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Abstract. The computational and/or communication constraints éattwith
processing large-scale data sets using support vectorimeactSVM) in con-
texts such as distributed networking systems are oftenifgitely high, result-
ing in practitioners of SVM learning algorithms having toppthe algorithm
on approximate versions of the kernel matrix induced by tagedegree of data
reduction. In this paper, we study the tradeoffs betweea daduction and the
loss in an algorithm’s classification performance. We idtice and analyze a
consistent estimator of the SVM’s achieved classificationreand then derive
approximate upper bounds on the perturbation on our egiimahe bound is
shown to be empirically tight in a wide range of domains, mgkt practical for
the practitioner to determine the amount of data reductigarnga permissible
loss in the classification performante.
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1 Introduction

The popularity of using support vector machines (SVM) fassification has led to
their application in a growing number of problem domains amihcreasingly larger
data sets [1-4]. An appealing key feature of the SVM is thatdhly interface of
the learning algorithm to the data is through its kernel iratn many applications,
the communication-theoretic constraints imposed by &tions in the underlying dis-
tributed data collection infrastructure, or the computadil bottleneck associated with a
large-scale kernel matrix, naturally requires some degféata reduction. This means
that practitioners usually do not have the resources to thea SVM algorithm on the
original kernel matrix. Instead, they must rely on an apprate, often simplified, ver-
sion of the kernel matrix induced by data reduction.

Consider, for instance, the application of an SVM to a deedsask in a distributed
networking system. Each dimension of the covarfatepresents the data captured by a

4 The authors would like to thank Michael I. Jordan, Noureddh Karoui and Ali Rahimi for
helpful discussions.
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monitoring device (e.g., network node or sensor), whictlicolusly ships its data to a
coordinator for an aggregation analysis using the SVM dilgor. Due to the communi-
cation constraints between nodes within the network angdeer constraints of each
node (e.qg., for battery-powered sensors), the monitoravices do not ship all of their
observations to the coordinator; rather, they must appatgly down-sample the data.
From the coordinator’s point of view, the data analysis @@ SVM or any other algo-
rithm) is not applied to the original data collected by thenibaring devices, but rather
to an approximate version. This type of in-network disttéaliprocessing protocol has
become increasingly popular in various fields, includingteyns and databases [5, 6],
as well as in signal processing and machine learning [7A3hée case where the coor-
dinator uses an SVM for classification analysis, the SVM ltagss not to the original
data set, but rather to only an approximate version, whias tlields an approximate
kernel matrix. The amount of kernel approximation is diethby the amount of data
reduction applied by the monitoring devices.

Within the machine learning field, the need for training vathapproximate kernel
matrix has long been recognized, primarily due to the comtprial constraints asso-
ciated with large kernel matrices. As such, there are varioaethods that have been
developed for replacing an original kernel matfixwith a simplified versionk: ma-
trices with favorable properties such as sparsity, lowkratc [10-14].

To our knowledge, there has been very little work focusinghertradeoffs between
the amount of data reduction and the classification acculidgy issue has only been
recently explored in the machine learning community; séfidr a general theoretical
framework. Understanding this issue is important for l@sgralgorithms in general,
and especially for SVM algorithms, as it will enable theiphgation in distributed
systems, where large streams of data are generated irbdietiidevices, but not all
data can be centrally collected. Furthermore, the tradatlysis has to be achieved in
simple terms if it is to have impact on practitioners in apglfields.

The primary contribution of this paper is an analysis of ttaeléoff between data
reduction and the SVM classification error. In particulag,am to produce simple and
practically useful upper bounds that specify the amounbs$ lof classification accu-
racy for a given amount of data reduction (to be defined faghalo this end, the
contributions are two-fold: (i) First, we introduce a noestimate, called thelassifica-
tion error coefficient, for the classification error produced by the SVM, and prone t
it is a consistent estimate under appropriate conditiohs.derivation of this estimator
is drawn from the relationship between the hinge loss (usetthd SVM) and the 0-1
loss [16]. (i) Second, using the classification error co@ffitC' as a surrogate for the
classification accuracy, we introduce upper bounds on taeghinC' given an amount
of data reduction. Specifically, |dt be the kernel matrix on the original data that we
don’t have access tdy the kernel matrix induced by data reduction, and suppoge tha
each element o\ = K — K has variance bounded by. Let C be the classification
error coefficient associate #. We express an upper bound@f— C in terms ofo
and matrix/. The bound is empirically shown to be remarkably tight foridenrange
of data domains, making it practical for the practitionetted SVM to determine the
amount of data reduction given a permissible loss in thesifleation performance.
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The remainder of the paper is organized as follows: in Se@jave provide back-
ground information about the SVM algorithm, and descrileedbntexts that motivate
the need for data reduction and approximate kernel matiic&ection 3, we describe
the main results of this paper, starting with a derivatiod eonsistency analysis of the
classification error coefficien®, and then presenting upper bounds on the change of
C due to kernel approximation; in Section 4, we present an eoapevaluation of our
analyses; and in Section 5, we discuss our conclusions.

2 SVM, data reduction and kernel matrix approximation

2.1 SVM Background

In a classification algorithm, we are given as our trainingeai.i.d. samplegx;, v; )™,
in X x {£1}, whereX denotes a bounded subsefsf. A classification algorithm in-
volves finding a discriminant function= sign(f(z)) that minimizes the classification
error P(Y # sign(f(X))).

Central to a kernel-based SVM classification algorithm & tiotion of a kernel
function K (z, z’) that provides a measure of similarity between two data pairsnd
z' in X. Technically,K is required to be a symmetric positive semidefinite kernet. F
such a function, Mercer’s theorem implies that there mustexreproducing kernel
Hilbert spaceH = spad®(z)|z € X} in which K acts as an inner product, i.e.,
K(z,z') = (P(x),®(2")). The SVM algorithm chooses a linear function in this feature
spacef(x) = (w, ®(x)) for somew that minimizes the regularized training error:

m
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Here),,, denotes a regularization parameter, arknotes an appropriate loss function
that is a convex surrogate to the 0-1 Idég # sign(f(z))). In particular, the SVM
uses hinge losg(y f(x)) = (1 — yf(x))+ [3]. It turns out that the above optimization

has the following dual formulation in quadratic programmin

1 1
) ,J
For notational convenience, we define matghsuch that);; = K(x;,z;)y;y;. The
solution « of the above dual formulation defines the optinfaind w of the primal

formulation via the following:
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2.2 In-network data reduction and approximate kernel matrices

As seen from the dual formulation (2), the kernel mafkix= { K (x;, z;); ;} and the
label vectory = [y1, ..., ym] form sufficient statistics of the SVM. However, there is
substantial previous work that focuses on the applicatf@m@&VM to an approximate
versionK of the kernel matrix from data reduction. We extend this wirkocus in
particular on the application of SVM in distributed systenvieonments.

Suppression of data streams and data quantization in Bisieid systemsA primary
motivation regarding this work is the application of SVMsed classification analysis
to distributed settings in a number of fields, including #ates, distributed systems,
and sensor networks [5, 6, 9]. In a distributed system ggttimere arel monitoring
devices which receive streams of raw data representedibimensional covariat&
and send the data to a central coordinator for classificatiatysis. Because of commu-
nication constraints, each monitoring devices cannot s#nt received data; instead,
they must send as little data as possible eAuppression algorithm is frequently used:
each monitoring deviceg j = 1, ..., d, send the-th data point to the coordinator only
if: | X7 — X/ || > e. Using these values, the coordinator reconstructs an ajppate
view X of the true dataX, such that| X — X||., < e. A key question in the design of
such systems is how to determine the data reduction paramefizen a permissible
level of loss in the classification accuracy.

In signal processing, data reduction is achieved by quatitiz or binning: each
dimension ofX is discretized into a given number of bins before being serthé
central coordinator [7, 8]. The bin size is determined byrhenber of bits available
for transmission: for bins of equal size the number of bins is proportional /e,
corresponding to usintpg(1/€) number of bits. As before, the coordinator receives
an approximate versio, such that|X — X| . < e. OnceX is received by the
coordinator, one obtains an approximate kernel matrix tpjyépg the kernel function
K to X. Suppose that a Gaussian kernel with width parameter0 is used, then we

obtain the approximate kernal asK (X;, X;) = exp (—%)

Kernel matrix sparsification and approximatioBeside applications in in-network and
distributed data processing, a variety of methods have degised to approximate
a large kernel matrix by a more simplified version with ddsiegproperties, such as
sparsity and low-rank (e.g., [L0-14]). For instance, [Irdgmses a simple method to
approximatell’ by randomly zeroing out its entries:

R { 0 with probabilityl — 1/,

* 7 dK;; with probability1/4,
wheres > 1 controls the degree of sparsification on the kePriEhis sparsification was
shown to greatly speed up the construction and significaatiyce the space required
to store the matrix. Our analysis can also be applied to apdlye tradeoff of kernel
approximation error and the change in classification error.

5 This method may not retain the positive definiteness of thedtenatrix, in which case positive
values have to be added to the matrix diagonal.
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3 Classification error coefficient and effects of data redudgbn

We begin by describing the set-up of our analysis. Kebe a (random) kernel matrix
that is an approximate version of kernel matkixinduced by a data reduction scheme
described above (e.g., quantization or suppression)ChLeindC, be the (population)
classification error associated with the SVM classifieneediwith kernel matrixs” and

K, respectively. We wish to boudd‘o — Cy| in terms of the “magnitude” of the error
matrix A = K — K, which we now define. For a simplified analysis, we make the
following assumption about the error matrik

AO. Conditioned ork andy, all elements:;; (i,5 = 1,...,m;i # j) of A are uncor-
related, have zero mean, and the variance bounded by

We user to control the degree of our kernel matrix approximatioresoh, abstracting
away from further detail. It is worth noting that certain kel matrix approximation
schemes may not satisfy the independence assumption. @mé¢heand, it is possible
to incorporate the correlation of elementsdfnto our analysis. On the other hand, we
find that the correlation is typically small, such that eladimn does not significantly
improve our bounds in most cases.

Our ultimate goal is to produce practically useful bound€lgn- Cj in terms ofo
and kernel matrix<. This is a highly nontrivial task, especially since we haveess
only to approximate data (through, but notK).

3.1 Classification error coefficient

In order to quantify the effect on the population SVM classifion errorCy, we first
introduce a simple estimate 6% from empirical data. In a nutshell, our estimator relies
on the following intuitions:

1. The SVM algorithm involves minimizing over a surrogateddthe hinge loss),
while we are interested in the performance in terms of 0-4.l@&us, we need to
be able to compare between these two losses.

2. We are given only empirical data, and we replace the riskfation expectation
of a loss function) by its empirical version.

3. We avoid terms that are “nonstable” for the choice of leayparameters, which is
important for our subsequent perturbation analysis.

The first key observation comes from the fact that the opterpecteds-risk using the
hinge loss is shown to be twice the optimal Bayes error (iging 0-1 loss) (cf. [16],
Sec. 2.1):

. 1 .
min P(Y # f(X)) = 5 min Eg(Y (X)), (5)

whereF denotes an arbitrary class of measurable functions thaarenthe optimal
Bayes classifier.

Note that we can estimate the optimal expectatkk by its empirical version de-
fined in Eqn. (1), which equals its dual formulation (2). kebe the solution of (1).
As shown in the proof of Theorem 1, X,,, — 0 sufficiently slowly asm — oo, the
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penalty term\,, ||#w||? vanishes as1 — oo. Due to (3), the second quantity in the dual
formulation (2) satisfies

71 A
2m2\ ZaiajyiyjK(Iian) :)\mHWH2/2—’O
™ i
As a result, we have:

it BO(Y F(0) + Amwl?/2 = = o = Anll]?/2 ©)
i=1

Approximating the optimap-risk in (5) by its empirical version ovét, and drop-
ping off the vanishing term.,,, ||#||? from Eqn. (6), we obtain the following estimate:

Definition 1. Let « be the solution of the SVM’s dual formulati¢®), the following
quantity is called thelassification error coefficient:

1 m
C=— Z; . (7)
An appealing feature af is thatC' € [0, 1/2]. Furthermore, itis a simple function of
As we show in the next section, this simplicity significariigilitates our analysis of the
effect of kernel approximation error. Applying consistgmesults of SVM classifiers
(e.g., [18]) we can show that is also a universally consistent estimate for the optimal
classification error under appropriate assumptions. Tagsemptions are:

Al. K isauniversal kernel of, i.e., the function clas§(w, &(-)|w € H)} is dense in
the space of continuous functions ahwith respect to the sup-norm (see [18] for
more details). Examples of such kernels include the Gaus@mel K (z,z') =

_ llz—ay?

exp ( sz |, among others.
A2. )\, — 0suchthatn),, — oo.

Theorem 1. Suppose thatX;,Y;)", are drawn i.i.d. from a Borel probability mea-
sure P. Under assumption&1 and A2, there holds asn — oc:

C - fingrP(Y # f(X)) — 0 in probability.
€

See the appendix for a proof. It is worth noting that this ltgsikernel-independent.
Let K, &, f, C denote the corresponding counterparts for kernel métithe dual
formulation’s solutionsy, classifierf, and the classification coefficie@, respectively.
For the data suppression and quantization setting deslanitf&ection 2, suppose that a
universal kernel (such as Gaussian kernel) is applied to tmaginal and approximate
data. By Theorem 1, boté andC' are consistent estimates of the classification error
applied on original and approximate data, respectivelysTthe differenc€ — C can
be used to evaluate the loss of classification accuracy dd¥id. This is the focus of
the next sectiorf’

8 We make several remarks: (i) The rates at whigkand C' converge to the respective mis-
classification rate may not be the same. To understand this isne has to take into account
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3.2 Effects of data reduction on classification error coeffient

In this section, we analyze the effects of the approximatiche kernel matrixsx’ — K
on the classification error coefficient difference- C.

Letr = #{i : oy # &;}. From Eqgn. (7), the difference of the classification
coefficients is bounded via Cauchy-Schwarz inequality:

- 1 . 1 -
|C—C|§%”a_a”lg%\/ﬂ‘a_a”a (8)

from which we can see the key point lies in deriving a tight fidwn theL, norm
|l&@ — «l|. Define two quantities:

& — af?

(@—a)Q(a—a)

Proposition 1. If o and & are the optimal solution of the prograf2) using kernel
matrix K and K respectively, then:

(6-a)"(Q-Q)a

Ry = ~
&~ al

Ry =

G-l < Yool < YRR
2m 2m

For a proof, see the Appendix. Although it is simple to derigerous absolute bounds
on R; and R», such bounds are not practically useful. Indedjs upper bounded by
the inverse of the smallest eigenvalugpfwhich tends to be very large. An alternative
solution is to obtain probabilistic bounds that hold witlglhiprobability, using Prop. 1
as a starting point. Note that given a data reduction schreeg is an induced joint
distribution generating kernel matrix, its approximate versioft, as well as the label
vectory. Matrix Q = Koyy™ determines the value of vectarthrough an optimization
problem (2). Likewise) = K o yy” determinesy. Thus,a and& are random under
the distribution that marginalizes over random matriQesnd(, respectively.

The difficult aspect of our analysis lies in the fact that wenddbhave closed forms
of eithera or &, which are solutions of quadratic programs parameterize@ and
Q, respectively. We know a useful fact, however, regardimgdistributions of vector
« andéa. Since the training data are i.i.d., the rolesagfand@; for: = 1,...,m are
equivalent. Thusw;, &;) have marginally identical distributions for=1, ..., m.

We first motivate our subsequent perturbation analysis bgtmervation that the
optimal classification error defined by Eq. (5), for whi€his an estimate, is a con-
cave function with respect jointly to the class probabiliigtributions(P(X|Y =

additional assumptions on both the kernel function, anduti@erlying distributionP. (ii)
Although quantization of data does not affect the conststenf the classification error co-
efficient since one can apply the same universal kernel fimdb quantized data, quantiz-
ing/approximatingdirectly the kernel matrix (such as those proposed in [17] and destiib
Sec. 2) may affect both consistency and convergence ratesdntrivial manner. An investi-
gation of approximation rates of tlygiantized/sparsifiedernel function class is an interesting
open direction.
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1), P(X|Y = —1)) (cf. [16], Sec. 2). When the data is perturbed (e.g., via uan
zation/suppression) the joint distributi¢®(X|Y = 1), P(X|Y = —1)) is also per-
turbed. Intuitively, upper bounds for a concave functiorial either linear or second-
order approximation under a small perturbation on its \deis should also hold under
larger perturbations, even if such bounds tend to be leksitighe latter situation. See
Fig. 3.2 for an illustration. Thus, to obtain useful probistic bounds orC' — C, we
restrict our analysis to the situation whekeis a small perturbation from the original
matrix K. Under a small perturbation, the following assumptionslmamade:

L To

Fig. 1. lllustration of upper bounds via perturbation analysisidar approximatiog; and upper
boundg- via second-order perturbation analysis of a concave fandiaround a poink, in the
domain. The bounds continue to hold for large perturbatronardz,.

B1l. The random variables; — «; fori = 1,...,n are non-correlated.
B2. The random variable®; — «; have zero means.

Given Assumption B1, coupled with the fact tiat — «;) have identical distributions
fori = 1,...,m, by the central limit theorem, as gets large, a rescaled version of
C — C behaves like a standard normal distribution. Using a rdésuktandard normal
random variables, for any constant- 0, we obtain that with probability at least—

1 —t%/2.
V2t ’

C—C S ty/Var(@ — )+ B(C — ) P L IS Var(a, — i) + B(C - ©)

2m'\| 4
=1

t - Prop. 1 t -
- _ All2 _ . 2 P2 _
< 3-VE[a—aP+E(C-C) < - \ERE+E(C-C).

Our next step involves an observation that under certaumaggons to be described

below, random variabl&; is tightly concentrated around a constant, and Bva§ can
be easily bounded.

m
Ry ~
! tr(K

ER; < o’mE||a|? byLemmal (10)

by Lemma 2 9)

~—
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As a result, we obtain the following approximate bound:

B / ~ 112 _ / ~ 112
O—c<t%+E(c_c) 4ss.B2 , 0y/mE[&]*

~ 2tr(K) 2tr(K) (11)

where Eqgn. (11) is obtained by invoking Assumption B2.

Suppose that in practice we do not have acceds tthentr(K') can be approxi-
mated bytr(K). In fact, for a Gaussian kernel(K) = tr(K) = m. One slight com-
plication is estimatingZ||@||2. Since we have only one training sample f6r which
induces a single sample fér, this expectation is simply estimated ||

When we choosé = 1 in bound (11), the probability that the bound is correct
is approximatelyl — e~'/2//2n = 75%. Fort = 2, the probability improves to
1 —e72/2y/21 = 97%. While t = 1 yields relatively tighter bound, we choose-= 2
in practice. In summary, we have obtained an approximatadbou

avmlal? 1o
(K)

classif. coeff. (approx. dataj classif. coeff. (original data) 7 n
r

Remark.(i) Even though our analysis is motivated by the context cdilsperturbations
to the kernel matrix, bound (12) appears to hold up well icpica wherv is large. This
agrees with our intuition on the concavity of (5) discussadier. (i) Our analysis is
essentially that of second-order matrix perturbation Whiaquires the perturbation be
small so that both Assumptions B1 and B2 hold. Regarding®%, £ 1,...,m, each
pair («;, &;) corresponds to theth training data point, which is drawn i.i.d. As a result,
(o; — @&;) are very weakly correlated with each other. We show thatishesnpirically
true through a large number of simulations. (i) Assumpéhis much more stringent
by comparison. Wheik is only a small perturbation of matrik’, we have also found
through simulations that this assumption is very reasanaspecially in the contexts
of the data quantization and kernel sparsification methedsribed earlier.

3.3 Technical issues

Probabilistic bounds of R; and R,. Here we elaborate on the assumptions under
which the probabilistic bounds fdt; and R, are obtained, which motivate the approx-
imation method given above. Starting willy, it is simple to obtain:

Lemma 1. Under AssumptioA0, ERs < \/ER3 < o+/mE[[|a|?[].

See the Appendix for a proof. Turning to the inverse of R&l&gotient termR;, our
approximation is motivated by the following fact, which idieect consequence of Thm
2.2.0of [19]:

Lemma 2. Let A be fixedm x m symmetric positive definite matrix wittounded
eigenvalues, ..., \,, andz be anm-dim random vector drawn from any spherically
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symmetric distribution,

E[z" Az/|||*] = (A)/m

Var[zT Az/| z||?] +2 (Zx\z/m Z/\ /m) )

By this result,z” Az /||z||? has vanishing variance as — oo. Thus, this quantity is
tightly concentrated around its mean. Note thatr{fA)/m is bounded away from O,
we can also approximate/z” Az by m/tr(A). This is indeed the situation with most
kernels in practice: As becomes largey(K)/m — EK (X, X) > 0. As a result, we
obtain approximation (9).

It is worth noting that the “goodness” of this heuristic apypmation relies on the
assumption that: — & follows an approximately spectrally symmetric distrilouti On
the other hand, the concentration of the Raleigh quotien tdso holds under more
general conditions (cf. [20]). An in-depth analysis of swgnditions ona anda is
beyond the scope of this paper.

3.4 Practical Issues

The bound we derived in Eqn. (12) is readily applicable tafical applications. Re-
call from Section 2 the example of the detection task in aibigted networking system
using a SVM. Each monitoring device independently appligaantization scheme on
their data before sending to the coordinator. The size ofjtlentized bin is. Equiv-
alently, one could use ansuppression scheme similar to [9]. The coordinator (e.g.,
network operation center) has access only to approximageXabased on which it
can comput&, K, & by applying a SVM onX. Givene, one can estimate the amount
of kernel matrix approximation errer and vice versa (see, e.g., [9]). Thus, Eqgn. (12)
gives the maximum possible loss in the classification aoyudaie to data reduction.
The tightness of bound (12) is crucial: it allows the praatier to tune the data reduc-
tion with good a confidence on the detection performance @ftrstem. Conversely,
suppose that the practitioner is willing to incur a loss afssification accuracy due to
data reduction by an amount at mésthen, the appropriate amount of kernel approx-
imation due to data reduction is:

o = M (13)

ml|af?

4 Evaluation

In this section, we present an empirical evaluation of owlysis on both synthetic
and real-life data sets. For exhaustive evaluation of thetier of the classification
error coefficient”' and the tradeoff analysis captured by bound (12), we replicar
experiments on a large number of of synthetic data sets fardift types in moderate
dimensions; for illustration in two dimensions, see Fig @ dEmonstrate the practical
usefulness of our analysis, we have tested (12) on nindifealata sets (from the UCI
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repository [21] and one light sensor data set from the IRBdratory [7]), which are
subject to varying degrees of data reduction (quantizdtits). The data domains are
diverse, including satellite images, medicine, biologysieulture, handwritten digits,
and sensor network data, demonstrating the wide appligabflour analysis.

(a) Gaussian data (b) Sin-sep data (c) Sphere-int data

Fig. 2. Synthetic data sets illustrated in two dimensions.

Evaluation of estimat€’. The first set of results in Fig. 3 verify the relationship be-
tween the classification error coefficigritand test error on held-out data under varying
conditions on: (i) overlap between classification classabfigs (a—b)), (i) sample sizes
(subfigs (c—d)) and (iii) amount of data reduction (subfigs)jelt is observed that
C' estimates the test error very well in all such situationsbioth simulated and real
data sets, and even when the misclassification rate is higm@isy data). In particu-
lar, Fig. 3 (e)(f) show scatter plots comparing C againdtée®r. Each path connects
points corresponding to varying amount of data reductiothensame data set. They
are very closely parallel to the = z line, with the points in the upper-right corner
corresponding to the most severe data reduction.

Effects of data reduction on test errddext, we evaluate the effect of data reduction via
quantization (suppression). Fig. 4 plots the misclassifinaate for data sets subject to
varying degree of quantization, and the upper bound deeélopthis paper. Our bound
is defined as a sum of test error on original (non-quantizeth det plus the upper
bound ofC' — C provided by (12). As expected, the misclassification rateciases as
one decreases the number of quantization bits. What is katleris that our upper
bound on the approximate data set is very tight in most c3$eseffectiveness of our
bound should allow the practitioner to determine the righbant of quantization bits
given a desired loss in classification accuracy.

It is worth highlighting that although our bound was derivesing the viewpoint of
(small) stochastic perturbation analysis (iceis small, and number of quantization bits
is large), in most cases the bound continues to hold up fgelaand small number
of bits), even if it is becomes less tight. This strengthemsiotuition based on the
concavity of the optimal Bayes error. Note also that undealsperturbation (smalk)
the mean of difference of test error in original data and apipnate data is very close
to 0. This provides a strong empirical evidence for the viglidf Assumption B2.
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(a) 5-D Gaussian Data (b) 10-D Gaussian Data (c) 5-D Gaussian Data
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(f) Sphere-int Data
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Fig. 3. Comparison betweefi’ and the test error under varying conditions: (a—b) varyimguant

of overlap between two classes (both training and test dasahave 2,000 sample points. Error
bars are derived from 25 replications); (c—d) varying sangites; (e—f) varying amount of data
reduction via scatter plots (each path in the scatter ptmgaects points corresponding to varying
number of quantization bits ranging from 8 in low-left carte 2 bits in upper-right corner); (g—

i) varying amount of data reduction via error bar plots. Atitg showC' remains a good estimate
of the test error even with data reduction. We use Gaussiarelssfor all experiments.

We also applied our analysis to study the tradeoff betweenekepproximation
and classification error in the context of kernel sparsificasampling described in
Section 2. The bounds are still quite good, although theynateas tight as in data
gquantization (see Fig. 5). Note that in one case (subfigtf@)classification error actu-
ally decreases as the kernel becomes sparser, but our uppet fails to capture such
phenomenon. This is because in contrast to data reductithroo® direct approxima-
tion schemes on the kernel matrix may influence the apprdiomarror rate of the
induced kernel function class in a nontrivial manner. Thipext is not accounted for
by our classification error coefficiefit (see remarks following Theorem 1).
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(c) Gaussian Data
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Fig. 4. Upper bounds of test error on approximate data due to quiatizusing bound (12).
(a—c) Simulated data sets with 2, 5, 10 features, respégtif@ Landsat satellite data (6435
sample size, 36 features); (e) Wisconsin breast cancer(8@fasample size, 30 features); (f)
Waveform data (5000 sample size, 21 features); (g) PeneBasegnition of digits data (10992
sample size, 16 features); (h) Ecoli data (336 sample sifmat8res). (i) Iris data (150 sample
size, 4 features); (j) Wine data (178 sample size, 13 fes}ufle) KDD04 Bio data (145K sample
size, 74 features); (I) Intel Lab light sensor data (81 sansjite, 25 features). We use Gaussian
kernels for (a—i), and linear kernels for (j-I). The x-axfows increased bit numbers and the
correspondingly decreasing matrix erear

5 Conclusion

In this paper, we studied the tradeoff of data reduction dasisification error in the
context of the SVM algorithm. We introduced and analyzed gtimeate of the test er-
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(a) 2-D Sin-sep Data (b) 10-D Sphere-int Data (c) 10-D Gaussian Data
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Fig.5. Upper bounds of test error based on bound (12) using appat&i@aussian kernel ma-
trices obtained from kernel sparsification sampling. (&Bio)ulated data sets; (d) KDD04 Bio
data; (e) Wisconsin breast cancer data; (f) Intel Lab ligimiser data. We use Gaussian kernels
for all experiments. The x-axis shows the increasing mamigro due to down sampling on the
kernel matrix.

ror for the SVM, and by adopting a viewpoint of stochastic tixgterturbation theory,
we derived approximate upper bounds on the test error fo6¥d in the presence
of data reduction. The bound’s effectiveness is demorstiata large number of syn-
thetic and real-world data sets, and thus can be used tawiatethe right amount of
data reduction given a permissible loss in classificatiaruescy in applications. Our
present analysis focuses mainly on the effect of data remuch the classification error
estimateC' while ignoring the its effect on approximability and the amymation rate
of the quantized (or sparsified) kernel function class. Axtimg for the latter is likely
to improve the analysis further, and is an interesting opsearch direction.
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6 Appendix

Proof sketch of Theorem LetR,,,(f) := L "7 ¢(Y £(X)), R(f) := E¢(Y (X)),

and letI(f) = || f|l» forany f € H. To s?énify the dependence on sample sizave
shall usef,, in this proof to denote the SVM classifier defined by (4). Thenai

form (1) can be re-written as
fm = argminfeHRm(f) + /\mI(f)Q/2
The classification error coefficient can be expressed by:
1
C= E(Rm(f) + )‘ml(fm)z)-

K being a universal kernel implies thatf,c R(f) = minser R(f) (cf. [18],
Prop. 3.2). For arbitrary > 0, let fo € H such thatR(fy) < minscr R(f) + €.
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By the definition of f,,,, we obtain thatR,,(fm) + Al (fm)?/2 < Ry(0) +
AmI(0)2/2 = R,,(0) = ¢(0), implying thatl(f,,) = O(1/v/A\,,). We also have:

Rm(fm) + )‘ml(fm)2/2 < Rm(f()) + )‘mI(fO)Q/z-

Rearranging gives:

R(fm)=R(fo) < (R(fm) = R (f)) + (B (fo) = R(fo)) +Xm (I (o) = I(fm)? /2.

Now, note that foranys > 0,if I(f) < B, thenf(z) = (w,®(z)) < ||lw|/K (z,z) <

M - B, whereM := sup, .y /K (x, ). Note also that the hinge logsis a Lipschitz
function with unit constant. We can now apply a result on thregoentration of the supre-
mum of empirical processes to bouRd-) — R,,(-). Indeed, applying Thm. 8 of [22]
to function class{ 15 f|Z(f) < B} (using their Thm. 12 to bound the Rademacher
complexity of the kernel function class), we obtain thatdayé > 0, with probability

at leastl — 4:

AMI(fm) 81n(2/4)
R(fm)_Rm(fm)S W"’Mj(fm) T
We obtain with probability at leadt— 24:
RO+l ()2 < R(fo)+ 0L TIOD g 141070 222
2 : AM(I(fm) + 1(f0)) 81n(2/6)
AmI(fo) /2§%12R(f)+6+ N + MI(fm)+1(fo)) - +
Am(I(f0)? /2.

Combining Assumption A2 with the fact thatf,,) = O(1/v/A\,,), the RHS tends to
minser R(f) + e asm — oco. But R(f,,) > minsex R(f) by definition, soR(f,,) —
minsex R(f) — 0and\,,I(fm)?/2 — 0in probability.

Thus we obtain that

1 1
where the last equality is due to (5).

Before completing the proof, it is worth noting that to théeraf convergence also
depends on the rate thag, I(f;)? — 0 ase — 0. This requires additional knowledge of
the approximating kernel clagsdriven by kernel functiork(, and additional properties
of the optimal Bayes classifier th#f tends to.

Proof sketch of Proposition 1if x( is a minimizer of a differentiable functiof' :
R¢ — R over a convex domain, then for anyin the domain{z — z0)"VF(xq) > 0.
Applying this fact to bothy anda which are the optimizers of Eqn. (2) usiGgandQ,
respectively:

N 1 N
( @) (2m2)\mQa m]Im) 0
1 ~ 1
—_aT A — >
(0= @) (g Qi — 1) 20,
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wherel,,, = [1...1]7. Adding up the two inequalities yields
(a—@)"(Qa —Qa) > 0.
A minor rearrangement yields
(@-a)"(Q-Q)a>(a—a) Q- a),
from which the proposition follows immediately.
Proof of Lemma 1:By Cauchy-SchwarzR, < ||(Q — Q)a||. Thei-th element of the

vector inside||.|| in the RHS isa; = y; ZJ | €ijy;&;. Note thatK , y determines the
value ofa. Thus, by Assumption A0, we have:

E[af|K,y] = Y Elefj| K, y|E[G]|K,y] < o°E[|la]*|K, y].

Marginalizing over( K, y) givesEa? < 0*E||@||>. Thus ER, < (ER3)'/? < o/mE]a]2.



