Support Vector Machines for Handwritten Numerical String
Recognition

Luiz S. Oliveira and Robert Sabourin
Pontificia Universidade Catolica do Parana, Curitiba, Brazil
Ecole de Technologie Supérieure - Montreal, Canada
soares@ppgia.pucpr.br, robert.sabourin@etsmtl.ca

Abstract

In this paper we discuss the use of SVMs to rec-
ognize handwritten numerical strings. Such a prob-
lem is more complex than recognizing isolated digits
since one must deal with problems such as segmen-
tation, overlapping, unknown number of digits, etc.
In order to perform our experiments, we have used a
segmentation-based recognition system using heuristic
over-segmentation. The contribution of this paper is
twofold. Firstly, we demonstrate by experimentation
that SVMs improve the overall recognition rates. Sec-
ondly, we observe that SVMs deal with outliers such as
over- and under-segmentation better than multi-layer
perceptron neural networks.

Keywords: Handwritten numerical string recogni-
tion, heuristic over-segmentation, Support Vector Ma-
chines.

1 Introduction

In the last years, Support Vector Machines (SVMs)
have gained a lot of attention of machine learning and
pattern recognition communities. They have been suc-
cessfully applied to several different areas ranging from
face verification and recognition, speaker verification,
text categorization, prediction, image retrieval, and
handwriting recognition. For a recent review, please
see [7]. Those who advocate in favor of SVMs ar-
gue that they generalize well even in high dimensional
spaces under small training set conditions and have
shown to be superior to traditional empirical risk min-
imization principle employed by most of neural net-
works.

Those who advocate against SVMs, on the other
hand, say that they are very expensive in learning and
recognition [17]. Indeed, in terms of running time,

SVMs are slower than neural networks for a similar
generalization performance. In addition, some authors
[5, 7] argue that the performance of SVMs largely de-
pends of the choice of kernels and also that multi-class
SVM classifier is still an open problem.

To overcome such problems, a lot of research have
been done on computational issues such as speed
[11, 19], large-scale problems [8], kernels [23, 22], multi-
class SVMs [13], etc. In light of this, several au-
thors have been taken advantage of these advances and
applied SVMs to solve handwriting recognition prob-
lems, more specifically, the handwritten digit recogni-
tion problem. In this paper we discuss the use of SVMs
to recognize handwritten numerical strings. Such a
problem is more complex than recognizing isolated dig-
its since one must deal with problems such as segmen-
tation, overlapping, unknown number of digits, etc.
We have used a segmentation-based recognition sys-
tem using heuristic over-segmentation to perform our
experiments. The contribution of this paper is twofold.
Firstly, we demonstrate by experimentation that SVMs
improve the overall recognition rates. Secondly, we ob-
serve that SVMs deal with outliers such as over- and
under-segmentation better than multi-layer perceptron
neural networks.

The remaining of this work is organized as follows:
Section 2 presents a brief review about SVMs to recog-
nize isolated digits. Section 3 introduces the handwrit-
ten string digit recognition problem and the concept
of outlier as well. Section 4 presents an overview of
SVMs. Section 5 summarizes our experimental results
while Section 6 concludes this work.

2 A Review on SVMs for Handwritten
Digit Recognition

As stated before, the problem of handwritten digit
recognition has been used to assess SVM-based clas-

Table 1. Performance of SVM-based classifiers on handwritten digit recognition.

Author Database Tr Size Test Size Error Rate
Krebel et al, 1998 [13] NIST 10000 10000 1.09
Ayat et al, 2002[1] NIST 18000 10000 1.02
Scholkopf et al, 1996[21] USPS 7291 2007 3.20
Dong et al, 2002 [11] USPS 7291 2007 2.24
LeCun et al, 1998 [14] MNIST 60000 10000 1.10
Li et al, 2002 [15] MNIST 60000 10000 0.76
DeCoste and Scholkopf, 2003 [10] MNIST 60000 10000 0.56
Liu et al, 2002 [16] MNIST 60000 10000 0.42
Liu et al, 2002 [16] CEDAR 18468 2711 0.63
Liu et al, 2002 [16] CENPARMI 4000 2000 1.10

sifiers since the introduction of Vapnik’s book [25].
By reviewing the literature, we can find several vari-
ations of SVMs as well as results on several different
databases. Table 1 summarizes some works found in
the literature.

Perhaps, the most used benchmark to evaluate
SVMs is MNIST, which is a modified version of NIST
database and was originally set up by the AT&T group
[14]. This database contains 60,000 and 10,000 28 x 28
images for training and testing, respectively, and have
been used by machine learning and pattern recogni-
tion communities. The former, usually takes into ac-
count the raw grey-level image to feed the classifier,
since their goal is to assess the technique being ap-
plied rather than improve the performance on a given
database. The pattern recognition community, is more
preoccupied in achieving performance. For this rea-
son, they emphasizes the use of prior knowledged about
symmetries of the problem (i.e., feature extraction) to
reach better results. This explains the different results
reported in Table 1 for MNIST.

Liu et al [16] show a comparative study on hand-
written digit recognition using different classifiers and
databases. They conclude that SVMs using Gaussian
kernel outperform all traditional techniques such as
neural networks (MLP and RBF), polynomial classi-
fiers, and learning quadratic discriminant functions.
Nevertheless, they point out that memory space and
computational speed for classification still are impor-
tant issues to be considered when discussing SVMs. In
light of this, some authors have proposed using SVMs
for verification rather than classification [2]. In such
cases, SVMs are used just when the result of the clas-
sifier is not so reliable. This strategy is computation-
ally cheaper once SVMs are called just to solve difficult
cases.

3 Handwritten Digit String Recogni-
tion

The system used as baseline is depicted in Figure
1. It takes a segmentation-based recognition with an
heuristic over-segmentation, where the classifier and
verifiers are the well-known Multilayer Perceptrons
(MLPs). The approach combines the outputs from
different levels such as segmentation, recognition, and
postprocessing in a probabilistic model, which allows a
sound integration of all knowledge sources used to infer
a plausible interpretation. For a complete description
of this system, please see [18].

Component Detection Feature Recognition and Global
and Segmentation Extraction Verification

M)
A Component Segmentation Conc&Cont Classifier
A Detection
| Multi-level
V¢ Over-Seg.
C it
oncaviity
Under-Seg.
Verifier

Decision

\r/

v

Gilobal
Decision

Analysis

Concavity

Figure 1. Block diagram of the digit string
recognition system.

The literature shows that this kind of system pro-
duces good results, however, it has to deal with outliers
such as over- and under-segmentation. Such outliers
are by-product of the segmentation process and some-
times they are very similar to digits. Figure 2 shows an
example of over-segmentation, where without any con-
textual information, some over-segmented pieces (Fig-
ure 2b) could be easily classified as digits.

It has been demonstrated that MLPs are not robust
enough to deal with these outliers [12]. For this reason,
several techniques have been investigated to improve
the resistance of MLPs to outliers [17, 4]. The forego-

SP,
SP,/
Segmentation N i & O
Points K i

e

Qb ofe L0

(b)

Figure 2. Example of over-segmentation:
(a) Original string and (b) over-segmented
pieces.

ing system applies the concept of verifiers, which are
“plugged” into the system to detect outliers. Table 2
reports the results produced by the system described
in [18] on NIST SD19. We have used 12,802 strings
of digits with lengths ranging from 2 to 10. It can
be observed that the results achieved without the two
verifiers are very poor, but they are considerably im-
proved by the verifiers. We will demonstrate in the
remaining of this paper that SVMs are more robust
than MLP to recognize string of digits in the context
of over-segmentation. It is worth of remark that, to the
knowledge of the authors, these results are the state of
the art for this database.

Table 2. Recognition rates on NIST database.

String Nb. of Rec. Rate (%) Rec. Rate (%)
Length Strings Without verifiers ~ With verifiers

2 2370 91.56 96.88

3 2385 87.98 95.38

4 2345 84.91 93.38

5 2316 82.00 92.40

6 2169 86.66 93.12

10 1217 78.97 90.24

4 Overview of Support Vector Ma-
chines

In his book, Vapnik [25] proposed a method of find-
ing a hyperplane optimally dividing two classes, which
does not depend on a probability estimation. This op-
timal hyperplane is a linear decision boundary which
separates the two classes and leaves the largest mar-
gin between the vectors of the two classes. In order to
determine the optimal hyperplane, Vapnik’s method
uses just a small fraction of the data points, the so-
called “support vectors”. It has been demonstrated
that the probability of making errors depends only on
the number of these support vectors (the complexity of

the classifier) and the number of the training vectors.
However, this method fits only for separable classes.

A extension to nonlinear decision surfaces is neces-
sary since real-life classification problems are difficult
to be solved by a linear classifier. This can be achieved
using the kernel trick, where every time a linear algo-
rithm uses a dot product, replace it with a non-linear
kernel function. This causes the linear algorithm to
operate in a different space. For SVMs, using the ker-
nel trick makes the maximum margin hyperplane be
fit in a feature space. The feature space is a non-linear
map from the original input space, usually of much
higher dimensionality than the original input space. In
this way, non-linear SVMs can be created. The deci-
sion function derived by the SVM classifier for a two-
class problem can be formulated, using a kernel func-
tion K (z,z;) of a new example x (to classify) and a
training example x;, as follows:

flz) = Z iy K (z,2;) + b (1)

where the parameters a; and b are found by maximizing
a quadratic function (maximum margin algorithm [25])
while y; is the label of example x;. Table 3 summarizes
the most common kernels.

Table 3. Summary of common kernels

Kernel Inner Product Kernel
Linear K(z,y) = (z-y)
Gaussian K(x,y) = exp <_%)
Polynomial K(z,y) = (z-y)?

Tangent Hyperbolic K (z,y) = tanh(xz -y — O)

Besides optimizing the kernel parameters (such as o
in a Gaussian kernel), one should consider the trade-
off parameter C. It indicates how severely errors have
to be punished. The choice of C' may have a strong
effect on the behavior of the classifier for difficult clas-
sification problems, e.g., if the errors are punished too
much, the SVMs can overfit the training data.

Since SVM is primarily a binary classifier, it should
be extended to deal with g-class (where ¢ > 2) pattern
recognition problems such as digit recognition. There
are two basic approaches to solve g-class problems with
SVMs: pairwise and one-against-others. In the former,
the pairwise classifiers are arranged in trees, where each
tree node represents a SVM. For a given test sample,
it is compared with each two pairs, and the winner will
be tested in an upper level until the top of the tree (see
Figure 3). In this strategy, the number of classifiers we
have to train is ¢(¢ — 1)/2 (e.g., 45 in the case of digit
recognition where ¢ = 10).

Figure 3. Example of pairwise SVM. The num-
bers 1-8 encode the classes.

The second strategy is the one-against-others de-
composition, which works by constructing an SVM w;
for each class ¢ that first separates that class from all
the other classes and then uses an expert F' to arbitrate
between each SVM output in order to produce the final
decision. The most common arbitrator is the arg max.
Let h = (h1,...,hg)T be the output of a system of Q
one-against-others SVMs, the arg max picks class ¢ for
the input x, which then maximizes h, is defined as:

F = argmax(h) (2)

However, this kind of decision strategy suffers from
a scaling problem once it assumes that all the SVMs
produce outputs on the same scale, which is not true.
If the SVMs are trained to produce outputs for the
support vectors as £1, the scale is not robust since it
only depends on a few data, often including outliers.
Therefore, before comparing the outputs, they need to
be normalized. In light of this, let s(h) be the normal-
ized output of a system of) one-against-others SVMs,
the decision rule is defined as:

F = argmax(s(h)) (3)
4.1 Estimating probabilities with SVM

As stated in the previous section, SVMs produce
an uncalibrated value that is not a probability. There
is several situations where would be very useful to
have a classifier producing a posterior probability
P(class|input). In our case, particulary, we are inter-
ested in estimation of probabilities because the baseline
system presented in Figure 1 was built on a probabilis-
tic framework.

Due to the benefits of having classifiers estimating
probabilities, many researchers have been working on
the problem of estimating probabilities with SVM clas-
sifiers. Sollich in [24] proposes a Bayesian framework
to obtain estimation of probabilities and to tune the

hyper-parameters as well. His method interprets SVMs
as maximum a posteriori solutions to inference prob-
lems with Gaussian process priors. Wahba et al [26]
use a logistic function of the form

1
Ply=1|f(x) = ————F— 4
W=D = remy @
where f(z) is the SVM output and y = +1 stands for
the target of the data sample x. In the same vein,
Platt [20] suggests a slightly modified logistic function,
defined as:

1
1 +exp(Af(xz) + B))

The difference lies in the fact that it has two param-
eters trained discriminatively, rather one parameter es-
timated from a tied variance. The parameters A and B
of Equation 5 are found by minimizing the negative log
likelihood of the training data, which is a cross-entropy
error function.

Py = 11f(z))

®)

5 Experiments and Discussion

In order to show the robustness of SVMs to rec-
ognize strings of digits, we have used them into the
system presented in Section 3. As we can see, the clas-
sification module of such a system is composed of three
sub-modules: classifier, over-segmentation verifier, and
under-segmentation verifier. The first is responsible for
recognizing the ten numerical classes, while the other
two are responsible for detecting outliers, such as over-
and under-segmentation. Then, the results are com-
bined in a probabilistic framework.

In a first moment, we have kept the MLP-based veri-
fiers and replaced the main classifier by ten SVMs com-
bined trough the one-against-others strategy. We have
also tried a pairwise approach, but in our experiments
we have got better results using one-against-others. We
have also tried different kernel models, namely, Gaus-
sian, Polynomial, and Tangent Hyperbolic. The first
one produced better results in our experiments. The
SVMs were trained by using TORCH [9], which is a
machine-learning library developed at IDIAP.

In light of this, ten SVMs were trained on 195,000
samples of the NIST SD19. The feature set [18], which
contains 132 components, is based on a mixture of con-
cavity and contour measures. In order to estimate the
parameters of the SVMs we have considered a valida-
tion set composed of 28,000 samples. The best param-
eters found were ¢ = 1.15 and C' = 1000.

Thereafter, we have used the approach proposed by
Platt [20] to transform the scores provides by the SVMs

Table 4. Recognition rates on NIST database using SVMs (NV: Without verifiers, V: With verifiers.)

String Number MLP-based system SVM-based system Rec. Rate
Length of Rec. Rate Rec. Rate Rec. Rate Rec. Rate published
Strings NV \% NV \Y in [3]
2 2370 91.56 96.88 96.07 97.67 94.8
3 2385 87.98 95.38 93.19 96.26 91.6
4 2345 84.91 93.38 90.89 94.28 91.3
5 2316 82.00 92.40 90.50 94.00 88.3
6 2169 86.66 93.12 92.15 93.80 89.1
10 1217 78.97 90.24 89.87 91.38 86.9

into estimation of probabilities. In order to fit the sig-
moid of Equation 5 we have used the same training set
we have used to fit the SVMs. Platt has pointed out
that using the same data twice, sometimes can lead
to biased fits. However, we did not observe this phe-
nomenon in our experiments.

The recognition rate achieved by the SVMs on the
test set, which is composed of 60,089 samples of hsf 7,
was 99,20%. This rate was very close to that reached
by the original classifier, an MLP that got 99,13% on
the same data set. The results on strings of digits are
summarized in Table 4. Note that “SVM-based sys-
tem” means that the main classifier is composed of ten
SVMs while the two verifiers are MLP-based.

By comparing the results reported in Table 4, we
can notice that the gap between the results is much
smaller when considering the system with SVMs. This
means that the SVM-based system can deal better with
outliers such as over- and under-segmentation, i.e., it
has more outlier resistance than the neural-net-based
system. In spite of this better resistance, we can ob-
serve that the verifiers still are important pieces in the
system, since they improve the results in about 3% (in
average). Figure 4 depicts the results presented in the
foregoing tables. We can see that the gap between the
SVM-based systems is much smaller than the gap be-
tween the neural-net-based system.

On the other hand, the neural-net-based system is
faster during the test phase. As pointed out by other
authors [6, 16], speed for large data sets is still a issue
for SVMs. However, a lot of efforts have been made in
this direction, so that, we believe SVMs will be more
viable in a near future. Table 4 also compares our
results to the work published by Britto et al in [3].
The comparison here becomes interesting since both
systems have been tested on the same database.

To conclude our experiments, we have replaced
the MLP-based verifiers by SVMs as well. In such
a case, both verifiers are binary classifiers, since
they discriminate between digit and over-segmentation

Recognition Rate (%)

-e~- Neural net without verifiers S L 4 AN
82~ | =0~ Neural net with verifiers . » b
=8 SVM without verifiers ‘\
=0~ SVM with verifiers N
80 A
K
78 I I I I
2 3 4 5 6 10

String Lenght

Figure 4. Comparison between the SVM- and
neural-net-based systems.

(over-segmentation verifier) and digit and under-
segmentation (under-segmentation verifier). The re-
sults achieved by the MLP-based over-segmentation
verifier and MLP-based under-segmentation verifier are
99.40% and 99.17%, respectively. The SVM-based ver-
ifiers reached very similar results. When using these
new verifiers into the system, the results were practi-
cally the same.

6 Conclusion

So far, a lot of efforts have been published in the lit-
erature about SVMs, where the benchmarks very often
are isolated handwritten digit recognition. In this pa-
per, we have investigated the use of SVMs to recognize
strings of digits, which is a more complicated problem.
We demonstrated through experimentation that the
proposed strategy (i.e., one-against-others SVMs esti-

mating probabilities using Platt’s methods) can sur-
pass the results produced by the baseline system, which
is based on MLP classifiers. Other important contri-
bution of this work, is to show that SVMs are suitable
for systems based on explicit segmentation, since they
can deal with outliers better than neural nets.

Acknowledgements

This research has been supported by The National
Council for Scientific and Technological Development
(CNPq) grant 150542/2003-8.

References

(1]

[10]

[11]

N. E. Ayat, M. Cheriet, and C. Y. Suen. Optimization
of the svm kernels using an empirical error minimiza-
tion scheme. In Proc. of the International Workshop
on Pattern Recognition with Support Vector Machine,
pages 354-369, 2002.

A. Bellili, M. Gilloux, and P. Gallinari. An hybrid
MLP-SVM handwritten digit recognizer. In Proc. of
6" International Conference on Document Analysis
and Recognition, pages 28-31, Seattle, USA, 2001.

A. S. Britto, R. Sabourin, F. Bortolozzi, and C. Y.
Suen. Recognition of handwritten numeral strings us-
ing a two-stage HMM-Based method. International
Journal on Document Analysis and Recognition, 5(2-
3):102-117, 2003.

J. Bromley and J. S. Denker. Improving rejection per-
formance on handwritten digits by training with rub-
bish. Neural Computation, 5(3):367-370, 1993.

C. J. C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):121-167, 1998.

H. Byun and S. W. Lee. Applications of support vec-
tor machines for pattern recognition. In Proc. of the
International Workshop on Pattern Recognition with
Support Vector Machine, pages 213-236, 2002.

H. Byun and S. W. Lee. A survey on pattern recog-
nition applications of support vector machines. Inter-
national Journal of Pattern Recognition and Artificial
Intelligence, 17(3):459-486, 2003.

R. Collobert, S. Bengio, and Y. Bengio. Parallel mix-
ture of SVMs for very large scale problems. Neural
Computation, 14(5):1105-1114, 2002.

R. Collobert, S. Bengio, and J. Mariethoz. Torch: A
modular machine learning software library. Technical
Report 02-46, IDIAP-RR, 2002.

D. DeCoste and B. Scholkopf. Training invariant sup-
port vector machines. Machine Learning Journal,
46(1-3):161-190, 2002.

J. X. Dong, A. Krzyzak, and C. Y. Suen. A practical
SMO algorithm. In Proc. of 16" International Con-
ference on Pattern Recognition (ICPR), Quebec City,
Canada, 2002.

(12]

(13]

[14]

(15]

(16]

(17]

18]

[19]

20]

(21]

22]

23]

24]

[25]

[26]

M. Gori and F. Scarselli. Are multilayer percep-
trons adequate for pattern recognition and verifica-
tion? IEEFE Trans. on Pattern Analysis and Machine
Intelligence, 20(11):1121-1132, 1998.

U. Krebel. Parwise classification and support vector
machines. In B. S. et al, editor, Advances in Kernel
Methods: Support Vector Machines, pages 255—268.
MIT Press, 1998.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Procs of IEEE, 86(11):2278-2324, 1998.

Z. Li, S. Tang, and S. Yan. Multi-class SVM classifier
based on pairwise coupling. In Proc. of the Interna-
tional Workshop on Pattern Recognition with Support
Vector Machine, pages 321-333, 2002.

C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa.
Handwritten digit recognition using state-of-the-art
techniques. In Proc. of 8" International Workshop
on Frontiers of Handwriting Recognition (IWFHR-8),
pages 320-325, 2002.

C.-L. Liu, H. Sako, and H. Fujisawa. Performance
evaluation of pattern classifiers for handwritten char-
acter recognition. International Journal on Document
Analysis and Recognition, 4(3):191-204, 2002.

L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y.
Suen. Automatic recognition of handwritten numerical
strings: A recognition and verification strategy. IEFE
Trans. on Pattern Analysis and Machine Intelligence,
24(11):1438-1454, 2002.

E. E. Osuna and F. Girosi. Reducing the run-time
complexity in support vector machines. In B. S. et al,
editor, Advances in Kernel Methods: Support Vector
Machines, pages 271-283. MIT Press, 1998.

J. Platt. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood meth-
ods. In A. S. et al, editor, Advances in Large Margin
Classifiers, pages 61-74. MIT Press, 1999.

B. Scholkopf, C. J. C. Burges, and V. Vapnik. Incorpo-
rating invariances in support vector learning machines.
In International Conference on Artificial Neural Net-
works (ICANN’96), pages 4752, Berlin, 1996.

B. Schélkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-
R. Miiller, G. Rétsch, , and A. Smola. Input space vs.
feature space in kernel-based methods. IEEE Trans.
on Neural Networks, 10(5):1000-1017, 1999.

B. Scholkopf, A. Smola, and K.-R. Miiller. Kernel
principal component analysis. In B. S. et al, edi-
tor, Advances in Kernel Methods: Support Vector Ma-
chines, pages 327-352. MIT Press, 1998.

P. Sollich. Bayesian methods for support vecotr ma-
chines: Evidence and predictive class probabilities.
Machine Learning, 46(1-3):21-52, 2002.

V. Vapnik. The nature of statistical learning theory.
Springer Verlag, 1995.

G. Wahba, X. Lin, F. Gao, D. Xiang, R. Klein, and
B. Klein. The bias-variance trade-off and the random-
ized GACV. In Proc. of the 18" Conference on Neural
Information Processing Systems, pages 831, Vancou-
ver, Canada, 2001.

