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Abstract 

Face recognition is a K class problem. where K is the number of known 
individuals; and support vector machines (SVMs) are a binary classi
fication method. By reformulating the face recognition problem and re
interpreting the output of the SVM classifier. we developed a SVM -based 
face recognition algorithm. The face recognition problem is formulated 
as a problem in difference space. which models dissimilarities between 
two facial images. In difference space we formulate face recognition as a 
two class problem. The classes are: dissimilarities between faces of the 
same person. and dissimilarities between faces of different people. By 
modifying the interpretation of the decision surface generated by SVM. 
we generated a similarity metric between faces that is learned from ex
amples of differences between faces. The SVM-based algorithm is com
pared with a principal component analysis (PeA) based algorithm on a 
difficult set of images from the FEREf database. Performance was mea
sured for both verification and identification scenarios. The identification 
performance for SVM is 77-78% versus 54% for PCA. For verification. 
the equal error rate is 7% for SVM and 13 % for PCA. 

1 Introduction 

Face recognition has developed into a major research area in pattern recognition and com
puter vision. Face recognition is different from classical pattern-recognition problems such 
as character recognition. In classical pattern recognition. there are relatively few classes, 
and many samples per class. With many samples per class. algorithms can classify samples 
not previously seen by interpolating among the training samples. On the other hand, in 
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face recognition, there are many individuals (classes), and only a few images (samples) per 
person, and algorithms must recognize faces by extrapolating from the training samples. 
In numerous applications there can be only one training sample (image) of each person. 

Support vector machines (SVMs) are formulated to solve a classical two class pattern 
recognition problem. We adapt SVM to face recognition by modifying the interpretation 
of the output of a SVM classifier and devising a representation of facial images that is 
concordant with a two class problem. Traditional SVM returns a binary value, the class of 
the object. To train our SVM algorithm, we formulate the problem in a difference space, 
which explicitly captures the dissimilarities between two facial images. This is a departure 
from traditional face space or view-based approaches, which encodes each facial image as 
a separate view of a face. 

In difference space, we are interested in the following two classes: the dissimilarities be
tween images of the same individual, and dissimilarities between images of different peo
ple. These two classes are the input to a SVM algorithm. A SVM algorithm generates a 
decision surface separating the two classes. For face recognition, we re-interpret the deci
sion surface to produce a similarity metric between two facial images. This allows us to 
construct face-recognition algorithms. The work of Moghaddam et al. [3] uses a Bayesian 
method in a difference space, but they do not derive a similarity distance from both positive 
and negative samples. 

We demonstrate our SVM-based algorithm on both verification and identification applica
tions. In identification, the algorithm is presented with an image of an unknown person. 
The algorithm reports its best estimate of the identity of an unknown person from a database 
of known individuals. In a more general response, the algorithm will report a list of the most 
similar individuals in the database. In verification (also referred to as authentication), the 
algorithm is presented with an image and a claimed identity of the person. The algorithm 
either accepts or rejects the claim. Or, the algorithm can return a confidence measure of the 
validity of the claim. 

To provide a benchmark for comparison, we compared our algorithm with a principal com
ponent analysis (PCA) based algorithm. We report results on images from the FEREf 
database of images, which is the de facto standard in the face recognition community. From 
our experience with the FEREf database, we selected harder sets of images on which to 
test the algorithms. Thus, we avoided saturating performance of either algorithm and pro
viding a robust comparison between the algorithms. To test the ability of our algorithm to 
generalize to new faces, we trained and tested the algorithms on separate sets of faces. 

2 Background 

In this section we will give a brief overview of SVM to present the notation used in this 
paper. For details of SVM see Vapnik [7], or for a tutorial see Burges [1]. SVM is a binary 
classification method that finds the optimal linear decision surface based on the concept of 
structural risk minimization. The decision surface is a weighted combination of elements 
of the training set. These elements are called support vectors and characterize the boundary 
between the two classes. The input to a SVM algorithm is a set {( XI, Yi) } of labeled training 
data, where XI is the data and Yi = -1 or 1 is the label. The output of a SVM algorithm is 
a set of Ns support vectors SI, coefficient weights ai, class labels Yi of the support vectors, 
and a constant term b. The linear decision surface is 

where 

w· z +b = 0, 

Ns 

W = ~aiYisl' 
i=l 
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SVM can be extended to nonlinear decision surfaces by using a kernel K ( " .) that satisfies 
Mercer's condition [1, 7]. The nonlinear decision surface is 

Ns 

L oWiK(sj, z) + b = O. 

i = l 

A facial image is represented as a vector P E RN, where RN is referred to as face space. 
Face space can be the original pixel values vectorized or another feature space; for example, 
projecting the facial image on the eigenvectors generated by performing PCA on a training 
set of faces [6] (also referred to as eigenfaces). 

We write PI '" P2 if PI and P2 are images of the same face, and PI 1- P2 if they are 
images of different faces. To avoid confusion we adopted the following terminology for 
identification and verification. The gallery is the set of images of known people and a 
probe is an unknown face that is presented to the system. In identification, the face in 
a probe is identified. In verification, a probe is the facial image presented to the system 
whose identity is to be verified. The set of unknown faces is call the probe set. 

3 Verification as a two class problem 

Verification is fundamentally a two class problem. A verification algorithm is presented 
with an image P and a claimed identity. Either the algorithm accepts or rejects the claim. 
A straightforward method for constructing a classifier for person X, is to feed a SVM al
gorithm a training set with one class consisting of facial images of person X and the other 
class consisting of facial images of other people. A SVM algorithm will generated a linear 
decision surface, and the identity of the face in image P is accepted if 

w·p + b:::; 0, 

otherwise the claim is rejected. 

This classifier is designed to minimizes the structural risk. Structural risk is an overall 
measure of classifier performance. However, verification performance is usually measured 
by two statistics, the probability of correct verification, Pv, and the probability of false 
acceptance, PF . There is a tradeoff between Pv and PF . At one extreme all claims are 
rejected and Pv = PF = 0; and at the other extreme, all claims are accepted and Pv = 
PF = 1. The operating values for Pv and PF are dictated by the application. 

Unfortunately, the decision surface generated by a SVM algorithm produces a single per
formance point for Pv and PF . To allow for adjusting Pv and PF. we parameterize a SVM 
decision surface by ~. The parametrized decision surface is 

w· z +b =~, 

and the identity of the face image p is accepted if 

w ' p+ b:::;~. 

If ~ = -00, then all claims are rejected and Pv = PF = 0; if ~ = +00, all claims 
are accepted and Pv = PF = O. By varying ~ between negative and positive infinity, all 
possible combinations of Pv and PF are found. 

Nonlinear parametrized decision surfaces are described by 

N s 

L QiYiK(Sj, z) + b = ~. 
i = l 
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4 Representation 

In a canonical face recognition algorithm. each individual is a class and the distribution of 
each face is estimated or approximated. In this method. for a gallery of K individuals. the 
identification problem is a K class problem. and the verification problem is K instances 
of a two class problems. To reduce face recognition to a single instance of a two class 
problem. we introduce a new representation. We model the dissimilarities between faces. 
Let T = {t 1, ... , t M} be a training set of faces of K individuals. with multiple images of 
each of the K individuals. From T. we generate two classes. The first is the within-class 

differences set. which are the dissimilarities in facial images of the same person. Formally 
the within-class difference set is 

The set C1 contains within-class differences for all K individuals in T. not dissimilarities 
for one of the K individuals in the training set. The second is the between-class differences 

set. which are the dissimilarities among images of different individuals in the training set. 
Formally. 

C2 = {tl - tjltl f tj}. 

Classes C1 and C2 are the inputs to our SVM algorithm. which generates a decision sur
face. In the pure SVM paradigm. given the difference between facial images Pl and 
P2. the classifier estimates if the faces in the two images are from the same person. In 
the modification described in section 3. the classification returns a measure of similarity 
t5 = W, (Pl - P2) + b. This similarity measure is the basis for the SVM-based verification 
and identification algorithms presented in this paper. 

5 Verification 

In verification. there is a gallery {gj} of m known individuals. The algorithm is presented 
with a probe p and a claim to be person j in the gallery. The first step of the verification 
algorithm computes the similarity score 

Ns 

t5= LO:iYiK(Sl,gj -p) +b. 
i= l 

The second step accepts the claim if t5 ~ ~. Otherwise. the claim is rejected. The value of 
~ is set to meet the desired tradeoff between Pv and PF. 

6 Identification 

In identification. there is a gallery {gj} of m known individuals. The algorithm is presented 
with a probe p to be identified. The first step of the identification algorithm computes 
a similarity score between the probe and each of the gallery images. The similar score 
between p and gj is 

Ns 

t5j = L O:iYiK(St, gj - p) + b. 

i=l 

In the second step. the probe is identified as person j that has minimum similarity score 
t5j . An alternative method of reporting identification results is to order the gallery by the 
similarity measure t5j . 
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(a) (b) 

Figure 1: (a) Original image from the FEREr database. (b) Image after prepr«:>ee)sing. 

7 Experiments 

We demonstrate our SVM-based verification and identification algorithms on 400 frontal 

images from the FEREf database of facial images [5]. To provide a benchmark for algo

rithm pedormance. we provide performance for a PCA-based algorithm on the same set of 

images. The PCA algorithm identifies faces with a L2 nearest neighbor classifier. For the 

SVM-based algorithms. a radial basis kernel was used. 

The 400 images consisted of two images of 200 individuals. and were divided into disjoint 

training and testing sets. Each set consisted of two images of 100 people. All 400 images 
were preprocessed to normalize geometry and illumination. and to remove background and 

hair (figure 1). The preprocessing procedure consisted of manually locating the centers 

of the eyes; translating. rotating. and scaling the faces to place the center of the eyes on 
specific pixels; masking the faces to remove background and hair; histogram equalizing 

the non-masked facial pixels; and scaling the non-masked facial pixels to have zero mean 

and unit variance. 

PeA was pedormed on 100 preprocessed images (one image of each person in the training 
set). This produced 99 eigenvectors {et} and eigenvalues {Ad. The eigenvectors were 

ordered so that Ai < A j when i < j. Thus. the low order eigenvectors encode the majority 
of the variance in the training set. The faces were represented by projecting them on a 
subset of the eigenvectors and this is the face space. We varied the dimension of face space 

by changing the number of eigenvectors in the representation. 

In all experiments. the SVM training set consisted of the same images. '!he SVM-training 

set T consisted of two images of 50 individuals from the general training set of 100 in

dividuals. The set C1 consisted of all 50 within-class differences from faces of the same 

individuals. The set C2 consisted of 50 randomly selected between-class differences. 

The verification and identification algorithms were tested on a gallery consisted of 100 

images from the test set. with one image person. The probe set consisted of the remaining 

images in the test set (100 individuals. with one image per person). 

We report results for verification on a face space that consisted of the first 30 eigenfeatures 

(an eigenfeature is the projection of the image onto an eigenvector). The results are re

ported as a receiver operator curve (ROC) in figure 2. The ROC in figure 2 was computed 
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Figure 2: ROC for verification (using first 30 eigenfeatures). 
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by averaging the ROC for each of the 100 individuals in the gallery. For person gj' the 
probe set consisted of one image of person gj and 99 faces of different people. A summary 
statistic for verification is the equal error rate. The equal error rate is the point where the 
probability of false acceptance is equal to the probability of false verification, or mathe
matically, PF = 1 - Pv. For the SVM-based algorithm the equal error rate is 0.07, and 
for the PeA-based algorithm is 0.13. 

For identification, the algorithm estimated the identity of each of the probes in the probe 
set. We compute the probability of correctly identifying the probes for a set of face spaces 
parametrized by the number of eigenfeatures. We always use the first n eigenfeatures, thus 
we are slowly increasing the amount of information, as measured by variance, available to 
the classifier. Figure 3 shows probability of identification as a function of representing faces 
by the first n eigenfeatures. PeA achieves a correct identification rate of 54% and SVM 
achieves an identification rate of 77-78%. (The PCA results we report are significantly 
lower than those reported in the literature [2, 3]. This is because we selected a set of images 
that are more difficult to recognize. The results are consistent with experimentations in our 
group with PeA-based algorithms on the FEREf database [4]. We selected this set of 
images so that performance of neither the PCA or SVM algorithms are saturated.) 

8 Conclusion 

We introduced a new technique for applying SVM to face recognition. We demonstrated 
the algorithm on both verification and identification applications. We compared the per
formance of our algorithm to a PCA-based algorithm. For verification, the equal error rate 
of our algorithm was almost half that of the PCA algorithm, 7% versus 13%. For identi
fication, the error of SVM was half that of PeA, 22-23% versus 46%. This indicates that 
SVM is making more efficient use of the information in face space than the baseline PeA 
algorithm. 

One of the major concerns in practical face recognition applications is the ability of the 
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algorithm to generalize from a training set of faces to faces outside of the training set. We 
demonstrated the ability of the SVM-based algorithm to generalize by training and testing 
on separate sets. 

Future research directions include varying the kernel K, changing the representation space, 
and expanding the size of the gallery and probe set. There is nothing in our method that is 

specific to faces, and it should generalize to other biometrics such as fingerprints. 
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