. 

Gene Expression Data

Modern biology deals with data mining as

much as it does with biochemical reactions.

The huge mass of data generated first by the

Genome Project and then by the many postge-

nomic techniques such as DNA microarrays

calls for new methods to analyze data. Nowa-

days, the problem of obtaining biological

information lies just as much in the data analy-

sis as it lies in the development of actual mea-

suring devices.

However, the high dimensionality and the

extreme properties of bioinformatics data sets

represent a challenge for most machine learn-
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Figure 4. Because It Is Performed in a High-Dimensional Feature Space, Kernel Principal Components Analysis Can Extract More
Than Just the Two Feature Extractors Shown in Figure 2.

It turns out that the higher-order components analyze the internal structure of the clusters; for example, component number 4 (top right)

splits the bottom left cluster in a way that is orthogonal to component number 8 (bottom right).
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In pattern classification, the objective is

to estimate a function f: ℜn → {–1, +1}

using training data—that is, n-dimension-

al vectors xi and class labels yi such that f

will correctly classify new examples (x, y)

with high probability. More precisely, we

would like the predicted label f(x) to equal

the true label y for examples (x, y), which

were generated from the same underlying

probability distribution P(x, y) as the

training data. 

If we put no restriction on the class of

functions that we choose our estimate f

from, however, even a function that does

well on the training data—for example, by

satisfying f(xi) = yi for all i—need not gener-

alize well to unseen examples. Suppose we

have no additional information about f (for

example, about its smoothness). Then the

values on the training patterns carry no

information whatsoever about values on

novel patterns. Hence, learning is impossi-

ble, and minimizing the training error does

not imply a small expected test error. 

Statistical learning theory shows that it

is crucial to restrict the class of functions

that the learning machine can implement

to one with a capacity that is suitable for

the amount of available training data. 

We call error of the function f the prob-

ability of mislabeling a point x whose

label is y: 

_ = P({x | f(x) ≠ y})

and the theory aims at upper bounding

this quantity with an expression that

includes observable characteristics of the

learning machine.

For example, the probability of misla-

beling a new point from the same distrib-

ution, with a function that perfectly

labels the training sample, increases with

a measure of the function complexity,

known as the VC dimension (but other

measures of capacity exist). Controlling

the capacity is, hence, a crucial step in the

design of a learning machine: Given two

functions with identically performing

training sets, the one with lower capacity

has the higher probability of generalizing

correctly on new points. 

It follows from the previous considera-

tions that to design effective learning algo-

rithms, we must come up with a class of

functions whose capacity can be comput-

ed. The algorithm should then attempt to

keep the capacity low and also fit the train-

ing data. Support vector classifiers are based

on the class of hyperplanes

〈w, x〉 + b = 0

w, x ∈ ℜn, b ∈ ℜ

corresponding to decision functions

f(x) = sign(〈w, x〉 + b)

It is possible to prove that the optimal

hyperplane, defined as the one with the

maximal margin of separation between

the two classes (figure A), stems from the

function class with the lowest capacity.

This hyperplane can be constructed uni-

quely by solving a constrained quadratic

optimization problem whose solution w

has an expansion in terms of a subset of

training patterns that lie closest to the

boundary (figure A). These training pat-

terns, called support vectors, carry all rele-

vant information about the classification

problem. Omitting many details of the

calculations, there is just one crucial

property of the algorithm that we need to

emphasize: Both the quadratic program-

ming problem and the final decision

function depend only on dot products

between patterns, which is precisely what

lets us generalize to the nonlinear case. 

The key to set up the optimization

problem of finding a maximal margin

hyperplane is to observe that for two

points x+ and x– that lie nearest to it, it is

true that

Hence, the margin is inversely propor-

tional to the norm of w. Therefore, we

need to minimize the norm of w subject

to the given constraints: 

min〈w, w〉

s.t.yi[〈w, xi〉 + b] ≥ 1

This equation can be solved by construct-

ing a Lagrangian function:

where the coefficient α is a Lagrange mul-

tiplier, and by transforming it into the

corresponding dual Lagrangian by impos-

ing the optimal conditions,

Figure A. A Maximal Margin 

Separating Hyperplane.
Notice that its position is determined by the
nearest points, called support vectors.

The result is a quadratic programming

problem with linear constraints

that presents just a global maximum and

can always be exactly solved efficiently. The

resulting solution has the property that  

and in fact, often most of the coefficients

αi are equal to zero. The only positive

coefficients correspond to the points that

lie closest to the hyperplane, and for this

reason, such points go under the name of

support vectors.

The final decision function can be writ-

ten as  

where the index i runs only on the sup-

port vectors. In other words, if all data

points other than the support vectors

were removed, the algorithm would find

the same solution. This property, known

as sparseness, has many consequences,

both in the implementation and in the

analysis of the algorithm.

Notice also that both in the training

and in the testing, the algorithm uses

data-only inside inner products. This

property paves the way for the use of ker-

nel functions, which can be regarded as

generalized inner products, with this

algorithm (see sidebar 2).
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(with standard approaches ranging between 6
and 12). Other successful applications of SVMs
to computational biology involve protein
homology prediction, protein fold classifica-
tion, and drug activity prediction.

Conclusions

The development of kernel-based learning sys-
tems in the mid-1990s represented another
turning point in the history of pattern-recogni-
tion methods, comparable to the “nonlinear
revolution” of the mid-1980s, when the intro-

2500 genes, each described by 79 expression

values and labeled according to one of 5 func-

tions as stated by the MIPS database. The per-

formance was measured by the number of false

positives plus twice the number of false nega-

tives. SVMs with Gaussian kernels achieved a

cost of 24 for the first class (conventional

methods ranging between 28 and 41), 21 for

the second class (conventional methods

between 30 and 61), 17 for the third class (con-

ventional methods between 22 and 78), 17 for

the fourth class (conventional methods

between 31 and 44); and 4 for the fifth class
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The main idea behind kernel methods is

to embed the data items into a vector

space and use linear algebra and geome-

try to detect structure in the data.  For

example, one can learn classifications in

the form of maximal margin hyper-

planes, as described in sidebar 1. There

are several reasons to embed the data

into a feature space. By mapping the

data into a suitable space, it is possible

to transform nonlinear relations within

the data into linear ones. Furthermore,

the input domain does not need to be a

vector space, just the embedding space

needs to be.  

Rather than writing down explicitly

the positions of the data points within

some reference frame, we make use of

information about the relative positions

of the points with respect to each other.

In particular, we use the inner products

between all pairs of vectors in the embed-

ding space. Such information can often

be obtained in a way that is independent

of the dimensionality of this space. Many

algorithms (for example, the maximal

margin classifier described in this article)

can make use of inner product informa-

tion. 

Figure A shows the basic idea behind

support vector machines, which is to

map the data into some dot product

space (called the feature space) F using a

nonlinear map φ: ℜn → F and perform the

maximal margin algorithm in F.

Clearly, if F is high dimensional, work-

ing in the feature space can be expensive. 

Figure A. A Nonlinear Map Is Used to

Embed the Data in a Space Where Linear

Relations Are Sought.

However, in sidebar 1, we saw that all we

need to know to perform the maximal

margin algorithm is the inner product

between vectors in the feature space. This

quantity can often be computed more

efficiently by means of a kernel function

k(x, z) = 〈φ(x), φ(z)〉.

This computational shortcut can be

used by a large class of algorithms,

including principal components analysis

and ridge regression.

As an example of kernel function,

consider the following map from a two-

dimensional space to a three-dimension-

al one: 

The inner product in such a space can

easily be computed without explicitly

rewriting the data in the new representa-

tion. 

Consider two points:

x = (x1, x2)

z = (z1, z2)

and consider the kernel function

obtained by squaring their inner prod-

uct: 

This function corresponds to the inner

product between 2 three-dimensional

vectors. If we had used a higher expo-

nent, we would have virtually embedded

these two vectors in a much higher-

dimensional space at a very low compu-

tational cost. 

More generally, we can prove that for

every kernel that gives rise to a positive

definite matrix Kij = k(xi, xj), we can con-

struct a map φ such that k(x, z) = 〈φ(x),

φ(z)〉.

Other examples of kernels include the

Gaussian 

the polynomial   

k(x, z) = (〈x, z〉 + 1)d

and kernels defined over sets such as

strings and text documents. Such kernels

virtually embed elements of general sets

into a Euclidean space, where learning

algorithms can be executed. This capabil-

ity to naturally deal with general data

types (for example, biosequences, images,

or hypertext documents) is one of the

main innovations introduced by the ker-

nel approach.
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duction of back-propagation networks and deci-
sion trees triggered a series of rapid advances,
that ultimately spawned entire fields such as
data mining. The present revolution comes with
a new level of generalization performance, the-
oretical rigor, and computational efficiency. The
extensive use of optimization methods, the
deeper understanding of the phenomenon of
overfitting from the statistical point of view,
and the use of kernels as nonlinear similarity
measures all represent elements of novelty,
directly addressing weaknesses of the previous
generation of pattern-recognition systems.

The resulting systems have rapidly become
part of the toolbox of practitioners in addition
to still being the object of much theoretical
attention. A rich research community has
emerged, and many universities and software
companies participate in the research in this
field, including startups that use it for mining
postgenomic data. The future of this field ulti-
mately depends on the performance of the
algorithms. As long as kernel-based learning
methods continue to deliver state-of-the-art
performance in strategic applications such as
text categorization, handwriting recognition,
gene function, and cancer tissue recognition,
the interest in them is bound to remain high.2

Kernel methods also mark an important
development in AI research, demonstrating
that—at least in very specific domains—a rigor-
ous mathematical theory is not only possible
but also pays off from a practical point of view.
The impact of this research direction would be
even larger if it could inspire neighboring fields
to introduce analogous tools in their method-
ology. There is no doubt that a mathematical
theory of intelligent systems is still far in the
future, but the success of learning theory in
delivering effective learning methods demon-
strates that this possibility is at least not impos-
sible.

Notes

1. www.jmlr.org.

2. Official kernel machines web site: www.kernel-

machines.org.
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