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Abstract. The computational and/or communication constraints associated with
processing large-scale data sets using support vector machines (SVM) in con-
texts such as distributed networking systems are often prohibitively high, result-
ing in practitioners of SVM learning algorithms having to apply the algorithm
on approximate versions of the kernel matrix induced by a certain degree of data
reduction. In this paper, we study the tradeoffs between data reduction and the
loss in an algorithm’s classification performance. We introduce and analyze a
consistent estimator of the SVM’s achieved classification error, and then derive
approximate upper bounds on the perturbation on our estimator. The bound is
shown to be empirically tight in a wide range of domains, making it practical for
the practitioner to determine the amount of data reduction given a permissible
loss in the classification performance.4
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1 Introduction

The popularity of using support vector machines (SVM) for classification has led to
their application in a growing number of problem domains andto increasingly larger
data sets [1–4]. An appealing key feature of the SVM is that the only interface of
the learning algorithm to the data is through its kernel matrix. In many applications,
the communication-theoretic constraints imposed by limitations in the underlying dis-
tributed data collection infrastructure, or the computational bottleneck associated with a
large-scale kernel matrix, naturally requires some degreeof data reduction. This means
that practitioners usually do not have the resources to train the SVM algorithm on the
original kernel matrix. Instead, they must rely on an approximate, often simplified, ver-
sion of the kernel matrix induced by data reduction.

Consider, for instance, the application of an SVM to a detection task in a distributed
networking system. Each dimension of the covariateX represents the data captured by a

4 The authors would like to thank Michael I. Jordan, Noureddine El Karoui and Ali Rahimi for
helpful discussions.
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monitoring device (e.g., network node or sensor), which continuously ships its data to a
coordinator for an aggregation analysis using the SVM algorithm. Due to the communi-
cation constraints between nodes within the network and thepower constraints of each
node (e.g., for battery-powered sensors), the monitoring devices do not ship all of their
observations to the coordinator; rather, they must appropriately down-sample the data.
From the coordinator’s point of view, the data analysis (viathe SVM or any other algo-
rithm) is not applied to the original data collected by the monitoring devices, but rather
to an approximate version. This type of in-network distributed processing protocol has
become increasingly popular in various fields, including systems and databases [5, 6],
as well as in signal processing and machine learning [7–9]. In the case where the coor-
dinator uses an SVM for classification analysis, the SVM has access not to the original
data set, but rather to only an approximate version, which thus yields an approximate
kernel matrix. The amount of kernel approximation is dictated by the amount of data
reduction applied by the monitoring devices.

Within the machine learning field, the need for training withan approximate kernel
matrix has long been recognized, primarily due to the computational constraints asso-
ciated with large kernel matrices. As such, there are various methods that have been
developed for replacing an original kernel matrixK with a simplified versionK̃: ma-
trices with favorable properties such as sparsity, low-rank, etc [10–14].

To our knowledge, there has been very little work focusing onthe tradeoffs between
the amount of data reduction and the classification accuracy. This issue has only been
recently explored in the machine learning community; see [15] for a general theoretical
framework. Understanding this issue is important for learning algorithms in general,
and especially for SVM algorithms, as it will enable their application in distributed
systems, where large streams of data are generated in distributed devices, but not all
data can be centrally collected. Furthermore, the tradeoffanalysis has to be achieved in
simple terms if it is to have impact on practitioners in applied fields.

The primary contribution of this paper is an analysis of the tradeoff between data
reduction and the SVM classification error. In particular, we aim to produce simple and
practically useful upper bounds that specify the amount of loss of classification accu-
racy for a given amount of data reduction (to be defined formally). To this end, the
contributions are two-fold: (i) First, we introduce a novelestimate, called theclassifica-
tion error coefficientC, for the classification error produced by the SVM, and prove that
it is a consistent estimate under appropriate conditions. The derivation of this estimator
is drawn from the relationship between the hinge loss (used by the SVM) and the 0-1
loss [16]. (ii) Second, using the classification error coefficientC as a surrogate for the
classification accuracy, we introduce upper bounds on the change inC given an amount
of data reduction. Specifically, letK be the kernel matrix on the original data that we
don’t have access to,̃K the kernel matrix induced by data reduction, and suppose that
each element of∆ = K̃ − K has variance bounded byσ2. Let C̃ be the classification
error coefficient associate tõK. We express an upper bound ofC̃ − C in terms ofσ
and matrixK̃. The bound is empirically shown to be remarkably tight for a wide range
of data domains, making it practical for the practitioner ofthe SVM to determine the
amount of data reduction given a permissible loss in the classification performance.
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The remainder of the paper is organized as follows: in Section 2, we provide back-
ground information about the SVM algorithm, and describe the contexts that motivate
the need for data reduction and approximate kernel matrices; in Section 3, we describe
the main results of this paper, starting with a derivation and consistency analysis of the
classification error coefficientC, and then presenting upper bounds on the change of
C due to kernel approximation; in Section 4, we present an empirical evaluation of our
analyses; and in Section 5, we discuss our conclusions.

2 SVM, data reduction and kernel matrix approximation

2.1 SVM Background

In a classification algorithm, we are given as our training datam i.i.d. samples(xi, yi)
m
i=1

in X × {±1}, whereX denotes a bounded subset ofRd. A classification algorithm in-
volves finding a discriminant functiony = sign(f(x)) that minimizes the classification
errorP (Y 6= sign(f(X))).

Central to a kernel-based SVM classification algorithm is the notion of a kernel
functionK(x, x′) that provides a measure of similarity between two data pointsx and
x′ in X . Technically,K is required to be a symmetric positive semidefinite kernel. For
such a function, Mercer’s theorem implies that there must exist a reproducing kernel
Hilbert spaceH = span{Φ(x)|x ∈ X} in which K acts as an inner product, i.e.,
K(x, x′) = 〈Φ(x), Φ(x′)〉. The SVM algorithm chooses a linear function in this feature
spacef(x) = 〈w, Φ(x)〉 for somew that minimizes the regularized training error:

min
w∈H

1

m

m
∑

i=1

φ(yif(xi)) + λm‖w‖2/2. (1)

Hereλm denotes a regularization parameter, andφ denotes an appropriate loss function
that is a convex surrogate to the 0-1 lossI(y 6= sign(f(x))). In particular, the SVM
uses hinge lossφ(yf(x)) = (1 − yf(x))+ [3]. It turns out that the above optimization
has the following dual formulation in quadratic programming:

max
0≤α≤1

1

m

∑

i

αi −
1

2m2λm

∑

i,j

αiαjyiyjK(xi, xj). (2)

For notational convenience, we define matrixQ such thatQij = K(xi, xj)yiyj . The
solutionα of the above dual formulation defines the optimalf andw of the primal
formulation via the following:

w =
1

mλm

m
∑

i=1

αiΦ(xi) (3)

f(x) =
1

mλm

m
∑

i=1

αiK(xi, x). (4)
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2.2 In-network data reduction and approximate kernel matrices

As seen from the dual formulation (2), the kernel matrixK = {K(xi, xj)i,j} and the
label vectory = [y1, . . . , ym] form sufficient statistics of the SVM. However, there is
substantial previous work that focuses on the application of an SVM to an approximate
versionK̃ of the kernel matrix from data reduction. We extend this workto focus in
particular on the application of SVM in distributed system environments.

Suppression of data streams and data quantization in distributed systems.A primary
motivation regarding this work is the application of SVM-based classification analysis
to distributed settings in a number of fields, including databases, distributed systems,
and sensor networks [5, 6, 9]. In a distributed system setting, there ared monitoring
devices which receive streams of raw data represented by ad-dimensional covariateX
and send the data to a central coordinator for classificationanalysis. Because of commu-
nication constraints, each monitoring devices cannot sendall its received data; instead,
they must send as little data as possible. Anε-suppression algorithm is frequently used:
each monitoring devicesj, j = 1, . . . , d, send thei-th data point to the coordinator only
if: |Xj

i − Xj
i−1| > ε. Using these values, the coordinator reconstructs an approximate

view X̃ of the true dataX , such that‖X − X̃‖∞ ≤ ε. A key question in the design of
such systems is how to determine the data reduction parameter ε, given a permissible
level of loss in the classification accuracy.

In signal processing, data reduction is achieved by quantization or binning: each
dimension ofX is discretized into a given number of bins before being sent to the
central coordinator [7, 8]. The bin size is determined by thenumber of bits available
for transmission: for bins of equal sizeε, the number of bins is proportional to1/ε,
corresponding to usinglog(1/ε) number of bits. As before, the coordinator receives
an approximate versioñX, such that‖X − X̃‖∞ ≤ ε. OnceX̃ is received by the
coordinator, one obtains an approximate kernel matrix by applying the kernel function
K to X̃ . Suppose that a Gaussian kernel with width parameterω > 0 is used, then we

obtain the approximate kernel̃K asK̃(X̃i, X̃j) = exp
(

− ‖X̃i−X̃j‖2

2ω2

)

.

Kernel matrix sparsification and approximation.Beside applications in in-network and
distributed data processing, a variety of methods have beendevised to approximate
a large kernel matrix by a more simplified version with desirable properties, such as
sparsity and low-rank (e.g., [10–14]). For instance, [17] proposes a simple method to
approximateK by randomly zeroing out its entries:

K̃ij = K̃ji =
{

0 with probability1 − 1/δ,
δKij with probability1/δ,

whereδ ≥ 1 controls the degree of sparsification on the kernel.5 This sparsification was
shown to greatly speed up the construction and significantlyreduce the space required
to store the matrix. Our analysis can also be applied to analyze the tradeoff of kernel
approximation error and the change in classification error.

5 This method may not retain the positive definiteness of the kernel matrix, in which case positive
values have to be added to the matrix diagonal.
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3 Classification error coefficient and effects of data reduction

We begin by describing the set-up of our analysis. LetK̃ be a (random) kernel matrix
that is an approximate version of kernel matrixK induced by a data reduction scheme
described above (e.g., quantization or suppression). LetC0 andC̃0 be the (population)
classification error associated with the SVM classifier trained with kernel matrixK and
K̃, respectively. We wish to bound|C̃0 − C0| in terms of the “magnitude” of the error
matrix ∆ = K̃ − K, which we now define. For a simplified analysis, we make the
following assumption about the error matrix∆:

A0. Conditioned onK̃ andy, all elementseij (i, j = 1, . . . , m; i 6= j) of ∆ are uncor-
related, have zero mean, and the variance bounded byσ2.

We useσ to control the degree of our kernel matrix approximation scheme, abstracting
away from further detail. It is worth noting that certain kernel matrix approximation
schemes may not satisfy the independence assumption. On theone hand, it is possible
to incorporate the correlation of elements of∆ into our analysis. On the other hand, we
find that the correlation is typically small, such that elaboration does not significantly
improve our bounds in most cases.

Our ultimate goal is to produce practically useful bounds onC̃0 − C0 in terms ofσ
and kernel matrixK̃. This is a highly nontrivial task, especially since we have access
only to approximate data (through̃K, but notK).

3.1 Classification error coefficient

In order to quantify the effect on the population SVM classification errorC0, we first
introduce a simple estimate ofC0 from empirical data. In a nutshell, our estimator relies
on the following intuitions:

1. The SVM algorithm involves minimizing over a surrogate loss (the hinge loss),
while we are interested in the performance in terms of 0-1 loss. Thus, we need to
be able to compare between these two losses.

2. We are given only empirical data, and we replace the risk (population expectation
of a loss function) by its empirical version.

3. We avoid terms that are “nonstable” for the choice of learning parameters, which is
important for our subsequent perturbation analysis.

The first key observation comes from the fact that the optimalexpectedφ-risk using the
hinge loss is shown to be twice the optimal Bayes error (i.e.,using 0-1 loss) (cf. [16],
Sec. 2.1):

min
f∈F

P (Y 6= f(X)) =
1

2
min
f∈F

Eφ(Y f(X)), (5)

whereF denotes an arbitrary class of measurable functions that contains the optimal
Bayes classifier.

Note that we can estimate the optimal expectedφ-risk by its empirical version de-
fined in Eqn. (1), which equals its dual formulation (2). Letŵ be the solution of (1).
As shown in the proof of Theorem 1, ifλm → 0 sufficiently slowly asm → ∞, the



6 XuanLong Nguyen, Ling Huang, and Anthony D. Joseph

penalty termλm‖ŵ‖2 vanishes asm → ∞. Due to (3), the second quantity in the dual
formulation (2) satisfies

1

2m2λm

∑

i,j

αiαjyiyjK(xi, xj) = λm‖ŵ‖2/2 → 0.

As a result, we have:

inf
w∈H

Êφ(Y f(X)) + λm‖w‖2/2 =
1

m

m
∑

i=1

αi − λm‖ŵ‖2/2. (6)

Approximating the optimalφ-risk in (5) by its empirical version overH, and drop-
ping off the vanishing termλm‖ŵ‖2 from Eqn. (6), we obtain the following estimate:

Definition 1. Let α be the solution of the SVM’s dual formulation(2), the following
quantity is called theclassification error coefficient:

C =
1

2m

m
∑

i=1

αi. (7)

An appealing feature ofC is thatC ∈ [0, 1/2]. Furthermore, it is a simple function ofα.
As we show in the next section, this simplicity significantlyfacilitates our analysis of the
effect of kernel approximation error. Applying consistency results of SVM classifiers
(e.g., [18]) we can show thatC is also a universally consistent estimate for the optimal
classification error under appropriate assumptions. Theseassumptions are:

A1. K is a universal kernel onX , i.e., the function class{〈w, Φ(·)|w ∈ H〉} is dense in
the space of continuous functions onX with respect to the sup-norm (see [18] for
more details). Examples of such kernels include the Gaussian kernelK(x, x′) =

exp
(

− ‖x−x′‖2

2ω2

)

, among others.

A2. λm → 0 such thatmλm → ∞.

Theorem 1. Suppose that(Xi, Yi)
m
i=1 are drawn i.i.d. from a Borel probability mea-

sureP . Under assumptionsA1 andA2, there holds asm → ∞:

C − inf
f∈F

P (Y 6= f(X)) → 0 in probability.

See the appendix for a proof. It is worth noting that this result is kernel-independent.
Let K̃, α̃, f̃ , C̃ denote the corresponding counterparts for kernel matrixK, the dual

formulation’s solutionsα, classifierf , and the classification coefficientC, respectively.
For the data suppression and quantization setting described in Section 2, suppose that a
universal kernel (such as Gaussian kernel) is applied to both original and approximate
data. By Theorem 1, bothC andC̃ are consistent estimates of the classification error
applied on original and approximate data, respectively. Thus, the differencẽC −C can
be used to evaluate the loss of classification accuracy of theSVM. This is the focus of
the next section.6

6 We make several remarks: (i) The rates at whichC and C̃ converge to the respective mis-
classification rate may not be the same. To understand this issue one has to take into account
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3.2 Effects of data reduction on classification error coefficient

In this section, we analyze the effects of the approximationof the kernel matrixK − K̃
on the classification error coefficient differenceC − C̃.

Let r = #{i : αi 6= α̃i}. From Eqn. (7), the difference of the classification
coefficients is bounded via Cauchy-Schwarz inequality:

|C̃ − C| ≤ 1

2m
‖α̃ − α‖1 ≤ 1

2m

√
r‖α̃ − α‖, (8)

from which we can see the key point lies in deriving a tight bound on theL2 norm
‖α̃ − α‖. Define two quantities:

R1 =
‖α̃ − α‖2

(α̃ − α)T Q(α̃ − α)
, R2 =

(α̃ − α)T (Q − Q̃)α̃

‖α̃ − α‖ .

Proposition 1. If α and α̃ are the optimal solution of the program(2) using kernel
matrixK andK̃ respectively, then:

|C̃ − C| ≤
√

r

2m
‖α̃ − α‖ ≤

√
r

2m
R1R2.

For a proof, see the Appendix. Although it is simple to deriverigorous absolute bounds
onR1 andR2, such bounds are not practically useful. Indeed,R1 is upper bounded by
the inverse of the smallest eigenvalue ofQ, which tends to be very large. An alternative
solution is to obtain probabilistic bounds that hold with high probability, using Prop. 1
as a starting point. Note that given a data reduction scheme,there is an induced joint
distribution generating kernel matrixK, its approximate versioñK, as well as the label
vectory. Matrix Q = K ◦yyT determines the value of vectorα through an optimization
problem (2). Likewise,̃Q = K̃ ◦ yyT determines̃α. Thus,α andα̃ are random under
the distribution that marginalizes over random matricesQ andQ̃, respectively.

The difficult aspect of our analysis lies in the fact that we donot have closed forms
of eitherα or α̃, which are solutions of quadratic programs parameterized by Q and
Q̃, respectively. We know a useful fact, however, regarding the distributions of vector
α andα̃. Since the training data are i.i.d., the roles ofαi andα̃i for i = 1, . . . , m are
equivalent. Thus(αi, α̃i) have marginally identical distributions fori = 1, . . . , m.

We first motivate our subsequent perturbation analysis by anobservation that the
optimal classification error defined by Eq. (5), for whichC is an estimate, is a con-
cave function with respect jointly to the class probabilitydistributions(P (X |Y =

additional assumptions on both the kernel function, and theunderlying distributionP . (ii)
Although quantization of data does not affect the consistency of the classification error co-
efficient since one can apply the same universal kernel function to quantized data, quantiz-
ing/approximatingdirectly the kernel matrix (such as those proposed in [17] and described in
Sec. 2) may affect both consistency and convergence rates ina nontrivial manner. An investi-
gation of approximation rates of thequantized/sparsifiedkernel function class is an interesting
open direction.
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1), P (X |Y = −1)) (cf. [16], Sec. 2). When the data is perturbed (e.g., via quanti-
zation/suppression) the joint distribution(P (X |Y = 1), P (X |Y = −1)) is also per-
turbed. Intuitively, upper bounds for a concave functionalvia either linear or second-
order approximation under a small perturbation on its variables should also hold under
larger perturbations, even if such bounds tend to be less tight in the latter situation. See
Fig. 3.2 for an illustration. Thus, to obtain useful probabilistic bounds onC̃ − C, we
restrict our analysis to the situation wherẽK is a small perturbation from the original
matrixK. Under a small perturbation, the following assumptions canbe made:

g1

g2

F

x0

Fig. 1. Illustration of upper bounds via perturbation analysis: Linear approximationg1 and upper
boundg2 via second-order perturbation analysis of a concave functionF around a pointx0 in the
domain. The bounds continue to hold for large perturbation aroundx0.

B1. The random variables̃αi − αi for i = 1, . . . , n are non-correlated.
B2. The random variables̃αi − αi have zero means.

Given Assumption B1, coupled with the fact that(α̃i − αi) have identical distributions
for i = 1, . . . , m, by the central limit theorem, asm gets large, a rescaled version of
C̃ − C behaves like a standard normal distribution. Using a resultfor standard normal
random variables, for any constantt > 0, we obtain that with probability at least1 −

1√
2πt

e−t2/2:

C̃ − C . t

√

Var(C̃ − C) + E(C̃ − C)
Ass.(B1)

=
t

2m

√

√

√

√

m
∑

i=1

Var(α̃i − αi) + E(C̃ − C)

≤ t

2m

√

E‖α − α̃‖2 + E(C̃ − C)
Prop. 1

≤ t

2m

√

ER2
1R

2
2 + E(C̃ − C).

Our next step involves an observation that under certain assumptions to be described
below, random variableR1 is tightly concentrated around a constant, and thatER2

2 can
be easily bounded.

R1 ≈ m

tr(K)
by Lemma 2 (9)

ER2
2 ≤ σ2mE‖α̃‖2 by Lemma 1. (10)
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As a result, we obtain the following approximate bound:

C̃ − C . t
σ
√

mE‖α̃‖2

2tr(K)
+ E(C̃ − C)

Ass.B2
= t

σ
√

mE‖α̃‖2

2tr(K)
, (11)

where Eqn. (11) is obtained by invoking Assumption B2.
Suppose that in practice we do not have access toK, thentr(K) can be approxi-

mated bytr(K̃). In fact, for a Gaussian kerneltr(K) = tr(K̃) = m. One slight com-
plication is estimatingE‖α̃‖2. Since we have only one training sample forK̃, which
induces a single sample for̃α, this expectation is simply estimated by‖α̃‖2.

When we chooset = 1 in bound (11), the probability that the bound is correct
is approximately1 − e−1/2/

√
2π = 75%. For t = 2, the probability improves to

1 − e−2/2
√

2π = 97%. While t = 1 yields relatively tighter bound, we chooset = 2
in practice. In summary, we have obtained an approximate bound:

classif. coeff. (approx. data)≤ classif. coeff. (original data)+
σ
√

m‖α̃‖2

tr(K̃)
(12)

Remark.(i) Even though our analysis is motivated by the context of small perturbations
to the kernel matrix, bound (12) appears to hold up well in practice whenσ is large. This
agrees with our intuition on the concavity of (5) discussed earlier. (ii) Our analysis is
essentially that of second-order matrix perturbation which requires the perturbation be
small so that both Assumptions B1 and B2 hold. Regarding B1, for i = 1, . . . , m, each
pair(αi, α̃i) corresponds to thei-th training data point, which is drawn i.i.d. As a result,
(αi − α̃i) are very weakly correlated with each other. We show that thisis empirically
true through a large number of simulations. (ii) AssumptionB2 is much more stringent
by comparison. WheñK is only a small perturbation of matrixK, we have also found
through simulations that this assumption is very reasonable, especially in the contexts
of the data quantization and kernel sparsification methods described earlier.

3.3 Technical issues

Probabilistic bounds of R1 and R2. Here we elaborate on the assumptions under
which the probabilistic bounds forR1 andR2 are obtained, which motivate the approx-
imation method given above. Starting withR2, it is simple to obtain:

Lemma 1. Under AssumptionA0, ER2 ≤
√

ER2
2 ≤ σ

√

mE[‖α̃‖2|].

See the Appendix for a proof. Turning to the inverse of Raleigh quotient termR1, our
approximation is motivated by the following fact, which is adirect consequence of Thm
2.2. of [19]:

Lemma 2. Let A be fixedm × m symmetric positive definite matrix withbounded
eigenvaluesλ1, . . . , λm, andz be anm-dim random vector drawn from any spherically



10 XuanLong Nguyen, Ling Huang, and Anthony D. Joseph

symmetric distribution,

E[zT Az/‖z‖2] = tr(A)/m

Var[zT Az/‖z‖2] =
2

m + 2

( m
∑

i=1

λ2
i /m − (

m
∑

i=1

λi/m)2
)

.

By this result,zT Az/‖z‖2 has vanishing variance asm → ∞. Thus, this quantity is
tightly concentrated around its mean. Note that iftr(A)/m is bounded away from 0,
we can also approximate1/zTAz by m/tr(A). This is indeed the situation with most
kernels in practice: Asm becomes large,tr(K̃)/m → EK̃(X, X) > 0. As a result, we
obtain approximation (9).

It is worth noting that the “goodness” of this heuristic approximation relies on the
assumption thatα − α̃ follows an approximately spectrally symmetric distribution. On
the other hand, the concentration of the Raleigh quotient term also holds under more
general conditions (cf. [20]). An in-depth analysis of suchconditions onα and α̃ is
beyond the scope of this paper.

3.4 Practical Issues

The bound we derived in Eqn. (12) is readily applicable to practical applications. Re-
call from Section 2 the example of the detection task in a distributed networking system
using a SVM. Each monitoring device independently applies aquantization scheme on
their data before sending to the coordinator. The size of thequantized bin isε. Equiv-
alently, one could use anε-suppression scheme similar to [9]. The coordinator (e.g.,
network operation center) has access only to approximate data X̃, based on which it
can computẽC, K̃, α̃ by applying a SVM onX̃ . Givenε, one can estimate the amount
of kernel matrix approximation errorσ and vice versa (see, e.g., [9]). Thus, Eqn. (12)
gives the maximum possible loss in the classification accuracy due to data reduction.
The tightness of bound (12) is crucial: it allows the practitioner to tune the data reduc-
tion with good a confidence on the detection performance of the system. Conversely,
suppose that the practitioner is willing to incur a loss of classification accuracy due to
data reduction by an amount at mostδ. Then, the appropriate amount of kernel approx-
imation due to data reduction is:

σ∗ =
δ · tr(K̃)
√

m‖α̃‖2
. (13)

4 Evaluation

In this section, we present an empirical evaluation of our analysis on both synthetic
and real-life data sets. For exhaustive evaluation of the behavior of the classification
error coefficientC and the tradeoff analysis captured by bound (12), we replicate our
experiments on a large number of of synthetic data sets of different types in moderate
dimensions; for illustration in two dimensions, see Fig 2. To demonstrate the practical
usefulness of our analysis, we have tested (12) on nine real-life data sets (from the UCI
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repository [21] and one light sensor data set from the IRB Laboratory [7]), which are
subject to varying degrees of data reduction (quantizationbits). The data domains are
diverse, including satellite images, medicine, biology, agriculture, handwritten digits,
and sensor network data, demonstrating the wide applicability of our analysis.

−2 0 2 4

−2

−1

0

1

2

3

4

5

(a) Gaussian data

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(b) Sin−sep data

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
(c) Sphere−int data

Fig. 2. Synthetic data sets illustrated in two dimensions.

Evaluation of estimateC. The first set of results in Fig. 3 verify the relationship be-
tween the classification error coefficientC and test error on held-out data under varying
conditions on: (i) overlap between classification classes (subfigs (a–b)), (ii) sample sizes
(subfigs (c–d)) and (iii) amount of data reduction (subfigs (e–i)). It is observed that
C estimates the test error very well in all such situations forboth simulated and real
data sets, and even when the misclassification rate is high (i.e. noisy data). In particu-
lar, Fig. 3 (e)(f) show scatter plots comparing C against test error. Each path connects
points corresponding to varying amount of data reduction onthe same data set. They
are very closely parallel to they = x line, with the points in the upper-right corner
corresponding to the most severe data reduction.

Effects of data reduction on test error.Next, we evaluate the effect of data reduction via
quantization (suppression). Fig. 4 plots the misclassification rate for data sets subject to
varying degree of quantization, and the upper bound developed in this paper. Our bound
is defined as a sum of test error on original (non-quantized) data set plus the upper
bound ofC̃ − C provided by (12). As expected, the misclassification rate increases as
one decreases the number of quantization bits. What is remarkable is that our upper
bound on the approximate data set is very tight in most cases.The effectiveness of our
bound should allow the practitioner to determine the right amount of quantization bits
given a desired loss in classification accuracy.

It is worth highlighting that although our bound was derivedusing the viewpoint of
(small) stochastic perturbation analysis (i.e.,σ is small, and number of quantization bits
is large), in most cases the bound continues to hold up for largeσ (and small number
of bits), even if it is becomes less tight. This strengthens our intuition based on the
concavity of the optimal Bayes error. Note also that under small perturbation (smallσ)
the mean of difference of test error in original data and approximate data is very close
to 0. This provides a strong empirical evidence for the validity of Assumption B2.
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Fig. 3.Comparison betweenC and the test error under varying conditions: (a–b) varying amount
of overlap between two classes (both training and test data sets have 2,000 sample points. Error
bars are derived from 25 replications); (c–d) varying sample sizes; (e–f) varying amount of data
reduction via scatter plots (each path in the scatter plots connects points corresponding to varying
number of quantization bits ranging from 8 in low-left corner to 2 bits in upper-right corner); (g–
i) varying amount of data reduction via error bar plots. All plots showC remains a good estimate
of the test error even with data reduction. We use Gaussian kernels for all experiments.

We also applied our analysis to study the tradeoff between kernel approximation
and classification error in the context of kernel sparsification sampling described in
Section 2. The bounds are still quite good, although they arenot as tight as in data
quantization (see Fig. 5). Note that in one case (subfig (c)),the classification error actu-
ally decreases as the kernel becomes sparser, but our upper bound fails to capture such
phenomenon. This is because in contrast to data reduction methods, direct approxima-
tion schemes on the kernel matrix may influence the approximation error rate of the
induced kernel function class in a nontrivial manner. This aspect is not accounted for
by our classification error coefficientC (see remarks following Theorem 1).
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Fig. 4. Upper bounds of test error on approximate data due to quantization using bound (12).
(a–c) Simulated data sets with 2, 5, 10 features, respectively; (d) Landsat satellite data (6435
sample size, 36 features); (e) Wisconsin breast cancer data(569 sample size, 30 features); (f)
Waveform data (5000 sample size, 21 features); (g) Pen-Based recognition of digits data (10992
sample size, 16 features); (h) Ecoli data (336 sample size, 8features). (i) Iris data (150 sample
size, 4 features); (j) Wine data (178 sample size, 13 features); (k) KDD04 Bio data (145K sample
size, 74 features); (l) Intel Lab light sensor data (81 sample size, 25 features). We use Gaussian
kernels for (a–i), and linear kernels for (j–l). The x-axis shows increased bit numbers and the
correspondingly decreasing matrix errorσ.

5 Conclusion

In this paper, we studied the tradeoff of data reduction and classification error in the
context of the SVM algorithm. We introduced and analyzed an estimate of the test er-
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Fig. 5. Upper bounds of test error based on bound (12) using approximate Gaussian kernel ma-
trices obtained from kernel sparsification sampling. (a–c)Simulated data sets; (d) KDD04 Bio
data; (e) Wisconsin breast cancer data; (f) Intel Lab light sensor data. We use Gaussian kernels
for all experiments. The x-axis shows the increasing matrixerrorσ due to down sampling on the
kernel matrix.

ror for the SVM, and by adopting a viewpoint of stochastic matrix perturbation theory,
we derived approximate upper bounds on the test error for theSVM in the presence
of data reduction. The bound’s effectiveness is demonstrated in a large number of syn-
thetic and real-world data sets, and thus can be used to determine the right amount of
data reduction given a permissible loss in classification accuracy in applications. Our
present analysis focuses mainly on the effect of data reduction on the classification error
estimateC while ignoring the its effect on approximability and the approximation rate
of the quantized (or sparsified) kernel function class. Accounting for the latter is likely
to improve the analysis further, and is an interesting open research direction.
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6 Appendix

Proof sketch of Theorem 1:LetRm(f) := 1
m

∑m
i=1 φ(Y f(X)), R(f) := Eφ(Y f(X)),

and letI(f) = ‖f‖H for anyf ∈ H. To signify the dependence on sample sizem we
shall usefm in this proof to denote the SVM classifier defined by (4). The primal
form (1) can be re-written as

fm = argminf∈HRm(f) + λmI(f)2/2.

The classification error coefficient can be expressed by:

C =
1

2
(Rm(f) + λmI(fm)2).

K being a universal kernel implies thatinfw∈H R(f) = minf∈F R(f) (cf. [18],
Prop. 3.2). For arbitraryε > 0, let f0 ∈ H such thatR(f0) ≤ minf∈F R(f) + ε.
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By the definition offm, we obtain thatRm(fm) + λmI(fm)2/2 ≤ Rm(0) +
λmI(0)2/2 = Rm(0) = φ(0), implying thatI(fm) = O(1/

√
λm). We also have:

Rm(fm) + λmI(fm)2/2 ≤ Rm(f0) + λmI(f0)
2/2.

Rearranging gives:

R(fm)−R(f0) ≤ (R(fm)−Rm(fm))+(Rm(f0)−R(f0))+λm(I(f0)
2−I(fm)2/2.

Now, note that for anyB > 0, if I(f) ≤ B, thenf(x) = 〈w, Φ(x)〉 ≤ ‖w‖
√

K(x, x) ≤
M · B, whereM := supx∈X

√

K(x, x). Note also that the hinge lossφ is a Lipschitz
function with unit constant. We can now apply a result on the concentration of the supre-
mum of empirical processes to boundR(·) − Rm(·). Indeed, applying Thm. 8 of [22]
to function class{ 1

MB f |I(f) ≤ B} (using their Thm. 12 to bound the Rademacher
complexity of the kernel function class), we obtain that foranyδ > 0, with probability
at least1 − δ:

R(fm) − Rm(fm) ≤ 4MI(fm)√
m

+ MI(fm)

√

8 ln(2/δ)

m
.

We obtain with probability at least1 − 2δ:

R(fm)+λmI(fm)2/2 ≤ R(f0)+
4M(I(fm) + I(f0))√

m
+M(I(fm)+I(f0))

�
8 ln(2/δ)

m
+

λmI(f0)
2/2 ≤ min

f∈F
R(f) + ε +

4M(I(fm) + I(f0))√
m

+ M(I(fm) + I(f0))

�
8 ln(2/δ)

m
+

λm(I(f0)
2/2.

Combining Assumption A2 with the fact thatI(fm) = O(1/
√

λm), the RHS tends to
minf∈F R(f) + ε asm → ∞. But R(fm) ≥ minf∈F R(f) by definition, soR(fm)−
minf∈F R(f) → 0 andλmI(fm)2/2 → 0 in probability.

Thus we obtain that

C =
1

2
(Rm(fm) + λmI(fm)2)

p→ 1

2
min
f∈F

R(f) = min
f∈F

P (Y 6= f(X)),

where the last equality is due to (5).
Before completing the proof, it is worth noting that to the rate of convergence also

depends on the rate thatλmI(f0)
2 → 0 asε → 0. This requires additional knowledge of

the approximating kernel classH driven by kernel functionK, and additional properties
of the optimal Bayes classifier thatf0 tends to.

Proof sketch of Proposition 1:If x0 is a minimizer of a differentiable functionF :
Rd → R over a convex domain, then for anyz in the domain,(z − x0)

T∇F (x0) ≥ 0.
Applying this fact to bothα andα̃ which are the optimizers of Eqn. (2) usingQ andQ̃,
respectively:

(α̃ − α)T (
1

2m2λm
Qα − 1

m
Im) ≥ 0

(α − α̃)T (
1

2m2λm
Q̃α̃ − 1

m
Im) ≥ 0,
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whereIm = [1 . . . 1]T . Adding up the two inequalities yields

(α − α̃)T (Q̃α̃ − Qα) ≥ 0.

A minor rearrangement yields

(α̃ − α)T (Q − Q̃)α̃ ≥ (α̃ − α)T Q(α̃ − α),

from which the proposition follows immediately.

Proof of Lemma 1:By Cauchy-Schwarz,R2 ≤ ‖(Q̃ − Q)α̃‖. Thei-th element of the
vector inside‖.‖ in the RHS isai = yi

∑m
j=1 eijyjα̃j . Note thatK̃, y determines the

value ofα̃. Thus, by Assumption A0, we have:

E[a2
i |K̃, y] =

m
∑

j=1

E[e2
ij|K̃, y]E[α̃2

j |K̃, y] ≤ σ2E[‖α̃‖2|K̃, y].

Marginalizing over(K̃, y) givesEa2
i ≤ σ2E‖α̃‖2. Thus,ER2 ≤ (ER2

2)
1/2 ≤ σ

√

mE‖α̃‖2.


